Discussiones Mathematicae
Graph Theory 44 (2024) 1079-1106
https://doi.org/10.7151 /dmgt.2490

THE GENERALIZED 4-CONNECTIVITY OF BALANCED
HYPERCUBES

DoONGQIN CHENG

Department of Mathematics
College of Information Science and Technology
Jinan University, Guangzhou, 510632, China

e-mail: dqchengl168@jnu.edu.cn

Abstract

The balanced hypercube is a kind of highly symmetrical network and
possesses many good properties. Generalized connectivity is a new mea-
surement of interconnection networks’ fault tolerance. The internally dis-
joint N-trees are edge-disjoint trees but with intersecting vertex set N. Let
k() be the maximum number of internally disjoint N-trees and the gener-
alized k-connectivity of G be k;(G) = min{x(N) | N C V(G) and |N| = k}.
In this paper, we study the n-dimensional balanced hypercube BH, and
demonstrate that ky(BH,) =2n —1 for n > 1.
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1. INTRODUCTION

The parallel and distributed system plays a significant role in social networks,
cloud computing, Big Data, and so on. Interconnection network as the topological
structure of parallel and distributed system has obtained widely studied and ap-
plied. An interconnection network (network briefly) is modeled by a graph, where
the processors and communication links are corresponding to vertices and edges,
respectively. The hypercube [16] is one of the best-known networks. Compared
with the hypercube, the balanced hypercube not only keeps many good proper-
ties like the hypercube but also has other better properties than the hypercube,
including the smaller diameter and that each vertex has a paired vertex which
has the same neighborhood [19], so each processor has an alternative processor
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when processes the same adjacent relationship tasks. Balanced hypercube’s other
properties have received extensive research [3,4,8,13-15,17-23].

Connectivity is a traditional way to measure a network’s fault tolerance. The
connectivity of G is kK(G) = min{|N| | N C V(G) and G — N is disconnected or
trivial}. For N C V(G), the N-tree means that the tree connects each vertex of
N. The n internally disjoint N-trees T;s mean that T;s are pairwise edge-disjoint
but with intersecting vertex set N, where 1 < i < n. The N-trees are important
in information transportation in terms of parallel routing design for large-scale
networks. The more applications of N-trees in computer communication networks
are described in [5]. Let K(N) = max{l | T1, T, ..., T; are internally disjoint N-
trees}. The generalized k-connectivity of G is ki(G) = min{x(N) | N C V(G)
and |[N| = k} [24]. Note that it is equal to connectivity of G when k is 2
[24]. Generalized connectivity [2] uses internally disjoint trees to connect more
vertices, which is more important in the application of multi-party computation
or communication [17]. So it is a generalization method to determine the fault
tolerance of distributed networks.

It is NP-complete to compute ki(G) [6]. Just a few networks’ general-
ized 4-connectivity were determined, including hypercube [10], hierarchical cu-
bic networks [25], exchanged hypercubes [24], divide-and-swap cube [26], pan-
cake graphs [27], (n, k)-star networks [9], crossed cubes [11], and folded hyper-
cubes [12]. For the n-dimensional balanced hypercube BH,, it was shown that
k3(BHy) =2n — 1 when n > 1 [17]. In our paper, k4(BH,) = 2n — 1 is further
obtained, where n > 1.

This paper includes four sections. The preliminaries and main results are in
the next two sections, respectively, and the conclusion is in last section.

2. PRELIMINARIES

In a graph G = (V(G), E(Q)), if (u,v) € E(G) is an edge, then u and v are
each other’s neighbors. The neighborhood of v € V(G) is Ng(u) = {v | (u,v) €
E(G),v € V(G)} and the degree of u € V(Q) is dg(u) = |[{(u,v) | v € V(G)}|.
Denote 6(G) as the minimum of all dg(u) for u € V(G). Denote Plz,y] =
(xo,x1,x2,...,2) as a path from x to y, where 29 = z, x; =y, x;8 (0 < i <) are
pairwise different, [ is the path’s length, and the path is [-path. If x; = x¢ and
[ > 3, Px,y] becomes a cycle. For two distinct vertices a and ¢, the internally
disjoint (a,c)-paths are vertex-disjoint paths except for the two common end
vertices a and c. For a vertex a and a vertex set B such that a ¢ B, the
(a, B)-paths are vertex-disjoint paths connecting a and each vertex of B except
for the only common end vertex a. For two vertex sets A = {aj,as,...,a;} and
B = {by1,by,..., by}, the paired (A, B)-paths are k vertex-disjoint paths P|a;, b;]s,
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where 1 < i < k. The other terminology and notations not given here can be
found in [1]. The BH, has two methods to define. (Throughout this paper,
among the labels of vertices of BH,,, the “+” and “+” are by modulo 4 operation.
We omit “(mod) 4” for simplicity.)

Definition 1 [19]. BH,, = (V(BH,,), E(BH,)), where V(BH,,) = V.UV, where

Ve = {(vo,v1,...,vn—1) | vi € {0,1,2,3} for 1 < i < n—1,v99 € {0,2}} and

Vo = {(vo,v1,...,0n-1) | v; € {0,1,2,3} for 1 < i < n—1,v € {1,3}}, and

E(BH,) = Ey U E;, where Ey = {((vo,v1,...0p-1), (vo £ 1,v1,...,v5-1))} and

Ei = {((Uo,vl, ey Ui—1504, V415« - ’Unfl), (UO + 1,?}1, ey Ui—1,74 + (—1)”0, Vi+1,
SUp-1)) |1 <i<n-—1}

BH, is a bipartite graph, and |V (BH,)| = 22". Let V. be the set of white
vertices and V{ the set of black vertices. Let Ey be the set of O-dimensional edges
and F; the set of i-dimensional edges for 1 < ¢ <n — 1. BH; is a 4-cycle, two
drawing methods of BH are depicted in Figure 1.

