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Abstract

In this paper, we initiate a study of global dominated coloring of graphs
as a variation of dominated colorings. A global dominated coloring of a
graph G is a proper coloring such that for each color class there are at least
two vertices, one of which is adjacent to all the vertices of this class while the
other one is not adjacent to any vertex of the class. The global dominated
chromatic number of G is the minimum number of colors used among all
global dominated colorings of G. In this paper, we establish various bounds
on the global dominated chromatic number of a graph in terms of some
graph invariants including the order, dominated chromatic number, domi-
nation number and total domination number. Moreover, characterizations
of extremal graphs attaining some of these bounds are provided. We also
discuss the global dominated coloring in trees and split graphs.
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1. Introduction

By a graph G = (V,E), we mean a graph with no loops and multiple edges with
vertex set V = V (G) and edge set E = E(G). The order of G is n = |V (G)|. The
open neighborhood of a vertex v ∈ V is the set N(v) = NG(v) = {u ∈ V : v ∈ E},
and its closed neighborhood is the set N [v] = N(v) ∪ {v}. The degree of v is the
cardinality of its open neighborhood. The maximum degree of G is denoted by
∆ = ∆(G). A vertex of degree one is called a leaf. A tree is a connected acyclic
graph. A star Sq is a tree of order q + 1 with at least q vertices of degree 1. A
bistar Bp,q is a graph formed by two stars Sp and Sq by adding an edge between
their center vertices. We write Pn, Cn and Kn for the path, cycle and complete
graph of order n, respectively. The complete graph of order 3 is called a triangle.
If F is a graph, then a graph G is F -free if it has no induced subgraph isomorphic
to F . A path joining two vertices x and y is called a (x, y)-path. The distance
between two vertices x and y in a connected graph G is the number of edges in
a shortest (x, y)-path. The diameter of a connected graph G is the maximum
distance between two vertices of G. A set S is independent if no two vertices in S
are adjacent. For standard definitions and terminologies on basic graph theory,
the reader is referred to [3].

Graph coloring and domination are two important areas in graph theory. A
k-coloring of G is a function f : V (G)→ {1, 2, . . . , k} such that any two adjacent
vertices u and v have different colors, that is f(u) 6= f(v). Also, the set of vertices
having the same color will be called a color class, thereby forming an independent
set. Consequently, a k-coloring of G is equivalent to a partition of the vertex set
V (G) into k-independent sets. The smallest integer k for which G has a k-coloring
is the chromatic number χ(G) of G.

A subset D ⊆ V (G) is a dominating set of G if every vertex in V \D has a
neighbor in D and is a total dominating set, if every vertex in V has a neighbor in
D. The domination number γ(G) (respectively, total domination number γt(G))
is the minimum cardinality of a dominating set (respectively, total dominating
set) of G. A total dominating set D of G is a global total dominating set [10] if
D is also a total dominating set of the complement graph G of G. The global
total domination number γgt(G) is the minimum cardinality of a global total
dominating set of G. For more details on global domination and its variations we
refer the reader to the book chapter [2].

In recent years, several coloring problems have been defined with additional
properties that involve the concept of domination. As examples we can cite
dominator coloring [5], total dominator coloring [7], and dominated coloring [11].
A survey of selected results on dominator and total dominator colorings can be
found in the book chapter [8]. Consider a k-coloring C of G with color classes
V1, V2, . . . , Vk. A color class Vi is said to be dominated by a vertex u (or u is a
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dominating vertex of Vi) if u is adjacent to all vertices of Vi. The color class Vi is
said to be anti-dominated by a vertex v (or v is an anti-dominating vertex of Vi)
if v is not adjacent to any vertex of Vi. Now, if each vertex of G is a dominating
vertex for some color class (possible its own class if it is alone), then C is called a
dominator coloring, while if each color class of C has a dominating vertex, then
C is called a dominated coloring. For the latter, the minimum number of colors
used among all dominated colorings of G is the dominated chromatic number,
denoted by χdom(G). It is worth mentioning that dominated colorings of graphs
offer some interesting applications in social networks and genetic theory (see
[4, 9]). In 2019, Sahul Hamid and Rajeswari [6] introduced the concept of global
dominator coloring of a graph G defined a k-coloring of G with color classes
V1, V2, . . . , Vk satisfying the property that for every vertex v, there exist Vi, Vj
with for i 6= j such that v is a dominating vertex of Vi and an anti-dominating
vertex of Vj . For the sake of notation, we will write C = (V1, V2, . . . , Vk) any
k-coloring with color classes V1, V2, . . . , Vk.

