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Abstract

The balanced hypercube is a kind of highly symmetrical network and
possesses many good properties. Generalized connectivity is a new mea-
surement of interconnection networks’ fault tolerance. The internally dis-
joint N -trees are edge-disjoint trees but with intersecting vertex set N . Let
κ(N) be the maximum number of internally disjoint N -trees and the gener-
alized k-connectivity of G be κk(G) = min{κ(N) | N ⊂ V (G) and |N | = k}.
In this paper, we study the n-dimensional balanced hypercube BHn and
demonstrate that κ4(BHn) = 2n− 1 for n ≥ 1.
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1. Introduction

The parallel and distributed system plays a significant role in social networks,
cloud computing, Big Data, and so on. Interconnection network as the topological
structure of parallel and distributed system has obtained widely studied and ap-
plied. An interconnection network (network briefly) is modeled by a graph, where
the processors and communication links are corresponding to vertices and edges,
respectively. The hypercube [16] is one of the best-known networks. Compared
with the hypercube, the balanced hypercube not only keeps many good proper-
ties like the hypercube but also has other better properties than the hypercube,
including the smaller diameter and that each vertex has a paired vertex which
has the same neighborhood [19], so each processor has an alternative processor
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when processes the same adjacent relationship tasks. Balanced hypercube’s other
properties have received extensive research [3, 4, 8, 13–15,17–23].

Connectivity is a traditional way to measure a network’s fault tolerance. The
connectivity of G is κ(G) = min{|N | | N ⊂ V (G) and G−N is disconnected or
trivial}. For N ⊂ V (G), the N -tree means that the tree connects each vertex of
N . The n internally disjoint N -trees Tis mean that Tis are pairwise edge-disjoint
but with intersecting vertex set N , where 1 ≤ i ≤ n. The N -trees are important
in information transportation in terms of parallel routing design for large-scale
networks. The more applications ofN -trees in computer communication networks
are described in [5]. Let κ(N) = max{l | T1, T2, . . . , Tl are internally disjoint N -
trees}. The generalized k-connectivity of G is κk(G) = min{κ(N) | N ⊂ V (G)
and |N | = k} [24]. Note that it is equal to connectivity of G when k is 2
[24]. Generalized connectivity [2] uses internally disjoint trees to connect more
vertices, which is more important in the application of multi-party computation
or communication [17]. So it is a generalization method to determine the fault
tolerance of distributed networks.

It is NP-complete to compute κk(G) [6]. Just a few networks’ general-
ized 4-connectivity were determined, including hypercube [10], hierarchical cu-
bic networks [25], exchanged hypercubes [24], divide-and-swap cube [26], pan-
cake graphs [27], (n, k)-star networks [9], crossed cubes [11], and folded hyper-
cubes [12]. For the n-dimensional balanced hypercube BHn, it was shown that
κ3(BHn) = 2n − 1 when n ≥ 1 [17]. In our paper, κ4(BHn) = 2n − 1 is further
obtained, where n ≥ 1.

This paper includes four sections. The preliminaries and main results are in
the next two sections, respectively, and the conclusion is in last section.

2. Preliminaries

In a graph G = (V (G), E(G)), if (u, v) ∈ E(G) is an edge, then u and v are
each other’s neighbors. The neighborhood of u ∈ V (G) is NG(u) = {v | (u, v) ∈
E(G), v ∈ V (G)} and the degree of u ∈ V (G) is dG(u) = |{(u, v) | v ∈ V (G)}|.
Denote δ(G) as the minimum of all dG(u) for u ∈ V (G). Denote P [x, y] =
〈x0, x1, x2, . . . , xl〉 as a path from x to y, where x0 = x, xl = y, xis (0 ≤ i ≤ l) are
pairwise different, l is the path’s length, and the path is l-path. If xl = x0 and
l ≥ 3, P [x, y] becomes a cycle. For two distinct vertices a and c, the internally
disjoint (a, c)-paths are vertex-disjoint paths except for the two common end
vertices a and c. For a vertex a and a vertex set B such that a /∈ B, the
(a,B)-paths are vertex-disjoint paths connecting a and each vertex of B except
for the only common end vertex a. For two vertex sets A = {a1, a2, . . . , ak} and
B = {b1, b2, . . . , bk}, the paired (A,B)-paths are k vertex-disjoint paths P [ai, bi]s,
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where 1 ≤ i ≤ k. The other terminology and notations not given here can be
found in [1]. The BHn has two methods to define. (Throughout this paper,
among the labels of vertices of BHn, the “±” and “+” are by modulo 4 operation.
We omit “(mod) 4” for simplicity.)

Definition 1 [19]. BHn = (V (BHn), E(BHn)), where V (BHn) = Ve∪Vo, where
Ve = {(v0, v1, . . . , vn−1) | vi ∈ {0, 1, 2, 3} for 1 ≤ i ≤ n − 1, v0 ∈ {0, 2}} and
Vo = {(v0, v1, . . . , vn−1) | vi ∈ {0, 1, 2, 3} for 1 ≤ i ≤ n − 1, v0 ∈ {1, 3}}, and
E(BHn) = E0 ∪ Ei, where E0 = {((v0, v1, . . . vn−1), (v0 ± 1, v1, . . . , vn−1))} and
Ei = {((v0, v1, . . . , vi−1, vi, vi+1, . . . , vn−1), (v0 ± 1, v1, . . . , vi−1, vi + (−1)v0 , vi+1,
. . . , vn−1)) | 1 ≤ i ≤ n− 1}.

BHn is a bipartite graph, and |V (BHn)| = 22n. Let Ve be the set of white
vertices and V0 the set of black vertices. Let E0 be the set of 0-dimensional edges
and Ei the set of i-dimensional edges for 1 ≤ i ≤ n − 1. BH1 is a 4-cycle, two
drawing methods of BH2 are depicted in Figure 1.

Figure 1. Two drawing methods of BH2.

Another method to define BHn is by a recursive definition.

Definition 2 [19]. The recursive definition of BHn is as follows.

(1) BH1 is a 4-cycle 〈0, 1, 2, 3, 0〉.
(2) For n ≥ 2, V (BHn) =

⋃3
i=0 V (BH i

n−1), where BH i
n−1
∼= BHn−1 for i ∈

{0, 1, 2, 3}. Every vertex (v0, v1, . . . , vn−1, i) ∈ V (BH i
n−1) (i ∈ {0, 1, 2, 3}) has

two extra neighbors:

(2.1) (v0 ± 1, v1, . . . , vn−2, i+ 1) ∈ V (BH i+1
n−1) if v0 is even.

(2.2) (v0 ± 1, v1, . . . , vn−2, i− 1) ∈ V (BH i−1
n−1) if v0 is odd.
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The BH i
n−1s (0 ≤ i ≤ 3) are called sub-balanced hypercubes. In BHn, two

vertices with labels (v0−1, v1, . . . , vn−1) and (v0+1, v1, . . . , vn−1) are called paired
vertices. By Definition 2, each vertex of BH i

n−1 (0 ≤ i ≤ 3) has two neighbors

in BH i+1
n−1 or BH i−1

n−1, and these two neighbors are paired vertices. Two edges
e = (r, s) and e′ = (r′, s′) are called paired edges if r and r′ (respectively, s and
s′) are paired vertices. Two cycles 〈r1, r2, . . . , rl〉 and 〈r′1, r′2, . . . , r′l〉 are called
paired cycles if ri and r′i are paired vertices, where 1 ≤ i ≤ l. Imaging two paired
vertices as one vertex, and the four edges between the two paired vertices as one
edge, we have the following graph B̃Hn which is a contraction of BHn.

Definition 3. Let B̃Hn = (V (B̃Hn), E(B̃Hn)) be a contraction of BHn, where

V (B̃Hn) = {V | V = {v, v′}, v and v′ are paired vertices of BHn}, and E(B̃Hn) =

{(U, V ) | U = {u, u′}, V = {v, v′} ∈ V (B̃Hn) such that (u, v), (u, v′), (u′, v), (u′, v′)

∈ E(BHn)}. B̃H1 is an edge, denoted by (e, o). For n ≥ 2, if V ∈ V (B̃Hn)
is a white vertex, it is denoted by (e, v1, v2, . . . , vn−1), otherwise it is denoted
by (o, v1, v2, . . . , vn−1), where e ∈ {0, 2}, o ∈ {1, 3}, and vi ∈ {0, 1, 2, 3} for
1 ≤ i ≤ n− 1.