0.0) 1R)

(1.0) ¢ D (2,1) (1.0) (0.0) (1. 1) (0.1)
[ £ e

(2 0) (3,1)

(1,3) (0.2)
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» (1.2)

(b)
Figure 1. Two drawing methods of BHs.

Another method to define BH,, is by a recursive definition.

Definition 2 [19]. The recursive definition of BH, is as follows.
(1) BH; is a 4-cycle (0,1,2,3,0).

(2) For n > 2, V(BH,) = U;_, V(BH!_,), where BH! | =
{0,1,2,3}. Every vertex (vo,v1,...,vn—1,i) € V(BH!_ ) (i €
two extra neighbors:

(2.1) (vo £ 1,v1,...,0n 2,0+ 1) € V(BH:) if vy is even.

(2.2) (vo £ 1,v1,...,0n 9,0 —1) € V(BH:}) if vg is odd.

n
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The BH! ;s (0 < i < 3) are called sub-balanced hypercubes. In BH,,, two
vertices with labels (vo—1,v1,...,v,—1) and (vg+1,v1,...,v,—1) are called paired
vertices. By Definition 2, each vertex of BH!. | (0 < i < 3) has two neighbors
in BH;Ltll or BHff_ll, and these two neighbors are paired vertices. Two edges
e = (r,s) and € = (', ') are called paired edges if r and 7’ (respectively, s and
s') are paired vertices. Two cycles (ri,79,...,r) and (r},r),...,7) are called
paired cycles if r; and r; are paired vertices, where 1 < ¢ < [. Imaging two paired
vertices as one vertex, and the four edges between the two paired vertices as one
edge, we have the following graph BH,, which is a contraction of BH,,.

Definition 3. Let BH,, = (V(Ef{/n), E(Ef:f/n)) be a contraction of BH,,, where
V(Ejf/n) ={V |V ={v,v'},v and v’ are paired vertices of BH,,}, and E(El\ﬁl/n) =
{{U, V)| U ={u,u'},V ={v,v'} € V(Eff/n) such that (u, v), (u,v"), (v, v), (u/,v")
€ E(BH,)}. BH, is an edge, denoted by (e,0). Forn > 2, if V € V(El\ﬁl/n)
is a white vertex, it is denoted by (e,v1,v2,...,v,—1), otherwise it is denoted
by (o,v1,v2,...,v,-1), where e € {0,2}, o € {1,3}, and v; € {0,1,2,3} for
1<i<n-1.

The graphs of EH/Q and gH:, are shown in Figure 2.

(0,0) (.0) (o) (e

€3 ©.3) @2 @2
B,

(0,0,0) (¢,0,0) (0,1,0) (e,1,0) (0.0.1) (€,0.1) (0.L1) (e,L1)

——

& P

(e.3,0)0/3,0) (e,2,0)\(9,2,0) (e.3)\1)/(0.3.1) (e.2\1)/(0.2.1)

(0,0.3)Y(e)\0.3) (0.1.3)/(e\l.3) (0.0/2)\(e,0,2) (0,1{20\(e.1,2)

—s

(@3.3) (0.3.3) (2.2.3) (0.2.3) (€.3.2)(0.3.2) (.2.2)(0,2,2)
BH

Figure 2. .E\H_; and E\HE

Lemma 4 [19]. BH,, is 2n-reqular and x(BH,) = 2n, where n > 1.
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Lemma 5 [17]. k3(BH,) = 2n — 1, where n > 1.

By Definition 3 and Lemma 4, we directly get the following lemma.

Lemma 6. BH,, is n-regular, and K(E\HZ) =n, where n > 1.

Lemma 7 [19]. BH,, is vertexz-transitive, where n > 1.

Lemma 8 [28]. BH,, is edge-transitive, where n > 1.

Lemma 9 [19]. In BH,, any two paired vertices have the same neighborhood.

Lemma 10 [3|. In BH,, any edge (x,y) is included in 2n — 2 8-cycles C’gs such
that Cis are edge-disjoint except (z,y) and ’E(C’g) NE(BH!_ ;)| = 1, where
1<j<2n-2andiec{0,1,2,3}.

Since ‘NBHiil(u)’ = 2n — 2 for u € V(BH! ), where i € {0,1,2,3}, by
Lemmas 7, 8 and 10, we directly get the following lemma.

Lemma 11. In BH,, any vertez u is contained in 2n — 2 8-cycles Cgs such that
Cis are edge-disjoint and }E(Cg) N E(BH};L_I)} =1, where 1 < j <2n—2 and
i€{0,1,2,3}.

Lemma 12 [7]. If G includes (a,b) with dg(a) = dg(b) = 0(G), then ki(G) <
(G) — 1, where 3 <k < |V(G)].

Lemma 13 [1]. If k(G) = k, for a,b € V(G), then G includes k internally
disjoint paths between a and b.

Lemma 14 [1]. If k(G) =k, for a € V(G) and B C V(G)\ {a} with |B| = k,
then G includes (a, B)-paths.

Lemma 15 [1]. If k(G) =k, for AC V(G), B C V(G) with |A| = |B| = k and
AN B =0, then G includes paired (A, B)-paths.