In this paper, we are interested in the study of the global version of the
dominated colorings. A global dominated coloring of G is a coloring such that
every color class has both dominating and anti-dominating vertices. The mini-
mum number of colors used among all global dominated colorings of G is called
the global dominated chromatic number of G, denoted by χgdom(G). It is quite
obvious that not all graphs admit a global dominated coloring, for example, the
complete graph does not. The existence of such a coloration in a graph G of
order n is subject to that G has no isolated vertex and the maximum degree
in G is at most n − 2, that is γ(G) ≥ 2. Therefore, let L denote the family of
all graphs without isolated vertices having domination number at least two. A
global dominated coloring of G with χgdom(G) number of colors will be called a
χgdom-coloring of G, and likewise a χdom-coloring of G is defined.

In this paper, we first show that the global dominated chromatic number
of a graph G ∈ L of order n is bounded below by 3 and above by n, where
the extremal graphs attaining each bound are given. Moreover, various bounds
in terms of some graph invariants including the dominated chromatic number,
global total domination number, total domination number, domination number
and maximum degree are presented. For the class of trees T different from stars,
it is shown that γt(T ) ≤ χgdom(T ) ≤ γt(T ) + 2, where a characterization of all
trees T such that χgdom(T ) = γt(T ) + i is provided for any i ∈ {0, 1, 2}.

We close this section by recalling two results given in [11] that will be useful
in our investigations.

Theorem 1 [11]. The dominated chromatic number of a triangle-free graph G is
equal to its total domination number.

Theorem 2 [11]. Let G be a split graph such that its maximum clique is of order
k. Then χdom(G) = χ(G) = ω(G) = k.
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2. Existence Result and First Bounds

The purpose of this section is to present at first a result dealing with the existence
of graphs with prescribed value χgdom, and then a lower bound and an upper
bound on the global dominated chromatic number. Moreover, in the remainder
of this section we will focus on the graphs reaching these bounds.

We begin with a realization result of graphs G of order n and χgdom(G) = k,
where n ≥ k ≥ 4. For the case k = 3, the order n has to be at least 6 which is
discussed in Theorem 6.

Theorem 3. For any integers k and n with n ≥ k ≥ 4, there exists a connected
graph G ∈ L of order n with χgdom(G) = k.

Proof. We consider several cases depending on whether n = k, k+1 or n > k+1.

Case 1. n = k.

Subcase 1.1. n is even. Assume that n = 2m, and consider the cocktail party
graph Km×2 with vertex set V (Km×2) = {ui, vj : 1 ≤ i, j ≤ m} and edge set
E(Km×2) = {uiuj , uivj , vivj : for all i, j and i 6= j}. Clearly the graph induced
by the ui’s as well as the one induced by the vi’s is a complete graph on m
vertices. So let the color of vertex ui be i. Now each vertex vj has to be given
a new color in order to achieve global dominated coloring of Km×2. Therefore
χgdom(Km×2) = 2m = k. (For an example, see the graph G1 of order 6 illustrated
in Figure 1, where χgdom(G1) = 6).
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Figure 1. Graphs G1 and G2 of order 6 and 5, respectively, with χgdom(G1) = 6 and
χgdom(G2) = 5.

Subcase 1.2. n is odd. Assume that n = 2m + 1, and consider the graph
K2m−e, whose vertices are labelled v1, v2, . . . , v2m and let e = v1v2m. Add a new
vertex u and join it by edges to v1 and v2m to get the resulting graph G. Clearly
the graph induced by all vi’s but v2m is a complete graph on 2m − 1 vertices.
Hence at least 2m − 1 colors are required to color G. Also the vertices v2m and
u have to be given new color in order to achieve global dominated coloring of G.
Therefore χgdom(G) = k. (For an example, see the graph G2 of order 5 illustrated
in Figure 1, where χgdom(G2) = 5).
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Case 2. n = k + 1. First assume that k is even, and consider the graph G∗

with vertex set V (G) = V (Km×2) ∪ {x} and edge set E(G) = E(Km×2) ∪ {xvj :
for all 2 ≤ j ≤ m}. One can see that χgdom(G∗) = k. (For an example, see the
graph of order 7 illustrated in Figure 2, where χgdom(G∗) = 6).

