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Abstract

We extend the notion of quasi-transitive orientations of graphs to 2-
edge-coloured graphs. By relating quasi-transitive 2-edge-colourings to an
equivalence relation on the edge set of a graph, we classify those graphs that
admit a quasi-transitive 2-edge-colouring. As a contrast to Ghouilá-Houri’s
classification of quasi-transitively orientable graphs as comparability graphs,
we find quasi-transitively 2-edge-colourable graphs do not admit a forbid-
dden subgraph characterization. Restricting the problem to comparability
graphs, we show that the family of uniquely quasi-transitively orientable
comparability graphs is exactly the family of comparabilty graphs that ad-
mit no quasi-transitive 2-edge-colouring.
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1. Introduction and Preliminaries

Using the definition of graph colouring based on homomorphism, one may define a
notion of proper vertex colouring for oriented graphs and 2-edge-coloured graphs
that respectively takes into account the orientation of the arcs and the colours of
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the edges. In surveying the literature on oriented colourings and 2-edge-coloured
colourings, one finds seemingly endless instances of similar techniques and results.
For example, in both cases, one obtains an upper bound of 80 for the respective
chromatic number of oriented and 2-edge-coloured planar graphs by constructing
a universal target for homomorphisms of orientations/2-edge-colourings of pla-
nar graphs [1, 14]. For further details of oriented colouring and 2-edge-coloured
colourings see [15] and [13].

A key feature of oriented colourings is that vertices at the end of a directed
2-path (i.e., a 2-dipath) must receive different colours. So one may bound the

oriented chromatic number of an oriented graph
−→
G from below by computing

the 2-dipath chromatic number, the chromatic number of
−→
G2, where

−→
G2 is the

undirected graph formed from
−→
G by first adding an edge between vertices at the

end of an induced 2-dipath and then removing the orientation from the arcs of
−→
G [12, 16]. From this, one observes that if

−→
G has no induced 2-dipaths, then the

2-dipath chromatic number of
−→
G is equal to the chromatic number of the simple

graph underyling
−→
G . Oriented graphs with no induced 2-dipaths are studied in

the literature under the name quasi-transitive digraphs [2].
In [2], a recursive method is used to characterize the graphs that can have

their edges oriented into a quasi-transitive digraph. In [10], a related term is
defined, k-quasi-transitive digraphs, in which vertices must be adjacent if there
exists a directed path of length k connecting them. Much of the research on
quasi-transitive digraphs and k-quasi-transitive digraphs have focused on strong

digraphs. A strong digraph is a graph in which, for every pair of vertices, there
exists a directed path containing those two vertices. A characterization of strong
3-quasi-transitive digraphs is given in [7].

We will opt for the name quasi-transitive orientations instead of quasi-tran-
sitive digraphs to relate more closely to the following two terms. A graph G is
quasi-transitively orientable if there exists a quasi-transitive orientation for which
G is the underlying graph. A graph G is uniquely quasi-transitively orientable if
there exist exactly two quasi-transitive orientations for which G is the underlying
graph. We use the word “unique” to describe the case in which there are two
possible orientations because one can be created by reversing the direction of
every arc in the other.

Quasi-transitive orientations arise only as certain orientations of comparabil-
ity graphs, which are graphs formed from making adjacent related elements of a
partial order [8]. We include this theorem now for ease of reference.

Theorem 1 [8]. A graph G is quasi-transitively orientable if and only if G is a

comparability graph.

Unsurprisingly, one may follow a similar line of thought for proper colourings
of 2-edge-coloured graphs. In doing so, one finds that vertices at the ends of a
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2-path in which one edge is red and the other is blue (i.e., an alternating 2-path)
must receive different colours. To date, however, no work has been done in the
study of 2-edge-coloured graphs with no induced alternating 2-path. In this work
we undertake the first such study of these objects and find a full classification of
those graphs that admit a 2-edge-colouring so as to have no induced alternating
2-path. For this end, we define the following.

A quasi-transitive 2-edge-colouring c of a graph G is a mapping c : E(G) →
{R,B} so that for all pairs xy, yz ∈ E(G), with c(xy) 6= c(yz), we have xz ∈
E(G). Quasi-transitive 2-edge colourings are introduced in [5] as “2-N M-closed”
colourings. A quasi-transitive 2-edge-colouring is trivial when c(e) = c(f) for all
e, f ∈ E(G). In other words, the edge colouring is monochromatic. As triv-
ial quasi-transitive 2-edge-colourings exist for all graphs, all graphs are quasi-
transitively colourable. A graph G is properly quasi-transitively colourable if there
exists a nontrivial quasi-transitive 2-edge-colouring of G. A graph G is uniquely
quasi-transitively colourable if there exist exactly 2 nontrivial quasi-transitive 2-
edge-colourings of G. We use the term unique for graphs with exactly two colour-
ings because the existence of a single nontrivial quasi-transitive 2-edge-colouring
implies the existence of a second, created by interchanging all of the colours.
Examples of quasi-transitive 2-edge-colourings are shown in Figure 1.

Figure 1. Quasi-transitive 2-edge-colourings shown on two graphs with R edges shown as
dotted lines and B edges shown as full lines (note that the second graph only has trivial
quasi-transitive 2-edge-colourings).

Given a set of edges E, we denote by V (E) the set of endpoints of edges in
E. Also, we denote by G[E] the graph with edge set E and vertex set V (E). For
other graph theoretic terminology not defined herein, we refer the reader to [4].

Our work proceeds as follows. In Section 2 we introduce an equivalence rela-
tion on the set of edges of a graph that partitions the edges into subsets of edges
that must be assigned the same colour in any quasi-transitive 2-edge-colouring.
With the aim of classifying those graphs that are properly quasi-transitively
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colourable, we study the structure of the subgraphs induced by the equiva-
lence classes. Our work yields a full classification of properly quasi-transitively
colourable graphs and uniquely quasi-transitively colourable graphs. In doing so,
we provide an infinite family of uniquely quasi-transitively colourable graphs.

In Section 3 we provide a characterization of those graphs for which the
equivalence relation yields exactly three equivalence classes. In doing so, we
provide examples of infinite families of such graphs.

In Section 4 we explore uniquely quasi-transitively orientable graphs. By
restricting our work to comparability graphs, we find that the equivalence relation
introduced for the study of properly quasi-transitively colourable graphs yields
insight into those comparability graphs for which there are exactly two quasi-
transitive orientations. In particular, we show that the family of uniquely quasi-
transitively orientable graphs is exactly the family of comparability graphs that
admit only the trivial quasi-transitive 2-edge-colouring.

2. Edge Partitions and Quasi-Transitive 2-Edge-Colourings

In this section, we show the respective sets of red and blue edges in a quasi-
transitive 2-edge-colouring arise as unions of equivalence classes under an equiva-
lence relation on the edges of a graph. From this observation, we show the family
of properly quasi-transitively colourable graphs are exactly those graphs with at
least two equivalence classes with respect to this equivalence relation. We begin
with a number of results leading up to the definition of this equivalence relation.

Let G be a graph and let e ∈ E(G). Let Se be the set comprising all subsets
S of E(G) with the following properties:

1. e ∈ S; and

2. for all d /∈ S, there is no induced copy of P3 in G comprising d and an edge
of S.

Theorem 2. The set Se is closed with respect to intersection.

Proof. Let G be a graph and let e ∈ E(G). Toward a contradiction, suppose S
and T are two sets in Se and S ∩ T is not in Se. Since e is in S ∩ T and S ∩ T
is not in Se, there must exist some induced copy of P3 containing an edge d in
S ∩ T and an edge f in E(G) \ (S ∩ T ). Therefore, any set in S that contains
every edge in S ∩ T must contain f as well. This is a contradiction, as f is in at
most one of S and T . Therefore, the intersection of any two sets in Se is a set
in Se.

