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Abstract

If X = (V (X), E(X)) and Y = (V (Y ), E(Y )) are n-vertex graphs, then
their friends-and-strangers graph FS(X,Y ) is the graph whose vertices are
the bijections from V (X) to V (Y ) in which two bijections σ and σ′ are
adjacent if and only if there is an edge {a, b} ∈ E(X) such that {σ(a), σ(b)} ∈
E(Y ) and σ′ = σ ◦ (a b), where (a b) is the permutation of V (X) that
swaps a and b. We prove general theorems that provide necessary and/or
sufficient conditions for FS(X,Y ) to be connected. As a corollary, we obtain
a complete characterization of the graphs Y such that FS(Dandk,n, Y ) is
connected, where Dandk,n is a dandelion graph; this substantially generalizes
a theorem of the first author and Kravitz in the case k = 3. For specific
choices of Y , we characterize the spider graphs X such that FS(X,Y ) is
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connected. In a different vein, we study the cycle spaces of friends-and-
strangers graphs. Naatz proved that if X is a path graph, then the cycle
space of FS(X,Y ) is spanned by 4-cycles and 6-cycles; we show that the
same statement holds when X is a cycle and Y has domination number at
least 3. When X is a cycle and Y has domination number at least 2, our
proof sheds light on how walks in FS(X,Y ) behave under certain Coxeter
moves.

Keywords: friends-and-strangers graph, spider, dandelion, cycle space, Cox-
eter move.

2020 Mathematics Subject Classification: 05C40, 05C70.

1. Introduction

Flip graphs are graphs that encode when combinatorial objects are related by
small changes called flips. In recent years, these graphs have received a great
deal of attention in combinatorics, geometry, and computer science. For example,
some of the most well-studied flip graphs are the 1-skeleta of polytopes such as the
permutahedron, the associahedron, and the cyclohedron. In [5], the first author
and Kravitz introduced a broad family of flip graphs called friends-and-strangers
graphs.

Suppose we have simple graphs X = (V (X), E(X)) and Y = (V (Y ), E(Y ))
such that |V (X)| = |V (Y )| = n. We imagine that the vertices of X are chairs
and that the vertices of Y are people; two people are adjacent in Y if and only if
they are friends with each other (otherwise, they are strangers). The friends-and-
strangers graph of X and Y , denoted FS(X,Y ), is a graph whose vertices are the
bijections from V (X) to V (Y ); one can think of such a bijection as an arrangement
of people sitting in chairs. If we are given such an arrangement, then we allow
two people to swap places with each other if they are friends with each other
and they are sitting in adjacent chairs. Such a swap is called an (X,Y )-friendly
swap. The edges of FS(X,Y ) correspond precisely to (X,Y )-friendly swaps. More
formally, two bijections σ, σ′ : V (X)→ V (Y ) are adjacent in FS(X,Y ) if and only
if there exists an edge {a, b} ∈ E(X) such that {σ(a), σ(b)} ∈ E(Y ), σ(a) = σ′(b),
σ(b) = σ′(a), and σ(c) = σ′(c) for all c ∈ V (X) \ {a, b}. For example, suppose

X = Y = .

Since V (X) = V (Y ) = {1, 2, 3}, we can represent each bijection σ : V (X)→
V (Y ) as a permutation σ(1)σ(2)σ(3) in one-line notation. Then

FS(X,Y ) = .
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Friends-and-strangers graphs generalize several previously-studied notions.
For example, when Y = Kn is the complete graph with vertex set [n] := {1, . . . , n}
and X is another graph with vertex set [n], the friends-and-strangers graph
FS(X,Y ) is the Cayley graph of the symmetric group Sn generated by the col-
lection of transpositions corresponding to the edges of X. The famous 15-puzzle
is equivalent to analyzing FS(Star16,Grid4×4), where Starn is the star graph with
n vertices and Grid4×4 is the 4×4 grid graph. Generalizing the 15-puzzle, Wilson
[12] characterized the graphs Y such that FS(Starn, Y ) is connected (see Theorem
12). Stanley [10] studied the connected components of FS(Pathn,Pathn), where
Pathn is the path graph with n vertices.

It is very natural to ask about the connected components of a friends-and-
strangers graph; indeed, if we view the vertices of FS(X,Y ) as arrangements of
people in chairs, then two such arrangements are in the same connected compo-
nent of FS(X,Y ) if and only if one can be obtained from the other via a sequence
of (X,Y )-friendly swaps. As mentioned above, Wilson studied this problem when
X is a star graph. Several papers have continued this line of work when one of
X or Y is fixed to be a specific type of graph [5, 7], when X and Y are Erdős–
Rényi random graphs [1, 11], or when X and Y satisfy certain minimum-degree
conditions [1, 3]. Jeong recently studied the girths and diameters of friends-
and-strangers graphs [8]. The first author has also related friends-and-strangers
graphs of the form FS(Cyclen, Y ), where Cyclen is the cycle with n vertices, to a
dynamical system called toric promotion [4].

In [5], the first author and Kravitz found sufficient conditions for FS(X,Y )
to be connected under the hypothesis that X has a Hamiltonian path. One of
our primary goals in this paper is to prove the following sufficient condition for
FS(X,Y ) to be connected; this condition is very general and is quite different
from the ones established in [5].

Theorem 1. Let X and Y be connected n-vertex graphs such that X has maxi-
mum degree k ≥ 2. If every k-vertex induced subgraph of Y is connected and there
exists a k-vertex induced subgraph Y0 of Y such that FS(Stark, Y0) is connected,
then FS(X,Y ) is connected.

In practice, Wilson’s theorem, which we have recorded as Theorem 12 below,
makes it easy to check whether or not FS(Stark, Y0) is connected for a given graph
Y0. In fact, Wilson’s result will allow us to prove the following, which immediately
lets us ignore one of the hypotheses of Theorem 1 when n ≥ 2k − 1.

Theorem 2. Let Y be an n-vertex graph such that every k-vertex induced sub-
graph of Y is connected. If n ≥ 2k − 1, then there exists a k-vertex induced
subgraph Y0 of Y such that FS(Stark, Y0) is connected.

The hypothesis that n ≥ 2k−1 in the previous theorem is necessary; indeed,
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the conclusion of the theorem is false (by Theorem 12 below) if Y is the complete
bipartite graph Kk−1,k−1.

A spider is a connected graph that has a vertex c such that deleting c results
in a disjoint union of paths. The vertex c is called the center of the spider, and
the paths that result from deleting c are called the legs of the spider (the center is
unique if there are at least three legs). The number of vertices in a leg is called its
length. We write Spider(λ1, . . . , λk) for the spider with legs of lengths λ1, . . . , λk;
note that the number of vertices in this graph is λ1 + · · ·+λk +1. The star graph
Starn is the spider with n− 1 legs, all of which have length 1.

While Theorem 1 provides a sufficient condition for the connectedness of
FS(X,Y ), the next theorem provides a necessary condition when X is a spider.

Theorem 3. Let λ1 ≥ · · · ≥ λk be positive integers, and let n = λ1 + · · ·+λk+1.
Let Y be an n-vertex graph. If there exists a disconnected induced subgraph of Y
with n− λ1 vertices, then FS(Spider(λ1, . . . , λk), Y ) is disconnected.

The dandelion graph Dandk,n is the spider graph with k − 1 legs of length 1
and 1 leg of length n − k. In [5], it was shown that the graph FS(Dand2,n, Y ) is
connected if and only if Y is the complete graph Kn (note that Dand2,n = Pathn)
and that for n ≥ 5, the graph FS(Dand3,n, Y ) is connected if and only if the
minimum degree of Y is at least n − 2. The following corollary, which follows
from Theorems 1, 2, and 3, substantially generalizes these results.

Corollary 4. If n ≥ 2k−1, then FS(Dandk,n, Y ) is connected if and only if every
induced subgraph of Y with k vertices is connected.

Corollary 4 is noteworthy because it is rare to find families of graphs X such
that we can completely characterize all graphs Y such that FS(X,Y ) is connected.
The next few theorems provide further characterizations of connectedness, though
they put restrictions on both X and Y . In what follows, we denote G to be the
complement of G, which has the same vertex set as G and satisfies {u, v} ∈ E(G)
if and only if {u, v} 6∈ E(G).

Theorem 5. Let λ1 ≥ · · · ≥ λk be positive integers such that λ1 + · · · + λk +
1 = n ≥ 4. The friends-and-strangers graph FS(Spider(λ1, . . . , λk),Cyclen) is
connected if and only if (λ1, . . . , λk) is not of the form (λ1, 1, 1) and is not in the
following list:

(1, 1, 1, 1), (2, 2, 1), (2, 2, 2), (3, 2, 1), (3, 3, 1), (4, 2, 1), (5, 2, 1).