The graphs of B̃H2 and B̃H3 are shown in Figure 2.

Figure 2. B̃H2 and B̃H3.

Lemma 4 [19]. BHn is 2n-regular and κ(BHn) = 2n, where n ≥ 1.



The Generalized 4-Connectivity of Balanced Hypercubes 1083

Lemma 5 [17]. κ3(BHn) = 2n− 1, where n ≥ 1.

By Definition 3 and Lemma 4, we directly get the following lemma.

Lemma 6. B̃Hn is n-regular, and κ(B̃Hn) = n, where n ≥ 1.

Lemma 7 [19]. BHn is vertex-transitive, where n ≥ 1.

Lemma 8 [28]. BHn is edge-transitive, where n ≥ 1.

Lemma 9 [19]. In BHn, any two paired vertices have the same neighborhood.

Lemma 10 [3]. In BHn, any edge (x, y) is included in 2n− 2 8-cycles Cj
8s such

that Cj
8s are edge-disjoint except (x, y) and

∣∣E(Cj
8) ∩ E(BH i

n−1)
∣∣ = 1, where

1 ≤ j ≤ 2n− 2 and i ∈ {0, 1, 2, 3}.

Since
∣∣NBHi

n−1
(u)
∣∣ = 2n − 2 for u ∈ V (BH i

n−1), where i ∈ {0, 1, 2, 3}, by

Lemmas 7, 8 and 10, we directly get the following lemma.

Lemma 11. In BHn, any vertex u is contained in 2n− 2 8-cycles Cj
8s such that

Cj
8s are edge-disjoint and

∣∣E(Cj
8) ∩ E(BH i

n−1)
∣∣ = 1, where 1 ≤ j ≤ 2n − 2 and

i ∈ {0, 1, 2, 3}.

Lemma 12 [7]. If G includes (a, b) with dG(a) = dG(b) = δ(G), then κk(G) ≤
δ(G)− 1, where 3 ≤ k ≤ |V (G)|.

Lemma 13 [1]. If κ(G) = k, for a, b ∈ V (G), then G includes k internally
disjoint paths between a and b.

Lemma 14 [1]. If κ(G) = k, for a ∈ V (G) and B ⊂ V (G) \ {a} with |B| = k,
then G includes (a,B)-paths.

Lemma 15 [1]. If κ(G) = k, for A ⊂ V (G), B ⊂ V (G) with |A| = |B| = k and
A ∩B = ∅, then G includes paired (A,B)-paths.

3. Main Results

Lemma 16. Let P = {p, p′} and R = {r, r′} be any two vertices of B̃Hn with

(P,R) /∈ E(B̃Hn). Then any path connecting P and R of B̃Hn is corresponding
to two internally disjoint N -trees of BHn, and two paired vertex-disjoint paths
P [p, r] and P [p′, r′], and P [p, r′] and P [p′, r] of BHn, where N = {p, p′, r, r′} and
n ≥ 2.
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Proof. Let 〈P,Q1, Q2, . . . , Ql, R〉 be any path in B̃Hn, where Qi = {qi, q′i} for
1 ≤ i ≤ l. Then qi and q′i are paired vertices for 1 ≤ i ≤ l. Let T1 =
〈p, q1, q2, . . . , ql, r〉 ∪ (q1, p

′) ∪ (ql, r
′) and T2 = 〈p′, q′1, q′2, . . . , q′l, r′〉 ∪ (p, q′1) ∪

(q′l, r). Then T1 and T2 are two internally disjoint N -trees of BHn, where N =
{p, p′, r, r′}. Clearly, P [p, r] = 〈p, q1, q2, . . . , ql, r〉 and P [p′, r′] = 〈p′, q′1, q′2, . . . , q′l,
r′〉 are two vertex-disjoint paths, and P [p, r′] = [p, q′1, q

′
2, . . . , q

′
l, r
′] and P [p′, r] =

〈p′, q1, q2, . . . , ql, r〉 are two vertex-disjoint paths.

Lemma 17. In BHn, any edge e = (r, s) and its paired edge e′ = (r′, s′) are
included in a 4-cycle 〈r, s, r′, s′, r〉, where n ≥ 2.

Proof. By Lemma 8, we only need to consider e = (r, s), where r = (r0, r1, . . . ,
rn−1), and s = (r0 + 1, r1, . . . , rn−1). Let e′ = (r′, s′), where r′ = (r0 + 2, r1, . . . ,
rn−1) and s′ = (r0 + 3, r1, . . . , rn−1). Then 〈r, s, r′, s′, r〉 is a 4-cycle.

Lemma 18. In BHn with n ≥ 2, any edge e and its paired edge e′ are included
in two paired 8-cycles, denoted by R = 〈r0, r1, r2, r3, r4, r5, r6, r7, r0〉 and R′ =
〈r′0, r′1, r′2, r′3, r′4, r′5, r′6, r′7, r′0〉, respectively, where |E(R) ∩E(BH i

n−1)| = |E(R′) ∩
E(BH i

n−1)| = 1 for i ∈ {0, 1, 2, 3}, and 〈rj , rj+1, r
′
j , r
′
j+1, rj〉 is a 4-cycle for

0 ≤ j ≤ 7 (The subscript “j + 1” is with operation modulo 8.).

Proof. By Lemma 10, e is included in an 8-cycle R satisfying that |E(R) ∩
E(BH i

n−1)| = 1 for i ∈ {0, 1, 2, 3}. Let E(R)∩E(BH i
n−1) = ei for i ∈ {0, 1, 2, 3},

where e0 = (r0, r1), e1 = (r2, r3), e2 = (r4, r5), e3 = (r6, r7). By Lemma 17,
each edge (rj , rj+1) has a paired edge (r′j , r

′
j+1), and they are included in a

4-cycle 〈rj , rj+1, r
′
j , r
′
j+1, rj〉, where j ∈ {0, 2, 4, 6}. rk and r′k are paired ver-

tices, where 0 ≤ k ≤ 7. By Lemma 9, rk and r′k have the same neighbor-
hood. So 〈rj , rj+1, r

′
j , r
′
j+1, rj〉 is a 4-cycle, where j ∈ {1, 3, 5, 7}. Let R′ =

〈r′0, r′1, r′2, r′3, r′4, r′5, r′6, r′7, r′0〉. Then e′ ∈ E(R′). R and R′ are paired 8-cycles,
(see Figure 3). Hence, the lemma is true.

Lemma 19. In BHn with n ≥ 2, for any vertex a and vertex set B (a /∈ B) with
|B| = 2n− 2 of some BH i

n−1 (i ∈ {0, 1, 2, 3}), there exist (a,B)-paths in BH i
n−1.

Let d ∈ V (BH i
n−1) be such that d 6= a. Then BH i

n−1 includes at least one edge
(d, d′) such that (d, d′) is not in (a,B)-paths.

Proof. By Lemmas 4 and 14, there are (a,B)-paths in BH i
n−1. By Definition 2,

d has 2n− 2 neighbors djs in BH i
n−1, where 1 ≤ j ≤ 2n− 2. If all the (d, dj)s are

in (a,B)-paths, then the (a,B)-paths have two common vertices a and d, which is
a contradiction. Hence, BH i

n−1 includes at least one edge (d, d′) such that (d, d′)
is not in (a,B)-paths.
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Figure 3. Two paired 8-cycles containing e and e′, respectively.

Lemma 20. In BHn with n ≥ 2, for any two different vertices a and c (a
and c are not paired vertices) of some BH i

n−1 (i ∈ {0, 1, 2, 3}), there exist 2n− 2
internally disjoint (a, c)-paths Pks (1 ≤ k ≤ 2n−2) in BH i

n−1. Let d ∈ V (BH i
n−1)

be such that d /∈ {a, c}. Then BH i
n−1 includes at least one edge (d, d′) such that

(d, d′) is not in
⋃2n−2

k=1 Pk.

