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Abstract

If G is a graph and X ⊆ V (G), then X is a total mutual-visibility set
if every pair of vertices x and y of G admits a shortest x, y-path P with
V (P ) ∩ X ⊆ {x, y}. The cardinality of a largest total mutual-visibility
set of G is the total mutual-visibility number µt(G) of G. Graphs with
µt(G) = 0 are characterized as the graphs in which every vertex is the
central vertex of a convex P3. The total mutual-visibility number of Carte-
sian products is bounded and several exact results proved. For instance,
µt(Kn �Km) = max{n,m} and µt(T �H) = µt(T )µt(H), where T is a tree
and H an arbitrary graph. It is also demonstrated that µt(G�H) can be
arbitrary larger than µt(G)µt(H).
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1. Introduction

Let G = (V (G), E(G)) be a graph and X ⊆ V (G). Then two vertices x and y of X
are X-visible, if there exists a shortest x, y-path P such that V (P )∩X = {x, y}.
The set X is a mutual-visibility set if its vertices are pairwise X-visible. The
cardinality of a largest mutual-visibility set is the mutual-visibility number µ(G)
of G and a largest mutual-visibility set is called a µ-set of G.

These concepts were introduced and studied for the first time by Di Stefano
in [4]. The study was motivated in many ways, notably by the role that mutual-
visibility plays in problems arising in the context of distributed computing by
mobile entities, and by the fact that vertices in mutual-visibility may represent
entities on some nodes of a network that want to efficiently communicate in such a
way that the messages do not pass through other entities. We also mention related
concepts in computer science that have been explored: distributed computing by
mobile entities [5], mutual-visibility tasks [3], and fat entities modelled as disks
in the Euclidean plane [12]. A related graph theory topic is the general position
in graphs, introduced in [10, 15] and extensively studied by now, cf. [11, 17]. The
general position problem was investigated in detail on Cartesian product graphs
[6, 8, 9, 13, 14].

In [1], the mutual-visibility problem was studied on Cartesian products and
on triangle-free graphs, while in [2] the focus was on strong products. In these
studies, the following tools have proven to be extremely useful. We say that
X ⊆ V (G) is a total mutual-visibility set of G if every pair of vertices x and y of G
is X-visible, that is, there exists a shortest x, y-path P with V (P ) ∩X ⊆ {x, y}.
Note that, by definition, the empty set is a total mutual-visibility set. The
cardinality of a largest total mutual-visibility set of G is the total mutual-visibility
number µt(G) of G. Hence, if the empty set is the only total mutual-visibility set
of G, then µt(G) = 0. Further, X is a µt-set if it is a total mutual-visibility set
with |X| = µt(G).

As observed in [1], there exist graphs G with µt(G) = 0. Partial results
on such graphs were proved, in particular cactus graphs G with µt(G) = 0
were characterized. In Section 3 we characterize general graphs G for which
µt(G) = 0 holds as the graphs that contain no bypass vertices. We introduce
the latter concept in Section 2, where we also give further definitions needed,
recall some know results, and add a few additional preparatory results. In Sec-
tion 4 we prove bounds on the total mutual-visibility number of Cartesian product
graphs and demonstrate their sharpness by several exact results. For instance,
µt(Kn�Km) = max{n,m} and µt(T �H) = µt(T )µt(H), where T is a tree. In
Section 5 we continue by the investigation of Cartesian products by considering
the estimate µt(G�H) ≤ µt(G)µt(H). It holds in many cases, but on the other
hand we show that µt(G�H) can be arbitrary larger than µt(G)µt(H). We con-



Graphs with Total Mutual-Visibility Number Zero 3

clude by suggesting some open problems and directions for further investigation.