For n ≥ 4, define the fruit graph Cycle⊥n to be the graph obtained from a
cycle of size n − 1 by adding an extra vertex and a single edge connecting that
vertex to one of the vertices in the cycle. More precisely, Cycle⊥n has vertex set
[n] and edge set

{1, n− 1} ∪ {1, n} ∪ {{i, i+ 1} : i ∈ [n− 2]}.
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Figure 1. From left to right: Spider(2, 2, 1), Dand4,7, Cycle⊥9 .

Figure 1 shows examples of a spider, a dandelion, and a fruit graph. The following
result characterizes when the friends-and-strangers graph of a spider and the
complement of a fruit graph is connected.

Theorem 6. Let λ1 ≥ · · · ≥ λk be positive integers such that k ≥ 3 and λ1 +

· · ·+ λk + 1 = n. Then FS(Spider(λ1, . . . , λk),Cycle
⊥
n ) is disconnected if and only

if (λ1, . . . , λk) is of one of the following forms:

(λ1, 1, 1, 1), (λ1, λ2, 1), (2, 2, 2).

The next theorem guarantees the connectedness of FS(X,Y ) whenever the
minimum degree of Y is large and X is a connected graph that contains some
small spider.

Theorem 7. Let X and Y be n-vertex graphs such that Y has minimum degree
at least n − 3. The friends-and-strangers graph FS(X,Y ) is connected if X is
connected and contains a (not necessarily induced) subgraph isomorphic to at
least one of the following:

Star7, Spider(2, 1, 1, 1, 1), Spider(2, 2, 1, 1),

Spider(3, 3, 2), Spider(4, 2, 2), Spider(4, 3, 1).

All of our results mentioned so far have been concerned with whether or not
a friends-and-stranger graph is connected. In a different vein, it is also natural
to study cycles in friends-and-strangers graphs; see [2, 6, 9] for previous work on
cycles in other flip graphs. Note that a cycle in a friends-and-strangers graph
represents a nontrivial way that we can perform a sequence of friendly swaps
that returns us to the arrangement of people with which we started.

A graph is called even-degree if each of its vertices has even degree. An
edge-subgraph of a graph G is a subgraph of G that has the same vertex set as
G. Given edge-subgraphs H and H ′ of G, let H4H ′ be the edge-subgraph of G
whose edge set is the symmetric difference of the edge sets of H and H ′. Note
that if H and H ′ are even-degree, then so is H4H ′. The cycle space of G is the
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set of all even-degree edge-subgraphs; it is a vector space over the 2-element field
F2 in which the addition operation is given by the symmetric difference 4. We
can view a cycle in G as an edge-subgraph in which all vertices not in the cycle
are isolated vertices. It is well known that the cycle space of a (finite) graph is
spanned by its cycles. Naatz [9] proved that if Y is any n-vertex graph, then the
cycle space of FS(Pathn, Y ) is spanned by 4-cycles and 6-cycles (he stated this
in the case when Y is the incomparability graph of an n-element poset, but his
methods apply more generally for any Y ).

In this article, we will study cycle spaces of friends-and-strangers graphs of
the form FS(Cyclen, Y ). The requisite analysis ends up being more complicated
than what Naatz used to study FS(Pathn, Y ), but we will still obtain analogues
of several of his results.

A dominating set of a graph G is a subset D of the vertex set of G such that
every vertex in G is either in D or is adjacent to a vertex in D. The minimum
size of a dominating set of G is called the domination number of G. In the
following theorem, we must impose the additional (fairly mild) condition that
the domination number of Y is at least 3.

Theorem 8. Let Y be an n-vertex graph with domination number at least 3.
The cycle space of FS(Cyclen, Y ) is spanned by 4-cycles and 6-cycles. If Y is
triangle-free, then the cycle space of FS(Cyclen, Y ) is spanned by 4-cycles.

The proof of Theorem 8 proceeds by first establishing a more general result
(Theorem 20) about when walks in FS(Cyclen, Y ) can be obtained from one an-
other via a sequence of Coxeter moves, which are essentially the relations defining
the affine symmetric group as a Coxeter group.

As an example of Theorem 8, let Y be the dandelion Dand3,8, which has
domination number 3 and is triangle-free. Figure 2 shows one connected compo-
nent of FS(Cycle8,Dand3,8); upon inspection, we see that the cycle space of this
connected component is generated by 4-cycles, as predicted by Theorem 8.

Remark 9. The hypothesis that the domination number of Y is at least 3 in
Theorem 8 is necessary; indeed the theorem fails for FS(Cycle4,Cycle4).

Remark 10. It would be interesting to understand the cycle spaces of other
types of friends-and-strangers graphs besides those of the form FS(Pathn, Y ) or
FS(Cyclen, Y ).

The plan for the paper is as follows. In Section 2, we establish some notation
and terminology, and we recall some previous results about friends-and-strangers
graphs. In Section 3, we prove Theorems 1, 2, and 3 and use them to deduce
Corollary 4. In Section 4, we establish Theorems 5, 6, and 7. To do so, we first
prove a general lemma (Lemma 16) that allows us to build connected friends-
and-strangers graphs from smaller ones. Section 5 studies Coxeter moves and
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Figure 2. One connected component of FS(Cycle8,Dand3,8).

cycle spaces of friends-and-strangers graphs of the form FS(Cyclen, Y ); it is in
this section that we prove Theorem 8.

2. Preliminaries

The purpose of this section is to fix some terminology and notation and to discuss
previous results that we will need in future sections.

2.1. Transpositions and walks

For any set S and elements s, s′ ∈ S, we write (s s′) for the transposition—
which we view as a bijection from S to itself—that swaps s and s′ and fixes all
elements of S \ {s, s′}. This is useful for notating friendly swaps in the friends-
and-strangers graph FS(X,Y ). Indeed, suppose σ is a vertex in FS(X,Y ) and
{x, x′} ∈ E(X). Let y = σ(x) and y′ = σ(x′). If {y, y′} ∈ E(Y ), then we can
perform an (X,Y )-friendly swap across the edge {x, x′} in order to obtain a new
permutation σ′ = σ ◦ (x x′) = (y y′) ◦ σ.

A walk in a graph G is a sequence of vertices such that any two consecutive
vertices in the sequence are adjacent in G. Equivalently, we can think of a walk as
a starting vertex together with a sequence of edges such that any two consecutive
edges share a vertex. Each edge e in the friends-and-strangers graph FS(X,Y )
corresponds to an (X,Y )-friendly swap. It is convenient to label such an edge
with the pair of people (i.e., vertices of Y ) who performed the swap. More
precisely, if e = {σ, σ′}, then we define the edge label ψ(e) to be the unique pair
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{y, y′} such that σ′ = (y y′) ◦ σ. For ease of notation, we will often omit the set
braces and write yy′ (or equivalently, y′y) for this edge label {y, y′}. Note that
we can specify a walk in FS(X,Y ) by saying its starting vertex together with it
label sequence, which is just the sequence of edge labels of the edges used in the
walk.

2.2. Bipartite graphs

The following proposition from [5] tells us that the friends-and-strangers graph
of two bipartite graphs is disconnected.

Proposition 11 [5]. Suppose X and Y are bipartite graphs with V (X) =
V (Y ) = [n]. Let {AX , BX} be a bipartition of X, and let {AY , BY } be a bi-
partition of Y . For σ ∈ V (FS(X,Y )), define p(σ) ∈ {0, 1} by

p(σ) = |σ(AX) ∩AY |+
sgn(σ) + 1

2
(mod 2),

where sgn(σ) is the sign of σ, viewed as a permutation in the symmetric group Sn.
If τ, τ ′ ∈ V (FS(X,Y )) are such that p(τ) 6= p(τ ′), then τ and τ ′ are in different
connected components of FS(X,Y ).

2.3. Wilson’s theorem

Given a graph G and a vertex v ∈ V (G), we write G \ v for the graph obtained
from G by deleting v (and all edges incident to v). We say v is a cut vertex of
G if G is connected and G \ v is disconnected. We say G is biconnected if it
is connected and has no cut vertices. Wilson noted that if n ≥ 3 and Y is an
n-vertex graph that is not biconnected, then FS(Starn, Y ) is disconnected. Thus,
he focused his attention on friends-and-strangers graphs of stars and biconnected
graphs. The statement of his main theorem involves the exceptional graph

θ0 = .

Theorem 12 [12]. Let Y be a biconnected graph on n ≥ 3 vertices that is not
isomorphic to θ0 or Cyclen. If Y is not bipartite, then FS(Starn, Y ) is connected.
If Y is bipartite, then FS(Starn, Y ) has exactly 2 connected components, each with
n!/2 vertices. The graph FS(Star7, θ0) has exactly 6 connected components.