Assume now that k is odd, and consider the graph G∗∗ with vertex set
V (G∗∗) = V (G∗) ∪ {y} and edge set E(G∗∗) = E(G∗) ∪ {xy, yvj : for all 1 ≤
j ≤ m}. One can see that χgdom(G∗∗) = k. (For an example, see the graph of
order 8 illustrated in Figure 2, where χgdom(G∗∗) = 7).
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Figure 2. Graphs G∗, G∗∗ and G of order 7, 8 and 7, respectively, with χgdom(G∗) = 6,
χgdom(G∗∗) = 7 and χgdom(G) = 4.

Case 3. n > k+1. Consider the complete graph Kk whose vertices are labelled
v1, v2, . . . , vk. Clearly k different colors say {1, 2, . . . , k} are needed to color the
vertices of Kk, where the color of vertex vi is i, for 1 ≤ i ≤ k. Now add a new
vertex u and the edge v1u and add n − k − 1 other new vertices u1, . . . , un−k−1

attached at v2, and let G denote the resulting graph of order n. Color u with
color 3 and the uj ’s with color 4. Such a coloring is a global dominated coloring of
G and thus χgdom(G) = k. (For an example, see the graph of order 7 illustrated
in Figure 2, where χgdom(G) = 4).

Theorem 4. For any graph G ∈ L of order n, 3 ≤ χgdom(G) ≤ n.

Proof. Clearly, χgdom(G) 6= 1. Now, if C = (V1, V2) is a global dominated col-
oring of G, then V1 should have a dominating vertex belonging to V2 leading
that the color class V2 has no anti-dominating vertex, a contradiction. Hence
χgdom(G) ≥ 3.
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The upper bound follows from the fact that any coloring of G using n colors
is a global dominated coloring of G.

Restricted to bipartite graphs, the upper bound in Theorem 4 is improved
by the following result.

Theorem 5. Let G ∈ L be a connected bipartite graph of order n and maximum
degree ∆. Then χgdom(G) ≤ n−∆ + 2, and this bound is sharp.

Proof. Consider a vertex v of maximum degree, and color its neighbors with two
colors, and assign to the remaining vertices a new color unused. This coloring is
global dominated, and so χgdom(G) ≤ n−∆ + 2.

That this bound is sharp may be seen for bistars B∆−1,1, where ∆ ≥ 2.

u
u
u

u
u u

u
u uu u

u uu u

w′ w′

u′ u′v′ v′

u u

v v

w w

(a)

u2

u1

v1

(b)

Figure 3. Graphs belonging to family =.

In the aim to characterize graphs G ∈ L such that χgdom(G) = 3, we define
the family = of connected graphs G that are obtained from the graph H in Figure
3(a) by adding three sets of vertices X,Y and Z (which may be empty) in the
following way.

(1) X ∪ {u, u′} = X ′ is an independent set with v and v′ as dominating and
anti-dominating vertices, respectively;

(2) Y ∪ {v, v′} = Y ′ is an independent set with w and w′ as dominating and
anti-dominating vertices, respectively;

(3) Z ∪ {w,w′} = Z ′ is an independent set with u and u′ as dominating and
anti-dominating vertices, respectively;

(4) Subject to the above conditions, possible edges may exist between the vertices
X ′, Y ′ and Z ′.
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For an example of a connected graph belonging to =, see Figure 3(b).

Theorem 6. Let G be a graph of L. Then χgdom(G) = 3 if and only if G ∈ =.

Proof. Assume that χgdom(G) = 3 and let C = (V1, V2, V3) be a χgdom-coloring
of G. First, G is connected and the connectedness follows from the fact that
each Vi has a dominating vertex and an anti-dominating vertex. We claim that
dominating and anti-dominating vertices of each Vi belong to a same color class.
To see this, assume without loss of generality, that V1 has a dominating vertex
in V2 and an anti-dominating vertex in V3. It follows that the dominating vertex
of V3 belongs to V2. But then V2 has no anti-dominating vertex, a contradic-
tion, which proves the claim. Now since each Vi cannot contain dominating and
anti-dominating vertices for the other two color classes, we deduce that |Vi| ≥ 2
for every i ∈ {1, 2, 3}. Accordingly, let u, u′ ∈ V1, v, v′ ∈ V2 and w,w′ ∈ V3.
By the above claim, let V1 have v and v′ as dominating and anti-dominating
vertices respectively, V2 have w and w′ as dominating and anti-dominating ver-
tices respectively, and V3 have u and u′ as dominating and anti-dominating ver-
tices respectively. Note that the vertices u, v, w, u′, v′ and w′ induce a subgraph
isomorphic to the graph H in Figure 3(a). Moreover, by considering the sets
X = V1 \ {u, u′}, Y = V2 \ {v, v′} and Z = V3 \ {w,w′}, one can see that these
three sets fulfill the conditions for the construction of connected graphs of the
family =, and therefore G ∈ =.