2. Preliminaries and Bypass Vertices

We recall here some definitions, for other undefined graph theory concepts, see [7].
All the graphs in this paper are simple and connected, unless stated otherwise.
The order of a graph G = (V (G), E(G)) is denoted by n(G), the minimum degree
of G is denoted by δ(G), and the subgraph of G induced by S ⊆ V (G) is denoted
by G[S]. S ⊆ V (G) is an independent set if G[S] is an edgeless graph. The
cardinality of a largest independent set is the independence number α(G) of G.
A subgraph H of G is isometric if for each vertices x, y ∈ V (H) the distance
between them is the same in H and in G. Further, H is convex if for each
vertices x, y ∈ V (H), all shortest x, y-paths in G lie completely in H. The girth
g(G) of a graph G with a cycle is the length of a shortest cycle of G. If τ and τ ′

are two graph invariants, then we say that G is a (τ, τ ′)-graph if τ(G) = τ ′(G).
The Cartesian product G�H of two graphs G and H has the vertex set

V (G�H) = V (G)×V (H), vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈
E(G) and h = h′, or g = g′ and hh′ ∈ E(H). Given a vertex h ∈ V (H), the
subgraph of G�H induced by the set {(g, h) : g ∈ V (G)} is a G-layer and is
denoted by Gh. H-layers gH are defined analogously. Each G-layer and each
H-layer is isomorphic to G and H, respectively. Moreover, it is also well-known
that each layer of a Cartesian product is its convex subgraph, see [7, Lemma
12.3]. We will use this fact later on many times, sometimes implicitly. More
generally, a subgraph K of a Cartesian product G�H is convex if and only if
the projections of K on G and on H are convex [7, Proposition 13.3].

We next recall some known results on the (total) mutual-visibility number.
(Recall that a block graph is a graph in which all blocks are complete.)

Proposition 1 [4, Corollary 4.3]. Let T be a tree and L the set of its leaves.
Then L is a mutual-visibility set and µ(T ) = |L|.

Proposition 2 [2, Proposition 3.3]. Block graphs (and hence trees and complete
graphs) and graphs containing a universal vertex are all (µ, µt)-graphs.

Proposition 3 [2, Proposition 3.1]. Let G be a graph. If V (G) =
⋃k

i=1 Vi,
where G[Vi] is a convex subgraph of G and µt(G[Vi]) = 0 for each i ∈ [k], then
µt(G) = 0.

Here and later on, [k] stands for {1, . . . , k}. The following straightforward
fact will be used several times later on.

Proposition 4. If X is a total mutual-visibility set of a graph G and Y ⊆ X,
then Y is also a total mutual-visibility set of G.
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To conclude the preliminaries we introduce the following concept which ap-
pears essential in the investigation of the total mutual-visibility concept. We say
that a vertex u of a graph G is a bypass vertex if u is not the middle vertex of a
convex P3 in G. Otherwise, u is a non-bypass vertex. Let BP (G) denote the set
of all bypass vertices of G and let bp(G) = |BP (G)|. For instance, if n ≥ 1, then
BP (Kn) = V (Kn) because there are no convex paths P3 in a complete graph.
Hence bp(Kn) = n. Similarly, bp(Kn,m) = n + m for n,m ≥ 2. Indeed, if u, v, w
induce a P3 in Kn,m, then since n,m ≥ 2, there exists a common neighbor v′ of
u and w, where v′ 6= v, hence no P3 in Kn,m is convex. On the other hand, if
n ≥ 5, then bp(Cn) = 0.

The basic fact on bypass vertices is the following.

Lemma 5. If u is a non-bypass vertex of a graph G and X is a total mutual-
visibility set of G, then u /∈ X.

Proof. Since u is a non-bypass vertex of G, it is the central vertex of a convex
P3. If x and y are the neighbors of u on this P3 and u would lie in X, then x and
y would not be X-visible. Hence u /∈ X.