Corollary 3. The element of Se with the fewest number of edges is unique.
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Proof. Let S and T be distinct elements of Se. Toward a contradiction, suppose
that no set in Se contains fewer edges than either S or T . The set S ∩T contains
fewer edges than either S or T . By Theorem 2, S ∩ T is in Se. This is a
contradiction. Therefore, the element of Se with the fewest number of edges is
unique.

Denote by Se the unique set of least order in Se.

Corollary 4. The graph G[Se] is connected.

With Theorem 6, we establish that these sets of least order form a partition
on the edges.

Lemma 5. For every pair of edges uv, xy ∈ E(G), if uv ∈ Sxy, then Suv ⊆ Sxy.

Proof. Let uv, xy ∈ E(G) and let uv ∈ Sxy. The intersection, S = Sxy ∩ Suv,
contains the edge uv. If there exists any edge s in S such that s is in an induced
copy of P3 with an edge d in E(G) \ S, then d is in both Sxy and Suv. This
however, cannot be the case since d would then be in the intersection S. Thus S
is the smallest set of edges that both contains uv and is such that for all edges e
in E(G) \ S, the edge e does not exist in an induced copy of P3 with any edge in
S. Therefore, S = Suv and Suv ⊆ Sxy.

Theorem 6. For every pair of edges xy and uv in E(G), we have Sxy = Suv if

and only if xy ∈ Suv.

Proof. One direction of this statement is clear because xy is, by definition, in
Sxy. Thus if Sxy = Suv, then xy ∈ Suv.

Consider now xy ∈ Suv with xy 6= uv. By Lemma 5, Sxy ⊆ Suv. Toward
a contradiction, suppose Suv 6= Sxy. So Suv * Sxy. No edge in Suv \ Sxy exists
in an induced copy of P3 with an edge in Sxy. Thus, by Lemma 5, for any edge
ab in Sxy, the set Sab does not contain any edge in Suv \ Sxy. This implies that
uv ∈ Suv \ Sxy. However, since uv ∈ Suv \ Sxy and no edge in Suv \ Sxy exists in
an induced copy of P3 with an edge in Sxy, we conclude that xy is not in Suv,
which is a contradiction.

Therefore Suv = Sxy.

Corollary 7. Let G be a connected graph and let uv, vw ∈ E(G). If Suv 6= Svw,

then uw ∈ E(G).

By Theorem 6, for e, f ∈ E(G) it follows that either Se = Sf or Se ∩ Sf = ∅.
Thus there exists a subset of edges E′(G) ⊂ E(G) so that

•
⋃

e∈E′(G)

Se = E(G); and

• Se ∩ Sf = ∅ for all e, f ∈ E′(G) with e 6= f .
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Using this partition of the edges, we study quasi-transitive 2-edge-colourings of
graphs.

Let CG be the relation on E(G) so that e ∼ f when c(e) = c(f) for every
quasi-transitive 2-edge-colouring c of G. The relation CG will serve as a partition
on the edges, so CG is an equivalence relation. Let [e]C denote the equivalence
class of e with respect to this relation.

Theorem 8. Let G be a connected graph. For every e ∈ E(G), we have [e]C = Se.

Proof. Let G be a connected graph and let e ∈ E(G). Let S = [e]C ∩ Se. Since
e ∈ [e]C and e ∈ Se, necessarily S is non-empty. Toward a contradiction, suppose
[e]C 6= Se. Thus since G is connected, there exists an edge in E(G) that is incident
with an edge in S but not itself in S.

Let d be an edge in E(G) \ S that is incident with an edge f in S.
Since the edge d is not in S, either d is not in [e]C or d is not in Se. We will

show that, in both cases, there does not exist an induced copy of P3 comprising
d and f . Label the vertices so that d = v1v2 and f = v2v3.

Case 1. d is not in [e]C . This implies there exists a quasi-transitive 2-edge-
colouring c of G in which c(f) and c(d) are not equal. Thus the path v1v2v3 is
not an induced copy of P3 because that would imply every proper quasi-transitive
2-edge-colouring c of G has c(d) equal to c(f).

Case 2. d is not in Se. This implies there does not exist an induced copy of
P3 containing d and an edge in Se. Thus v1v2v3 is not an induced copy of P3.

So no edge in S is contained in an induced copy of P3 with the edge d.
Therefore, since S is a subset of Se, and S contains e, we have that S = Se.
However in addition, with no edges in S existing in an induced copy of P3 with
an edge in E(G) \ S, there exist quasi-transitive 2-edge-colourings of G in which
every edge in E(G) \ S maps to R and every edge in S maps to B. So no edges
in E(G) \ S are in [e]C .

Therefore, since S is a subset of [e]C , we have Se = S = [e]C .

Corollary 9. If G is a connected graph such that CG has k equivalence classes,

then there are 2k quasi-transitive 2-edge-colourings of G.

With our next theorem, we show that there exist graphs with any positive
integral number of equivalence classes. This theorem will rely on some graph
theory terminology that we must first define.

A threshold graph is a graph constructed from a single vertex by repeatedly
performing one of two operations: adding a universal vertex or adding a vertex
that is adjacent to no previously added vertices. A split graph is a graph such
that the vertices can be partitioned into a complete graph and an independent
set.
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Theorem 10. For every integer k ≥ 1, there exists a graph G such that CG has

exactly k equivalence classes.

Proof. Let Gn be a threshold graph with n vertices, where n is an even integer,
constructed by alternating the two possible actions, beginning with adding a
universal vertex to a copy of K1 (see Figure 2). Gn is a split graph in which the
complete graph and vertex set have the same number of vertices.

v2 v1 v2 v1

v4 v3

v2 v1

v4 v3

v6 v5

Figure 2. Threshold graphs constructed by alternating the two possible actions. Equiv-
alence classes are shown by solid, dashed, and dotted lines.

Let e be an edge in Gn. In Gn+k, for all even integers k ≥ 2, Se will be
the same set as it is in Gn (assuming the vertices receive the same label in both
graphs, as pictured in Figure 2) because every added vertex is either adjacent
to every vertex in V (Se) or none of the vertices in V (Se). So Gn+2 has more
equivalence classes than Gn for all n ≥ 2. The two vertices, vn+1 and vn+2,
added to Gn to create Gn+2 are adjacent and this edge, vn+1vn+2, induces a copy
of P3 with every other edge that is in Gn+2 and not in Gn. Therefore, Gn+2 has
exactly one more equivalence class than Gn, for all n ≥ 2. Since G2 has only one
edge and thus only one equivalence class, the graph Gn has exactly n

2 equivalence
classes for all even positive integers n.

To classify those graphs that admit only trivial quasi-transitive 2-edge-colour-
ings, it suffices to classify those graphs for which Se = Sf for all e, f ∈ E(G).
Similarly, to classify those graphs that are uniquely quasi-transitively 2-edge-
colourable, it suffices to classify those graphs for which there exists a pair of
edges e, f ∈ E(G) so that E(G) = Se∪Sf and Se 6= Sf . For these ends, we define
the following notation and terminology.

Let G be a graph and let e ∈ E(G). An Se-path is a path in G[Se]. An
Se-k-path is a path of length k in G[Se]. For v ∈ V (G), denote by NG[Se][v] the
closed neighbourhood of v in G[Se].

With an eye towards a classification of those graphs with at least 2 equiv-
alence classes (and thus, also a classification of those graphs with exactly one
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equivalence class), these next two lemmas show that in every graph that admits
a non-trivial quasi-transitive 2-edge-colouring, there exists an equivalence class
Se for which V (Se) 6= V (G).