Conversely, assume that G ∈ =. Then G is obtained from the graph H
by adding three sets of vertices X,Y and Z (which may be empty) satisfying
conditions (1) to (4). Then (X ∪ {u, u′}, Y ∪ {v, v′}, Z ∪ {w,w′}) is a global
dominated coloring of G, implying that χgdom(G) ≤ 3. The equality follows from
Theorem 4.

Our next step is to characterize the graphs G ∈ L of order n such that
χgdom(G) = n. We begin with the following result showing that any connected
graph in L of order n and diameter at least 5 has a global dominated chromatic
number at most n− 2.

Proposition 7. Let G ∈ L be a connected graph of order n and diameter at least
5. Then χgdom(G) ≤ n− 2.

Proof. Let u, v ∈ V (G) be two vertices at distance at least 5 in G, and let
P be a (u, v)-path. Let x and y be two vertices on P at distance two from
u and v, respectively. Consider the coloring C = (V1, V2, . . . , Vn−2), where
V1 = {u, x}, V2 = {v, y), and all the remaining vertices of G are spread over
the sets V3, . . . , Vn−2 so that each one contains a single vertex. Then C is a
global dominated coloring of G, and thus χgdom(G) ≤ n− 2.
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Recall that the independence number α(G) of a graph G is the maximum
cardinality of an independent set in G.

Theorem 8. Let G ∈ L be a connected graph of order n. Then χgdom(G) = n if
and only if α(G) = 2.

Proof. Let G be a connected graph of L such that χgdom(G) = n. Clearly,
α(G) ≥ 2, since γ(G) ≥ 2 for every graph G ∈ L. Now, assume that α(G) ≥ 3.
Then there exist a pair of non-adjacent vertices v1, v2 in G such that {v1, v2} is
not a dominating set of G. If v1 and v2 have a common neighbor in G, then
coloring v1, v2 with the same color and each of the remaining vertices with a new
color provides a global dominated coloring of G using n−1 colors, a contradiction.
Hence we can assume that v1 and v2 have no common neighbor. Therefore, G
has diameter at least three. Since G is connected, there is a path between v1 and
v2. By Proposition 7, d(v1, v2) ∈ {3, 4}. Consider the following two situations.

Case 1. d(v1, v2) = 4. Let v1v3v4v5v2 be a (v1, v2)-path of length four in
G. Then as before coloring v1, v4 with a same color and each of the remaining
vertices with a new color provides a global dominated coloring of G using n− 1
colors, a contradiction.

Case 2. d(v1, v2) = 3. Let v1v3v4v2 be a (v1, v2)-path of length three in G.
Since {v1, v2} is not a dominating set of G, there exists a vertex u which is not
adjacent to either v1 or v2. Now, if u is adjacent to v3, then coloring v1, u with
a same color and each of the remaining vertices with a new color is a global
dominated coloring of G, a contradiction. By symmetry, u is not adjacent to v4,
and therefore N(u)∩{v1, v2, v3, v4} = ∅. But then assigning to v1, v4 a same color
and to each of the remaining vertices a new color is a global dominated coloring
of G, a contradiction.

Therefore, we conclude that α(G) = 2.

Conversely, if α(G) = 2, then every set of two non-adjacent vertices in G is a
dominating set of G, and thus every vertex of G has to be assigned a new color,
that is χgdom(G) = n.

Proposition 9. Let G ∈ L be a disconnected graph of order n. Then χgdom(G) =
n if and only if every component of G is a complete graph.

Proof. Let G ∈ L be a disconnected graph and let Q be any component of G.
If Q is not a complete graph, then there are two non-adjacent vertices x and y
having a common neighbor. In this case, assigning x, y a same color and each
of the remaining vertices of G a new color is a global dominated coloring of
G, contradicting χgdom(G) = n. Hence Q is a complete graph, and the proof is
complete.
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3. Relations Involving χgdom and χdom

In this section, we consider relations between the global dominated chromatic

and the dominated chromatic numbers. We shall then be interested in the ex-
tremal graphs reaching these bounds.