Lemma 5 implies that
µt(G) ≤ bp(G).(1)

This bound is sharp. If T is a tree with n(T ) ≥ 3, then using Proposition 1
and Proposition 2 we get µt(T ) = bp(T ). Similarly, µt(Kn) = bp(Kn) = n.
On the other hand, consider complete bipartite graphs Kn,m, n,m ≥ 3. From
[2, Corollary 3.6] and [4, Theorem 4.9] we know that µt(Kn,m) = µ(Kn,m) =
n+m−2, but bp(Kn,m) = n+m. The graph G from Figure 1 is another sporadic
example for which the bound (1) is strict. We have µt(G) = 1 and bp(G) = 2,
where BP (G) = {g6, g7}.

g2 g1

g3 g4

g5 g6

g7

g8

g9 g10

g11g12

Figure 1. Graph G.

3. Graphs with µt = 0

In this section we characterize graphs with µt = 0 and give several applications
of the characterization. We begin by two lemmas, where the first one follows im-
mediately from Proposition 4, and the second one being of independent interest.
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Lemma 6. Let G be a graph. Then µt(G) = 0 if and only if for every x ∈ V (G),
the set {x} is not a total mutual-visibility set of G.

Lemma 7. Let G be a graph with n(G) ≥ 2 and u ∈ V (G). Then {u} is a total
mutual-visibility set of G if and only if u is a bypass vertex.

Proof. First assume that u is a bypass vertex of G. Then by definition, G−u is
an isometric subgraph of G. It follows that in G each pair of vertices is connected
by shortest path avoiding u, hence {u} is a total mutual-visibility set.

The other direction follows by Lemma 5.

Note that Lemma 7 does not extend to two vertices. For instance, two
opposite vertices of C4 are bypass vertices, but they do not form a total mutual-
visibility set.

The announced characterization now reads as follows.

Theorem 8. Let G be a graph with n(G) ≥ 2. Then µt(G) = 0 if and only if
bp(G) = 0.

Proof. If µt(G) = 0, then bp(G) = 0 by Lemmas 6 and 7. Conversely, if bp(G) =
0, then Lemma 7 says that G has no singleton total mutual-visibility set, and so
by Lemma 6, µt(G) = 0.

Clearly, to check whether a vertex is a bypass vertex is algorithmically sim-
ple. Hence the characterization of graphs G with µt(G) = 0 from Theorem 8 is
efficient.

Note that Theorem 8 implies that if µt(G) = 0, then δ(G) ≥ 2. Another
consequence of the theorem is the following.

Corollary 9. Let G be a graph with g(G) ≥ 5. Then µt(G) = 0 if and only if
δ(G) ≥ 2.

The Petersen graph applies to Corollary 9. In addition, the corollary implies
the characterization of cactus graphs G with µt(G) = 0 as given in [2, Proposi-
tion 3.2]. For a sporadic example of a graph G with µt(G) = 0 see Figure 2.

As another application of Theorem 8 we next determine the theta graphs
with µt = 0. For any positive integer k ≥ 2 and 1 ≤ p1 ≤ · · · ≤ pk, the theta
graph Θ(p1, . . . , pk) is the graph consisting of two vertices a and b which are joined
by k internally disjoint paths of respective lengths p1, . . . , pk, where p2 ≥ 2. (We
add that several authors use the name theta graph restricted to the case k = 3
in our definition, cf. [19].)

Corollary 10. If 1 ≤ p1 ≤ · · · ≤ pk, k ≥ 2, p2 ≥ 2, then µt(Θ(p1, . . . , pk)) = 0
if and only if the following cases hold:

(i) p1 = 1 and p2 ≥ 4;
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Figure 2. A graph with the total mutual-visibility number 0.

(ii) p1 = 2 and p2 ≥ 3;

(iii) p1 ≥ 3.

Proof. Set Θ = Θ(p1, . . . , pk) and let P1, . . . , Pk be the respective paths of Θ
connecting a and b. Then Ci = P1 ∪ Pi is an isometric cycle of Θ for each
i ∈ {2, . . . , k}. From this fact we infer that µt(Θ) = 0 if and only if each of the
cycles Ci is of length at least 5. This condition then yields the cases (i)–(iii).