Proof. By Lemmas 4 and 13, there are 2n − 2 internally disjoint (a, c)-paths
Pks (1 ≤ k ≤ 2n − 2) in BH i

n−1. By Definition 2, d has 2n − 2 neighbors djs in

BH i
n−1, where 1 ≤ j ≤ 2n− 2. If all the (d, dj)s are in

⋃2n−2
k=1 Pk, then

⋃2n−2
k=1 Pk

have three common vertices a, c, and d, which is a contradiction. Hence, BH i
n−1

includes at least one edge (d, d′) such that (d, d′) is not in
⋃2n−2

k=1 Pk.

Lemma 21. Let N ⊂ V (BHn) be such that |N ∩ V (BHn)| = 4 and N contains
paired vertices. Then there are 2n− 1 internally disjoint N -trees in BHn, where
n ≥ 2.

Proof. Denote N = {p, q, r, s}. We discuss two cases.

Case 1. Two vertices of N are paired vertices, say q and p are paired vertices.
By Lemma 5, BHn includes 2n−1 internally disjointN ′-trees T ′js (1 ≤ j ≤ 2n−1),
where N ′ = {p, r, s}. Let pj be the neighbor of p in T ′j for 1 ≤ j ≤ 2n− 1. Then
Tj = T ′j ∪ (q, pj) is N -tree and Tjs are internally disjoint, where 1 ≤ j ≤ 2n− 1.

Case 2. Four vertices of N are two different paired vertices, say p, q are paired
vertices and r, s are paired vertices.
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Let P = {p, q} and R = {r, s}. By Definition 3, Lemmas 6 and 13, B̃Hn

includes n internally disjoint paths connecting P and R. By Lemma 16, BHn

includes 2n internally disjoint N -trees.

Lemma 22. κ4(BH1) = 1.

Proof. By Lemmas 4 and 12, κ4(BH1) ≤ 1. By Definition 2, BH1 is a 4-cycle,
so BH1 includes a path including its four vertices. Hence, the lemma holds.

Lemma 23. κ4(BH2) = 3.

Proof. The proof is in Appendix 1.

Lemma 24. Let N ⊂ V (BHn) be such that |N ∩ V (BHn)| = 4 and N does not
contain paired vertices. If each sub-balanced hypercube has one vertex of N , then
there are 2n− 1 internally disjoint N -trees in BHn, where n ≥ 3.

Proof. Without loss of generality, let N = {p, q, r, s} and p ∈ V (BH0
n−1),

q ∈ V (BH3
n−1), r ∈ V (BH2

n−1), s ∈ V (BH1
n−1). By Lemma 11, w is in an

8-cycle
〈
w7, w0, w1, w2, w3, w4, w5, w6, w7

〉
for w ∈ {p, q, r, s}, where (w7, w0) ∈

E(BH0
n−1), (w1, w2) ∈ E(BH1

n−1), (w3, w4) ∈ E(BH2
n−1), (w5, w6) ∈ E(BH3

n−1).

Since |V (BH i
n−1)| = 22(n−1), we have 22(n−1)−1 black vertices and 22(n−1)−1 white

vertices in BH i
n−1 for i ∈ {0, 1, 2, 3} and n ≥ 3. Not considering the vertices of

8-cycles that contain p, q, r, s respectively in BH i
n−1, since 22(n−1)−1− 4 > 2n− 4

for n ≥ 3, by Lemma 11, we can pick another 2n − 4 vertex-disjoint 8-cycles〈
x7i , x

0
i , x

1
i , x

2
i , x

3
i , x

4
i , x

5
i , x

6
i , x

7
i

〉
in BHn, where (x7i , x

0
i ) ∈ E(BH0

n−1), (x
1
i , x

2
i ) ∈

E(BH1
n−1), (x

3
i , x

4
i ) ∈ E(BH2

n−1), (x
5
i , x

6
i ) ∈ E(BH3

n−1) for 1 ≤ i ≤ 2n − 4. We
deal with four cases.

Case 1. Each vertex of {p, q, r, s} is in different C8s. Without loss of general-
ity, let p7 = p, q5 = q, r3 = r and s1 = s. Let X0 =

{
q0, r0, s0, x01, x

0
2, . . . , x

0
2n−5

}
,

X1 =
{
p2, q2, r2, x21, x

2
2, . . . , x

2
2n−5

}
, X2 =

{
p4, q4, s4, x41, x

4
2, . . . , x

4
2n−5

}
andX3 ={

p6, r6, s6, x61, x
6
2, . . . , x

6
2n−5

}
. By Lemmas 4 and 14, BH0

n−1 includes (p,X0)-
paths Q0, R0, S0, X0

1 , X
0
2 , . . . , X

0
2n−5, BH

1
n−1 includes (s,X1)-paths P 1, Q1, R1,

X1
1 , X

1
2 , . . . , X

1
2n−5, BH

2
n−1 includes (r,X2)-paths P 2, Q2, S2, X2

1 , X
2
2 , . . . , X

2
2n−5,

and BH3
n−1 includes (q,X3)-paths P 3, R3, S3, X3

1 , X
3
2 , . . . , X

3
2n−5, where Q0 con-

nects p and q0, R0 connects p and r0, S0 connects p and s0, X0
i connects p

and x0i , P
1 connects s and p2, Q1 connects s and q2, R1 connects s and r2, X1

i

connects s and x2i , P
2 connects r and p4, Q2 connects r and q4, S2 connects

r and s4, X2
i connects r and x4i , P

3 connects q and p6, R3 connects q and r6,
S3 connects q and s6, and X3

i connects q and x6i , where 1 ≤ i ≤ 2n − 5. Let
Ti = X0

i ∪X1
i ∪X2

i ∪X3
i ∪

〈
x4i , x

5
i , x

6
i , x

7
i , x

0
i , x

1
i , x

2
i

〉
for 1 ≤ i ≤ 2n− 5, T2n−4 =

S0 ∪ S2 ∪ S3 ∪
〈
s4, s5, s6, s7, s0, s

〉
, T2n−3 = R0 ∪ R1 ∪ R3 ∪

〈
r6, r7, r0, r1, r2, r

〉
,
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Figure 4. The illustration of Case 1 in the proof of Lemma 24.

T2n−2 = Q0 ∪ Q1 ∪ Q2 ∪
〈
q0, q1, q2, q3, q4, q

〉
, and T2n−1 = P 1 ∪ P 2 ∪ P 3 ∪〈

p, p6, p5, p4, p3, p2
〉
, (see Figure 4).

Case 2. Two vertices of {p, q, r, s} are in the same C8.

Case 2.1. Two vertices of {p, q, r, s}, say q and r, are in two consecutive
sub-balanced hypercubes.

Without loss of generality, let p7 = p, q5 = q, q3 = r and s1 = s, i.e., q and r
are in the same 8-cycle C =

〈
q7, q0, q1, q2, r, q4, q, q6, q7

〉
. By Lemma 18, C has a

paired 8-cycle C ′. Denote C ′ =
〈
y7, y0, y1, y2, y3, y4, y5, y6, y7

〉
, where (y7, y0) ∈

E(BH0
n−1), (y1, y2) ∈ E(BH1

n−1), (y3, y4) ∈ E(BH2
n−1), (y5, y6) ∈ E(BH3

n−1),
and

〈
q7, y0, y7, q0, q7

〉
,
〈
q0, y1, y0, q1, q0

〉
,
〈
q1, y2, y1, q2, q1〉,

〈
q2, y3, y2, r, q2〉,

〈
r,

y4, y3, q4, r
〉
,
〈
q4, y5, y4, q, q4

〉
,
〈
q, y6, y5, q6, q

〉
,
〈
q6, y7, y6, q7, q6

〉
are 4-cycles. In

BH0
n−1, BH

1
n−1 and BH3

n−1, the discussions are similar to Case 1 except that we
need to use yks instead of rks for k ∈ {0, 1, 2, 5, 6, 7} and use Y js instead of Rjs
for j ∈ {0, 1, 3} (Y 3 = (q, y6)). In BH2

n−1, let X2 =
{
p4, y4, s4, x41, x

4
2, . . . , x

4
2n−5

}
.