Lemma 11. Let G be a graph with n vertices. If H is an induced subgraph of G
such that

• H is connected;

• 2 ≤ |V (H)| ≤ n− 1; and

• for every vertex u in V (G) \ V (H), if u is adjacent to a vertex in V (H), then
u is adjacent to every vertex in V (H);

then for all edges e in E(H), we have Se ⊆ E(H).

Proof. Let G be a graph with n vertices and let H be an induced subgraph of G
such that the three conditions listed in the statement of the lemma are satisfied.
Let e ∈ E(H). Toward a contradiction, suppose that some edge f is in Se and
not in E(H). This implies that some endpoint, vf , of f is not in V (H). Since
Se is defined to be the smallest set in Se, every edge in Se must exist in some
induced copy of P3 with another edge in Se. Also, every edge in Se must be
contained in some path containing e in which every pair of incident edges belong
to an induced copy of P3 in G. Without loss of generality, suppose that f is
incident with some edge in E(H) along a path containing e in which every pair
of incident edges belong to an induced copy of P3 in G. So vf is adjacent to
some vertex in V (H), but vf is not adjacent to every vertex in V (H). This is a
contradiction. Therefore, Se ⊆ E(H).

Lemma 12. Let G be a connected graph and let e and f be edges in E(G). If

Se 6= Sf , then V (Se) 6= V (Sf ).

Proof. Let G be a connected graph and let e and f be edges in E(G) such that
Se 6= Sf . Toward a contradiction, suppose that V (Se) = V (Sf ). Let uv ∈ Sf .
The set NG[Se][u] is not empty since u is incident with at least one edge in Se.
Let G[Se]−NG[Se][u] be the induced subgraph of G[Se] containing the vertices of
V (Se)\NG[Se][u]. Let Be(u, v) be the set of vertices in the component containing
v in G[Se]−NG[Se][u].

Let Ce(u, v) be the set of all vertices in V (G) that are in neither NG[Se][u]
nor Be(u, v). The set Ce(u, v) may be empty.

Case 1. There exists some choice of edge e and adjacent vertices u and v such

that uv ∈ Sf , and the set Be(u, v) has at least two vertices. We show every vertex
in V (G) \ Be(u, v) that is adjacent to a vertex in Be(u, v) must be adjacent to
every vertex in Be(u, v). Recall that V (Se) = V (Sf ). Since all induced copies of
P3 have both or neither of its edges in Se, if there exists a vertex in V (G)\V (Se),
then it is either adjacent to every vertex in V (Se) or none of the vertices in V (Se).
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Every vertex b in Be(u, v) exists in some Se-path with endpoints b and v.
Every vertex in Be(u, v) that is adjacent to v with an edge in Se must be adjacent
to u with an edge not in Se, by Corollary 7. By induction, for some k, suppose
that every vertex b in Be(u, v) that exists in an Se-k-path with endpoints b and
v is adjacent to u with an edge not in Se. Let q be a vertex that exists in an
Se-(k + 1)-path with endpoints q and v. Since the neighbour of q in this path is
adjacent to u with an edge not in Se, by Corollary 7, q is adjacent to u with an
edge not in Se. Therefore, for every vertex b in Be(u, v), b is adjacent to u with
an edge that is not in Se. By Corollary 7, every vertex in Be(u, v) is adjacent to
every vertex in NG[Se][u].

There does not exist any edge in Se connecting a vertex in Be(u, v) to a vertex
in Ce(u, v) because this would imply that these two vertices exist in the same
component of G[Se]−NG[Se](u). So for all pairs of adjacent vertices b ∈ Be(u, v)
and c ∈ Ce(u, v), the edge bc is not in Se. By induction suppose that c is adjacent
to b and every vertex b′ in Be(u, v) such that b′ exists in an Se-k-path with b as
an endpoint, for some k ≥ 1. Let b′′ be a vertex such that there exists an Se-
(k + 1)-path with endpoints b and b′′. Since the neighbour of b′′ in this path is
adjacent to c with an edge not in Se, by Corollary 7, the edge b′′c is in E(G).
Therefore, every vertex in V (G)\Be(u, v) that is adjacent to a vertex in Be(u, v)
must be adjacent to every vertex in Be(u, v). So there does not exist any induced
copy of P3 in G such that one edge has both endpoints in Be(u, v) and the other
does not.

Let x be a vertex in Be(u, v) such that vx ∈ Se. Since vx has both endpoints
in Be(u, v), by Lemma 11, the equivalence class Svx is a subset of the edges with
both endpoints in Be(u, v). Note that it may be possible that Svx is exactly
the set of edges with both endpoints in Be(u, v). Since NG[Se][u] is nonempty,
there exists some edge in Se that does not have both of its endpoints in Be(u, v).
However, since vx ∈ Se, we have that Svx = Se. This is a contradiction. So
V (Se) 6= V (Sf ).

Case 2. For all choices of edge, e, and adjacent vertices u and v such that

uv ∈ Sf , the set Be(u, v) only contains v. Recall that v must have at least one
neighbour via an edge in Se because V (Se) = V (Sf ). Let x be a neighbour of v
such that vx is in Se. Since x is not in Be(u, v), there does not exist an Se-path
connecting x to v that contains no vertices in NSe [u]. Since the edge xv is in Se,
and v is not in NSe [u], the vertex x must be in NG[Se][u] (see Figure 3).

The vertex v is a neighbour of x via an edge that is not in Sf , and v is
a neighbour of u via an edge in Sf . This implies that u is in NG[Sf ][x] since
otherwise, there would exist an Sf -path from u to v that contains no vertices
in NG[Sf ][x], contradicting our supposition that Bf (x, v) only contains v (see
Figure 4). However, the edge xu is in Se, which is distinct from Sf . This is a
contradiction. So V (Se) 6= V (Sf ).
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v

x

u

Be(u, v) NG[Se][u] Ce(u, v)

Figure 3. Graph G shown with vertices partitioned into sets Be(u, v), NG[Se][u], and
Ce(u, v). Se is represented by dashed edges and Sf is represented by dotted edges.

v

u

x

Bf (x, v) NG[Sf ][x] Cf (x, v)

Figure 4. Graph G shown with vertices partitioned into sets Bf (x, v), NG[Sf ][x], and
Cf (x, v). Se is represented by dashed edges and Sf is represented by dotted edges. As u
must be in both NG[Sf ][x] and Bf (x, v), a contradiction arises.

Corollary 13. Let G be a connected graph. If CG has exactly two equivalence

classes, Se and Sf , then either V (Se) ⊂ V (Sf ) or V (Sf ) ⊂ V (Se).

Using Lemma 12 we provide our main result of this section: a classification of
those connected graphs that admit a non-trivial quasi-transitive 2-edge-colouring.

Theorem 14. Let G be a connected graph with n vertices. Then G is properly

quasi-transitively colourable if and only if there exists an induced subgraph H of

G such that
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• H is connected;

• 2 ≤ |V (H)| ≤ n− 1; and

• for every vertex v in V (G) \ V (H), if v is adjacent to a vertex in V (H), then
v is adjacent to every vertex in V (H).

Proof. Let G be a connected graph with n vertices. Suppose first that there
exists an induced subgraph H of G such that

• H is connected;

• 2 ≤ |V (H)| ≤ n− 1; and

• for every vertex v in V (G) \ V (H), if v is adjacent to a vertex in V (H), then
v is adjacent to every vertex in V (H).

From the definition of H, it follows that there does not exist an induced copy
of P3 in G containing exactly one edge from E(H). Therefore, each of E(H)
and E(G) \ E(H) arise as the union of some number of equivalence classes un-
der equivalence relation CG. Therefore, the equivalence relation CG contains at
least two equivalence classes, which means that G is properly quasi-transitively
colourable by Theorem 8.