We conclude the section with a description of Cartesian products with µt = 0.

Theorem 11. If G and H are graphs, then µt(G�H) = 0 if and only if µt(G) =
0 or µt(H) = 0.

Proof. Assume first that µt(G�H) = 0. Suppose on the contrary that µt(G) ≥
1 with a total mutual-visibility set X and µt(H) ≥ 1 with a total mutual-visibility
set Y . By Proposition 4, there exist two vertices x ∈ X and y ∈ Y such that the
sets {x} and {y} are total mutual-visibility set of G and H. Then we claim that
U = {u} with u = (x, y) is a total mutual-visibility set of G�H.

Let v, w be arbitrary vertices of G�H. We need to show that they are U -
visible. If v = u or w = u, there is nothing to be proved. If v and w lie in the
same G-layer, then v and w are U -visible because their projections onto G are
{x}-visible and since layers in Cartesian product graphs are convex. By the same
argument we see that v and w are U -visible when v and w lie in the same H-layer.
The last case to consider is when v and w neither lie in a common G-layer or a
common H-layer. Then w = (g1, h1) and v = (g2, h2), where g1 6= g2 and h1 6= h2.
Then it is well known that there exist two internally disjoint v, w-shortest paths.
Since at least one of these two paths does not contain u, the vertices v and w are
U -visible in G�H also in this case. Hence we conclude that µt(G�H) ≥ 1.

To prove the converse, we may assume, without loss of generality, that
µt(G) = 0. Since Gh is a convex subgraph of G�H for any h ∈ V (H), by
Proposition 3, we have µt(G�H) = 0. By symmetry, the same result also holds
if µt(H) = 0, as desired.
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Theorem 11 extends to an arbitrary number of factors as follows.

Corollary 12. If G = G1� · · · �Gk, where k ≥ 2, then µt(G) = 0 if and only
if µt(Gi) = 0 for at least one i ∈ [k].

4. Total Mutual-Visibility in Cartesian Products

In this section we consider the total mutual-visibility number of Cartesian product
graphs. In the previous section we have seen that if µt(G) = 0 or µt(H) = 0,
then µt(G�H) = 0. Hence we may restrict our attention here to factor graphs
with the total mutual-visibility number at least 1.

To give general bounds we need the following concept. The independent total
mutual-visibility number µit(G) of G is the cardinality of a largest independent
total mutual-visibility set. Setting `(G) to be the number of leaves of G, it follows
from definitions that for any graph G, `(G) ≤ µit(G) ≤ min{µt(G), α(G)}. From
Propositions 1 and 2 we know that the leaves set L is a total mutual-visibility
set of a tree T and µt(G) = |L|. Hence, if n(T ) ≥ 3, then µt(T ) = |L| = µit(T ).
Note in addition that µit(Kn) = 1 while µt(Kn) = n.

Theorem 13. If G and H are graphs of order at least 2, µt(G) ≥ 1, and µt(H)
≥ 1, then

max{µit(H)µt(G), µit(G)µt(H)} ≤ µt(G�H) ≤ min{µt(G)n(H), µt(H)n(G)}.

Proof. Let IG be an independent total mutual-visibility set of G with |IG| =
µit(G), and let XH be a µt-set of H. Set U = IG × XH . We claim that U is a
total mutual-visibility set of G�H.