3. MAIN RESULTS

Lemma 16. Let P = {p,p'} and R = {r,r'} be any two vertices of BH,, with
(P,R) ¢ E(E\I_{;) Then any path connecting P and R ofEH/n is corresponding
to two internally disjoint N-trees of BH,,, and two paired vertex-disjoint paths
Plp,r] and P[p',r'], and P[p,r'] and P[p',r] of BH,,, where N = {p,p’,r,r'} and
n > 2.
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Proof. Let (P,Q1,Q2,...,Q;, R) be any path in gﬁ;, where Q; = {gi,q}} for
1 < i < I. Then ¢ and q; are paired vertices for 1 < ¢ < [. Let T3 =
(p,a1,q2,-- - q,m) U (q1,0") U (qr,7") and To = (', q4,43,.--,q,7") U (p,q)) U
(q,7). Then Ty and T3 are two internally disjoint N-trees of BH,,, where N =
{pvp,a T T,}' ClearIYa P[pa T] = <pa q1,q2, . .. 7Ql7’r> and P[p,7rl] = <p/7 Qia C.éa s a@da
r') are two vertex-disjoint paths, and Plp,r’| = [p, ¢}, 5, ..., q}, '] and Pp',r| =
0',q1,q2,-..,q,r) are two vertex-disjoint paths. [ ]

Lemma 17. In BH,, any edge e = (r,s) and its paired edge ¢’ = (r',s') are
included in a 4-cycle (r,s,r',s',r), where n > 2.

Proof. By Lemma 8, we only need to consider e = (r, s), where r = (rg,r1,...,
rn-1), and s = (ro + 1,71,...,7—1). Let ¢’ = (+',§), where ' = (rg + 2,711,...,
rn—1) and 8" = (ro + 3,71, ...,7p—1). Then (r,s,7’,s',r) is a 4-cycle. [ ]

Lemma 18. In BH, with n > 2, any edge e and its paired edge € are included
in two paired 8-cycles, denoted by R = (ro,r1,72,73,74,75,76,77,70) and R’ =
(rh, mh,rh b i vk re il respectively, where |[E(R) N E(BH! ;)| = |[E(R')N
E(BH: )| = 1 fori € {0,1,2,3}, and (TjsTj+1, 75,7541, 75) 18 a 4-cycle for
0 <j <7 (The subscript “j 4+ 17 is with operation modulo 8.).

Proof. By Lemma 10, e is included in an 8-cycle R satisfying that |E(R) N
E(BH! )| =1foriec{0,1,2,3}. Let E(R)NE(BH! ;) =e; fori € {0,1,2,3},
where ey = (ro,71),e1 = (ro,73),e2 = (r4,75),e3 = (r6,77). By Lemma 17,
each edge (rj,7j+1) has a paired edge (r},7},;), and they are included in a
d-cycle (rj,7j11,75, 75 4,7;), where j € {0,2,4,6}. 7 and 7} are paired ver-
tices, where 0 < k < 7. By Lemma 9, r; and 7, have the same neighbor-
hood.  So (rj,rj+1,75,75,1,75) is a 4d-cycle, where j € {1,3,5,7}. Let R’ =
(ros s rhyrh kg b rl). Then € € E(R'). R and R’ are paired 8-cycles,

(see Figure 3). Hence, the lemma is true. ]

Lemma 19. In BH,, with n > 2, for any vertex a and vertex set B (a ¢ B) with
|B| =2n—2 of some BH._, (i € {0,1,2,3}), there exist (a, B)-paths in BH! .
Let d € V(BH!_,) be such that d # a. Then BH! _, includes at least one edge
(d,d") such that (d,d") is not in (a, B)-paths.

Proof. By Lemmas 4 and 14, there are (a, B)-paths in BH! ;. By Definition 2,
d has 2n — 2 neighbors d;s in BH!,_;, where 1 < j < 2n—2. If all the (d,d;)s are
in (a, B)-paths, then the (a, B)-paths have two common vertices a and d, which is
a contradiction. Hence, BH! _; includes at least one edge (d,d’) such that (d, d’)
is not in (a, B)-paths. |
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BH?® BH?}

n-1 n-1

Figure 3. Two paired 8-cycles containing e and €', respectively.

Lemma 20. In BH, with n > 2, for any two different vertices a and ¢ (a
and c are not paired vertices) of some BH: | (i € {0,1,2,3}), there exist 2n — 2
internally disjoint (a, c)-paths Pis (1 < k < 2n—2) in BH._,. Letd € V(BH!_,)
be such that d ¢ {a,c}. Then BH! | includes at least one edge (d,d') such that
(d,d") is not in \Ji",° Py.

Proof. By Lemmas 4 and 13, there are 2n — 2 internally disjoint (a, ¢)-paths
Pis (1 <k <2n—2)in BH! ;. By Definition 2, d has 2n — 2 neighbors d;s in
BH}_,, where 1 < j < 2n — 2. If all the (d, d;)s are in Uiﬁf Py, then Uiif P
have three common vertices a, ¢, and d, which is a contradiction. Hence, B}Eﬂi_1
includes at least one edge (d,d’) such that (d,d’) is not in | J2"? Py. ]

Lemma 21. Let N C V(BH,,) be such that |N NV (BH,)| =4 and N contains
paired vertices. Then there are 2n — 1 internally disjoint N -trees in BH,,, where
n > 2.

Proof. Denote N = {p,q,r,s}. We discuss two cases.

Case 1. Two vertices of N are paired vertices, say ¢ and p are paired vertices.
By Lemma 5, BH,, includes 2n—1 internally disjoint N’-trees Tj{s (1<j<2n-1),
where N’ = {p,r, s}. Let p; be the neighbor of p in 7} for 1 < j <2n — 1. Then
T; = T]’ U (g, p;) is N-tree and Tjs are internally disjoint, where 1 < j < 2n — 1.

Case 2. Four vertices of N are two different paired vertices, say p, q are paired
vertices and r, s are paired vertices.
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Let P = {p,q} and R = {r,s}. By Definition 3, Lemmas 6 and 13, BH,
includes n internally disjoint paths connecting P and R. By Lemma 16, BH,
includes 2n internally disjoint N-trees. [ |

Lemma 22. ky(BH;) =

Proof. By Lemmas 4 and 12, k4(BH;) < 1. By Definition 2, BH; is a 4-cycle,
so BH1 includes a path including its four vertices. Hence, the lemma holds. m

Lemma 23. k4(BH3) = 3.
Proof. The proof is in Appendix 1. [ |

Lemma 24. Let N C V(BH,,) be such that |N NV (BH,)| =4 and N does not
contain paired vertices. If each sub-balanced hypercube has one vertex of N, then
there are 2n — 1 internally disjoint N -trees in BHy,, where n > 3.