By Lemmas 4 and 14, BH2
n−1 includes (r,X2)-paths P 2, Y 2, S2, X2

1 , . . . , X
2
2n−5,

where P 2 connects r and p4, Y 2 = (r, y4), S2 connects r and s4, and X2
i connects

r and x4i for 1 ≤ i ≤ 2n−5. Let Ti = X0
i ∪X1

i ∪X2
i ∪X3

i ∪
〈
x2i , x

1
i , x

0
i , x

7
i , x

6
i , x

5
i , x

4
i

〉
for 1 ≤ i ≤ 2n− 5, T2n−4 = S0 ∪S2 ∪S3 ∪

〈
s, s0, s7, s6, s5, s4〉, T2n−3 = Y 0 ∪Y 1 ∪〈

r, y4, y3, y2, y1, y0, y7, y6, q
〉
, T2n−2 = Q0 ∪ Q1 ∪

〈
r, y2, q1, q0, q7, q6, y5, y4, q

〉
∪

(q1, q2), and T2n−1 = P 1 ∪ P 2 ∪ P 3 ∪
〈
p, p6, p5, p4, p3, p2

〉
, (see Figure 5(a)).
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Figure 5. The illustration of Case 2.1 and Case 2.2 in the proof of Lemma 24.

Case 2.2. Two vertices of {p, q, r, s}, say q and s, are in two opposite sub-
balanced hypercubes.

Without loss of generality, let p7 = p, s5 = q, q3 = r and s1 = s, i.e., q
and s are in the 8-cycle C =

〈
s7, s0, s, s2, s3, s4, q, s6, s7

〉
. By Lemma 18, C has a

paired 8-cycle C ′. Denote C ′ =
〈
y7, y0, y1, y2, y3, y4, y5, y6, y7

〉
, where (y7, y0) ∈

E(BH0
n−1), (y1, y2) ∈ E(BH1

n−1), (y3, y4) ∈ E(BH2
n−1), (y5, y6) ∈ E(BH3

n−1),
and

〈
y7, s0, s7, y0, y7

〉
,
〈
y0, s, s0, y1, y0

〉
,
〈
y1, s2, s, y2, y1

〉
,
〈
y2, s3, s2, y3, y2

〉
,
〈
y3,

s4, s3, y4, y3
〉
,
〈
q, s4, y5, y4, q

〉
,
〈
q, y6, y5, s6, q

〉
,
〈
s7, y6, y7, s6, s7

〉
are 4-cycles. In

BH0
n−1, BH

1
n−1, BH

2
n−1, the proofs of this case are similar to Case 2.1, except that

Y 2 is now a path connecting r and y4. Let X3 = {p6, q6, y6, x61, x62, . . . , x62n−5}. By
Lemma 14, BH3

n−1 contains (q,X3)-paths P 3, Q3, Y 3, X3
1 , X

3
2 , . . . , X

3
2n−5, where

P 3 connects q and p6, Q3 connects q and q6, Y 3 = (q, y6), X3
i connects q and

x6i for 1 ≤ i ≤ 2n − 5. Let Ti = X0
i ∪X1

i ∪X2
i ∪X3

i ∪
〈
x2i , x

1
i , x

0
i , x

7
i , x

6
i , x

5
i , x

4
i

〉
for 1 ≤ i ≤ 2n − 5, T2n−4 = S0 ∪ S2 ∪

〈
s, s0, s7, s6, q, s4

〉
, T2n−3 = Y 0 ∪ Y 1 ∪

Y 2∪
〈
y4, y3, y2, y1, y0, y7, y6, q

〉
, T2n−2 = Q0∪Q1∪Q3∪

〈
q2, q1, q0, q7, q6, q5, q4, r

〉
,

T2n−1 = P 1 ∪ P 2 ∪ P 3 ∪
〈
p, p6, p5, p4, p3, p2

〉
, (see Figure 5(b)).

Case 3. Three vertices of {p, q, r, s} are in the same C8. Without loss of gen-
erality, let q, r, s be in the same 8-cycle C, i.e., C =

〈
q7, s0, s, r2, r, q4, q, q6, q7

〉
.

By Lemma 18, C has a paired 8-cycle C ′ =
〈
y7, y0, y1, y2, y3, y4, y5, y6, y7

〉
, where

(y7, y0) ∈ E(BH0
n−1), (y1, y2) ∈ E(BH1

n−1), (y3, y4) ∈ E(BH2
n−1), (y5, y6) ∈

E(BH3
n−1), and

〈
q7, y0, y7, s0, q7

〉
,
〈
s0, y1, y0, s, s0

〉
,
〈
s, y2, y1, r2, s

〉
,
〈
r2, y3, y2,
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r, r2
〉
,
〈
q4, y3, y4, r, q4

〉
,
〈
q, y4, y5, q4, q

〉
,
〈
q, y6, y5, q6, q

〉
,
〈
q7, y6, y7, q6, q7

〉
are 4-

cycles. Since |V (BH i
n−1)| = 22(n−1) with 22(n−1)−1 black vertices and 22(n−1)−1

white vertices and 22(n−1)−1 > 2n − 1 for i ∈ {0, 1, 2, 3} and n ≥ 3, by Lemma
11, we can find another 8-cycle

〈
z7, z0, z1, z2, z3, z4, z5, z6, z7

〉
in BHn, where

(z7, z0) ∈ E(BH0
n−1), (z1, z2) ∈ E(BH1

n−1), (z3, z4) ∈ E(BH2
n−1), and (z5, z6) ∈

E(BH3
n−1). In each BH i

n−1s for i ∈ {0, 2, 3}, the discussions are similar to Case
2.1 except that we only need to use zks instead of sks for k ∈ {0, 3, 4, 5, 6, 7} and
use Zjs instead of Sjs for j ∈ {0, 2, 3}. In BH1

n−1, let X1 = {p2, y2, z2, x21, x22, . . . ,
x22n−5}. By Lemmas 4 and 14, BH1

n−1 includes (s,X1)-paths P 1, Y 1, Z1, X1
1 , . . . ,

X1
2n−5, where P 1 connects s and p2, Y 1 = (s, y2), Z1 connects s and z2, X1

i

connects s and x2i for 1 ≤ i ≤ 2n − 5. Let Ti = X0
i ∪ X1

i ∪ X2
i ∪ X3

i ∪〈
x2i , x

1
i , x

0
i , x

7
i , x

6
i , x

5
i , x

4
i

〉
for 1 ≤ i ≤ 2n − 5, T2n−4 = Z0 ∪ Z1 ∪ Z2 ∪ Z3 ∪〈

z2, z1, z0, z7, z6, z5, z4
〉
, T2n−3 = Y 0 ∪ Y 3 ∪

〈
s, y0, y7, y6, y5, y4, r

〉
, T2n−2 = S0 ∪〈

s0, s, y2, r
〉
∪
〈
y2, y3, y4, q

〉
, and T2n−1 = P 1∪P 2∪P 3∪

〈
p, p6, p5, p4, p3, p2

〉
, (see

Figure 6(a)).

Figure 6. The illustration of Case 3 and Case 4 in the proof of Lemma 24.