Let (g, h) and (g′, h′) be arbitrary, different vertices of G�H. If (g, h) and
(g′, h′) lie in the same G-layer or the same H-layer, then x and y are U -visible as
layers are convex subgraphs of the product. Hence assume in the rest that g 6= g′

and h 6= h′.
Let g = g0, g1, . . . , gk = g′ be the consecutive vertices of a shortest g, g′-path

in G whose internal vertices are not in IG. Similarly, let h = h0, h1, . . . , h` = h′

be the consecutive vertices of a shortest h, h′-path in H whose internal vertices
are not in XH . Assume first that k = 1, that is, gg′ ∈ E(G). If g /∈ IG, then the
path (g, h) = (g0, h0), (g0, h1), . . . , (g0, h`), (g1, h`) = (g′, h′) demonstrates that
(g, h) and (g′, h′) are U -visible. If g ∈ IG, then g′ /∈ IG and then the path
(g, h) = (g0, h0), (g1, h0), (g1, h1), . . . , (g1, h`) = (g′, h′) demonstrates that (g, h)
and (g′, h′) are U -visible. Assume in the following that k ≥ 2. Consider now the
path P with the consecutive vertices

(g, h) = (g0, h0), (g1, h0), (g1, h1), . . . , (g1, h`), (g2, h`), . . . , (gk, h`) = (g′, h′).
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The path P is a shortest (g, h), (g′, h′)-path with no internal vertex in U . Note
that in all the above cases it is possible that ` = 1 which happens if hh′ ∈ E(H).

This proves the claim which implies that µt(G�H) ≥ |U | = µit(G)µt(H).
By the commutativity of the Cartesian product, µt(G�H) ≥ µit(H)µt(G) and
the lower bound follows.

Let X be a total mutual-visibility set of G�H. Since each G-layer Gh is
convex in G�H we have |X ∩ V (Gh)| ≤ µt(G), hence µt(G�H) ≤ µt(G)n(H).
Analogously µt(G�H) ≤ µt(H)n(G).

In the rest of the section we give several exact results on µt(G�H) which
also demonstrate that the bounds of Theorem 13 can be attained. We begin with
the following sharpness result for the lower bound.

Corollary 14. If µt(G�H) = 1, then µt(G) = 1 and µt(H) = 1.

Proof. By Theorem 11 we have µt(G) ≥ 1 and µt(H) ≥ 1. Hence by the lower
bound of Theorem 13 we conclude that µt(G) = 1 and µt(H) = 1.

The converse of Corollary 14 does not hold. For instance, consider the theta
graph Θ(2, 2, 4) as presented in Figure 3.

x1 x2 x3

x4

x5

x6

x7

Figure 3. The theta graph Θ(2, 2, 4).

It is straightforward to see that µt(Θ(2, 2, 4)) = 1 and that {x5} and {x7} are
µt-sets. In the product Θ(2, 2, 4)�Θ(2, 2, 4) one can see that {(x5, x5), (x7, x7)}
is a total mutual-visibility set, hence µt(Θ(2, 2, 4)�Θ(2, 2, 4)) ≥ 2.

[1, Corollary 3.7] asserts that µ(Kn�Km) = z(n,m; 2, 2), where z(n,m; 2, 2)
is the Zarankiewitz’s number. To determine z(n,m; 2, 2) is a notorious open
problem [16, 18]. Interestingly, the total mutual-visibility number of Cartesian
products of complete graphs can be determined as follows, which further demon-
strates that the lower bound of Theorem 13 is sharp.

Proposition 15. If n,m ≥ 2, then µt(Kn�Km) = max{n,m}.
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Proof. Note first that the vertices of a single Kn-layer (or a single Km-layer)
form a total mutual-visibility set. Hence µt(Kn�Km) ≥ max{n,m}. To prove
the other inequality, set V (Kn) = [n] and V (Km) = [m], so that V (Kn�Km) =
[n]× [m]. Suppose without loss of generality that n ≥ m. Let U be an arbitrary
total mutual-visibility set of G�H. If each Kn-layer contains at most one vertex
of U there is nothing to be proved. Assume now that some Kn-layer contains
(at least) two vertices of U . By the symmetry we may assume that (1, 1) ∈ U
and (2, 1) ∈ U . We claim first that (i, j) /∈ U , where i, j ≥ 2. Indeed, if
(i, j) ∈ U , then the vertices (1, j) and (i, 1) are not U -visible. We claim second
that (1, j) /∈ U for 2 ≤ j ≤ m. Indeed, if (1, j) ∈ U for some j ≥ 2, then the
vertices (1, 1) and (2, j) are not visible. We conclude that if (1, 1), (2, 1) ∈ U ,
then U ⊆ V (K1

n) and consequently |U | ≤ n. Analogously we see that if some
Km-layer contains (at least) two vertices of U , then |U | ≤ m. In any case,
µt(Kn�Km) ≤ max{n,m}.