Proof. Without loss of generality, let N = {p,q,r,s} and p € V(BH?_,),
q € V(BH?_,), r € V(BH?_,), s € V(BH}_;). By Lemma 11, w is in an
8-cycle <w7 w? wl, w?, w?, wh wd, wb w7> for w € {p,q,r, s} where (w”,w") €
E(BH? ), (w',w ) 6E(BH1 D), (w3, w?) € E(BH? ), (w®, w") 6E(BH3 -
Since |V/(BH!_,)| = 221 we have 22( D=1 black vertices and 22("~D~1 white
vertices in BH ;| for i € {0 1,2,3} and n > 3. Not considering the vertices of
8-cycles that contain p, ¢, 7, s respectively in BH! _,, since 22(n=1)-1_4 > 9p—4
for n > 3 by Lemma 11, we can pick another 2n — 4 vertex-disjoint 8-cycles
(xl,a?, a}, 23, 2}, x} x?m?,x ) in BHn, where (z7,29) € E(BH?_,), (z},27) €
E(BH1 1) (x ] ) € E(BH?_,),(«?,2%) € E(BH?_,) for 1 <i < 2n —4. We
deal with four cases.

Case 1. Each vertex of {p, ¢, , s} is in different C'ss. Without loss of general-

ity, letp7:p, q5:q,r =rand st =s. Let X0 = {qo 7“0 s0 x?,xg,...,a:gn75},

X! = {p @, xt a3, ... :UQn 5} X? = {p4 q*, st xl,x%,...,xgn_5}andX3 =
{p®,r0, b a:fl",xg,...,a?gnfg)} By Lemmas 4 and 14, BH? , includes (p, X°)-
paths QO,RO,SO,XIO,XS,...,Xgn_5, BH] | includes (s, X!)-paths P!, Q!, R,
Xi, X3, ..., X3, s, BH2_, includes (r, X?)- paths P%Q?% 8% X2 X3,..., X3, -,
and BH?_, includes (q, XS) paths P3, R3,S3 X3 X3,... X3 . where Q° con-
nects p and ¢°, R° connects p and ro, SO connects p and s°, XZO connects p
and x?, P! connects s and p?, Q" connects s and ¢, R' connects s and 72, XZ-1
connects s and :6'2 p? connects r and p*, Q2 connects r and ¢*, S2 connects
r and s , X 2 connects r and :z: , P? connects ¢ and p%, R3 connects g and 7%

53 connects q and s%, and X3 connects q and x , where 1 < i < 2n — 5. Let
T, = XOUXIUXQUX3U<JU :c x6a:7$095 x>for1<z<2n—5 Ton g =
SOuStusiuy <s s°,58, 57, 50 s> Tzn 3—R0UR1UR3 <r rT o0l 2 7">
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Figure 4. The illustration of Case 1 in the proof of Lemma 24.

Top—o = Q UuQ'uQ?u <q0,q1,q2,q3,q4,q>, and Ty,_; = P'UP2U P3 U
(p,p% p° p* p*, p*), (see Figure 4).
Case 2. Two vertices of {p, q,r, s} are in the same Cg.

Case 2.1. Two vertices of {p,q,r, s}, say ¢ and r, are in two consecutive
sub-balanced hypercubes.

Without loss of generality, let p” = p, ¢° = q,
are in the same 8-cycle C' = <q7, @, ¢ rq q

q —Tands =g, i.e.,qandr

.q%.q By Lemma 18, C has a
4

paired 8-cycle C’. Denote C' = <y7,y0,y 2y vty by >, where (y7,1°) €
E(BH,_,), (y1>y2) € E(BHl ) (v*,y") € E(BH}_,), (y57y6) € E(BH3 1)
and<q7y STHNEN q> (@', 1q0> <q,y276y,$,q1> (9% 02 %), (r,

vyl g, 7"> <q yo,yt, qq> < y5,9°,4% q), (d%,y",45, 4", q6>are4cycles In
BH? |, BH} o1 and BH? 1 the discussions are similar to Case 1 except that we
need to use y*s instead of r¥s for k € {0,1,2,5,6,7} and use Y7s instead of R’s
for j € {0,1,3} (Y3 = (q,y )) In BH2_,, let X2 {pt oyt st ot 2d, 2l o)
By Lemmas 4 and 14, BH _, includes (r, X?)-paths P2 Y2, 52 JXE X3
where P? connects 7 and p4 Y2 = (r,y*), S? connects r and s*, and X? connects
randaz for1 <i<2n—>5. Let T; = XOUXlLJX2UX3 <a: le,x?,x x :U :C4>
for1 <i<2n-—5,To,_4 = SOU52U5’3 <s s0, 37 36 5P s 4, Tgn 3 —YOUY1
(royt v vyt 9% 07,00, ), Tono = QO U Ql U <T,y a4 4% 4", %0yt ) U
(¢',¢%), and Ty, 1 = PLUP?UP3U <p,p6,p5,p4,p3,p2>, (see Figure 5(a)).
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BH,
(b)

Figure 5. The illustration of Case 2.1 and Case 2.2 in the proof of Lemma 24.