Case 4. Four vertices of {p, q, r, s} are in the same C8. Denote C =
〈
p, s0, s,

r1, r, q2, q, p3, p
〉
. By Lemma 18, C has a paired cycle C ′. Denote C ′ =

〈
y7, y0, y1,

y2, y3, y4, y5, y6, y7
〉
, where (y7, y0) ∈ E(BH0

n−1), (y1, y2) ∈ E(BH1
n−1), (y3, y4) ∈

E(BH2
n−1), (y5, y6) ∈ E(BH3

n−1), and
〈
p, y0, y7, s0, p

〉
,
〈
s0, y1, y0, s, s0

〉
,
〈
s, y2,

y1, r1, s
〉
,
〈
r1, y3, y2, r, r1

〉
,
〈
r, y4, y3, q2, r

〉
,
〈
q, y4, y5, q2, q

〉
,
〈
p3, y5, y6, q, p3

〉
,
〈
p,

y6, y7, p3, p
〉

are 4-cycles. Let X0 = {s0, y0, x01, x02 . . . , x02n−4}, X1 = {r1, y2, x21,
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x22, . . . , x
2
2n−4}, X2 = {q2, y4, x41, x42, . . . , x42n−4} and X3 = {p3, y6, x61, x62, . . . ,

x62n−4}. By Lemmas 4 and 14, BH0
n−1 includes (p,X0)-paths S0, Y 0, X0

1 , X
0
2 , . . . ,

X0
2n−4, BH

1
n−1 includes (s,X1)-pathsR1, Y 1, X1

1 , X
1
2 , . . . , X

1
2n−4, BH

2
n−1 includes

Q2, Y 2, X2
1 , X

2
2 , . . . , X

2
2n−4, and BH3

n−1 includes (q,X3)-paths P 3, Y 3, X3
1 , X

3
2 ,

. . . , X3
2n−4, where S0 = (p, s0), Y 0 = (p, y0), X0

i connects p and x0i , R
1 = (s, r1),

Y 1 = (s, y2), X1
i connects s and x2i , Q

2 = (r, q2), Y 2 = (r, y4), X2
i connects r

and x4i , P
3 = (q, p3), Y 3 = (q, y6), X3

i connects q and x6i , where 1 ≤ i ≤ 2n− 4.
Let Ti = X0

i ∪ X1
i ∪ X2

i ∪ X3
i ∪

〈
x2i , x

1
i , x

0
i , x

7
i , x

6
i , x

5
i , x

4
i

〉
for 1 ≤ i ≤ 2n − 4,

T2n−3 =
〈
p, s0, y1, r1, r, q2, q

〉
∪ (s0, s), T2n−2 =

〈
q, y6, p, y0, s, y2, r

〉
, and T2n−1 =〈

p, p3, q, y4, y3, r1, s
〉
∪ (y4, r), (see Figure 6(b)).

Lemma 25. Let N ⊂ V (BHn) be such that |N ∩ V (BHn)| = 4 and N does not
contain paired vertices. If there exist two sub-balanced hypercubes such that each
has two vertices of N , then there are 2n− 1 internally disjoint N -trees in BHn,
where n ≥ 3.

Proof. Denote N = {p, q, r, s}. Without loss of generality, let N ∩V (BH0
n−1) =

{p, q}. By symmetry of BH1
n−1 and BH3

n−1, we only need to consider that both
r and s are in BH1

n−1 or BH2
n−1.

Let p and q be different color vertices, and r and s be different colors. Without
loss of generality, let p and r be black vertices and q and s be white vertices. If p
and q are the same color (since BHn is a bipartite graph), we only need to consider
that p and q are black vertices (see Figure 12–14), or p and q are different colors
but r and s are the same color (see Figure 15–16), the proofs are similar. To
save space, we only show the graphs in the Appendix 2.) By Lemmas 4 and 13,
BH0

n−1 includes 2n − 2 internally disjoint paths Pis connecting p and q, where
1 ≤ i ≤ 2n − 2. By Definition 2, p has a neighbor p3 ∈ V (BH3

n−1), and q has
a neighbor q1 ∈ V (BH1

n−1). By Lemma 19 and Definition 2, BHn includes a

path Q̃ =
〈
q, q0, q2, q3, q4

〉
, where q0 ∈ V (BH1

n−1), {q2, q3} ⊂ V (BH0
n−1) and

q4 ∈ V (BH3
n−1).

Case 1. {r, s} ⊂ V (BH1
n−1). By Lemmas 4 and 13, BH1

n−1 includes 2n − 2
internally disjoint paths Ris connecting r and s, where 1 ≤ i ≤ 2n−2. (If (p, q) ∈
E(BH0

n−1), let P2n−3 = (p, q). If (r, s) ∈ E(BH1
n−1), let R2n−2 = (r, s).) By Def-

inition 2, r has a neighbor r7 ∈ V (BH0
n−1), and s has a neighbor s2 ∈ V (BH2

n−1).

By Lemma 19 and Definition 2, BHn includes a path R̃ =
〈
r, r0, r1, r2, r3

〉
, where

r0 ∈ V (BH0
n−1), {r1, r2} ⊂ V (BH1

n−1), and r3 ∈ V (BH2
n−1). Since BH0

n−1 is
connected, BH0

n−1 includes a path R1 connecting r7 and q. Let v be the first

intersection vertex of R1 and
⋃2n−2

i=1 Pi. Since BH1
n−1 is connected, BH1

n−1 in-
cludes a path Q1 connecting q1 and r. Let u be the first intersection vertex of
Q1 and

⋃2n−2
i=1 Ri. Suppose that v ∈ V (P2n−2) and u ∈ V (R2n−3). Let R[r7, v]

be the sub-path of R1 and Q[q1, u] be the sub-path of Q1. Pick black vertex
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x0j ∈ V (Pj) and white vertex y1j ∈ V (Rj) for 1 ≤ j ≤ 2n − 4. By Definition 2,

x0j has a neighbor x3j ∈ V (BH3
n−1) and y1j has a neighbor y2j ∈ V (BH2

n−1) for
1 ≤ j ≤ 2n− 4.

By Lemma 17, BHn includes a 4-cycle
〈
b3, b2, c3, c2, b3

〉
, where {b2, c2} ⊂

V (BH2
n−1) and {b3, c3} ⊂ V (BH3

n−1). Pick another 2n− 4 (a3j , a
2
j )s, where a3j ∈

V (BH3
n−1) and a2j ∈ V (BH2

n−1) for 1 ≤ j ≤ 2n− 4. Let X3 = {p3, q4, x31, x32, . . . ,
x32n−4}, A3 = {b3, c3, a31, a32, . . . , a32n−4}, Y 2 = {s2, r3, y21, y22, . . . , y22n−4}, and A2 =
{b2, c2, a21, a22, . . . , a22n−4}. By Lemmas 4 and 15, BH3

n−1 includes (X3, A3)-paths
P,Q,Q1, Q2, . . . , Q2n−4 and BH2

n−1 includes (A2, Y 2)-paths R,S, S1, S2, . . . ,
S2n−4, where P connects p3 and b3, Q connects q4 and c3, Qj connects x3j and a3j ,

R connects b2 and s2, S connects c2 and r3, and Sj connects a2j and y2j , 1 ≤ j ≤
2n−4. Let Tj = Pj ∪ (x0j , x

3
j )∪Qj ∪ (a3j , a

2
j )∪Sj ∪ (y2j , y

1
j )∪Rj for 1 ≤ j ≤ 2n−4,

T2n−3 = P2n−3 ∪ (q, q1) ∪ Q[q1, u] ∪ R2n−3, T2n−2 = P2n−2 ∪ R[v, r7] ∪ (r7, r) ∪
R2n−2, and T2n−1 = P ∪Q∪R∪S ∪ Q̃∪ (p, p3)∪

〈
b3, b2, c3, c2

〉
∪ R̃∪ (s, s2), (see

Figure 7(a)).

Figure 7. The illustrations of Case 1 and Case 2 in the proof of Lemma 25.

Case 2. {r, s} ⊂ V (BH2
n−1). By Lemmas 4 and 13, BH2

n−1 includes 2n − 2
internally disjoint paths Qis connecting r and s, where 1 ≤ i ≤ 2n − 2. (If
(p, q) ∈ E(BH0

n−1), let P2n−2 = (p, q). If (r, s) ∈ E(BH2
n−1), let Q2n−3 = (r, s).)