The next result (when s ∈ {3, 4}) also demonstrates sharpness of the lower
bound of Theorem 13.

Proposition 16. If s ≥ 3 and n ≥ 3, then

µt(Cs�Kn) =

{
0; s ≥ 5,
n; otherwise.

Proof. If s ≥ 5, then Corollary 9 and Theorem 11 yield µt(Cs�Kn) = 0. In
addition, µt(C3�Kn) = n by Proposition 15. Hence assume that s = 4 in the
remaining proof.

By Theorem 13 we have µt(C4�Kn) ≥ n. It remains to demonstrate that
µt(C4�Kn) ≤ n. Let R be a µt-set of C4�Kn. If each C4-layer contains at
most one vertex of R, then µt(C4�Kn) ≤ n holds clearly. Suppose next that R
contains at least two vertices from the some C4-layer. We may without loss of
generality assume that (1, n), (2, n) ∈ R. Suppose that there exists another vertex
(i, j) ∈ R, where i ∈ [4]\[2] and j ∈ [n−1]. If i = 3, then the two vertices (2, j) and
(3, n) are not R-visible. Similarly, the vertices (1, j) and (4, n) are not R-visible.
This would thus mean that |R| = 2. We conclude that µt(C4�Kn) = n.

Theorem 17. If T is tree with n(T ) ≥ 3 and H is a graph with n(H) ≥ 2, then
µt(T �H) = µt(T )µt(H).

Proof. The lower bound µt(T �H) ≥ µt(T )µt(H) follows by Theorem 13 and
the fact that µt(T ) = µit(T ).

To prove that µt(T �H) ≤ µt(T )µt(H), consider an arbitrary µt-set R of
T �H. Let t ∈ V (T ) be a vertex with degT (t) ≥ 2. Then t is a non-bypass
vertex of T . Hence, if h ∈ V (H), then (t, h) is a non-bypass vertex of T �H, thus
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(t, h) /∈ R by Lemma 5. Therefore, R ∩ V (tH) = ∅. So R contains only vertices
in H-layers corresponding to the leaves of T . Since each such layer can contain
at most µt(H) vertices of R we conclude that µt(T �H) ≤ |R| ≤ µt(T )µt(H).

As a consequence of Theorem 17 we obtain the following result which demon-
strates sharpness of the upper bound of Theorem 13.

Corollary 18. If T is tree with n(T ) ≥ 3, then µt(T �Kn) = n · µt(T ).

5. On the Inequality µt(G�H) ≤ µt(G)µt(H)

All the exact results obtained in Section 4 fulfil the bound

µt(G�H) ≤ µt(G)µt(H) .(2)

Hence one may wonder whether the upper bound of Theorem 13 can be im-
proved/replaced by (2). Before we answer the question, we prove another result
where (2) holds.

A graph G is a generalized complete graph if it is obtained by the join of an
isolated vertex with a disjoint union of k ≥ 1 complete graphs [13]. We further
say that G is a non-trivial generalized complete graph if k ≥ 2. Note that if G is
a non-trivial generalized complete graph, then µt(G) = n(G)− 1.

Theorem 19. If G and H are two non-trivial generalized complete graphs, then

µt(G�H) ≤ µt(G)µt(H) = (n(G)− 1)(n(H)− 1).

Moreover, the equality holds if and only if G or H is isomorphic to a star.

Proof. Let V (G) = {g1, . . . , gn(G)} and V (H) = {h1, . . . , hn(H)}. Let g1 and h1
be the universal vertices of G and H, respectively.