Remark 13. It is straightforward to describe the connected components of
FS(Starn,Cyclen). For each vertex σ of FS(Starn,Cyclen), we can read off the
leaves of Starn in the clockwise order that their images under σ appear around
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Cyclen. This defines a cyclic ordering of the set of leaves of Starn. It is straight-
forward to see that two permutations are in the same connected component of
FS(Starn,Cyclen) if and only if they induce the same cyclic ordering of the leaves
of Starn.

3. General Theorems on Spiders

Our goal in this section is to prove Theorems 1, 2, and 3, which together imply
Corollary 4. We begin with Theorem 2 since its proof does not require any further
preliminary results.

Proof of Theorem 2. Suppose n ≥ 2k−1, and let Y be an n-vertex graph such
that every k-vertex induced subgraph of Y is connected. We will use induction on
` to show that for each ` ∈ {3, . . . , k}, there exists a biconnected `-vertex induced
subgraph Y (`) of Y that contains a triangle. The proof will then follow by setting
Y0 = Y (k). Indeed, if ` = 3, then FS(Star3, Y0) = FS(Star3,K3) is connected, and
if ` ≥ 4, then Theorem 12 guarantees that FS(Stark, Y0) is connected (since Y (k)

is biconnected, not bipartite, not a cycle, and not θ0).

Because every k-vertex induced subgraph of Y is connected, we see that every
vertex in Y has degree at least n− k + 1. The number of edges in Y is half the
sum of the degrees of the vertices in Y , which is at least n(n− k + 1)/2 > n2/4.
Therefore, it follows from Turán’s theorem that Y contains a triangle Y (3). This
completes the base case of our induction.

Now suppose ` ∈ {4, . . . , k}, and assume inductively that there exists a bi-
connected (`− 1)-vertex induced subgraph Y (`−1) of Y that contains a triangle.
We claim that the number of edges between vertices in V (Y (`−1)) and vertices
in V (Y ) \ V (Y (`−1)) is at least n− `+ 2. Since |V (Y ) \ V (Y (`−1))| = n− `+ 1,
it will then follow from the pigeonhole principle that there exists a vertex v ∈
V (Y ) \ V (Y (`−1)) that has at least two neighbors in Y (`−1). We can then simply
set Y (`) to be the induced subgraph of Y whose vertex set is V (Y (`−1)) ∪ {v}; it
is easy to see that this induced subgraph is biconnected and contains a triangle
(the same triangle as in Y (`−1)).

To prove that claim, we use the fact, which we mentioned before, that each
vertex in Y has degree at least n − k + 1. Since Y (`−1) has ` − 1 vertices, this
implies that each vertex in Y (`−1) has at least n− k+ 1− (`− 2) = n− k− `+ 3
neighbors in V (Y )\V (Y (`−1)). It follows that there are at least (`−1)(n−k−`+3)
edges between vertices in V (Y (`−1)) and vertices in V (Y ) \ V (Y (`−1)). Thus, to
prove the claim, we must show that (` − 1)(n − k − ` + 3) ≥ n − ` + 2. This
inequality rearranges to p(`) ≥ 0, where p(x) = −x2 + (n−k+ 5)x− (2n−k+ 5).
We will show that p(3) ≥ 0 and p(k) ≥ 0; since p(x) is a quadratic polynomial
and 3 ≤ ` ≤ k, this will imply that p(`) ≥ 0. First, we have p(3) = n−2k+1 ≥ 0
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by hypothesis. On the other hand, p(k) = q(k), where q(x) is the quadratic
polynomial −2x2 + (n + 6)x − (2n + 5). To see that q(k) ≥ 0, we use the fact
that 3 ≤ k ≤ (n + 1)/2 and compute that q(3) = n − 5 ≥ 0 and q((n + 1)/2) =
(n− 5)/2 ≥ 0.

We now move on to proving Theorems 1, and 3, for which we need the
following lemmas.

Lemma 14. Fix an integer n ≥ 3, and let Y be a biconnected graph with n
vertices. Let σ be a vertex of FS(Starn, Y ), and fix x ∈ V (Starn) and y ∈ V (Y ).
There exists a vertex σ′ in the same connected component of FS(Starn, Y ) as σ
such that σ′(x) = y.

Proof. If Y is a cycle, then the desired result follows easily from Remark 13. If
n = 7 and Y is the exceptional graph θ0 shown in Section 2.3, then we can check
by hand that the desired result still holds. Now suppose Y is not a cycle or θ0.
If Y is not bipartite, then Theorem 12 tells us that FS(X,Y ) is connected, so the
desired result is obvious.

Now suppose Y is bipartite. Since Y is biconnected, we must have n ≥ 4.
We may assume V (Starn) = V (Y ) = [n]; let {AY , BY } be a bipartition of Y . We
assume that n is the center of Starn so that {[n−1], {n}} is a bipartiton of Starn.

For each µ ∈ V (FS(Starn, Y )), let p(µ) = |µ([n− 1])∩AY |+ sgn(µ)+1
2 (mod 2), as

in Proposition 11. Choose u, v ∈ [n−1]\{x}. Let τ be a vertex in FS(X,Y ) such
that τ(x) = y, and let τ ′ = τ ◦ (u v). Then τ ′(x) = y. We have p(τ) 6= p(τ ′), so it
follows from Proposition 11 that τ and τ ′ are in different connected components
of FS(Starn, Y ). Theorem 12 tells us that FS(Starn, Y ) has exactly 2 connected
components, so we can take σ′ to be whichever of the vertices τ or τ ′ is in the
same connected component as σ.

Lemma 15. Let X and Y be connected n-vertex graphs such that X has max-
imum degree k ≥ 2. Suppose every induced subgraph of Y with k vertices is
connected. Let σ be a vertex of FS(X,Y ), and fix x ∈ V (X) and y ∈ V (Y ).
There exists a vertex σ′ in the same connected component of FS(X,Y ) as σ such
that σ′(x) = y.

Proof. If T is a spanning tree of X with maximum degree k (it is straightforward
to see that such a spanning tree exists), then FS(T, Y ) is a subgraph of FS(X,Y ).
Therefore, it suffices to prove the lemma when X is a tree; we assume that this
is the case in what follows. Note that the result is trivial if σ(x) = y. Since Y
is connected, it suffices to prove the result when {σ(x), y} is an edge in Y ; we
assume that this is the case in what follows. We proceed by induction on n.

Let c be a vertex of X of degree k, and let N [c] denote the closed neighbor-
hood of c (i.e., the set of vertices that are adjacent to or equal to c). If X is a
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star, then n = k + 1, so the hypothesis that every k-vertex induced subgraph of
Y is connected is equivalent to the fact that Y is biconnected. Thus, the desired
result follows immediately from Lemma 14. Note that this handles the base case
n = 3. In what follows, we may assume X is not a star. In particular, X has a
leaf u 6∈ N [c]. We consider three cases.

Case 1. Suppose X has a leaf u such that u 6∈ N [c], u 6= x, and u 6= σ−1(y).
Let X ′ = X \ u and Y ′ = Y \ σ(u). Let σ|X′ be the restriction of σ to V (X ′).
Since u is a leaf of X and N [c] ⊆ V (X ′), the graph X ′ is a tree with n − 1
vertices and maximum degree k. Furthermore, every k-vertex induced subgraph
of Y ′ is connected. Therefore, it follows by induction that there exists a sequence
of (X ′, Y ′)-friendly swaps that transforms σ|X′ into a vertex µ of FS(X ′, Y ′) such
that µ(x) = y. Let σ′ be the unique vertex in FS(X,Y ) such that σ′(u) = σ(u) and
σ′(v) = µ(v) for all v ∈ V (X ′). Then σ′(x) = y. The sequence of (X ′, Y ′)-friendly
swaps transforming σ|X′ into µ can be interpreted as a sequence of (X,Y )-friendly
swaps that transforms σ into σ′. Thus, σ′ is in the same connected component
of FS(X,Y ) as σ.