Suppose now that G is properly quasi-transitively colourable. Thus by The-
orem 8, the equivalence relation CG has at least two equivalence classes. By
Lemma 12, there exists some equivalence class Se of CG such that V (Se) 6= V (G).
Let H be the subgraph induced by V (Se). By Corollary 4, H is connected. Since
Se is an equivalence class and there exists at least one vertex in V (G) \ V (Se), it
follows that 2 ≤ |V (H)| ≤ n− 1.

Let v be a vertex in V (G) \ V (Se) that is adjacent to a vertex u in V (Se).
Since v is in V (G) \ V (Se), the edge uv is not in Se. The vertex u has some
neighbour w such that uw is in Se. By Corollary 7, since v is in V (G) \ V (Se),
the edge vw exists. Use this as a base case and induct on the distance from
u along the shortest Se-path to show that v is adjacent to every vertex in H.
Suppose that for some k ≥ 1, every vertex x that exists in an Se-k-path that
also contains u is such that vx is in E(G). Let y be a vertex which does not
exist in any Se-k-path that contains u, but does exist in an Se-(k + 1)-path that
contains u. The vertex y is adjacent to a vertex z that exists in an Se-k-path that
contains u. Thus vz is in E(G) and, by Corollary 7, vy is in E(G). Therefore, v
is adjacent to every vertex in H. So for every vertex u in V (G) \ V (H), if u is
adjacent to a vertex in V (H), then u is adjacent to every vertex in V (H). Thus,
our conclusion holds.

Contrasting this result with the analogous result for quasi-transitively ori-
entable graphs (Theorem 1), we see a significant difference in the resulting clas-
sification. We return to quasi-transitively orientable graphs in Section 4. For
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now, however, we highlight the following difference between quasi-transitively
orientable graphs and properly quasi-transitively colourable graphs.

Corollary 15. The family of quasi-transitively colourable graphs admits no for-

bidden subgraph characterization.

Proof. For all graphs J , there exists a connected graph H that contains J as a
subgraph. Let G be the graph created by joining H and K1. By Theorem 14,
this graph G is properly quasi-transitively colourable. Thus every graph is a
subgraph of some quasi-transitively colourable graph. Therefore, the family of
quasi-transitively colourable graphs admits no forbidden subgraph characteriza-
tion.

Theorem 14 gives a classification of properly quasi-transitively colourable
graphs based on the existence of an induced subgraph with particular properties.
So the lack of existence of such a subgraph, and the existence of a unique such
subgraph give rise to the following classifications of those graphs which admit
only the trivial quasi-transitive 2-edge-colouring and those which admit a unique
quasi-transitive 2-edge-colouring.

Corollary 16. G is not properly quasi-transitively colourable if and only if for

every induced proper connected subgraph H of G such that E(H) 6= ∅, there exists

some vertex u in V (G) \ V (H) that is adjacent to at least one vertex in V (H),
but not adjacent to all vertices in V (H).

Theorem 17. A connected graph G with n vertices is uniquely quasi-transitively

colourable if and only if there exists exactly one induced subgraph H of G such

that

• H is connected;

• 2 ≤ |V (H)| ≤ n− 1; and

• for every vertex u in V (G) \ V (H), if u is adjacent to a vertex in V (H), then
u is adjacent to every vertex in V (H).

Proof. Suppose that a graph G with n vertices is uniquely quasi-transitively
colourable. By Theorem 8, there are exactly two equivalence classes of CG, call
them Se and Sf for edges e and f in E(G). By Corollary 13, either V (Se) ⊂ V (Sf )
or V (Sf ) ⊂ V (Se). By Theorem 14, there exists an induced subgraph H of G
such that

• H is connected;

• 2 ≤ |V (H)| ≤ n− 1; and

• for every vertex u in V (G) \ V (H), if u is adjacent to a vertex in V (H), then
u is adjacent to every vertex in V (H).
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Since every induced copy of P3 has either both or neither of its edges in E(H),
the edges of H make up either an equivalence class or a union of equivalence
classes. Since we know that there are only two equivalence classes in G, the
edges of H are one equivalence class, call it Se, and the rest of the edges comprise
the other equivalence class, call it Sf . Thus if there is a second induced subgraph
H ′ satisfying our list of requirements, then it must be for the subgraph induced by
V (Sf ) to make up H ′. However, by Theorem 14, V (H ′) must be a proper subset
of V (G), and we know that either V (Se) or V (Sf ) is equal to V (G). Therefore,
there can be no second induced subgraph satisfying our list of requirements.

Now suppose there exists a unique proper induced subgraph H of G such
that

• H is connected;

• 2 ≤ |V (H)| ≤ n− 1; and

• for every vertex u in V (G) \ V (H), if u is adjacent to a vertex in V (H), then
u is adjacent to every vertex in V (H).

By Theorem 14, there exists a nontrivial quasi-transitive 2-edge-colouring of G.
Thus since E(H) is either an equivalence class or some union of equivalence
classes, there are at least two equivalence classes of CG. Toward a contradiction,
suppose that CG has more than two equivalence classes. This yields two cases.
Either E(H) contains multiple equivalence classes of CG, or E(G)\E(H) contains
multiple equivalence classes of CG.

Case 1. E(H) contains multiple equivalence classes of CG. Let e be an edge
such that Se ⊂ E(H). Since Se is an equivalence class, every induced copy of
P3 in G is such that either both or neither of its edges belong to Se. The graph
G[Se] is connected by Corollary 4. We know 2 ≤ |V (G[Se])| ≤ n − 1 since Se

contains at least one edge and Se ⊂ E(H). Since Se is an equivalence class, every
vertex u in V (G) \ V (Se) is such that if u is adjacent to a vertex in V (Se), then
u is adjacent to every vertex in V (Se). Thus the choice of H is not unique since
Se satisfies all of the necessary requirements. This is a contradiction.

Case 2. E(G) \ E(H) contains multiple equivalence classes of CG. By
Lemma 12, if any two equivalence classes, Se and Sf , are such that V (Se) =
V (Sf ), then Se = Sf . Therefore, since E(G) \ E(H) contains multiple equiv-
alence classes, some equivalence class, Se ⊂ E(G) \ E(H), must be such that
V (Se) 6= V (G). Let Sd be an equivalence class such that Sd ⊂ E(G) \E(H) and
V (Sd) 6= V (G). The graph G[Sd] is connected, by Corollary 4, and V (Sd) has
between 2 and n−1 vertices. Also since every induced copy of P3 either has both
or neither of its edges in Sd, we have that for every vertex u in V (G) \ V (Sd), if
u is adjacent to a vertex in V (Sd), then u is adjacent to every vertex in V (Sd).
Thus the choice of H is not unique, and this is a contradiction. Therefore, G is
uniquely quasi-transitively colourable.
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Using Theorem 17, we provide the following example of an infinite family of
graphs that admit a unique quasi-transitive 2-edge-colouring.

Let Pk = w0w1w2 · · ·wk−1. Construct G from Pk by adding vertices u and
v and edges uv, uw0 and vw0. By observation we have Suv = {uv} and Se =
{uw0, vw0} ∪ {wiwi−1 | 0 ≤ i ≤ k − 1} for all e 6= uv. Therefore E(G)/C =
{Suv, Suw0

}.
By Corollary 9, it follows that G is uniquely quasi-transitively colourable. In

the statement of Theorem 17, the edge uv plays the role of H.

In this construction, each of the subgraphs induced by the two equivalence
classes satisfy the criteria of Corollary 16. That is, the equivalence classes in-
duce an partition of the graph into two subgraphs that admit only trivial quasi-
transitive 2-edge-colourings. Such a partition exists in general.