Note that g1 is a non-bypass vertex of G and h1 is a non-bypass vertex of H.
It follows that each vertex from the layer g1H is a non-bypass vertex of G�H
as well as is each vertex from the layer Gh1 . Hence G�H contains at least
n(G) + n(H)− 1 non-bypass vertices and so by (1),

µt(G�H) ≤ bp(G�H)

≤ n(G)n(H)− (n(G) + n(H)− 1)

= (n(G)− 1)(n(H)− 1).

To prove the equality case, by Theorem 17 we know that µt(G�H) =
(n(G) − 1)(n(H) − 1) if G or H is a star. Suppose in the rest that neither
G nor H is a star. Then each of them contains an induced subgraph K3. With-
out loss of generality, assume that g1, g2, g3 induce a K3 of G, and that h1, h2, h3
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induce a K3 of H. Then the vertices (g2, h2), (g2, h3), (g3, h3), and (g3, h2) in-
duce a C4 of G�H. This C4 is convex because it is the Cartesian product of
K2 (as a subgraph of G) and a K2 (as a subgraph of H) and these two K2 are
clearly convex in respective factors, cf. [7, Proposition 13.3]. Since at most two
vertices of this C4 can lie in a total mutual-visibility set of G�H, we conclude
that µt(G�H) < bp(G�H).

In the rest we demonstrate that (2) does not hold in general. For this sake
we say that a graph G is bypass over-visible if it contains an independent bypass
set of vertices U which contains a µt-set U ′ as a proper subset. Note that since
U ′ is an independent set, a bypass over-visible graph is a (µit, µt)-graph.

Before we state the last result of this paper, we construct two families of
bypass over-visible graphs. (Another such family will be presented after the
proof of the last result.)

If k ≥ 3, then let Hk be the graph obtained by attaching two pendant vertices
to each of the degree k vertices of K2,k. See Figure 4 for H5. Let Uk be the set
of all the vertices of Hk of degree 1 or 2. Then Uk is an independent bypass set
with |Uk| = k+ 4, while every µt-set of Hk is obtained from Uk by removing one
degree 2 vertex. Hence each Hk is a bypass over-visible graphs.

Figure 4. The graph H5.

For another family of bypass over-visible graphs let Θi denote any theta graph
Θ(p1, . . . , pk), where i ≥ 2, k ≥ 3, and

2 = p1 = · · · = pi < pi+1 ≤ · · · ≤ pk.

Let a and b be the vertices of Θi of degree k. Then BP (Θi) consists of the degree
2 vertices which are adjacent to a and to b, so that bp(Θi) = i. Note in addition
that BP (Θi) is an independent set. On the other hand, BP (Θi) is not a total
mutual-visibility set, but becomes such a set if an arbitrary vertex is removed
from it. Hence µt(Θi) = i − 1. We conclude that Θi is a bypass over-visible
graph.

Theorem 20. If G and H are bypass over-visible graphs, then

µt(G�H) > µt(G)µt(H).
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Proof. Since G and H are bypass over-visible graphs, there exist independent
bypass vertex sets IG and IH of G and H, respectively, which contain µt-sets SG
and SH as proper subsets. Hence there exist vertices u ∈ IG\SG and v ∈ IH \SH .
We set U = (SG×SH)∪{(u, v)} and claim that U is a total mutual-visibility set
of G�H.

Consider two arbitrary vertices x = (g, h) and y = (g′, h′) from G�H.
Suppose first that g = g′. If g ∈ SG, then x and y are U -visible because SH is a
total mutual-visibility set of H. If g = u, then x and y are U -visible by Lemma 7
applied to (u, v) and the layer gH. In all the other cases V (gH) ∩ U = ∅, hence
there is nothing to prove. If h = h′, then x and y are U -visible by the same
argument.