By Lemma 19 and Definition 2, BHn includes a path R̃ =
〈
r, r1, r5, r4, r3

〉
,

an edge (r, r2), and an edge (s, s3), where {r1, r2} ⊂ V (BH1
n−1), {r4, r5} ⊂

V (BH2
n−1), and {r3, s3} ⊂ V (BH3

n−1). Select white vertex x0j ∈ V (Pj) (re-
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spectively, black vertex y2k ∈ V (Qk)), by Definition 2, x0j (respectively, y2k) has

a neighbor x1j ∈ V (BH1
n−1) (respectively, y1k ∈ V (BH1

n−1)), where 1 ≤ j ≤
2n − 3 (respectively, 1 ≤ k ≤ 2n − 2). Let (y22n−3, y

1
2n−3) = (r, r2). Let

X1 = {x11, x12, . . . , x12n−4, x12n−3, q1} and Y 1 = {y11, y12, . . . , y12n−4, r2, y12n−2}. By
Lemmas 4 and 15, BH1

n−1 includes paired (X1, Y 1)-paths R1, R2, . . . , R2n−2,
where Rj connects x1j and y1j for 1 ≤ j ≤ 2n − 4, R2n−3 connects x12n−3 and r2,

and R2n−2 connects q1 and y12n−2. Since BH3
n−1 is connected, BH3

n−1 includes a
tree T ′2n−1 connecting q4, p3, r3 and s3. Let Ti = Pj ∪ (x0j , x

1
j )∪Rj ∪ (y1j , y

2
j )∪Qj

for 1 ≤ j ≤ 2n − 4, T2n−3 = P2n−3 ∪ (x02n−3, x
1
2n−3) ∪ R2n−3 ∪ (r2, r) ∪ Q2n−3,

T2n−2 = P2n−2 ∪ (q, q1) ∪ R2n−2 ∪ (y12n−2, y
2
2n−2) ∪ Q2n−2, and T2n−1 = T ′2n−1 ∪

Q̃ ∪ (p3, p) ∪ R̃ ∪ (s3, s), (see Figure 7(b)).

Lemma 26. Let N ⊂ V (BHn) be such that |N ∩ V (BHn)| = 4 and N does not
contain paired vertices. If there exist three sub-balanced hypercubes having 2, 1,
and 1 vertices of N , respectively, then there are 2n−1 internally disjoint N -trees
in BHn, where n ≥ 3.

Proof. The proof is in Appendix 3.

Lemma 27. Let N ⊂ V (BHn) be such that |N ∩ V (BHn)| = 4 and N does not
contain paired vertices. If there exist two sub-balanced hypercubes having 3 and
1 vertices of N , respectively, then there are 2n− 1 internally disjoint N -trees in
BHn, where n ≥ 3.

Proof. DenoteN={p, q, r, s}. Without loss of generality, let {p, q, r}⊂V (BH0
n−1),

p, r be black vertices, and q be white vertex. (If p, r are white vertices and q is
black vertex, or p, q, r are the same color, the discussions are similar except that
we need to use Lemma 19 and Definition 2 to find two paths connecting p or q
or r such that the other end vertices of the two paths connecting p or r are in
BH3

n−1 and the other end vertices of the two paths connecting q are in BH2
n−1 for

Case 1, and find two neighbors of p or r in BH1
n−1 and find two paths connecting

with q and the other end vertices in BH1
n−1 for Case 2.) By Definition 2, p has

two neighbors p3, p4 in BH3
n−1, r has two neighbors r3, r4 in BH3

n−1, and q has
two neighbors q1, q2 in BH1

n−1. By Lemmas 4 and 5, BH0
n−1 includes 2n − 3

internally disjoint N -trees T ′js, where 1 ≤ j ≤ 2n − 3. Since BHn is symmetric,
we deal with the following Case 1 and Case 2.

Case 1. s ∈ V (BH1
n−1). Pick one white vertex x0j ∈ V (T ′j) for 1 ≤ j ≤ 2n−3.

By Definition 2, x0j has a neighbor x1j ∈ V (BH1
n−1), where 1 ≤ j ≤ 2n − 3. Let

X1 = {x11, x12, . . . , x12n−3}. By Lemmas 4 and 14, BH1
n−1 includes (s,X1)-paths

Rjs, where Rj connects s and x1j for 1 ≤ j ≤ 2n−3. Let Tj = T ′j∪(x0j , x
1
j )∪Rj for

1 ≤ j ≤ 2n − 3. By Lemma 19 and Definition 2, BHn includes two paths Q̃1 =〈
q, q1, q3, q5

〉
and Q̃2 =

〈
q, q2, q4, q6

〉
, where {q1, q2, q3, q4} ⊂ V (BH1

n−1) and
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{q5, q6} ⊂ V (BH2
n−1). By Lemma 17 and Definition 2, BHn includes two vertex-

disjoint 4-cycles
〈
c3, c2, d3, d2, c3

〉
and

〈
a3, a2, b3, b2, a3

〉
, where {a3, b3, c3, d3} ⊂

V (BH3
n−1) and {a2, b2, c2, d2} ⊂ V (BH2

n−1).

Case 1.1. s is white vertex. By Definition 2, s has two neighbors s1 and
s2 in BH2

n−1. By Lemma 15, BH3
n−1 includes vertex-disjoint paths P,Q, P ′, Q′

connecting r3, p4, r4, p3 and c3, d3, a3, b3, respectively, and BH2
n−1 includes vertex-

disjoint paths R,S,R′, S′ connecting q6, s1, s2, q5 and c2, d2, a2, b2, respectively.
Let T2n−2 = P ∪ Q ∪ R ∪ S ∪ (p, p4) ∪ (r, r3) ∪ (s, s1) ∪ Q̃2 ∪

〈
c3, c2, d3, d2

〉
, and

T2n−1 = P ′ ∪ Q′ ∪ R′ ∪ S′ ∪ (p, p3) ∪ (r, r4) ∪ (s, s2) ∪ Q̃1 ∪
〈
a3, a2, b3, b2

〉
, (see

Figure 8(a)).

Figure 8. The illustrations of Case 1.1 and Case 1.2 in the proof of Lemma 27.

Case 1.2. s is black vertex. The proof of this case is similar to Case 1.1 except
that we need to use S̃1 =

〈
s, s0, s2, s4, s6

〉
and S̃2 =

〈
s, s1, s3

〉
to replace (s, s1)

and (s, s2) of Case 1.1, respectively, where s0 ∈ V (BH0
n−1), s

2 is a paired vertex
of s in BH1

n−1, s
1 is not in (s,X1)-paths, s4 is in some path of (s,X1)-paths,

(s2, s1) ∈ E(BH1
n−1), {s6, s3} ⊂ V (BH2

n−1). (Since |NBH1
n−1

(s)| = 2n− 2, there

exists one neighbor s1 not in (s,X1)-paths.) Let T2n−2 = P ∪Q∪R∪S∪ (p, p4)∪
(r, r3)∪

〈
c3, c2, d3, d2

〉
∪ S̃1 ∪ Q̃2 and T2n−1 = P ′ ∪Q′ ∪R′ ∪S′ ∪ (p, p3)∪ (r, r4)∪〈

a3, a2, b3, b2
〉
∪ S̃2 ∪ Q̃1, (see Figure 8(b)).

Case 2. s ∈ V (BH2
n−1). Select 2n− 3 edges (x0j , x

3
j )s, where x0j ∈ V (T ′j) and
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x3j ∈ V (BH3
n−1) for 1 ≤ j ≤ 2n−3. Pick p and r’s paired vertices and denote by p̃

and r̃, respectively. Since p (respectively, r) has 2n−2 neighbors in BH0
n−1, there

exists one neighbor p1 (respectively, r1) in BH0
n−1 such that (p, p1) (respectively,

(r, r1)) is not in Tjs for 1 ≤ j ≤ 2n−3. By Lemma 18, (p, p1) and its paired edge
(p̃, p̃1) are in two paired cycles C and C ′, respectively. Let

〈
p, p1, p2

〉
(respectively,〈

p̃, p̃1, p̃2
〉
) be part of C (respectively, C ′), where {p2, p̃2} ⊂ V (BH1

n−1). The
discussion for vertex r is similar, thus we have that

〈
r, r1, r2

〉
and

〈
r̃, r̃1, r̃2

〉
are parts of two paired cycles, respectively, where {r2, r̃2} ⊂ V (BH1

n−1). Let

Q̃ = {q1, q2}, P̃ = {p2, p̃2}, R̃ = {r2, r̃2}.