Theorem 18. Let G be a graph. If Se is an equivalence class of CG, then G[Se]
is not properly quasi-transitively colourable.

Proof. Let G be a graph, let n be the number of vertices in G, and let e be
an edge in E(G). Toward a contradiction, suppose that G[Se] is properly quasi-
transitively colourable. By Theorem 14, there exists an induced subgraph H of
G[Se] such that

• H is connected;

• 2 ≤ |V (H)| ≤ n− 1; and

• for every vertex u in V (G) \ V (H), if u is adjacent to a vertex in V (H), then
u is adjacent to every vertex in V (H).

Since Se is an equivalence class of CG, for every vertex u in V (G) \ V (Se), if u
is adjacent to a vertex in V (Se), then u is adjacent to every vertex in V (Se).
So every vertex in V (G) \ V (H) that is adjacent to some vertex in V (H) must
be adjacent to every vertex in V (H). Thus for all h in E(H), the subset Sh of
E(G) must equal E(H). Therefore, E(H) is an equivalence class of CG. This is
a contradiction because Se is an equivalence class of CG and E(H) is a proper
subset of Se. Therefore, G[Se] is not properly quasi-transitively colourable.

We conclude this section with two more results that further aid in under-
standing the structure of graphs that contain multiple equivalence classes.

Theorem 19. Let G be a connected graph and let x and y be in V (G). Ev-

ery shortest path between x and y in G must only contain edges from a single

equivalence class of CG.

Proof. Let G be a graph and let x and y be in V (G). Toward a contradiction,
suppose there exists a shortest path P = v1 · · · vk from x to y, with v1 = x, vk = y,
and that some pair of incident edges in P , vi−1vi and vivi+1, are such that Svi−1vi
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is not equal to Svivi+1
. By Corollary 7, the edge vi−1vi+1 must exist because

otherwise an induced P3 with edges from two different equivalence classes would
result. The contradiction arises because the shortest path from x to y, P , can
be made shorter by replacing the edges vi−1vi and vivi+1 by the edge vi−1vi+1.
Therefore, every shortest path between x and y in G must only contain edges
from a single equivalence class of CG.

Corollary 20. Let G be a connected graph. There is at most one equivalence

class, Se, of CG such that V (Se) contains a vertex incident only with edges in Se.

Proof. Let v be a vertex incident only with edges in Se, for some edge e in E(G).
Toward a contradiction, suppose that u is in V (Sf ) for some edge f in E(G) that
is not equal to e, and that u is incident only with edges in Sf . Let P be a
shortest path connecting u to v. By Theorem 19, P only contains edges from a
single equivalence class. This is a contradiction because u and v are not incident
with any pair of respective edges in the same equivalence class. Therefore, there
is at most one equivalence class, Se, of CG such that V (Se) contains a vertex
incident only with edges in Se.

3. Intersection of Equivalence Classes

In Section 2, we characterized graphs with at least two equivalence classes (The-
orem 14) and graphs with exactly two equivalence classes (Theorem 17). In this
section, we characterize graphs with exactly three equivalence classes. We ap-
proach our study by considering the structure of the subgraph induced by a pair
of equivalence classes.

By Corollary 13, when graphs have exactly two equivalence classes, Se and
Sf , either V (Se) ⊂ V (Sf ) or V (Sf ) ⊂ V (Se). However, when a graph has more
than two equivalence classes, this subset property does not necessarily hold. Let
Se and Sf be distinct equivalence classes of CG. It is not necessary for there to
be any vertices in V (Se) ∩ V (Sf ). However if G is a connected graph with at
least two equivalence classes, then there must exist some vertex v and some pair
of equivalence classes, Se and Sf , such that v is in both V (Se) and V (Sf ). For
the purposes of this section, we will suppose, without loss of generality, the set
V (Se) ∩ V (Sf ) is nonempty (see Figure 5).

Every edge with endpoints in both V (Se) \ V (Sf ) and V (Sf ) \ V (Se) must
be in neither Se nor Sf . There exist cases in which a single vertex is in the
intersection of two equivalence classes and cases where the intersection contains
two non-adjacent vertices (both cases arise in K4 \ {e}, see Figure 6).

For the purposes of this section, we will suppose that V (Se)\V (Sf ), V (Sf )\
V (Se), and V (Se) ∩ V (Sf ) are non-empty. We will prove a number of results
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regarding the types of graphs in which these three vertex sets are nonempty,
culminating in a classification of graphs with exactly three equivalence classes
(Theorem 28). We begin with a rather specific result, but one that will be useful
in proving Theorem 22.

V (Se) V (Sf )

Figure 5. The vertex sets of two equivalence classes Se (represented by dashed edges)
and Sf (represented by dotted edges) shown with a nonempty intersection.

Figure 6. K4 \ {e} shown with the three equivalence classes represented by full, dashed,
and dotted lines.

Lemma 21. Let G be a connected graph and let e, f ∈ E(G) be such that Se and

Sf are equivalence classes of CG. If

• V (Se) \ V (Sf ) is nonempty;

• u, v, y ∈ V (Se) ∩ V (Sf ) and x ∈ V (Sf ) \ V (Se);

• uv, vx ∈ Sf , vy /∈ Sf , and uy ∈ Se;

then ux ∈ E(G).

Proof. Let G be a connected graph and let e, f ∈ (G) be such that Se and Sf

are equivalence classes of CG. Suppose

• V (Se) \ V (Sf ) is nonempty;

• u, v, y ∈ V (Se) ∩ V (Sf ) and x ∈ V (Sf ) \ V (Se);

• uv, vx ∈ Sf , vy /∈ Sf , and uy ∈ Se.
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u

y

v

x

V (Se) V (Sf )

Figure 7. Theoretical intersection V (Se) ∩ V (Sf ) containing both endpoints of an edge
in Sf and both endpoints of an edge in Se. Dotted edges are in Sf and dashed edges are
in Se.

By Corollary 7, since vy and vx belong to different equivalence classes, the
edge xy must exist (See Figure 7). Since x ∈ V (Sf ) \ V (Se), the edge xy is not
in Se. Therefore by Corollary 7, since xy and uy belong to different equivalence
classes, the edge ux must exist.

Theorem 22. Let G be a connected graph and let e, f ∈ E(G) be such that

Se and Sf are equivalence classes of CG. If V (Se) \ V (Sf ), V (Sf ) \ V (Se), and
V (Se) ∩ V (Sf ) are all nonempty, then V (Se) ∩ V (Sf ) does not contain any pair

of vertices u and v such that uv is in either Se or Sf .

Proof. Let G be a connected graph and let e, f ∈ E(G) be such that V (Se) \
V (Sf ), V (Sf ) \ V (Se), and V (Se) ∩ V (Sf ) are all nonempty. Toward a contra-
diction, suppose that u and v are in V (Se) ∩ V (Sf ) and that uv is in Sf . Since
V (Sf ) \ V (Se) is nonempty, Sf must contain some other edge. In order for Sf to
not be a singleton set, uv must exist in some induced copy of P3 with another
edge from Sf . Without loss of generality, suppose xv is in Sf and that uvx is
an induced copy of P3. Every vertex in V (Se) ∩ V (Sf ) must be incident with an
edge in Se.