Assume in the rest that g 6= g′ and h 6= h′. Let PG : g = g0, g1, . . . , gk = g′

be a shortest g, g′-path in G whose internal vertices are not in SG. Similar, let
PH : h = h0, h1, . . . , h` = h′ be a shortest h, h′-path in H whose internal vertices
are not in SH . The copy of PG in the layer Gw will be denoted by Pw

G and the
copy of PH in the layer zH will be denoted by zPH .

Consider first the case k = 1, that is, when gg′ ∈ E(G). Assume first
that (g1, h0) /∈ U . If (u, v) /∈ V (g1PH), then the concatenation of the edge
(g0, h0)(g1, h0) and the path g1PH is a required x, y-path. Suppose next that
(u, v) ∈ V (g1PH). Then, because g1 = u ∈ IG and since IG is independent, we
infer that g0 /∈ IG and thus also g0 /∈ SG. Consequently, (g0, h`) /∈ U and then
the concatenation of the path g0PH with the edge (g0, h`)(g1, h`) is a required
x, y-path. Assume second that (g1, h0) ∈ U . Then by the same argument we see
that the path g0PH followed by the edge (g0, h`)(g1, h`) is again a path which
ensures that x and y are U -visible. Similarly we see that x and y are U -visible if
` = 1. Note that the argument also applies when k = ` = 1.

We are left with the case when k ≥ 2 and ` ≥ 2. Assume first that u 6= gi for
i ∈ [k − 1]. Then the vertices

x = (g0, h0), (g1, h0), (g1, h1), . . . , (g1, h`), (g2, h`), . . . , (gk, h`) = y

induce a shortest x, y-path and the internal vertices of it are not in U . Hence
x and y are U -visible. Similarly we see that x and y are U -visible if v 6= hj for
j ∈ [`− 1]. The remaining case is that u = gi for some i ∈ [k − 1] and v = hj for
some j ∈ [`− 1]. Then the vertices

x = (g0, h0), . . . , (gi−1, h0), (gi−1, h1), . . . , (gi−1, h`), (gi, h`), . . . , (gk, h`) = y

induce a shortest x, y-path in G�H with no internal vertices in U . We conclude
that in any case x and y are U -visible.

We next present another family of bypass over-visible graphs. Let m ≥ 1.
Then we define the graph Gm as follows. The vertex set is

V (Gm) = {x0, x1, . . . , xm+2} ∪ {y1, . . . , ym} ∪ {z1, . . . , zm}.
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For any i ∈ [m] we connect yi and zi with xi and xi+1. Finally add the edges
x0x1 and xm+1xm+2. See Figure 5 for G5.

x0 x1 x2

x3

x4

x5

x6 x7

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

Figure 5. The graph G5.

It is straightforward to see that BP (Gm) = {x0, xm+2} ∪ {y1, . . . , ym} ∪
{z1, . . . , zm}, hence bp(Gm) = 2m + 2 and BP (Gm) is an independent set.
In addition, since for any i, the vertices yi and zi cannot both lie in a total
mutual-visibility set, the set {x0, xm+2, y1, . . . , ym} is an independent µt-set of
G. Hence Gm is a bypass over-visible graph. Moreover, bp(Gm) − µt(Gm) = m.
Now, by a parallel construction as in the proof of Theorem 20 we find out that
µt(Gm�Gm) ≥ (m + 2)2 + m, hence µt(G�H) can be arbitrary larger than
µt(G)µt(H).

6. Concluding Remarks

There are several possibilities how to continue the investigation of this paper,
here we emphasize some of them.

We have characterized the graphs G with µt(G) = 0. The next step would be
to characterize the graphs G with µt(G) = 1 (and maybe also with µt(G) = 2).

In view of (1) it would be interesting to consider the graphs G with µt(G) =
bp(G).

In this paper we had a closer look to the total mutual-visibility number of
Cartesian product graphs. Some other graph operations also appear interesting
for such investigations, in particular the strong product and the lexicographic
product.
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