Case 2. Suppose that x is a leaf of X and x 6∈ N [c]. Let x′ be the neighbor
of x in X. Let X ′ = X \ x and Y ′ = Y \ σ(x). Let σ|X′ be the restriction of σ
to V (X ′). The graph X ′ is a tree with n − 1 vertices and maximum degree k,
and every k-vertex induced subgraph of Y ′ is connected. It follows by induction
(and the assumption σ(x) 6= y) that there exists a sequence of (X ′, Y ′)-friendly
swaps that transforms σ|X′ into a vertex µ of FS(X ′, Y ′) such that µ(x′) = y.
Let τ be the unique vertex in FS(X,Y ) such that τ(x) = σ(x) and τ(v) = µ(v)
for all v ∈ V (X ′). In particular, τ(x′) = y. The sequence of (X ′, Y ′)-friendly
swaps transforming σ|X′ into µ can be interpreted as a sequence of (X,Y )-friendly
swaps that transforms σ into τ . Thus, τ is in the same connected component of
FS(X,Y ) as σ. Now let σ′ = τ ◦ (x x′). Since {x, x′} ∈ E(X) and {τ(x), τ(x′)} =
{σ(x), y} ∈ E(Y ), the vertices τ and σ′ are adjacent in FS(X,Y ). Then σ′ is in
the same connected component as σ and satisfies σ′(x) = y.

Case 3. Suppose that there is a leaf u of X such that u 6∈ N [c] and σ(u) = y.
We have assumed that σ(x) 6= y, so u 6= x. Let y′ be a neighbor of y in Y . Since
{σ(u), y′} is an edge in Y , we can repeat the argument in Case 2 with x replaced
by u and y replaced by y′; this allows us to deduce that there is a vertex σ̃ of
FS(X,Y ) in the same connected component as σ such that σ̃(u) = y′. But now
observe that u is a leaf of X such that u 6∈ N [c], u 6= x, and u 6= σ−1(y); this
means that we can repeat the argument from Case 1 with σ replaced by σ̃ to see
that there is a vertex σ′ in the same connected component of FS(X,Y ) as σ̃ such
that σ′(x) = y. But then σ′ is also in the same connected component of FS(X,Y )
as σ.

We can now complete the proofs of Theorems 1 and 3.
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Proof of Theorem 1. Let n, k,X, Y, Y0 be as in the statement of the theorem;
we want to prove that FS(X,Y ) is connected. If T is a spanning tree of X, then
FS(T, Y ) is a subgraph of FS(X,Y ). Therefore, we may assume in what follows
that X is a tree. We may also assume that n ≥ 4 since the case when n = 3 can
be checked by hand.

First, suppose n = k + 1. In this case, X is isomorphic to Starn. The
hypothesis that every k-vertex induced subgraph of Y is connected is equivalent
to the fact that Y is biconnected. Since FS(Stark, Y0) is connected, it follows from
the discussion in Section 2.3 that the graph Y cannot be a cycle or the exception
graph θ0; indeed, if it were, then Y0 would either not be biconnected or would be
a cycle. By Theorem 12 (or Proposition 11), the hypothesis that FS(Stark, Y0)
is connected guarantees that Y0 is not bipartite, which implies that Y is not
bipartite. Hence, it follows from Theorem 12 that FS(Starn, Y ) is connected, as
desired.

We may now assume n ≥ k + 2 and proceed by induction on n. Let c be
a vertex of X of degree k, and let N [c] be the closed neighborhood of c. There
must be a leaf x of X such that x 6∈ N [c]. Fix some vertex y ∈ V (Y ) \ {Y0}. Fix
a vertex τ of FS(X,Y ) such that τ(x) = y. Choose some vertex σ of FS(X,Y ).
We will show that σ is in the same connected component as τ ; as σ was arbitrary,
this will prove that FS(X,Y ) is connected.

According to Lemma 15, there is a vertex σ′ in the same connected component
of FS(X,Y ) as σ such that σ′(x) = y. Let X ′ = X \ x and Y ′ = Y \ y. Let σ′|X′

and τ |X′ be the restrictions of σ′ and τ , respectively, to V (X ′). Note that X ′ is
a tree with n − 1 vertices and maximum degree k. Furthermore, every k-vertex
induced subgraph of Y ′ is connected, and Y ′ contains the induced subgraph Y0
such that FS(Stark, Y ) is connected. Thus, we can use induction to see that
FS(X ′, Y ′) is connected. This means that there is a sequence of (X ′, Y ′)-friendly
swaps that transforms σ′|X′ into τ |X′ . This sequence of (X ′, Y ′)-friendly swaps
can be interpreted as a sequence of (X,Y )-friendly swaps that transforms σ′ into
τ . This shows that σ′ is in the same connected component of FS(X,Y ) as τ , so
σ is also in the same connected component as τ .

Proof of Theorem 3. Let λ1 ≥ · · · ≥ λk be as in the statement of the theorem,
and let X = Spider(λ1, . . . , λk). Let z be the leaf of X on the leg of length λ1.
Let us define a partial order � on V (X) by declaring that x � x′ if the unique
path from z to x′ contains x.

By hypothesis, there is a disconnected induced subgraph Y0 of Y with n−λ1
vertices. There exist nonempty subsets A,B ⊆ V (Y0) such that A ∪ B = V (Y0)
and A ∩ B = ∅ and such that no vertex in A is adjacent in Y to any vertex in
B. Let us say a vertex σ ∈ FS(X,Y ) is special if there exists a0 ∈ A such that
σ−1(a0) � σ−1(b) for all b ∈ B. The graph FS(X,Y ) has at least one special
vertex and at least one non-special vertex. Therefore, in order to prove that
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FS(X,Y ) is disconnected, it suffices to show that every connected component of
FS(X,Y ) consists entirely of special vertices or entirely of non-special vertices.

Suppose instead that there is a connected component of FS(X,Y ) that con-
tains both special and non-special vertices. Then this connected component
must have a special vertex σ that is adjacent to a non-special vertex τ . Let
{u, v} ∈ E(Y ) be the edge label of the edge {σ, τ} ∈ E(FS(X,Y )); that is,
τ = σ ◦ (u v). Then {σ−1(u), σ−1(v)} ∈ E(X). Because σ is special, there exists
a0 ∈ A such that σ−1(a0) � σ−1(b) for all b ∈ B. Using the definition of the
partial order � and the fact that X is a spider, it is now straightforward to see
that a0 ∈ {u, v}; without loss of generality, we may assume a0 = u. Note that
τ−1(v) = σ−1(a0) � σ−1(b) = τ−1(b) for all b ∈ B; if v were in A, then this
would contradict the fact that τ is not special. This shows that v 6∈ A, and we
also know that v 6∈ B since {u, v} ∈ E(Y ) and no vertex in A is adjacent to any
vertex in B. Thus, v ∈ V (Y ) \ (A ∪B).

Let L be the set of vertices in X that are in the leg of length λ1 containing
z. Thus, |L| = λ1. Because σ is special and τ is not, there exists b0 ∈ B such
that σ−1(a0) � σ−1(b0) while τ−1(a0) 6� τ−1(b0). This forces σ−1(a0) to be
the center of the spider X, and it also forces σ−1(v) to be in V (X) \ L. Since
σ−1(a0) � σ−1(b) for all b ∈ B, we must have τ−1(B) = σ−1(B) ⊆ V (X) \ L. If
there were a vertex a1 ∈ τ−1(A)∩L, then we would have τ−1(a1) � τ−1(b) for all
b ∈ B, contradicting the fact that τ is not special. Hence, τ−1(A) ⊆ V (X) \ L.
We also know that τ−1(v) = σ−1(a0) is the center of X, so τ−1(v) ∈ V (X) \ L.
Thus, τ−1(A)∪ τ−1(B)∪ {τ−1(v)} is a set of size n− λ1 + 1 that is contained in
V (X) \ L. This is a contradiction because |V (X) \ L| = n− λ1.

4. Spiders, Cycles, and Fruits

The goal of this section is to prove Theorems 5, 6, and 7. The main tool for
proving these theorems is the following lemma, which will allow us to build con-
nected friends-and-strangers graphs from smaller ones. A family Y of (isomor-
phism classes of) graphs is called hereditary if it is closed under taking induced
subgraphs (i.e., every induced subgraph of a graph in Y is also in Y).

Lemma 16. Let Y be a hereditary family of connected graphs. Let X be a graph
with n vertices such that FS(X,Y ) is connected for every n-vertex graph Y ∈ Y.
Let x ∈ V (X), and let X ′ be the graph obtained from X by adding a new vertex
x′ together with the edge {x, x′}. Then FS(X ′, Y ′) is connected for every (n+ 1)-
vertex graph Y ′ ∈ Y.

Proof. We will prove that if σ, σ′ : V (X ′)→ V (Y ′) are two vertices of FS(X ′, Y ′)
such that σ(x′) and σ′(x′) are adjacent in Y ′, then σ and σ′ are in the same
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connected component of FS(X ′, Y ′). Since Y ′ is connected, this will imply that
any two vertices in FS(X ′, Y ′) is connected.