Case 1. There does not exist a vertex in V (Se) ∩ V (Sf ) that is adjacent

to v with an edge in Sf and also adjacent to a vertex in V (Se) \ V (Sf ) with

an edge in Se. So every edge in Se that is incident with u must have both
endpoints in V (Se) ∩ V (Sf ). Let uy be such an edge. By Corollary 7, since
uv and uy belong to different equivalence classes, the edge vy must exist. By
Lemma 21, if vy /∈ Sf , then ux ∈ E(G), contradicting uvx being an induced
copy of P3. So vy ∈ Sf . However, if every neighbour of u via Se edges is a
vertex in V (Se)∩V (Sf ) that is adjacent to v via an Sf edge, then there does not
exist an Se edge with one endpoint in V (Se) \ V (Sf ) and the other endpoint in
V (Se)∩V (Sf ). Therefore since V (Se)\V (Sf ) is nonempty, G[Se] is not connected.
This contradicts Corollary 4.
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Case 2. Some vertex in V (Se) ∩ V (Sf ) that is adjacent to v with an edge in

Sf is also adjacent to a vertex in V (Se)\V (Sf ) with an edge in Se. Without loss
of generality, suppose that u is such a vertex. Let y be a vertex in V (Se) \V (Sf )
such that uy ∈ Se. By Corollary 7, since uv and uy belong to different equivalence
classes, the edge vy must exist. The edge vy is not in Sf since y ∈ V (Se)\V (Sf ).
So by Corollary 7, since vx and vy belong to different equivalence classes, the
edge xy must exist. The edge xy is not in Se since x ∈ V (Sf ) \ V (Se). Finally
by Corollary 7, since uy and xy belong to different equivalence classes, the edge
ux must exist. This contradicts uvx being an induced copy of P3.

Therefore, there does not exist a pair of adjacent vertices u, v ∈ V (Se)∩V (Sf )
such that uv is in either Se or Sf .

The following four results will build upon each other and be used to justify
Theorem 27, and then finally yield our classification of those graphs that have
exactly three equivalence classes (Theorem 28).

Lemma 23. Let G be a connected graph and let Se and Sf be two equivalence

classes of CG. If V (Se) \ V (Sf ), V (Sf ) \ V (Se), and V (Se) ∩ V (Sf ) are all

nonempty, then every vertex in V (Se) \ V (Sf ) is adjacent to every vertex in

V (Sf ) and every vertex in V (Sf ) \ V (Se) is adjacent to every vertex V (Se).

a

ux0

V (Se) V (Sf )

Figure 8. The vertex sets of two equivalence classes with nonempty intersection. Dotted
edges are in Sf and dashed edges are in Se. The full edge is from a third equivalence
class, Sau.

Proof. Let x0 ∈ V (Se) ∩ V (Sf ), and a ∈ V (Se) \ V (Sf ) such that ax0 ∈ Se

(see Figure 8). Such a pair of vertices must exist because otherwise, with no
edge with one endpoint in V (Se) ∩ V (Sf ) and one endpoint in V (Se) \ V (Sf ),
the graph G[Se] would be disconnected, contradicting Corollary 4. Since x0 is
in V (Se) ∩ V (Sf ), there exists a vertex u such that ux0 is in Sf . The vertex u
must be in V (Sf ) \ V (Se) by Theorem 22. By Corollary 7, since ax0 and ux0
are in different equivalence classes, the edge au must exist. The vertex a is not
incident with any edges in Sf and the vertex u is not incident with any edges
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in Se. We will use induction to show that every vertex in V (Sf ) is adjacent to
a (and equivalently, every vertex in V (Se) is adjacent to u), inducting on the
length of the shortest Sf -path connecting a vertex to x0. By Theorem 22, every
vertex that is adjacent to x0 with an edge in Sf must be in V (Sf ) \ V (Se). Thus
by Corollary 7, every vertex that is adjacent to x0 with an edge in Sf must
also be adjacent to a with an edge in neither Se nor Sf . Now suppose that for
every vertex v ∈ V (Sf ) such that the shortest Sf -path connecting v to x0 is
length k, v is adjacent to a. If there does not exist some vertex v such that the
shortest Sf -path connecting v to x0 is length k + 1, then a is adjacent to every
vertex in V (Sf ). Otherwise, let P = x0 · · ·xk+1 be an Sf -(k + 1)-path. Then
by Corollary 7, since a is adjacent to xk with an edge that is not in Sf , the
edge axk+1 must exist. Therefore, by induction, the vertex a is adjacent to every
vertex in Sf (and equivalently, every vertex in V (Se) is adjacent to u).

We now prove that every other vertex in V (Se) \ V (Sf ) is adjacent to every
vertex in V (Sf ) (and equivalently, that every other vertex in V (Sf ) \ V (Se) is
adjacent to every vertex in V (Se)). Let z be a vertex in V (Se) \ V (Sf ). By
Corollary 7, since the vertex z is adjacent to the vertex u, the vertex z is also
adjacent to every vertex which is adjacent to u with an edge in Sf . We will induct
on the distance from u along Sf -paths. Suppose that every vertex y, such that
the shortest Sf -path connecting y to u is length k, is adjacent to z. If there does
not exist some vertex y such that the shortest Sf -path connecting y to u is length
k+1, then z is adjacent to every vertex in V (Sf ). Otherwise, let P = uy1 · · · yk+1

be an Sf -(k + 1)-path. Then by Corollary 7, since z is adjacent to yk with an
edge that is not in Sf , the edge zyk+1 must exist. Therefore, by induction, the
vertex z is adjacent to every vertex in Sf . Thus every vertex in V (Se) \ V (Sf ) is
adjacent to every vertex in V (Sf ). Equivalently, every vertex in V (Sf ) \ V (Se)
is adjacent to every vertex in V (Se).

Corollary 24. Let G be a connected graph, and let Se and Sf be equivalence

classes of CG. If V (Se) \ V (Sf ), V (Sf ) \ V (Se), and V (Se) ∩ V (Sf ) are all

nonempty, then every edge in Se and every edge in Sf has an endpoint in V (Se)∩
V (Sf ).

Proof. Let G be a connected graph, and let Se and Sf be equivalence classes of
CG. Toward a contradiction, suppose that f has both endpoints in V (Sf )\V (Se)
and that both V (Se) ∩ V (Sf ) and V (Se) \ V (Sf ) are nonempty. By Lemma 23,
the vertices in V (Se)∩V (Sf ) are joined to the vertices in V (Sf )\V (Se). So there
does not exist an induced copy of P3 containing an edge with both endpoints in
V (Sf ) \ V (Se) and an edge with one endpoint in V (Sf ) ∩ V (Se). So Sf does not
contain any edge with an endpoint in V (Se) ∩ V (Sf ). This is a contradiction
though as V (Se)∩ V (Sf ) is nonempty. Therefore, if V (Se)∩ V (Sf ) is nonempty,
then every edge in Sf (and thus, Se) has an endpoint in V (Se) ∩ V (Sf ).
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For a graph G, a subset A of V (G) induces a join if the subgraph of G
induced by A is a join of some pair of subgraphs H and J of G.

Lemma 25. Let G be a connected graph, and let Se and Sf be equivalence classes

of CG. If V (Se) \ V (Sf ), V (Sf ) \ V (Se), and V (Se) ∩ V (Sf ) are all nonempty,

then none of those three vertex sets induces a join.

Proof. We will first prove that V (Se)\V (Sf ) (and thus, V (Sf )\V (Se)) does not
induce a join. By Corollary 24, every edge in Se has an endpoint in V (Se)∩V (Sf ).
Toward a contradiction, suppose that the subgraph induced by V (Se)\V (Sf ) is a
join. Call the two joined vertex sets A and B, so that A∪B = V (Se)\V (Sf ). By
Theorem 22, e does not have both endpoints in V (Se) ∩ V (Sf ). By Theorem 22
and Corollary 24, e has an endpoint in V (Se) \ V (Sf ). Suppose, without loss
of generality, that e has an endpoint in A. We know that G[Se] is a connected
graph, by Corollary 4, and that B is joined not only to A, but also to A∪(V (Se)∩
V (Sf )). Hence there cannot exist an induced copy of P3 with one edge having
both endpoints in A ∪ (V (Se) ∩ V (Sf )) and the other edge having one endpoint
in B. Thus, no edge with an endpoint in B is in Se. This is a contradiction.
Neither V (Se) \ V (Sf ) nor V (Sf ) \ V (Se) induces a join.