Case 2.2. Two vertices of {p,q,r, s}, say ¢ and s, are in two opposite sub-
balanced hypercubes.
Without loss of generality, let p’
and s are in the 8-cycle C' = <s7 % s, s
0

7q =rand st = s, ie, ¢

, s7). By Lemma 18, C has a
paired 8-cycle C’. Denote C" = (y", 1%, y*, ,yg,y4,y5,y6,y7>, where (y7,1°) €
E(BHY_,), (y',4?) € E(BHL,), (4*,4") € BBHLy). (7.4) € B(BIT ),
and<y78,s,y°,y>,<y,ss,y1y°>,< 52, ><y 53, 5% y%,y%), (0P,
54,33,y4,y3> <q, syt q> <q,y y°, s ,q> <s ,y y7 8 s7> are 4-cycles. In
BH? | ,BH! |, BH? ., the proofs of this case are 81mllar to Case 2.1, except that
Y?2is nowapath connecting r and y*. Let X3 = {p® ¢%, 45 2%, 25, ... ,m2n_5}. By
Lemma 14, BH3_, contams (g, X3)-paths P3,Q3,Y3,X3,X2, .., X3 o where
P3 connects g and p®, Q3 connects ¢ and ¢%, Y? = (q,9°), X} connects q and

6for1<z<2n—5 Let T; = XOUXlLJXZUX3 <:L' :czl,x?,x x az x4>
for 1 <i<2n—2>5, Ty, 4 = SOUSQU <s,s ,57, 6,q, >, Topn—3 = YOUY1
Y2yt v3, 2% v 00y, 45, ), Ton—2 = QOUQMUQPU(%, ¢, % ¢", %, ¢°, ¢, 1),
Top_1 =P UP?UP3U <p,p6,p5,p4,p3,p2>, (see Figure 5(b)).

Case 3. Three vertices of {p, q,r, s} are in the same Cs. Without loss of gen-
erality, let g,r, s be in the same 8-cycle C, i.e., C = <q7,30,5,r2,r, q4,q,q6,q7>.
By Lemma 18, C has a paired 8-cycle C’ = <y7, 0yt vyl yt P, y6,y7>, where
(v 9°) € E(BH0 1) (y y) € E(BH1 1), (v y') € E(BH2 s (4°,9°) €
E(BH3 1), and <q y y s%,q >, < ,y Y ,s,so>, <s,y ,y , T ,s>, <r2,y3,y2,
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ror?), (vt yt ), (a vt vt dtha), (4, y8, 97, 4% q), (a” y8y7 q q") are 4-
cycles. Since |V(BH! ;)| = 22(*=1 with 22(*=1D=1 black vertices and 22(~1)~1
white vertices and 22("~1D=1 > 2n — 1 for i € {0,1,2,3} and n > 3, by Lemma
11, we can find another 8-cycle <z7,20,21 22 23,24, 25,26 2 > in BH,,, where
(27,2%) € E(BH? ), (#',2%) € E(BH} ), (2* )EE(BH 1), and (2°,2%) €
E(BH3 1)- In each BH’ _ysforie {O 2,3}, the dlscussmns are similar to Case
2.1 except that we only need to use z"s instead of s*s for k € {0, 3 4 5,6,7} and
use Z7s instead of S7s for j € {0,2,3}. In BH} |, let X' = {p?, 42, 22 x%,x%,...,
23, 5}. By Lemmas 4 and 14, BH1 1 1ncludes (s, X1)-paths P1 Y1 Z1 Xl,...,
X2ln—57 where P! connects s and p2, Y! = (s,94%), Z! connects s and 2> X1
connects s and a;2 for 1 < i < 2n—5. Let T XZO U Xi1 U XZ»2 U XZ3
<xl,xl,:z:?,:nz7 ZL'? l’? :L‘Z> for 1 < i < 2n — 5, Tgn 4 Z0 UZ1 UuZziuz3du
<z221202 28,25 z>T2n_3fY0UY3 <sy TURTERTE >T2n2—50
<50,5,y ,T>U<y y3, q>, and To, 1 :P1UP2UP3 <p,p ,p .pp3p >, (see
Figure 6(a)).

BH

BHrlwl BH!?I n-1

BH®

n-1

Figure 6. The illustration of Case 3 and Case 4 in the proof of Lemma 24.

Case 4. Four vertices of {p, q,r, s} are in the same Cg. Denote C' = <p, s0, s,

rl,r, q2,q,p3,p>. By Lemma 18, C has a paired cycle C’. Denote C’ = <y7,y0,y1,
v2 03yt 0,90, y7), where (v, y ) € BE(BH,_ D, (v',y?) EE(BHl D, WPyt €
E(BH2 1) (y5,y6) € E(BH;_,) , and (p,9°, y s ,p> (%", y s 30>, (5,97,
ytrts), (et oyt ey, (gt y .y, (a.vh 90, @), (0% 9% 45, 4,0%), (p,
y6,y7,p3,p> are 4-cycles. Let X0 = {so,yo,x?,xg...,xgn_4}, X1 = {rl,yZ,x%,
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2 2 2 _ g2 .4 4 4 4 3 _ {3 ,6 .6 .6
Xy Xy gty X° = {¢%,y%, 21,25, ..., 25, 4} and X° = {p°,y° a7, 23,...,

25, 4} By Lemmas 4 and 14, BH? | includes (p, X%)-paths S°, Y° X0 X8 ...,
X9 4, BH! | includes (s, X1)-paths RY, Y1, X} X1 ... X1, BH2_ | includes
Q*Y? X2 X2,...,X2 ,, and BH? | includes (q, X3)-paths P3 Y3 X3 X3
o, X3, 4, where SY = (p, s°), YO = (p,y?), X? connects p and 2¥, R! = (s,71),
Y1 = (s,4%), X} connects s and 2?2, Q* = (r,¢%), Y2 = (r,y*), X? connects r
and z}, P? = (¢,p%), Y® = (¢,9y%), X? connects ¢ and z¢, where 1 <1i < 2n — 4.
Let T; = XZ-0 U XZ-1 U XZ-2 U Xf’ U <x?,x%,x?,mz,mf,$?,x§> for 1 <i < 2n — 4,
Ton—3 = <p’ 807 yl, rla T, q2, q> U (807 S)a Ton—2 = <Qa y67pa yoa S, y25 7">, and To,—1 =
(0, %, q,y" v, r,s) U (y*, 1), (see Figure 6(b)). u

Lemma 25. Let N C V(BH,,) be such that |N NV (BH,)| =4 and N does not
contain paired vertices. If there exist two sub-balanced hypercubes such that each
has two vertices of N, then there are 2n — 1 internally disjoint N -trees in BH,,,
where n > 3.