Let y = σ(x′) and y′ = σ′(x′), and suppose {y, y′} ∈ E(Y ′). Let Fy be
the subgraph of FS(X ′, Y ′) induced by the set of vertices τ satisfying τ(x′) = y.
Similarly, define Fy′ to be the subgraph of FS(X ′, Y ′) induced by the set of
vertices τ ′ satisfying τ ′(x′) = y′. Let Yy and Yy′ be the induced subgraphs of
Y ′ on the vertex sets V (Y ′) \ {y} and V (Y ′) \ {y′}, respectively. It is clear that
Fy and Fy′ are isomorphic to FS(X,Yy) and FS(X,Yy′), respectively. Since Y is
hereditary, we know that Yy and Yy′ are both in Y. Therefore, our hypothesis on
X guarantees that both Fy and Fy′ are connected graphs.

Let µ be any vertex in FS(X ′, Y ′) satisfying µ(x) = y′ and µ(x′) = y, and let
µ′ be the vertex µ ◦ (x x′). Note that µ′(x′) = y′ and that µ and µ′ are adjacent
in FS(X,Y ). We have µ ∈ Fy and µ′ ∈ Fy′ , so there are paths in FS(X ′, Y ′)
from σ to µ and from σ′ to µ′. Therefore, σ and σ′ are in the same connected
component of FS(X ′, Y ′), as desired.

Corollary 17. Let X be a graph with n ≥ 5 vertices such that FS(X,Cyclen) is
connected. Let x ∈ V (X), and let X ′ be the graph obtained from X by adding a
new vertex x′ together with the edge {x, x′}. Then FS(X ′,Cyclen+1) is connected.

Proof. Let Y be the smallest hereditary family of graphs that contains CycleN
for all N ≥ 5. In other words, Y is the collection of graphs that can be realized
as induced subgraphs of complements of cycles. It is straightforward to verify
that a graph is in Y if and only if its complement is a cycle or a disjoint union of
paths. It follows that if Y is an n-vertex graph in Y, then Cyclen is a subgraph
of Y . This shows that FS(X,Y ) is connected for every n-vertex graph Y in Y, so
it follows from Lemma 16 that FS(X ′, Y ′) is connected for every (n + 1)-vertex
graph Y ′ in Y. In particular, FS(X ′,Cyclen+1) is connected.

Corollary 18. Let X be a graph with n ≥ 5 vertices such that FS(X,Cyclen)

and FS(X,Cycle⊥n ) are both connected. Let x ∈ V (X), and let X ′ be the graph
obtained from X by adding a new vertex x′ together with the edge {x, x′}. Then

FS(X ′,Cycle⊥n+1) is connected.

Proof. Let Y be the smallest hereditary family of graphs that contains Cycle⊥N for
every N ≥ 5. In other words, Y is the collection of graphs that can be realized as
induced subgraphs of complements of fruit graphs. It is straightforward to verify

that every n-vertex graph in Y contains either Cyclen or Cycle⊥n as a subgraph.
This shows that FS(X,Y ) is connected for every n-vertex graph Y in Y, so it
follows from Lemma 16 that FS(X ′, Y ′) is connected for every (n + 1)-vertex

graph Y ′ in Y. In particular, FS(X ′,Cycle⊥n+1) is connected.
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Corollary 19. Let X be a graph with n ≥ 4 vertices such that FS(X,Y ) is
connected for all n-vertex graphs Y with minimum degree at least n − 3. Let
x ∈ V (X), and let X ′ be the graph obtained from X by adding a new vertex x′

together with the edge {x, x′}. If Y ′ is a graph with n+ 1 vertices and minimum
degree at least n− 2, then FS(X ′, Y ′) is connected.

Proof. This follows immediately from Lemma 16 by setting Y to be the collection
of graphs whose complements have maximum degree at most 2.

We can now proceed to the proofs of the main theorems of this section.

Proof of Theorem 5. Choose λ1 ≥ · · · ≥ λk ≥ 1 with k ≥ 3 and λ1 · · ·+ λk +
1 = n. We can easily check using a computer that FS(Spider(λ1, . . . , λk),Cyclen) is
disconnected if (λ1, . . . , λk) is one of the seven partitions listed in the statement
of the theorem. Now suppose (λ1, . . . , λk) = (λ1, 1, 1). We know by [5, The-
orem 6.5] that FS(Spider(λ1, 1, 1), Y ) is connected if and only if the minimum
degree of Y is at least n − 2; since the minimum degree of Cyclen is n − 3,
FS(Spider(λ1, 1, 1),Cyclen) is disconnected.

Now assume (λ1, . . . , λk) is not of the form (λ1, 1, 1) and is not one of the
seven partitions listed in the statement of Theorem 5. It is straightforward to
check that these assumptions guarantee that Spider(λ1, . . . , λk) contains an in-
duced subgraph Spider(ρ1, . . . , ρr), where (ρ1, . . . , ρr) is one of the following par-
titions:

(1, 1, 1, 1, 1), (2, 1, 1, 1), (6, 2, 1), (4, 3, 1), (3, 2, 2).

Let n′ = ρ1 + · · ·+ ρr + 1. We can verify by computer that

FS(Spider(ρ1, . . . , ρr),Cyclen′)

is connected. Now, Spider(λ1, . . . , λk) can be obtained from Spider(ρ1, . . . , ρr) by
a sequence of operations, where each operation adds a new vertex to the graph
and adds a new edge that has the new vertex as one of its endpoints. Therefore,
it follows from Corollary 17 that FS(Spider(λ1, . . . , λk),Cyclen) is connected.

Proof of Theorem 6. We can use a computer to check that

FS(Spider(1, 1, 1, 1, 1),Cycle⊥6 ),

FS(Spider(2, 2, 1, 1),Cycle⊥7 ),

FS(Spider(2, 2, 3),Cycle⊥8 )

are connected. It now follows easily from Corollary 18 that the graph

FS(Spider(λ1, . . . , λk),Cycle
⊥
n )
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is connected whenever k ≥ 5 or k = 4 and λ2 ≥ 2 or k = 3 and λ1 ≥ 3 and
λ3 ≥ 2.

With a computer, we can also verify that FS(Spider(2, 2, 2),Cycle⊥7 ) has 12
connected components. Thus, to prove the reverse direction, we must show that

FS(Spider(λ1, . . . , λk),Cycle
⊥
n ) is disconnected if k = 3 and λ3 = 1 or if k = 4

and λ2 = 1. Since V (Cycle⊥n ) = V (Cycle⊥n ), we can consider the identity bijection

id: V (Cycle⊥n ) → V (Cycle⊥n ); it is straightforward to see that this bijection is an

isolated vertex in FS(Cycle⊥n ,Cycle
⊥
n ). Hence, FS(Cycle⊥n ,Cycle

⊥
n ) is disconnected.

It is also straightforward to see that Spider(λ1, λ2, 1) is a subgraph of Cycle⊥n , so
this resolves the case where k = 3 and λ3 = 1. Now suppose k = 4 and λ2 = 1.
Then Spider(λ1, 1, 1, 1) is the dandelion Dand4,n, and n − λ1 = 4. Since Cycle⊥n
clearly contains a disconnected induced subgraph with 4 vertices, it follows from
Theorem 3 that FS(Spider(λ1, 1, 1, 1),Cycle⊥n ) is disconnected.

Proof of Theorem 7. Let G be one of the six graphs listed in the statement
of Theorem 7, and let X be a connected graph that contains G as a subgraph.
Let n and n′ be the number of vertices of X and G, respectively. We can check
by computer that FS(G,H) is connected for every graph H with n′ vertices and
minimum degree at least n′ − 3. Because X is connected, it is possible to obtain
an n-vertex subgraph X̃ of X by sequence of operations, where each operation
adds a new vertex to the graph and adds a new edge that has the new vertex as
one of its endpoints. It follows from Corollary 19 that if Y is an n-vertex graph
with minimum degree at least n − 3, then FS(X̃, Y ) is connected. Since X̃ is a
subgraph of X with the same vertex set as X, the friends-and-strangers graph
FS(X,Y ) must also be connected for every such Y .

5. Coxeter Moves and the Cycle Space

Recall from Section 1 that the cycle space of a graph G is the vector space over F2

whose elements are the even-degree edge-subgraphs of G and whose addition is
the symmetric difference operation 4. This vector space is spanned by the cycles
of G. The goal of this section is to prove Theorem 8, which provides smaller
generating sets for the cycle spaces of graphs of the form FS(Cyclen, Y ) when Y
has domination number at least 3.

We provide a framework to study paths in FS(Cyclen, Y ) that is inspired by
Coxeter moves in the affine symmetric group. Under this framework, we also
prove some results that apply when Y has domination number 2.