Theorem 10. For any graph G ∈ L, χdom(G) ≤ χgdom(G) ≤ 2χdom(G).

Proof. The lower bound follows from the fact that any global dominated col-
oring of G is also a dominated coloring. To prove the upper bound, let C =
(V1, V2, . . . , Vk) is any χdom-coloring of G. Note that if |Vj | = 1 for some j, then
since G ∈ L, the single vertex in Vj has a non-neighbor that can be considered as
an anti-dominating vertex. From each Vi with |Vi| ≥ 2, pick a vertex, say xi, and
color it with an unused color. Observe that such a vertex xi is an anti-dominating
vertex for Vi \ {xi}. Hence the resulting coloring is a global dominated coloring
of G, and thus χgdom(G) ≤ 2χdom(G).

Theorem 11. Let G be a graph of L. Then χgdom(G) = χdom(G) if and only if
there exists a χdom-coloring of G such that none of the color class is a dominating
set of G.

Proof. Assume that G is a graph of L such that χgdom(G) = χdom(G), and let
C be a χgdom-coloring of G. Then C is also a χdom-coloring, since χgdom(G) =
χdom(G). Moreover, by the definition of global dominated colorings, every class
has anti-dominating set, and so no color class is a dominating set of G.

The converse is straightforward, and we omit the details.

From Theorem 11, we derive the following sufficient condition for graphs of
L to have equal global dominated and dominated chromatic numbers.

Corollary 12. Let G be a graph of L with domination number γ(G) = γ. If G
is Sγ-free, then χgdom(G) = χdom(G).

Proof. Let C be a χdom-coloring of G. Since G is Sγ-free, each color class of
C contains less than γ vertices, and therefore none of the color classes of C is a
dominating set of G. By Theorem 11, χgdom(G) = χdom(G).

Corollary 13. For every disconnected graph G ∈ L, χgdom(G) = χdom(G).

Proof. Let C be any χdom-coloring of G. Since each color class must have a
dominating vertex, no two vertices from different components of G can have a
same color. Therefore none of the color classes in C is a dominating set of G,
and the desired result follows from Theorem 11.
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The next result is a consequence of Theorem 11 and gives the exact value
of the global dominated chromatic number of paths and cycles of order at least
four. Recall that for n ≥ 3, γt(Pn) = γt(Cn) = bn/2c+ dn/4e − bn/4c .

Corollary 14. For n ≥ 4,

(1) χgdom(P4) = χgdom(P5) = 4 and χgdom(Pn) = γt(Pn) for n ≥ 6.

(2) χgdom(C4) = 4, χgdom(C5) = 5 and χgdom(Cn) = γt(Cn) for n ≥ 6.

Proof. The result can be easily checked for n ∈ {4, 5}. Hence assume that n ≥ 6.
Since for such an order, paths and cycles are triangle-free graphs, we have by
Theorem 1, χdom(Pn) = γt(Pn) and χdom(Cn) = γt(Cn). Furthermore, by consider
the χdom-coloring C as defined in [11] for the proof of Theorem 1, and since n ≥ 6,
it is easy to note that none of the color class of C is a dominating set neither
for paths nor for cycles. Hence by Theorem 11, χgdom(Pn) = χdom(Pn) and
χgdom(Cn) = χdom(Cn) yielding the desired result.

Theorem 15. Let G be a graph of L. If χgdom(G) = 2χdom(G), then for every
χdom-coloring C of G, the following conditions are satisfied.

(i) Each color class of C contains at least two vertices, and

(ii) Each color class of C is a dominating set of G.