Proof. Denote N = {p,q,r,s}. Without loss of generality, let NNV (BH?_,) =
{p,q}. By symmetry of BH! ; and BH3 , we only need to consider that both
r and s are in BH%_1 or BH%_l.

Let p and ¢ be different color vertices, and r and s be different colors. Without
loss of generality, let p and r be black vertices and ¢ and s be white vertices. If p
and ¢ are the same color (since BH,, is a bipartite graph), we only need to consider
that p and ¢ are black vertices (see Figure 12-14), or p and q are different colors
but 7 and s are the same color (see Figure 15-16), the proofs are similar. To
save space, we only show the graphs in the Appendix 2.) By Lemmas 4 and 13,
BHg_1 includes 2n — 2 internally disjoint paths P;s connecting p and ¢, where
1 < i < 2n — 2. By Definition 2, p has a neighbor p* € V(BH?_,), and ¢ has
a neighbor ¢! € V(BH! ;). By Lemma 19 and Definition 2, BH,, includes a
path Q = (¢,¢% ¢% ¢*,¢*), where ¢° € V(BH}_)), {¢*.¢*} C V(BHY_,) and
qt € V(BH?_,).

Case 1. {r,s} C V(BH}_;). By Lemmas 4 and 13, BH! | includes 2n — 2
internally disjoint paths R;s connecting r and s, where 1 <1 < 2n—2. (If (p,q) €
E(BH?_)),let Poy,_3 = (p,q). If (r,s) € E(BH} _,), let Ra,_2 = (r,5).) By Def-
inition 2, r has a neighbor " € V(BH?_,), and s has a neighbor s> € V(BH?2_,).
By Lemma 19 and Definition 2, BH,, includes a path R= <r, 0 rt r?, r3>, where
r € V(BH?_,), {rl,r*} c V(BH}_,), and 3 € V(BH2_,). Since BH? , is
connected, BH?_; includes a path R! connecting r” and ¢. Let v be the first
intersection vertex of R! and UfZIQ P;. Since BH}_ is connected, BH} ;| in-
cludes a path Q' connecting ¢' and r. Let u be the first intersection vertex of
Q' and |J2"{* R;. Suppose that v € V(Pa,_2) and u € V(Ra,_3). Let R[r",v]

be the sub-path of R! and Q[q',u] be the sub-path of Q. Pick black vertex
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m? € V(Pj) and white vertex yjl- € V(Rj) for 1 < j < 2n — 4. By Definition 2,
9 has a neighbor 23 € V(BH;_,) and y; has a neighbor y7 € V(BH;_,) for
1< j<2n—4.

By Lemma 17, BH,, includes a 4-cycle <b3,b2,c3,c2,b3>, where {b% c?} C
V(BH2_,) and {b3,c3} C V(BH?_,). Pick another 2n — 4 (a2, a?)s, where a? €

5%
V(BH3_,) and a? € V(BH2_|) for 1 <j<2n—4. Let X3 = {p3,¢* 23,23,...,
w3, 4 b, A3 =1{b3,c% a3, a3, ... a3, 4}, Y2 ={s% 3,y u3, ... y5, 4}, and A% =

{b% % a2,a3,...,a3,_,}. By Lemmas 4 and 15, BH?_; includes (X3, A3)-paths
P,Q,Q1,Q2,...,Q2n—4 and BH?_ | includes (A% Y?)-paths R,S,Si,Ss,...,

Son_4, where P connects p* and b3, Q) connects ¢* and ¢3, (); connects x? and ag?,

R connects b? and s?, S connects ¢® and 73, and S; connects a? and yJQ-, 1<5<

2n—4. Let Tj; = PjU(x(])-,x?)UQjU(a?,ajz)USjU(yJQ-,y})URj for1 <j<2n-—4,
Ton—3 = Pan—3U (¢,¢") UQlg", u] U Rap 3, Ton 2 = Pon_a U R, 7 U (r7,7) U
Ron_o2,and To, 1 = PUQURUSUQU (p,p*) U <b3, b2, 03,02> URU (s,s?), (see

Figure 7(a)).

BH, BH, BH, ,
CPY _ 0
3 T2 P!
q ® O
0 TC[\ r r ﬂ s /4
P X, yl_RJ !
J o . IR 203
p P2U—3 5 q Ly : 2P 271 R2nf.
A\ >< N
P2n—2 7 1 R ¥ (\yl 7’2 ?}71
” g 2n-2 J 2n-2
0 S i i b \”
7 g ) 4 3 3 5 s
X a; a b 9 p r rrl/, 5
4 J T yj Or -2
3 P b3 WZ 2n-1 Q = 1n-
p > b s 7
o N S e s
s
BH:?—I BHn Ban—l BH;?—l BHm BHmz—l
(a) (b)