Recall the definitions of walks, edge labels, and label sequences from Section 2.
We are going to describe certain moves that one can perform on a walk W to
obtain a new walk with the same starting and ending vertices. The reader familiar
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with the theory of Coxeter groups should recognize these operations as essentially
Coxeter moves in the affine symmetric group, whose Coxeter graph is Cyclen
(though we will not need this formalism). If there are two consecutive identical
edges in W , then we can simply delete them; we call this operation a square
deletion (because it corresponds to the fact that the square of a simple reflection
in the affine symmetric group is the identity). The opposite of a square deletion
is a square insertion, which consists of inserting two consecutive identical edges
into the walk so that the resulting sequence of edges is a walk. If there are two
consecutive edges in W that do not share a vertex, then we can simply swap those
two edges; we call this operation a commutation move. Finally, if W contains
three consecutive edge labels of the form ab, ac, bc, then we can replace them
with the edges bc, ac, ab; we call this operation a Yang–Baxter move. Collectively,
we refer to square deletions, square insertions, commutation moves, and Yang–
Baxter moves as Coxeter moves.

One should think of a commutation move as replacing two edges in a 4-cycle
in FS(Cyclen, Y ) with the other two edges in the same 4-cycle. Similarly, one
should think of a Yang–Baxter move as replacing three edges in a 6-cycle in
FS(Cyclen, Y ) with the other three edges in the same 6-cycle.

We will often specify a walk in FS(Cyclen, Y ) by listing its label sequence.
It is helpful to note that a Yang–Baxter move acts on the label sequence of a
walk by simply reversing the order of three consecutive edge labels of the form
ab, ac, bc.

We define an anchored walk to be a walk in FS(Cyclen, Y ) whose label se-
quence is of the form a1b1, a2b2, . . . , akbk, a1b1; the first and last edge labels in
this walk (which are identical) are called the anchors. We say that such an an-
chored walk is repetition-free if the labels a1b1, a2b2, . . . , akbk are distinct. An
anchored walk is trivial if its label sequence has only two (necessarily identical)
labels. We can perform Coxeter moves on anchored walks in the same way that
we performed them on ordinary walks; however, for anchored walks, we preserve
the anchors and thus possibly shorten the walk. For example, suppose an an-
chored walk starts at a vertex σ and uses edges with labels ab, ac, bc, ab. The
anchors are the first and last labels ab. We can perform a Yang–Baxter move on
the first three edge labels to transform this walk into bc, ac, ab, ab. However, as
an anchored walk, we would cut out the edge labels that are no longer between
the two ab anchors. Thus, the new anchored walk would have label sequence
ab, ab, so it would be trivial.

Let us say an anchored walk in FS(Cyclen, Y ) is complete if its label sequence
is of the form ab, au1, . . . auk, buk+1, . . . , bun−2, ab, where {a, b, u1, . . . , un−2} =
[n] = V (Cyclen). Note that the existence of such a complete walk forces {a, b} to
be a dominating set of Y . We say an anchored walks W reduces to an anchored
walk W ′ if there is a sequence of Coxeter moves that transforms the label sequence
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of W into that of W ′ such that the number of square insertions that insert two
copies of the label xy is at most the number of square deletions that delete two
copies of the label xy.

Theorem 20. Let Y be an n-vertex graph with domination number at least 2,
and let W be a repetition-free anchored walk in FS(Cyclen, Y ) with anchors ab. If
there exists a vertex z ∈ V (Y ) such that the label sequence of W either contains
both az and bz or contains neither az nor bz, then W reduces to a trivial anchored
walk. Otherwise, W reduces to a complete anchored walk.

In order to prove Theorem 20, it will be convenient to consider some partic-
ular subsequences of an anchored walk. Let Y be a graph with vertex set [n].
Suppose W is a repetition-free anchored walk in FS(Cyclen, Y ) whose anchors are
the label ab, where a < b. We define the strong essential prefix of W to be the
longest initial subsequence of the label sequence of W of the form

ab, ax1, . . . , axk, by1, . . . , by`

such that a, b, x1, . . . , xk, y1, . . . , y` are all distinct. The strong essential suffix of
W is the part of the label sequence of W not in the strong essential prefix. Simi-
larly, we define the weak essential prefix of W to be the longest initial subsequence
of the label sequence of W of the form ab, ax1, . . . , axk, by1, . . . , by`, c1d1, . . . , crdr
such that a, b, x1, , . . . , xk, y1, . . . , y` are all distinct and c1, . . . , cr, d1, . . . , dr ∈
{x1, . . . , xk, y1, . . . , y`}. The weak essential suffix is the part of the label sequence
of W not in the weak essential prefix. Note that the strong essential prefix is a
subsequence of the weak essential prefix and that the weak essential suffix is a
subsequence of the strong essential suffix.

Lemma 21. Let Y be a graph with vertex set [n]. Let W be a repetition-free
anchored walk in FS(Cyclen, Y ) with anchors ab, where a < b. If there exists
z ∈ V (Y ) \ {a, b} such that neither az nor bz appear in the label sequence of W ,
then W reduces to a trivial anchored walk.

Proof. We proceed by induction on the length of W . By definition, W is a
sequence σ0, . . . , σp of vertices in FS(Cyclen, Y ). One should think of each vertex
σi as an arrangement of the vertices of Y on the vertices of Cyclen. In the starting
vertex σ0, the vertices a and b are sitting on adjacent vertices of Cyclen, and they
swap places when we move to σ1. At the end of the walk, we reach σp from σp−1
by swapping a and b again. We have assumed that the label sequence does not
contain az or bz. This readily implies that if the label sequence of W contains a
label of the form ax with x 6= b, then it must also contain bx. Similarly, if the
label sequence contains a label by such that y 6= a, then it also contains ay. This
shows that it suffices to prove that W reduces to an anchored walk whose label
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sequence does not contain az or bz and whose strong essential suffix is just the
single label ab since such an anchored walk must be trivial. Let m be the length
of the strong essential suffix of W ; we may assume m ≥ 2 since otherwise we are
done. By induction on m, it suffices to show that W reduces to an anchored walk
W ′ whose label sequence does not contain az or bz and whose strong essential
suffix has length at most m− 1.

Let ab, ax1, . . . , axk, by1, . . . , by` be the strong essential prefix of W . Let uv
be the first label in the strong essential suffix of W . In other words, u and v are
the two vertices of Y that take part in the friendly swap used to get from σk+`+1

to σk+`+2. We know that uv 6= ab because m ≥ 2. Let Q be the part of the
strong essential suffix of W that comes after the label uv. We now consider three
cases.

Case 1. Suppose {u, v} ∩ {a, b, x1, . . . , xk, y1, . . . , y`} = ∅. In this case, we
can repeatedly apply commutation moves so that each move swaps the label uv
with the label to its left. After we perform k + ` + 1 such moves, the label uv
will leave the anchored walk, resulting in a new anchored walk W ′ whose strong
essential suffix is contained in Q.

Case 2. Suppose {u, v} ∩ {x1, . . . , xk, y1, . . . , y`} = ∅ and {u, v} ∩ {a, b} 6= ∅.
We will assume u = a since the other case is similar. We can perform commuta-
tion moves to transform the label sequence of W into ab, ax1, . . . , axk, uv, by1, . . . ,
by`, Q; this is the label sequence of the desired anchored walk W ′ (note that its
strong essential suffix has length at most m−1 because its strong essential prefix
contains ab, ax1, . . . , axk, uv, by1, . . . , by`).

Case 3. Suppose {u, v} ∩ {x1, . . . , xk, y1, . . . , y`} 6= ∅. We will assume that
{u, v} ∩ {y1, . . . , y`} 6= ∅; the case when {u, v} ∩ {x1, . . . , xk} 6= ∅ is similar. Let
t be the largest index such that yt ∈ {u, v}. Without loss of generality, we may
assume yt = v. The fact that W is repetition-free implies that u 6= b. Also, the
maximality of t guarantees that u 6= yt+1 (when t < `). Since σk+`+2 is obtained
from σk+`+1 by performing a friendly swap involving the vertices u and v = yt,
we know that σ−1k+`+1(u) must be one of the two vertices of Cyclen adjacent to

σ−1k+`+1(yt). One of these vertices is either σ−1k+`+1(b) (if t = `) or σ−1k+`+1(yt+1) (if

t < `); since u is not b or tt+1, it follows that σ−1k+`+1(u) is the other of these two
vertices.