Proof. Assume that G is a graph of L such that χgdom(G) = 2χdom(G), and
let C = (V1, V2, . . . , Vχdom(G)) be a χdom-coloring of G. Suppose that there exists
a color class of C, say V1, such that |V1| = 1. We note the argument we use
for V1 remains valid for any color class with a single vertex. First, observe that
since G ∈ L, ∆(G) ≤ n− 2 and thus there is at least one vertex in G having no
neighbor in V1. Also, since G has no isolated vertex, there is a vertex in G having
a neighbor in V1. Hence V1 has a dominating vertex as well as an anti-dominating
vertex. Now, for each Vi with |Vi| ≥ 2, we select a vertex that we put alone in
a set denoted by V ′i . Note that since Vi is dominated, Vi \V ′i and V ′i also remain
dominated. In addition, as observed before for V1, set V ′i has an anti-dominating
vertex. Therefore V1 together with all Vi \V ′i and V ′i for every i 6= 1, is a global
dominated coloring of G using at most 2χdom(G)− 1, a contradiction. Hence (i)
holds. To prove (ii), assume that some color class, say V1, does not dominate
V (G). Then there is a vertex v ∈ Vj for some j 6= 1, say j = 2, such that v has
no neighbor in V1. Hence vertex v is an anti-dominating vertex for V1. Since each
color class contains at least two vertices, by item (i), then as before, from any
color class Vi with i /∈ {1, 2}, we choose a vertex that will be alone in the new set
V ′i . In this case, V1, V2 \ {v}, {v} and all Vi \V ′i and V ′i for every i /∈ {1, 2} is a
global dominated coloring of G using 2χdom(G) − 1, a contradiction. Hence (ii)
follows.
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4. Relations to Other Graph Invariants

In this section, we present some results relating the global dominated chromatic
number to some graph parameters including the domination and total domination
numbers and the clique number. We first provide a result that relates the global
dominated chromatic number and the global total domination number. Recall
that the global total domination number of a graph G, denoted by γgt(G), is the
minimum cardinality of a set that total dominates both G and its complement
graph G.

Theorem 16. For any graph G ∈ L, we have χgdom(G) ≥ 1
2γgt(G).

Proof. Let C = (V1, V2, . . . , Vχgdom
) be a χgdom-coloring of G, and let D be a

set of vertices formed as follows: for each color class Vi we put in D exactly two
vertices, one of its dominating vertices and the other amongst its anti-dominating
vertices. Clearly, |D| ≤ 2χgdom(G). We shall show that D is a global total
dominating set of G. Since each vertex of D belongs to some color class which
is dominated by at least one dominating vertex, set D is accordingly a total
dominating set of G. Moreover for any vertex u ∈ V (G), u belongs to some color
class which is anti-dominated by some vertex of D. Hence D is a global total
dominating set of G, and thus γgt(G) ≤ 2χgdom(G).

Restricted to triangle-free graphs, we shall see that the global dominated
chromatic number is bounded by twice the domination number plus one. We use
the following result due to Bollobás and Cockayne [1].

Theorem 17 (Bollobás and Cockayne [1]). If G is a graph without isolated ver-
tices, then G has a minimum dominating set D such that for all d ∈ D, there
exists a neighbor f(d) ∈ V \D of d such that f(d) is not a neighbor of any vertex
x ∈ D \ {d}.

Theorem 18. Let G ∈ L be a triangle-free graph of order n. Then χgdom(G) ≤
2γ(G) + 1, and the bound is sharp.

Proof. Let D be a minimum dominating set of G satisfying the property of
Theorem 17. Recall that since G ∈ L, G has no isolated vertices, 4(G) ≤ n− 2
and γ(G) = |D| ≥ 2. We also note that since G is triangle free, the set of neighbors
of every vertex of D is an independent set. However, two non-adjacent vertices
of D may have common neighbors. Now, consider the coloring C of the vertices
of G defined as follows: each vertex x of D is assigned a new color cx; for each
vertex x ∈ D color its neighbors in V \D not colored by a new color c′x, and let
Cx denote such a color class. It is straightforward to see that C is a dominated
coloring of G. Moreover, since every vertex x of D has at least one vertex f(x)
in V \D for which x is the only neighbor in D, the number of colors used by
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C is exactly 2 |D| = 2γ(G). In the following we will discuss on the globality of
the dominated coloring C. First, since |D| ≥ 2 and each vertex x ∈ D has at
least one neighbor f(x) ∈ V \D such that f(x) is not a neighbor of any vertex
x ∈ D \ {x}, the color class {x} of C has both a dominating vertex and an anti-
dominating vertex. Hence it remains to discuss the color classes formed by the
vertices of V \D. Observe that each of such classes has a dominating vertex,
for instance, their neighbors in D. Now, if an addition these color classes have
anti-dominating vertices, then we are done and C is a global dominated coloring
of G with 2 |D| = 2γ(G) colors. Hence assume that some color class Cv of the
vertices in V \D using color c′v, does not have an anti-dominating vertex. Recall
that according to the above notation, the vertices of Cv have v as a neighbor in
D. We proceed with the following two claims.

Claim 1. v has no neighbor in D.