Now we prove that V (Se) ∩ V (Sf ) does not induce a join using a similar
argument. By Corollary 24, every edge in Se has an endpoint in V (Se) ∩ V (Sf ).
Toward a contradiction, suppose that the subgraph induced by V (Se)∩ V (Sf ) is
a join. Call the two joined vertex sets A′ and B′, so that A′∪B′ = V (Se)∩V (Sf ).
Suppose, without loss of generality, that e has an endpoint in A′. We know that
G[Se] is a connected graph, by Corollary 4, and that B′ is joined to not only A′,
but also to A′ ∪ (V (Se) \ V (Sf )). Hence there cannot exist an induced copy of
P3 with one edge having both endpoints in A′ ∪ (V (Se) \ V (Sf )) and the other
edge having one endpoint in B′. Thus, no edge with an endpoint in B′ is in Se.
This is a contradiction. Therefore, V (Se) ∩ V (Sf ) does not induce a join.

Lemma 26. Let G be a connected graph and let Se and Sf be equivalence classes

of CG. If V (Se)\V (Sf ), V (Sf )\V (Se), and V (Se)∩V (Sf ) are all nonempty, then

every edge with one endpoint in V (Se)\V (Sf ) and one endpoint in V (Sf )\V (Se)
belongs to the same equivalence class of CG, call it Sd.

Proof. Let G be a connected graph and let Se and Sf be equivalence classes
of CG. Suppose that V (Se) \ V (Sf ), V (Sf ) \ V (Se), and V (Se) ∩ V (Sf ) are all
nonempty. We know from Lemma 23 that V (Se)\V (Sf ) is joined to V (Sf )\V (Se)
and that none of these edges belong to Se or Sf . Let v ∈ V (Se)\V (Sf ). It will be
sufficient to prove that every vx, where x is a vertex in V (Sf )\V (Se), belongs to
the same equivalence class. Suppose vw0 is in some equivalence class Sd for some
w0 in V (Sf ) \ V (Se). By Lemma 25, we know that V (Sf ) \ V (Se) is not a join.
Therefore, there exists some vertex w1 in V (Sf ) \ V (Se) that is not adjacent to
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w0. Since w0vw1 is an induced copy of P3, both vw0 and vw1 belong to the same
equivalence class. Thus, vw1 is in Sd. By induction, suppose that v is adjacent to
k different vertices in V (Sf )\V (Se), w0, . . . , wk, with edges in Sd. Let Gk be the
subgraph induced by {w0, . . . , wk, v}. Since V (Sf ) \ V (Se) is not a join, if there
exists a vertex in V (Sf ) \V (Se) that is not in Gk, then there exists such a vertex
that is not adjacent to every vertex in Gk. Let wk+1 be such a vertex and let wk

be a vertex in Gk not adjacent to wk+1. Since wk is not adjacent to wk+1, the
edges vwk and vwk+1 belong to the same equivalence class, Sd. Therefore for all
x in V (Sf )\V (Se), vx belongs to Sd. Therefore, every edge with one endpoint in
V (Se)\V (Sf ) and one endpoint in V (Sf )\V (Se) belongs to the same equivalence
class.

Theorem 27. If G is a connected graph, CG has exactly three equivalence classes,

Se and Sf are distinct equivalence classes of CG, and V (Se)\V (Sf ), V (Sf )\V (Se),
and V (Se) ∩ V (Sf ) are all nonempty, then G is complete tripartite.

Proof. Let G be a connected graph, CG have exactly three equivalence classes,
Se and Sf be distinct equivalence classes of CG, and V (Se)\V (Sf ), V (Sf )\V (Se),
and V (Se)∩V (Sf ) all be nonempty. By Lemma 23, if a is a vertex in V (Se)\V (Sf )
and b is a vertex in V (Sf ) \ V (Se), then ab is an edge in E(G). By Lemma 26,
every such edge belongs to the same equivalence class, call it Sab. By Lemma 23,
every vertex in V (Se) ∩ V (Sf ) is adjacent to every vertex in V (Se) \ V (Sf ) and
every vertex in V (Sf )\V (Se). Now all that remains to be shown is that there are
no edges in E(G) such that both endpoints are in V (Se) \ V (Sf ), V (Sf ) \ V (Se),
or V (Se) ∩ V (Sf ). Toward a contradiction, suppose that an edge, say yz, exists
with both endpoints in V (Se) \V (Sf ). If yz does not exist in an induced copy of
P3, then yz is itself a fourth equivalence class and this would be a contradiction.
So yz exists in some induced copy of P3. Both endpoints of yz are adjacent to
every vertex in V (Sf ) \ V (Se) and V (Se) ∩ V (Sf ). Therefore, any induced copy
of P3 which contains yz must only contain edges in V (Se) \V (Sf ). Thus no edge
with both endpoints in V (Se)\V (Sf ) is in Se, Sf , or Sab. This is a contradiction
since G has exactly three equivalence classes. Therefore, no edge exists with both
endpoints in V (Se) \ V (Sf ) (or equivalently, V (Sf ) \ V (Se)).

Now toward a contradiction, suppose that an edge wx exists with both end-
points in V (Se) ∩ V (Sf ). If wx does not exist in an induced copy of P3, then
wx is itself a fourth equivalence class and this would be a contradiction. So wx
exists in some induced copy of P3. Both endpoints of wx are adjacent to every
vertex in V (Sf ) \ V (Se) and V (Se) \ V (Sf ). Therefore, any induced copy of P3

which contains wx must only contain edges in Se ∩ Sf . Thus no edge with both
endpoints in V (Se)∩V (Sf ) is in Se, Sf , or Sab. This is a contradiction since G has
exactly three equivalence classes. Therefore, no edge exists with both endpoints
in V (Se) ∩ V (Sf ). So G is complete tripartite.
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Graphs with exactly three equivalence classes are classified as follows.

Theorem 28. Let G be a connected graph such that CG has exactly three equiv-

alence classes, Sd, Se, and Sf . If G is not complete tripartite, then there exists

e ∈ E(G) so that V (Se) = V (G).

Proof. Let G be a connected graph such that CG has exactly three equivalence
classes. Since G is connected, every equivalence class Sx must be such that
V (Sx)∩V (Sy) 6= ∅ for some other equivalence class Sy. Suppose that for every pair
of equivalence classes Sx and Sy, either V (Sx)\V (Sy), V (Sy)\V (Sx), or V (Sx)∩
V (Sy) is empty, because otherwise by Theorem 27, G is complete tripartite.
This implies that for every pair of equivalence classes, Sx and Sy, either the
intersection of their vertex sets is empty or one vertex set is a subset of the other.
Since G is connected, some pair of equivalence classes, Se and Sf , are such that
V (Sf ) ⊆ V (Se). Let Sd be the other equivalence class. Since G is connected,
either V (Sd) is a subset of V (Se) or V (Se) is a subset of V (Sd). In either case,
there exists an equivalence class for which the vertex set contains the vertex sets
of all other equivalence classes. This implies there exists some equivalence class
such that the vertex set contains every vertex in G.