Suppose first that t ≥ 2. Then u = yt−1. We can perform a sequence of
commutation moves in order to move the label uv to the left until it is immediately
to the right of byt. We can then perform a Yang–Baxter move to transform
the subsequence byt−1, byt, uv into uv, byt, byt−1. Finally, since the sets {u, v}
and {a, b, x1, . . . , xk, y1, . . . , yt−2} are disjoint, we can apply further commutation
moves in order to move uv to the left until it leaves the anchored walk. This
results in the desired anchored walk W ′.
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Next, suppose t = 1 and k = 0. Then u = a. We can use commuta-
tion moves to transform the label sequence of W into ab, by1, uv, by2, . . . , by`, Q.
Since uv = ay1, we can use a Yang–Baxter move to turn this sequence into
uv, by1, ab, by2, . . . , by`, Q. The label sequence of the new anchored walk W ′ does
not include the labels uv and by1, so its strong essential suffix has length at most
m− 1. Furthermore, the label sequence of W ′ does not contain az or bz.

Finally, suppose t = 1 and k ≥ 1. Then u = x1, so uv = x1y1. Let Q′ be
the sequence ax2, . . . , axk, by2, . . . , by`, Q. Because ax1 is in the label sequence of
W , it follows from the first paragraph of this proof that bx1 appears in Q; hence,
b and x1 must be adjacent in Y . Furthermore, we know σ−12 (b) is adjacent to
σ−12 (x1). Then we can use a square insertion to change ab, ax1, by1, x1y1, Q

′ into
ab, ax1, bx1, bx1, by1, x1y1, Q

′. Applying Yang–Baxter moves to the subsequences
ab, ax1, bx1 and bx1, by1, x1y1 yields bx1, ax1, ab, x1y1, by1, bx1, Q

′. Another com-
mutation move then yields bx1, ax1, x1y1, ab, by1, bx1, Q

′. This shows that we can
apply Coxeter moves to transform W into an anchored walk whose label sequence
is ab, by1, bx1, ax2, . . . , axk, by2, . . . , by`, Q. Performing additional commutation
moves yields an anchored walk W0 whose label sequence is

ab, ax2, . . . , axk, by1, bx1, by2, . . . , by`, Q.

Now, to meet the definition of what it means for an anchored walk to reduce to
another, we must show that we can perform additional Coxeter moves to delete
a pair of labels bx1. As mentioned before, the label bx1 must appear in Q. Let
W1 be the anchored walk whose label sequence is the subsequence of W0 starting
and ending at the labels bx1. Note that since W1 does not use the labels az or
bz, it cannot contain the label x1z. Because W1 is repetition-free and does not
use the labels x1z or bz, we can apply induction on the length of the anchored
walk to find that W1 reduces to a trivial anchored walk. This means that we
can perform a sequence of Coxeter moves to the label sequence of W0 in order
to move the two occurrences of the label bx1 next to each other. We can then
perform a square deletion to remove the two occurrences of bx1. Let W2 be the
resulting anchored walk with anchors ab (the same as the anchors of W0). When
we reduced W1 to the trivial anchored walk, all labels that we added by square
insertions were later deleted by square deletions (by the definition of reducing).
This implies that W reduces to W2, that W2 is repetition-free, and that W2 does
not use the labels az or bz. Since the length of W2 is strictly less than that of
W , we can use induction to see that W2, and hence also W , reduces to a trivial
anchored walk (whose strong essential suffix has length 1).

Lemma 22. Let W be a repetition-free anchored walk in FS(Cyclen, Y ). Let

ab, ax1, . . . , axk, by1, . . . , by`, c1d1, . . . , crdr
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be the weak essential prefix of W , where

c1, . . . , cr, d1, . . . , dr ∈ {x1, . . . , xk, y1, . . . , y`}.

If k ≥ 1 and the weak essential suffix of W begins with bu for some

u ∈ {x1, . . . , xk},

then W reduces to a trivial anchored walk. Similarly, if ` ≥ 1 and the weak
essential suffix of W begins with au for some u ∈ {y1, . . . , y`}, then W reduces to
a trivial anchored walk.

Proof. We prove only the first statement since the second is similar. Our strategy
is to manipulate W through Coxeter moves and apply Lemma 21. Let W be
the sequence of vertices σ0, . . . , σp. First, we wish to apply Coxeter moves to
move au left until it appears directly after the first anchor. This is already
true if u = x1. If u = xi, where i ≥ 2, then let Q be the subsequence of
the label sequence of W consisting of all labels before axi−1, and let R be the
subsequence consisting of all labels after au. Because W is repetition-free, the
labels ux1, . . . , uxi−1 must all occur in the label sequence between the labels au
and bu. This implies that {u, xj} ∈ E(Y ) for all j ∈ [i − 1]. Thus, to move
the label axi before axi−1, we can use a square insertion to turn the subsequence
axi−1, au into xi−1u, xi−1u, axi−1, au, followed by a Yang–Baxter move on the last
three labels, which changes this into xi−1u, au, axi−1, xi−1u. The first occurrence
of xi−1u is disjoint from all labels in Q, so we remove it from W via commutation
moves. The sequence now begins with Q, au, axi−1, xi−1u. We repeat this process
until au appears directly after ab, obtaining a new anchored walk W ′ with the
label sequence ab, au, ax1, ux1, ax2, ux2, . . . , axi−1, uxi−1, R. Now, we must delete
all edges that we added with square insertions. For j ∈ [i − 1], let Wj be the
anchored walk with the two occurrences of uxj in W ′ as its anchors (the label
uxj occurs exactly once in R for each j). The only repeated labels in W ′ besides
the anchors are uxj for j ∈ [i−1], so there are no repeated labels in Wi−1 besides
the anchors. Furthermore, the labels au and axi−1 are outside of Wi−1. Thus,
by Lemma 21, Wi−1 reduces to a trivial anchored walk, and we can remove its
anchors with a square deletion. Now that the labels uxi−1 have been deleted,
the same argument applies to the anchored walk Wi−2, and so on; in this way,
for each j ∈ [i− 1], we can use a square deletion to remove a pair of edge labels
uxj , uxj . Thus, W reduces to a new anchored walk W ′′ that begins with ab, au
and contains bu.

Having au directly after ab allows us to use another square insertion to change
the subsequence ab, au into bu, bu, ab, au. Applying a Yang–Baxter move trans-
forms this into bu, au, ab, bu. Now, because W ′ initially contained the label bu,
the new anchored walk now contains two instances of bu; we have created an
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anchored walk B within W ′′ with anchors bu. Both au and ab appear outside of
B, so by Lemma 21, B reduces to a trivial anchored walk, and its anchors can
be removed with a square deletion. The labels bu and au do not appear in the
resulting anchored walk. Thus, W ′′ reduces to a trivial anchored walk, so the
initial walk W also reduces to a trivial anchored walk.

Now, we are ready to prove the main theorem.

Proof of Theorem 20. If there is some z such that neither az nor bz appear in
W , then W reduces to a trivial anchored walk by Lemma 21. For all other W , we
use induction show that W reduces to an anchored walk that either satisfies the
hypothesis of Lemma 22 or has only the ending anchor ab as its weak essential
suffix. Let ab, ax1, . . . , axk, by1, . . . , by`, c1d1, . . . , crdr be the weak essential prefix
of W , where c1, . . . , cr, d1, . . . , dr ∈ {x1, . . . , xk, y1, . . . , y`}. Let m be the length
of the weak essential suffix of W . If m = 1, then we are done. If m ≥ 2, we
consider the first label uv of the weak essential suffix. If k ≥ 1 and this label is bu
for some u ∈ {x1, . . . , xk} or ` ≥ 1 and this label is au for some u ∈ {y1, . . . , y`},
then we are done; W reduces to a trivial anchored walk by Lemma 22. Otherwise,
we consider three cases in a similar way as in the proof of Lemma 21.

Case 1. Suppose {u, v} ∩ {a, b, x1, . . . , xk, y1, . . . , y`} = ∅. We can apply
commutation moves to remove uv from the anchored walk in a similar way as in
the proof of Lemma 21.

Case 2. Suppose {u, v} ∩ {x1, . . . , xk, y1, . . . , y`} = ∅ and {u, v} ∩ {a, b} 6= ∅.
We can again handle this case in a similar way as in Lemma 21 by performing
commutation moves to move uv directly after axk.

Case 3. Suppose {u, v} ∩ {x1, . . . , xk, y1, . . . , y`} 6= ∅. Using the same logic
as in the proof of Lemma 21, we see that the only possibilities for uv are ay1 if
k = 0 and ` ≥ 1, bx1 if k ≥ 1 and ` = 0, xtxt−1 for some t ≥ 2, ytyt−1 for some
t ≥ 2, or x1y1. The cases where uv = ay1 or bx1 are both handled by Lemma 22.
By the definition of a weak essential prefix, uv cannot be xtxt−1, ytyt−1, or x1y1.