Proof. Suppose not, and let u ∈ D be a neighbor of v. Since G is triangle-free,
vertex u has no neighbor in Cv, and thus u becomes an anti-dominating vertex for
the color class Cv, contradicting our assumption that Cv has no anti-dominating
vertex.

Claim 2. Cv is the unique color class with no anti-dominating vertex.

Proof. Suppose not, and let Cu be a color class of the vertices of V \D with no
anti-dominating vertex. Then by Claim 1, the neighbor u ∈ D of the vertices of
Cu has no neighbor in D. Moreover, no neighbor of u belongs to Cv (else such a
vertex becomes an anti-dominating vertex for Cu). Likewise, no neighbor of v is
in Cu. Therefore v and u are anti-dominating vertices of Cu and Cv, respectively,
a contradiction. This proves the claim.

For the sequel, we will see that |Cv| ≥ 2. Suppose to the contrary, that
|Cv| = 1, and let w ∈ V \D be the unique vertex in Cv. Since Cv has no anti-
dominating vertex, vertex w is adjacent to all vertices of G, but then w would
be of degree n − 1, contradicting the fact that G ∈ L. Hence |Cv| ≥ 2. Let f(v)
denote the vertex of Cv such that f(v) is not a neighbor of any vertex x ∈ D \ {v}.
Then recoloring f(v) with a new color, f(v) becomes an anti-dominating vertex
for the color class Cv \ {f(v)}, thereby providing a global dominated coloring of
G with 2γ(G) + 1.

The bound is sharp for the cycle C5 (by Corollary 14), and the proof is
complete.

For the class of trees different from stars, we give an upper bound of the
global dominated chromatic number in terms of the total domination number
which improves the upper bound of Theorem 18.

Theorem 19. Let T be a tree different from a star. Then γt(T ) ≤ χgdom(T ) ≤
γt(T ) + 2, and the bounds are sharp.
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Proof. The lower bound follows from Theorems 1 and 10. To prove the upper
bound, let Dt be a minimum total dominating set of T . We will use the same
coloring defined in the proof of Theorem 1 (see [11]), and for proving purposes we
shall describe it as follows. Constructing pairs of adjacent vertices in Dt (some
vertices may be single after that). For every obtained pair (a, b), we give a new
color cb to b and the neighborhood of a, and give another new color ca to a and the
neighborhood of b. For any single vertex d ∈ Dt non associated with a pair, we
assign a new color cd to the neighbors of d belonging to V \Dt. The coloring C as
defined is a dominated coloring using |Dt| colors. Now, if for each pair of adjacent
vertices (u1, v1) in Dt neither N(u1) nor N(v1) is a dominating set of T, then
the dominated coloring C defined above is global and thus χgdom(T ) ≤ γt(T ).
Hence we can assume that there is a pair of adjacent vertices (u1, v1) in Dt such
that either N(u1) or N(v1), say N(u1), is a dominating set of T . We claim that
no other pair of adjacent vertices distinct from (u1, v1) exists in Dt. Suppose to
the contrary that there is another distinct pair of adjacent vertices (u2, v2) in
Dt. Clearly, u2 and v2 cannot have a common neighbor in N(u1), for otherwise
u2, v2 and such a common neighbor induce a triangle, a contradiction. Hence let
u2 and v2 be dominated by two different vertices x and y in N(u1), respectively.
Then the vertices u1, x, u2, v2 and y would induce a cycle, a contradiction too.
Whence the claim. Now considering the coloring C defined above, pick a vertex
from N(u1) and another vertex from N(v1) (if N(v1) is also a dominating set of
T ) and assign to them two new colors. The resulting coloring remains dominated
and it is global. Therefore, χgdom(T ) ≤ |Dt|+ 2.

Clearly, the lower bound is attained for all path graphs on at least 6 ver-
tices (by Corollary 14) while the upper bound is attained for bistars Br,s with
r, s ≥ 1.

Our next aim is to characterize the trees T different from stars such that
χgdom(T ) = γt(T ) + k for all k ∈ {0, 1, 2}. Let =1 be the family of trees T that
can be obtained from a star K1,t (t ≥ 2), by adding r vertices and s disjoint stars,
each of order at least two with s ≥ 1 and r ≥ 0 by attaching the r vertices as
well as the centers of the s stars to one leaf of the star K1,t. An example of a tree
in =1 is shown in Figure 4.

u u
u u
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u

u
u
u
u
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(

Figure 4. G ∈ =1.
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Theorem 20. Let T be a tree different from a star. Then

χgdom(T ) =


γt(T ) + 2 if and only if T = Bp,q, where p, q ≥ 1,
γt(T ) + 1 if and only if T ∈ =1,
γt(T ) if and only if T /∈ =1 ∪ {Bp,q}.