Case 2.1. s is black vertex. By Definition 2, s has two neighbors s1 and s2

in BH1
n−1. Let S̃ = {s1, s2}. By Definition 3 and Lemmas 6 and 14, B̃H1

n−1
has (S̃, {P̃ , Q̃, R̃})-paths. By Lemma 16, BH1

n−1 includes vertex-disjoint paths
Q[q1, s1], Q[q2, s2], P [p̃2, s1], P [p2, s2], R[r2, s1], R[r̃2, s2]. Select 2n−3 neighbors
of s in BH2

n−1 and denote by s2j s for 1 ≤ j ≤ 2n − 3. By Definition 2, let s3j be

a neighbor of s2j in BH3
n−1, where 1 ≤ j ≤ 2n− 3. Let X3 = {x31, x32, . . . , x32n−3}

and S3 = {s31, s32, . . . , s32n−3}. By Lemmas 4 and 15, there are paired (X3, S3)-
paths Qjs in BH3

n−1, where Qj connects x3j and s3j for 1 ≤ j ≤ 2n − 3. Let

Tj = T ′j ∪ (x0j , x
3
j ) ∪ Qj ∪

〈
s3j , s

2
j , s
〉

for 1 ≤ j ≤ 2n − 3, T2n−2 = (q, q1) ∪
Q[q1, s1]∪

〈
p, p3, p̃, p̃1, p̃2

〉
∪ P [p̃2, s1]∪

〈
r, r1, r2

〉
∪R[r2, s1]∪ (s1, s) and T2n−1 =

(q, q2)∪Q[q2, s2]∪
〈
p, p1, p2

〉
∪P [p2, s2]∪

〈
r, r3, r̃, r̃1, r̃2

〉
∪R[r̃2, s2]∪ (s2, s), (see

Figure 9(a)).

Case 2.2. s is white vertex. The proof of this case is similar to Case 2.1 except
that we need to use S̃j =

〈
s, sj , s

2
j , s

3
j

〉
to instead of

〈
s, s2j , s

3
j

〉
of Case 2.1 for

1 ≤ j ≤ 2n− 3, and use S1 =
〈
s, s3, s̃, s1, s

1
〉

and S2 =
〈
s, s̃3, s̃, s̃2, s̃1

〉
to instead

of (s, s1) and (s, s2) of Case 2.1, respectively, where s̃ is the paired vertex of s,
s̃3 and s3 are common neighbors of s and s̃ in BH3

n−1, s̃
2 /∈ {s1, s2, . . . , s2n−3},

and s1 and s̃1 are common neighbors of s̃2 and s1 and they are paired vertices.
(Since s̃ has 2n − 2 neighbors in BH2

n−1, there exists such vertex s̃2. Without
loss of generality, let s1 be the paired vertex of s̃2.) So (s̃, sj) ∈ E(BH2

n−1)

for 1 ≤ j ≤ 2n − 3. Let Tj = T ′j ∪ (x0j , x
3
j ) ∪ Qj ∪ S̃j for 1 ≤ j ≤ 2n − 3,

T2n−2 = (q, q1)∪Q[q1, s1]∪
〈
p, p3, p̃, p̃1, p̃2

〉
∪P [p̃2, s1]∪

〈
r, r1, r2

〉
∪R[r2, s1]∪S1

and T2n−1 = (q, q2)∪Q[q2, s̃1]∪
〈
p, p1, p2

〉
∪P [p2, s̃1]∪

〈
r, r3, r̃, r̃1, r̃2

〉
∪R[r̃2, s̃1]∪S2,

(see Figure 9(b)).

Theorem 28. κ4(BHn) = 2n− 1, where n ≥ 1.

Proof. The proof is by induction hypothesis on n. By Lemmas 22 and 23, the
theorem holds when n ≤ 2. Assume that the theorem holds for m ≤ n − 1. We
prove that the theorem holds for m = n ≥ 3 as follows. For any N ⊂ V (BHn)
with |N | = 4, we denote N = {p, q, r, s}. By Lemmas 4 and 12, κ4(BHn) ≤ 2n−1.
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We need to show that BHn includes 2n−1 internally disjoint N -trees. By Lemma
21, BHn includes 2n− 1 internally disjoint N -trees if N contains paired vertices.
In the following, we consider that N contains no paired vertices for n ≥ 3.

Figure 9. The illustrations of Case 2.1 and Case 2.2 in the proof of Lemma 27.

Case 1. All the vertices of N are in the same sub-balanced hypercube. By
symmetry of BHn, let N ⊂ V (BH0

n−1). By induction hypothesis, BH0
n−1 con-

tains 2n− 3 internally disjoint N -trees Tjs for 1 ≤ j ≤ 2n− 3. By Definition 1,
each vertex of p, q, r, s has paired neighbors p1, p2, q1, q2, r1, r2, s1, s2 in BH1

n−1
or BH3

n−1, respectively. By Lemma 18, each paired neighbors of N is included in
vertex-disjoint 8-cycles of BHn. Let P [p1, p′] and P [p2, p′′], Q[q1, q′] and Q[q2, q′′],
R[r1, r′] and R[r2, r′′], and S[s1, s′] and S[s2, s′′] be sub-paths of the two disjoint
8-cycles, respectively, where N ′ = {p′, p′′, q′, q′′, r′, r′′, s′, s′′} ⊂ V (BH2

n−1). Se-
lect one vertex v ∈ V (BH2

n−1) and v /∈ N ′. By Lemmas 4 and 14, BH2
n−1

includes (v,N ′)-paths P 1, P 2, Q1, Q2, R1, R2, S1, S2, where X1 connects x′ and v
and X2 connects x′′ and v for X = P,Q,R, S and x = p, q, r, s, respectively. Let
T2n−2 = P 1 ∪ Q1 ∪ R1 ∪ S1 ∪ P [p1, p′] ∪ Q[q1, q′] ∪ R[r1, r′] ∪ S[s1, s′] ∪ (p, p1) ∪
(q, q1) ∪ (r, r1) ∪ (s, s1) and T2n−1 = P 2 ∪ Q2 ∪ R2 ∪ S2 ∪ P [p2, p′′] ∪ Q[q2, q′′] ∪
R[r2, r′′] ∪ S[s2, s′′] ∪ (p, p2) ∪ (q, q2) ∪ (r, r2) ∪ (s, s2).

Case 2. Each sub-balanced hypercube has one vertex of N .

Case 3. Two sub-balanced hypercubes have two vertices of N , respectively.
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Case 4. Three sub-balanced hypercubes have 2, 1, and 1 vertices of N ,
respectively.

Case 5. Two sub-balanced hypercubes have 3 and 1 vertices of N , respec-
tively.

By Lemmas 24, 25, 26, and 27, BHn includes 2n−1 internally disjoint N -trees
for the above Cases 2–5, respectively.

Hence, the theorem holds.

4. Conclusion

In [17], κ3(BHn) = 2n − 1 is determined, in this paper, we further obtain that
k4(BHn) = 2n−1, where n ≥ 1. Since it is NP-complete to compute κk(G) when
G is general [6], the method of our paper can be a reference to determine the
generalized 4-connectivity of other special networks.
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Appendix

Appendix 1. The proof of Lemma 23.

Proof. For any vertex set N ⊂ V (BH2) with |N | = 4, we denote N = {p, q, s, t}.
By Lemmas 4 and 12, κ4(BH2) ≤ 2 × 2 − 1 = 3. We need to show that BH2

includes 3 internally disjoint N -trees. Note that any two black vertices (re-
spectively, white vertices) of BH i

1 are paired vertices, where i ∈ {0, 1, 2, 3}. If
3 ≤ |N ∩ V (BH i

1)| ≤ 4 for some i ∈ {0, 1, 2, 3}, then N contains paired vertices.
By Lemma 21, BH2 contains 3 internally disjoint N -trees if N contains paired
vertices. Hence, we only need to consider the following two cases.