If, throughout the inductive process, W never satisfies the condition in the
statement of Lemma 22, then the weak essential suffix of W is just the ending
anchor ab. We can then apply commutation moves to move each label cidi so that
they appear after ab. Now, the strong essential suffix of the resulting anchored
walk W ′ is ab, so W ′ must be trivial or complete. Furthermore, we know that for
each x 6∈ {a, b}, either ax or bx (not both) must occur in W ′, which forces W ′ to
be a complete anchored walk.

Now, we can apply Theorem 20 to obtain results for when the domination
number of Y is at least 3. Recall that a geodesic path in a graph G is a path that
has minimum length among all paths with the same endpoints.
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Proposition 23. Let Y be an n-vertex graph with domination number at least 3.
Let W be a geodesic path in FS(Cyclen, Y ). Then no two edges used in W have
the same label.

Proof. Suppose instead that there is a label that appears twice in the label
sequence of W . Then we can find a subsequence of the label sequence of W
that is the label sequence of a repetition-free anchored walk W ′. Let ab be the
anchor label of W ′. Since {a, b} is not a dominating set of Y , there must be
a vertex z of Y that is not adjacent to a or b in Y . Then the labels az and bz
cannot appear in the label sequence of W ′, so it follows from Theorem 20 that W ′

reduces to a trivial anchored walk. Once we perform a sequence of Coxeter moves
to reduce W ′ to a trivial anchored walk, we can delete the two consecutive labels
ab. We can think of performing all of the Coxeter moves on the walk W (which
is not necessarily an anchored walk). These moves transform W into a new walk
with the same endpoints as W that uses fewer edges than W , contradicting the
assumption that W is a geodesic path.

Proposition 24. Suppose Y is an n-vertex graph with domination number at
least 3, and let C be a cycle in FS(Cyclen, Y ). For every edge e in C, there exists
an edge e′ 6= e in C such that ψ(e) = ψ(e′).

Proof. Let e = {τ, τ ′}, and let ψ(e) = {a, b} ∈ E(Y ). Let W be the unique walk
in FS(Cyclen, Y ) that starts at τ , ends at τ ′, and uses each edge in C other than e
exactly once. We want to show that one of the edges in W has edge label {a, b}.
It is convenient to once again view the vertices of Y as people who are walking on
Cyclen. The arrangement τ ′ is obtained from τ by swapping the people a and b,
who are standing on adjacent vertices of Cyclen. Without loss of generality, say
a = τ(1) = τ ′(2) and b = τ(2) = τ ′(1). As we traverse the walk W , we can keep
track of the positions of a and b on the cycle. It is straightforward to see that if
none of the edges in this walk have label {a, b}, then each person in V (Y )\{a, b}
must have swapped with either a or b. However, since {a, b} ∈ E(Y ), this would
imply that {a, b} is a dominating set of Y , contradicting our assumption that Y
has domination number at least 3.

Every friends-and-strangers graph is bipartite since its vertices can be viewed
as permutations in a symmetric group and performing a friendly swap corresponds
to multiplying by a transposition (which changes the sign of the permutation).
This tells us that every cycle C in a friends-and-strangers graph has an even
number of edges, so it makes sense to talk about pairs of opposite edges and
pairs of opposite vertices of C. An isometric cycle of a graph G is a subgraph H
of G that is a cycle and has the property that for all vertices u and v of H, the
distance between u and v in H is the same as the distance between u and v in
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G. The following proposition is an analogue of one that initially appears in [9]
for FS(Pathn, Y ).

Proposition 25. Let Y be an n-vertex graph with domination number at least
3. Let C be an isometric cycle in FS(Cyclen, Y ). Two edges in C have the same
edge label if and only if they are opposite edges of C.

Proof. Let 2m be the number of edges in C. Let e and f be opposite edges in C.
Proposition 24 tells us that there is some edge e′ 6= e in C with the same edge label
as e. Let W1, . . . ,Wm be the paths within C that have m edges and that use the
edge e (note that there are exactly m such paths). Because C is an isometric cycle
of FS(Cyclen, Y ), each path Wi is a geodesic path in FS(Cyclen, Y ). It follows from
Proposition 23 that e′ is not an edge in any of the paths W1, . . . ,Wm. However,
the only edge in C that is not in any of the paths W1, . . . ,Wm is f , so e′ = f .
This shows that e and f have the same edge label and that no other edges in C
have the same edge label as e.

Lemma 26. Let Y be an n-vertex graph with domination number at least 3. Let
C be an cycle of length at least 8 in FS(Cyclen, Y ). Either there are at least
two consecutive edges in C that are contained in a common 4-cycle, or there are
at least three consecutive edges in C that are contained in a common 6-cycle.
Moreover, if Y is triangle-free, then there are at least two consecutive edges in C
that are contained in a common 4-cycle.

Proof. Our proof follows that of [9, Lemma 4.8]. If there are two consecutive
edges in C that have disjoint edge labels, then they must belong to a 4-cycle.
Now assume that the edge labels of any two consecutive edges in C have exactly
one vertex of Y in common. We will show that Y contains a triangle and that
there are at least three consecutive edges in C that are contained in a common
6-cycle.

Let e1, . . . , ek be the edges in C, listed in clockwise order. Let a ∈ V (Y )
be the vertex that appears in the edge labels ψ(e1) and ψ(e2). Because {a} is
not a dominating set of Y , there must be some 1 ≤ i ≤ k such that a 6∈ ψ(ei).
(Indeed, if we imagine the vertices of Y sitting on those of Cyclen, then having
a ∈ ψ(ei) for all 1 ≤ i ≤ k would mean that the vertex a slides all the way
around Cyclen, participating in friendly swaps with all other vertices of Y .) Let r
be the smallest positive integer such that a 6∈ ψ(er). By definition of a, we have
r ≥ 3. Let ψ(er−2) = ab and ψ(er−1) = ac. Let σ be the vertex of FS(Cyclen, Y )
in both the edges er−1 and er. Then the two vertices of Cyclen adjacent to
σ−1(c) are σ−1(a) and σ−1(b). This means that we must have ψ(er) = bc. Thus,
the vertices a, b, c form a triangle in Y . Consider the walk in FS(Cyclen, Y )
that uses the edges er−2, er−1, er. We can perform a Yang–Baxter move on this
walk to obtain a new walk with three different edges e′r−2, e

′
r−1, e

′
r. The edges

er−2, er−1, er, e
′
r, e
′
r−1, e

′
r−2 form a 6-cycle in FS(Cyclen, Y ).
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Finally, we can prove Theorem 8 by piecing together the results in this section
using the same idea as in [9].

Proof of Theorem 8. Suppose Y has domination number at least 3. We will
prove the theorem when Y is not triangle-free; the proof when Y is triangle-free
is completely analogous (we simply invoke the second statement in Lemma 26
instead of the first statement). Let C be a cycle in FS(Cyclen, Y ). We will show
that C can be written as a symmetric difference of 4-cycles and 6-cycles. Since
friends-and-strangers graphs are bipartite, C has an even number of edges, say
2m. If m ∈ {2, 3}, then we are done. Therefore, we may assume m ≥ 4 and
proceed by induction on m. By induction, we just need to show that C can be
written as a symmetric difference of cycles of length strictly smaller than 2m.

It is straightforward to see that a non-isometric cycle in a graph can be
written as a symmetric difference of strictly smaller cycles. Hence, we may assume
C is isometric. Let e1, . . . , e2m be the edges of C, listed in clockwise order. If there
are two consecutive edges of C contained in a common 4-cycle, then let k = 2;
otherwise, let k = 3. According to Lemma 26, there are at least k consecutive
edges in C that belong to a common 2k-cycle; since C is isometric, there must
be exactly k edges in C in this 2k-cycle. Without loss of generality, say these
edges are e1, . . . , ek, and let e′1, . . . , e

′
k be the other edges of the common 2k-cycle

D. Assume that these edges are named so that e1, . . . , ek, e
′
k, . . . , e

′
1 is the cyclic

order that these edges appear around D. Our choice of k guarantees that D
is an isometric cycle of FS(Cyclen, Y ). Therefore, Proposition 25 tells us that
ψ(ei) = ψ(e′k+1−i) for all 1 ≤ i ≤ k. Since C has length at least 8, we can use
Proposition 25 again to see that e′1, . . . , e

′
k are not edges in C. Let C ′ be the cycle

with edges e′1, . . . , e
′
k, ek+1, . . . , e2m. Then C = C ′4D, so it suffices to show that

C ′ can be written as a symmetric difference of cycles of length strictly smaller
than 2m. Since C ′ has 2m edges, we just need to prove that C ′ is not isometric.
However, this follows from Proposition 25 because ψ(e′k) = ψ(e1) = ψ(em+1) and
the edges e′k and em+1 are not opposite edges of C ′.
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