Proof. Let Dt be the minimum total dominating set of G. Assume first that
χgdom(T ) = |Dt| + 2. Then according to the argument used in the proof of
Theorem 19, there exists a pair of adjacent vertices (u, v) in Dt such that both
N(u) and N(v) are dominating sets of T . Therefore γt(T ) = 2 and thus Dt =
{u, v}. Moreover, since T is different from a star, we deduce that T is a bistar
Bp,q where p, q ≥ 1.

Assume now that χgdom(T ) = |Dt|+ 1. Then again according to the proof of
Theorem 19, there exist a pair of adjacent vertices (u, v) in Dt such that either
N(u) or N(v) but not both is a dominating set of T . Therefore T ∈ =1. Following
the two situations considered before, we deduce that if χgdom(T ) = |Dt| , then
T /∈ =1 ∪ {Bp,q}.

The converse is obvious.
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Figure 5. χgdom-coloring of split graphs on 6 vertices with χgdom number ω, ω + 1, and
ω + 2.

Theorem 21. Let G ∈ L be a split graph with clique Q of maximum order ω.
Then ω ≤ χgdom(G) ≤ ω + 2, and these bounds are sharp.

Proof. The lower bound is straightforward. To prove the upper bound, let the
vertex set of Q be {v1, v2, . . . , vω} and let I be the independent set of G. We
first observe that no vertex of I is adjacent to all vertices Q (else G has a clique
of order ω + 1). Also, no vertex of Q is adjacent to all vertices of I (otherwise,
∆(G) = n − 1). Moreover, since γ(G) ≥ 2 because of G ∈ L, |I| ≥ 2. From the
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previous facts, we conclude that any vertex of Q has a non-neighbor in I. For
coloring the vertices of G, we follow the strategy used in the proof of Theorem
2 (see [11]). Every vertex vi is assigned the color i. Thus ω colors are used
for the vertices of Q. For a vertex v ∈ V \Q, the color c(v) of v is given by
c(v) = min{i : 1 ≤ i ≤ ω, vi /∈ N(v), vi+1(modω) ∈ N(v)}. This coloring has
been shown in [11] to be dominated whereby Theorem 2 was obtained. For
each i ∈ {1, . . . , ω}, let Vi denote the color class with color i. If this dominated
coloring is global, then we are done. For otherwise, let j = min{i : Vi has no anti-
dominating vertex}. Note that each color class with no anti-dominating vertex
contains at least two vertices (else, it contains a single vertex and such a vertex
belongs to Q which has necessarily a non-neighbor in I). In addition, all vertices
of a color class with no anti-dominating vertex belong to I except one that belongs
to Q). Now for each color class (if any) Vk with k 6= j having no anti-dominating
pick a single vertex belonging to I and color all these picked vertices with color
ω + 1. Clearly, since Vj has no anti-dominating vertex, vertex vj having already
the color j is adjacent to all the vertices placed in the new color class Vω+1. Hence
the color class Vω+1 is dominated by vj and every vertex of Vj \ {vj} becomes an
anti-dominating vertex of Vω+1. In that case, we color vj with color ω + 2 and
let Vω+2 = {vj}. Clearly Vω+2 is dominated and it has all vertices of Vj \ {vj} as
anti-dominating vertices. This new coloring is a global dominated coloring of G
with at most ω + 2 number of colors. The graphs on 6 vertices shown in Figure
5 have global dominated chromatic numbers ω, ω + 1, ω + 2.

5. Open Problems

We conclude this paper by a list some open problems.

1. Characterize the graphs G with χgdom(G) = n− 1.

2. Characterize the graphs G with χgdom(G) = 4.

3. Give a structural characterization of graphs G with χgdom(G) = 2χdom(G)
and χgdom(G) = χdom(G).

4. Characterize the triangle-free graphs G with χgdom(G) = 2γ(G) + 1.

5. Characterize the split graphs with χgdom number ω, ω + 1 and ω + 2.

6. We know that χdom(G) ≤ χgdom(G) ≤ 2χdom(G) for every graph G ∈ L. One
can attempt to find a realization result to get a graph G with χgdom(G) =
χdom(G) + k, where k is an integer such that 0 ≤ k ≤ χdom(G).
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