Figure 7. The illustrations of Case 1 and Case 2 in the proof of Lemma 25.
Case 2. {r,s} C V(BH?2_;). By Lemmas 4 and 13, BH2_, includes 2n — 2
internally disjoint paths @;s connecting r and s, where 1 < ¢ < 2n — 2. (If
(p,q) € E(BH?_,), let Pop_o = (p,q). If (r,s) € E(BH2_,), let Qop—3 = (1, 5).)
By Lemma 19 and Definition 2, BH,, includes a path R = <r,r1,r5,r4,r3>,
an edge (r,7?), and an edge (s,s%), where {r',r?} Cc V(BH! ), {r*,%} C

V(BH2_,), and {r3,s*} C V(BH3_;). Select white vertex x? e V(P;) (re-



1092 D. CHENG

spectively, black vertex y? € V(Qy)), by Definition 2, :):9 (respectively, y7) has
a neighbor le € V(BH]_,) (respectively, y}. € V(BH]}_,)), where 1 < j <
2n — 3 (respectively, 1 < k < 2n — 2). Let (y3,_35,93,3) = (r,r?). Let
X' = {z}, 23, .., %34, 3,_3,0'} and V! = {y1ay2w--»@/%n—4a7"279%n—2}- By
Lemmas 4 and 15, BH1 _, includes paired (X!, Y!)-paths Ry, Ry, ..., Rop_o,
where R; connects $j and yJ for 1 < j < 2n —4, Ry,_3 connects z3, 5 and 72,
and Ra,_o connects ¢! and y%n_Q. Since BH 3 _1 s connected BH _; includes a
tree T,_, connecting ¢*,p®, 73 and s3. Let T; = P; U (29 T3, j) UR; U (yj,yj) UQj
for1 <j<2n-—4, T, 3= Py, _3U (xgn—37$%n—3) U Rop_3 U (7“2,7‘) U Q2n—3,
Top—2 = Pan—2U (¢,¢") U Ran—2 U (Y32, Y3p_2) U Q2n—2, and Top1 = T3, 1 U
QU (p*,p) URU (5%, 5), (see Figure 7(b)). [ ]

Lemma 26. Let N C V(BH,,) be such that |N NV (BH,)| =4 and N does not
contain paired vertices. If there exist three sub-balanced hypercubes having 2, 1,
and 1 vertices of N, respectively, then there are 2n— 1 internally disjoint N -trees
i BH,, where n > 3.

Proof. The proof is in Appendix 3. [ |
Lemma 27. Let N C V(BH,,) be such that |N NV (BH,)| =4 and N does not

contain paired vertices. If there exist two sub-balanced hypercubes having 3 and
1 wvertices of N, respectively, then there are 2n — 1 internally disjoint N -trees in
BH,,, where n > 3.

Proof. Denote N={p, q,r, s}. Without loss of generality, let {p, q,7} CV (BH?_),),
p,r be black vertices, and ¢ be white vertex. (If p,r are white vertices and ¢ is
black vertex, or p, q,r are the same color, the discussions are similar except that
we need to use Lemma 19 and Definition 2 to find two paths connecting p or ¢
or r such that the other end vertices of the two paths connecting p or r are in
BH _; and the other end vertices of the two paths connecting ¢ are in BH _, for
Case 1, and find two neighbors of p or 7 in BH} | and find two paths connecting
with ¢ and the other end vertices in BH! ; for Case 2.) By Definition 2, p has
two neighbors p3, p* in BH3 |, r has two nelghbors r3,r* in BH3 |, and ¢ has
two neighbors ¢',¢* in BH} /1 _4. By Lemmas 4 and 5, BH?_; includes 2n — 3
internally disjoint N-trees T]’s, where 1 < 5 < 2n — 3. Slnce BH, is symmetric,
we deal with the following Case 1 and Case 2.

Casel. s € V(BH} ). Pick one white Vertex :cq eV(T})for 1 <j<2n-3.
By Definition 2, 330 has a neighbor :U € V(BH 1), where 1 < 57 < 2n — 3. Let
Xt ={zt 2 ... 2l .} By Lemmas 4 and 14 BH]}_, includes (s X1)-paths
Rjs, where R; connects s and .CEl for1 <j<2n-3. Let T; = T;U U(a? T, ])UR for
1 <5 <2n—3. By Lemma 19 and Definition 2, BH, 1ncludes two paths Q =
<q,q1,q3,q5> and Qy = <q,q2,q4,q6>, where {q¢',¢% ¢3,¢*} € V(BH!_,) and
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{¢°,¢°} C V(BH?_)). By Lemma 17 and Definition 2, BH,, includes two vertex-
disjoint 4-cycles <c c? d3 ¢ > and <a ,a2,b3,b2,a3>, where {a3,0%,¢3,d3} C
V(BH2_,) and {a? b? c? d?}cV(BH2 -

Case 1.1. s is white vertex. By Definition 2, s has two neighbors s' and
2in BH};_l. By Lemma 15, BHg_l includes vertex-disjoint paths P,Q, P, Q’
connecting 73, p*, r*, p? and 3, d°, a3, b3, respectively, and BH? S includes vertex-
disjoint paths R, S, R’, S’ connectmg q6 L s2,¢° and 2, d?,a?, b?, respectively.
Let T, o = PUQURUSU (p,p*) U (r,r ) (s, s )UQ2U<C ,C ,d3,d2>, and
Ton1 = PPUQ UR US U (p,p?) U (r,r*) U (s,52) UQi U (a®,a? b, b%), (see
Figure 8(a)).

BH!

0
BHTT 1 =1

BH?

n-1

n-1 n-1 BH B‘H}:—l

(b)’

Figure 8. The illustrations of Case 1.1 and Case 1.2 in the proof of Lemma 27.