We provide the following infinite family of graphs that are not complete
tripartite and have exactly three equivalence classes. Let Pk = v0, v1, . . . , vk−1

and P ′
k = v′0, v

′
1, . . . , v

′
k−1 be disjoint paths. Let G be the graph formed from Pk

and P ′
k by adding a universal vertex v. We claim G has exactly three equivalence

classes.
For each 0 ≤ i, j ≤ k − 1, the edge viv

′
j does not exist. Therefore the edges

incident with v are in the same equivalence class because of the induced copies
of P3 that exist.

Since every vertex not in Pk is adjacent to either every vertex in Pk or no
vertex in Pk, by Lemma 11, the equivalence class of any edge in Pk contains
only edges of Pk. Therefore Svivi+1

= E(Pk) for all 0 ≤ i ≤ k − 2. A similar
argument implies Sv′iv

′

i+1 = E(P ′
k) for all 0 ≤ i ≤ k − 2. Therefore E(G)/C =

{Sv0v1 , Sv′
0
v′
1
, Suv0}.

Notice that in the statement of Theorem 28, vv0 plays the role of e.

4. Uniquely Quasi-Transitively Orientable Graphs

The statement of Corollary 15 hints at a significant difference between the family
of quasi-transitively orientable graphs and properly quasi-transitively colourable
graphs. Recall that the family of quasi-transitively orientable graphs is equal to
the family of comparability graphs (Theorem 1). Such graphs admit a forbidden
subgraph characterisation [11] and thus can be identified in polynomial time. On
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v1 v2

v3

v4v5

v6

v1 v2

v3

v4v5

v6

Figure 9. Quasi-transitive orientation Q of a graph G and the partial quasi-transitive
orientation of Q generated by the arc −−→v1v2.

the other hand, by Theorem 14 and Corollary 15, no such forbidden subgraph
characterisation of properly quasi-transitively colourable graphs exists. However,
one may verify that the conditions of Theorem 14 can be checked in polynomial
time.

In this section we restrict our attention to the family of comparability graphs.
Using techniques similar to those in Section 2 we find that sets of the form Se

arise as equivalence classes in a relation related to quasi-transitive orientations
of comparability graphs.

Let G be a comparability graph and consider uv ∈ E(G). As G is a com-
parability graph, there exists at least one quasi-transitive orientation of G for
which the edge uv is oriented to have its head at v. Note that if vw ∈ E(G) and
uw /∈ E(G), then necessarily, the edge vw is oriented with its head at v whenever
uv is oriented with its head at v.

A partial quasi-transitive orientation generated by −→uv in G is a quasi-transitive
orientation of a largest subgraph (most edges) of G that is uniquely quasi-
transitively orientable, in which −→uv is an arc. In Figure 9, we see the graph
G from Figure 1 with a quasi-transitive orientation of the edges and we also see
a partial quasi-transitive orientation generated by an edge in G.

Theorem 29. For all comparability graphs G, if uv ∈ E(G), then

• there exists a unique partial quasi-transitive orientation generated by −→uv and

• the set of edges that are directed in the unique partial quasi-transitive orienta-

tion generated by −→uv is the equivalence class Suv of CG.

Proof. Suppose G is a comparability graph and that uv is chosen to be directed
−→uv in a quasi-transitive orientation X of G. Every induced P3 of the form uvw is
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such that −→wv is an arc in X. Also for every P3 that contains either uv or vw, the
direction of the other edge is the same in all partial quasi-transitive orientations
generated by −→uv. Let S be a minimal subset of E(G) which contains uv and
is such that every induced P3 either has both or neither of its edges in S. By
Corollary 3, S is the only smallest subset of E(G) which contains uv and is such
that every induced P3 either has both or neither of its edges in S. No partial
quasi-transitive orientation generated by −→uv can contain any edges not contained
in S because there would exist a partition of the edge set into two sets such that
no induced copy of P3 includes an edge from both sets. Thus S is unique, and
by Theorem 8, the set S is equal to the equivalence class Suv of CG.

We will denote the unique partial quasi-transitive orientation generated by
−→uv in G by Γ−→uv. Let OG be the relation on E(G) so that uv ∼ xy when any of
the following are true:

• Γ−→uv = Γ−→xy • Γ−→uv = Γ−→yx • Γ−→vu = Γ−→xy • Γ−→vu = Γ−→yx.

Given a graph G, by Theorem 29, OG is an equivalence relation. One can see
this by noting that the second part of Theorem 29 guarantees that the equivalence
classes of CG are exactly those of OG.

Corollary 30. Let G be a comparability graph. If Se is an equivalence class of

OG, then G[Se] is uniquely quasi-transitively orientable.

Corollary 31. For all integers k ≥ 1, there exists a graph G with k equivalence

classes under the relation OG.

Proof. By Theorem 10 and Theorem 29, for all integers k ≥ 1, there exists a
graph G with k equivalence classes under the relation CG and both CG and OG

partition the edges of G in the same manner. Therefore, for all integers k ≥ 1,
there exists a graph G with k equivalence classes under the relation OG.

Corollary 32. If G is a comparability graph so that CG has k equivalence classes,

then there are 2k quasi-transitive orientations of G.

Proof. For all graphs G, the number of equivalence classes of CG is equal to the
number of equivalence classes of OG. For every arc −→uv, there exists a unique par-
tial quasi-transitive orientation generated by −→uv by Theorem 29. Therefore, there
exist 2k quasi-transitive orientations of G, where k is the number of equivalence
classes.

By the definitions of Suv and [−→uv]O, Theorem 29 tells us Suv is the largest set
of edges such that for every quasi-transitive orientation X of G and every edge

ab ∈ Suv, if
−→
ab and −→uv are arcs in X, then

−→
ab is an arc in every quasi-transitive

orientation of G in which −→uv is an arc. In Figure 9, the image on the right shows
the set of oriented edges as exactly those of the set Sv1v2 .
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By Theorem 8 and Theorem 29, we have |E(G)/C| = |E(G)/O|. So we have
the following result.

Theorem 33. A comparability graph G is uniquely quasi-transitively orientable

if and only if G admits only the trivial quasi-transitive 2-edge-colouring.

5. Conclusions and Future Work

Though the respective literature yields significant examples of commonalities in
the study of oriented graphs and 2-edge-coloured graphs, our work here high-
lights a fundamental difference between these two relational structures. As with
many concepts under study in oriented and 2-edge-coloured graphs, the difference
between the definitions of quasi-transitivity for oriented graphs and for 2-edge-
coloured graphs is only slight. However in this case, the resulting classification is
markedly different.

Such a phenomenon also occurs with the study of chromatic polynomials of
oriented and 2-edge-coloured graphs. In [6], Cox and Duffy fully classified those
oriented graphs whose oriented chromatic polynomial was identical to the chro-
matic polynomials of the underlying simple graph as quasi-transitive orientations
of co-interval graphs, notably a class of graphs for which the chromatic polyno-
mial can be computed in polynomial time [9]. In the sequel for 2-edge-coloured
graphs, Beaton, Cox, Duffy and Zolkavich [3] obtain only a partial classification
of 2-edge-coloured graphs whose 2-edge-coloured chromatic polynomial is iden-
tical to the chromatic polynomial of the underlying simple graph. Here, work
was stymied by a paucity of research results on quasi-transitive 2-edge-coloured
graphs. However, their preliminary results suggest that those 2-edge-coloured
graphs for which the 2-edge-coloured chromatic polynomial is identical to the
chromatic polynomial of the underlying simple graph will comprise a family of
graphs for which computing the chromatic polynomial is NP-hard. We expect
that our results, particularly Theorem 14, will provide the insight needed to
complete this classification.
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of 2-edge-colored graphs , Discrete Appl. Math. 158 (2010) 1365–1379.
https://doi.org/10.1016/j.dam.2009.09.017
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