Case 1. |N ∩ V (BH i
1)| = 2, say N ∩ V (BH i

1) = {p, q}, and (p, q) ∈ E(BH i
1),

where i ∈ {0, 1, 2, 3}. Without loss of generality, let i = 0. By Lemma 8, we
only need to consider {p, q} = {(0, 0), (3, 0)}. By symmetry of BH2, we only
need to consider (s, t) ∈ E(BH1

1 ), (s, t) ∈ E(BH2
1 ), and s, t are in two different

sub-balanced hypercubes of BH1
1 ∪ BH2

1 ∪ BH3
1 . Since the two black vertices

(respectively, white vertices) of BH i
1 for i ∈ {0, 1, 2, 3} are paired vertices, we

only need to consider the distributions of s, t shown in Figure 10. The 3 internally
disjoint N -trees with red, green, blue colors, respectively, are shown in Figure 10.

Case 2. |N ∩V (BH i
1)| = 1 for any i ∈ {0, 1, 2, 3}. Without loss of generality,

let p, q, s, t be in BH0
1 , BH

3
1 , BH

1
1 , BH

2
1 , respectively. By Lemma 7, let p = (0, 0).

Since the two black vertices (respectively, white vertices) of BH i
1 for i ∈ {0, 1, 2, 3}

are paired vertices, we only need to consider s ∈ {(1, 1), (0, 1)}, q ∈ {(0, 3), (1, 3)},
t ∈ {(0, 2), (3, 2)}. The 3 internally disjoint N -trees with red, green, blue colors,
respectively, are shown in Figure 11.
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Figure 10. The illustration of Case 1 in the proof of Lemma 23.
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Figure 11. The illustration of Case 2 in the proof of Lemma 23.
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Appendix 2. The graphs of other cases in the proof of Lemma 25.

Figure 12. p and q are black vertices of BH0
n−1, and r and s are the same color of BH1

n−1
in the proof of Lemma 25.

Figure 13. p and q are black vertices of BH0
n−1, and r and s are the same color of BH2

n−1
in the proof of Lemma 25.
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Figure 14. p and q are black vertices of BH0
n−1, and r and s are different colors of BH1

n−1
and BH2

n−1 in the proof of Lemma 25.

Figure 15. p and q are different colors of BH0
n−1, and r and s are the same color of

BH1
n−1 in the proof of Lemma 25.
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Figure 16. p and q are different colors of BH0
n−1, and r and s are the same color of

BH2
n−1 in the proof of Lemma 25.

Appendix 3. The proof of Lemma 26.

Proof. For any vertex set N ⊂ V (BH2) with |N | = 4, we denote N = {p, q, s, t}.
By symmetry of BHn, let {p, q} ⊂ V (BH0

n−1). Without loss of generality, let p
and q be different colors, say p is white vertex and q is black vertex. (If p and q
are with the same color, by Lemma 19 and Definition 2, BH0

n−1 includes a path
or an edge connecting p or q with the other end vertex in BH3

n−1 (respectively,
BH2

n−1) for Case 1 (respectively, Case 2).) By Lemmas 4 and 13, BH0
n−1 includes

2n − 2 internally disjoint paths Pjs connecting p and q, where 1 ≤ j ≤ 2n − 2.
Without loss of generality, we only need to consider that r is black vertex and s
is white vertex. (If r is white vertex and s is black vertex, or r and s are with
the same colors, by Lemma 19 and Definition 2, BHn includes a path or an edge
connecting r or s such that the other end vertices are in BH3

n−1 (respectively,
BH2

n−1) for Case 1 (respectively, Case 2).) By symmetry of BH1
n−1 and BH3

n−1,
we only need to consider two cases.

Case 1. r and s are in BH1
n−1 and BH2

n−1, respectively, say r ∈ V (BH1
n−1)

and s ∈ V (BH2
n−1). By Definition 2, we select one edge

(
x0j , x

1
j

)
, where x0j ∈

V (Pj), and x1j ∈ V (BH1
n−1) for 1 ≤ j ≤ 2n − 2. Let X1 =

{
x11, x

1
2, . . . , x

1
2n−2

}
.

By Lemmas 4 and 14, BH1
n−1 includes (r,X1)-paths Qjs, where Qj connects x1j

and r for 1 ≤ j ≤ 2n− 2. Pick one white vertex y1j ∈ Qj , where 1 ≤ j ≤ 2n− 2.

By Definition 2, y1j has a neighbor y2j ∈ V (BH2
n−1), where 1 ≤ j ≤ 2n − 2. Let

Y 2 =
{
y21, y

2
2, . . . , y

2
2n−2

}
. By Lemmas 4 and 14, BH2

n−1 includes (s, Y 2)-paths
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Rjs, where Rj connects y2j and s for 1 ≤ j ≤ 2n − 2. Let Tj = Pj ∪
(
x0j , x

1
j

)
∪

Qj ∪
(
y1j , y

2
j

)
∪Rj for 1 ≤ j ≤ 2n− 2.

By Lemma 19 and Definition 2, BHn includes three paths P̃ =
〈
p, p1, p0, p6, p3

〉
and R̃ =

〈
r, r0, r1, r2, r3, r4, r5

〉
, where {r0, p0, p6} ⊂ V (BH0

n−1), {p1, r1, r2} ⊂
V (BH1

n−1), {r3, r4} ⊂ V (BH2
n−1), and {p3, r5} ⊂ V (BH3

n−1). By Definition 2,
q (respectively, s) has a neighbor q3 (respectively, s3) in BH3

n−1. Since BH3
n−1

is connected, BH3
n−1 includes a tree T ′2n−1 connecting p3, q3, s3 and r5. Let

T2n−1 = T ′2n−1 ∪ P̃ ∪ (q3, q) ∪ (s3, s) ∪ R̃, (see Figure 17(a)).

Figure 17. The illustrations of Case l and Case 2 in the proof of Lemma 26.

Case 2. r and s are in BH1
n−1 and BH3

n−1, respectively, say r ∈ V (BH1
n−1)

and s ∈ V (BH3
n−1).

Pick one white vertex x0j ∈ V (Pj) and denote
(
x0j , y

0
j

)
∈ E(Pj) for 1 ≤ j ≤

2n− 2. By Definition 2, x0j (respectively, y0j ) has a neighbor x1j ∈ V (BH1
n−1) (re-

spectively, y3j ∈ V (BH3
n−1)), where 1 ≤ j ≤ 2n−2. Let X1 =

{
x11, x

1
2, . . . , x

1
2n−2

}
and Y 3 =

{
y31, y

3
2, . . . , y

3
2n−2

}
. By Lemmas 4 and 14, BH1

n−1 includes (r,X1)-
paths Qjs, where Qj connects x1j and r for 1 ≤ j ≤ 2n−2. By Lemmas 4 and 14,

BH3
n−1 includes (s, Y 3)-paths Rjs, where Rj connects y3j and s for 1 ≤ j ≤ 2n−2.

Let Tj = Pj ∪Qj ∪Rj ∪ (x0j , x
1
j ) ∪

(
y0j , y

3
j

)
for 1 ≤ j ≤ 2n− 2.

By Lemma 19 and Definition 2, BHn includes four paths P̃ =
〈
p, p1, p2, p3

〉
,

Q̃ =
〈
q, q1, q2, q3

〉
, R̃ =

〈
r, r0, r1, r2, r3

〉
, and S̃ =

〈
s, s0, s1, s2, s3

〉
, where

{
p1, p2,
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r1, r2
}
⊂V (BH1

n−1), {p3, q3, r3, s3}⊂V (BH2
n−1), and

{
q1, q2, s1, s2

}
⊂V (BH3

n−1).
Since BH2

n−1 is connected, BH2
n−1 includes a tree T ′2n−1 connecting p3, q3, r3 and

s3. Let T2n−1 = T ′2n−1 ∪ P̃ ∪ Q̃ ∪ S̃ ∪ R̃, (see Figure 17(b)).
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