Case 1.2. sis black vertex. The proof of this case is similar to Case 1.1 except
that we need to use S; = <s,30,32,s4, s6> and Sy = <s 81,83> to replace (s, s!)
and (s, s?) of Case 1.1, respectively, where s® € V(BHY _,), s? is a paired vertex
of s in BH1 4, st is not in (s, X!)- paths, s* is in some path of (s, X!)-paths,
(s%,s1) € E(BH1 1), {s%,8°} C V(BH;_,). (Since [Ny (s)| = 2n — 2, there
exists one neighbor s! not in (s, Xl)—paths.) Let Ty,—2 = PUQURUSU(p,pt)U
(r,r3)U{c3, ¢ d®, d*) U S1UQs and Th,_y = PPUQ'UR'US U (p,p*) U (r,r*) U
(a®,a? b, b%) U Sy U Q1, (see Figure 8(b)).

Case 2. s € V(BH?_,). Select 2n — 3 edges (29 T3, g’)s where ac € V(Tj) and
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x? € V(BH?_,) for 1 < j < 2n—3. Pick p and r’s paired vertices and denote by p
and 7, respectively. Since p (respectively, r) has 2n —2 neighbors in BH _1, there
exists one neighbor p! (respectively, ) in BH? ;| such that (p, p') (respectlvely,
(r,71)) is not in Tjs for 1 < j < 2n—3. By Lemma 18, (p,p') and its paired edge
(p,p') are in two paired cycles C and C’, respectively. Let <p, pl, p2> (respectively,
(p,p*,p*)) be part of C (respectively, C’), where {p? p*} C V(BH}_;). The
discussion for vertex r is similar, thus we have that <r,r1,r2> and <r,r1,f2>
are parts of two paired cycles, respectively, where {r?,#*} C V(BH} ;). Let

Q={q".¢*}, P={p*.p*}, R={r%,#*}.
Case 2.1. s is black vertex. By Definition 2, s has two neighbors s! and s
in BH}! Let S = {s!,s2}. By Definition 3 and Lemmas 6 and 14, BH!

n—1: n—1
has (S {P Q, R}) paths. By Lemma 16, BH! ;| includes vertex-disjoint paths
Qla', 51}, Q. %), Pl 51], Plp?, 2], R, 1], R, 7). Select 2n—3 neighbors
of s in BH? | and denote by s?s for 1 < j < 2n — 3. By Definition 2, let s;’ be

3 ., where 1 <j<2n—3. Let X3= {323, ... 23, .}
and S = {s3,s3,...,53, 5}. By Lemmas 4 and 15, there are paired (X3, 5%)-
paths ;s in BH? where (); connects :c3 and s? for 1 < j < 2n —3. Let

a neighbor of sj in BH?

n—1
T, = T U (], ])UQJ (s, ],s> for 1< j <203, Tons = (g,4") U
Q[ql,sl}u@ P>, p, P, D >UP[p2 Hu <r rtr >UR[’I“ slu(st,s) and T, 1 =
(q,q2)UQ[q2,32]U<p,p1,p2>UP[p2,s Ju <r,r3,r,r ,7"2>UR[772,82]U(82,3), (see
Figure 9(a)).

Case 2.2. sis white vertex. The proof of this case is similar to Case 2.1 except
that we need to use Sj = <s,s]-,sj2, ]> to instead of <s, O ]> of Case 2.1 for
1<j5<2n—-3, and use S; = <s,s3 S,81,8 > and Sy = < §3,5,85 > to instead
of (s,s!) and (s,s?) of Case 2.1, respectively, where 3 is the paired vertex of s,
53 and s3 are common neighbors of s and § in BH? |, 5 ¢ {s1,52,...,52,-3},
and s! and §' are common neighbors of 52 and s; and they are paired vertices.
(Since § has 2n — 2 neighbors in BH2_,, there ex1sts such vertex §2. Without
loss of generality, let s; be the paired vertex of §2.) So (5,s;) € E(BH2_,)
for 1 <j <2n—3 Let Tj = TjU (af,23) UQ;US; for 1 < j < 2n—3,
Ton—2 = (q,4") UQ[q", s'| U (p, p*, 5, 5", p*) U P[p?, s' U (r,7,r2) UR[r?, s'| U S
and Ty, —1 = (¢, ¢*)UQ|q?, 51]U<p,p1,p2>UP[p2, §1]U<r, 7“3,7*,7*1,7*2>UR[772, 51Uy,
(see Figure 9(b)). [

Theorem 28. k4(BH,)=2n—1, where n > 1.

Proof. The proof is by induction hypothesis on n. By Lemmas 22 and 23, the
theorem holds when n < 2. Assume that the theorem holds for m < n —1. We
prove that the theorem holds for m = n > 3 as follows. For any N C V(BH,,)
with [N| = 4, we denote N = {p, ¢, 7, s}. By Lemmas 4 and 12, k4(BH,,) < 2n—1.
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We need to show that BH,, includes 2n—1 internally disjoint N-trees. By Lemma
21, BH,, includes 2n — 1 internally disjoint N-trees if N contains paired vertices.
In the following, we consider that N contains no paired vertices for n > 3.

BH,, BH,,

BH®

n-1

Figure 9. The illustrations of Case 2.1 and Case 2.2 in the proof of Lemma 27.

Case 1. All the vertices of IV are in the same sub-balanced hypercube. By
symmetry of BH,, let N C V(BH?_;). By induction hypothesis, BH? ;| con-
tains 2n — 3 internally disjoint N-trees Tjs for 1 < j < 2n — 3. By Definition 1,
each vertex of p, ¢, 7, s has paired neighbors p*, p?, ¢*, ¢, rt, 72, s!,s? in BH}
or BH?_,, respectively. By Lemma 18, each paired neighbors of NV is included in
vertex-disjoint 8-cycles of BH,,. Let P[p',p’] and P[p?,p"], Q[¢', ¢'] and Q[q?, ¢"],
R[rt, '] and R[r?,7"], and S[s!, s'] and S[s?, s"] be sub-paths of the two disjoint
8-cycles, respectively, where N’ = {p/,p".¢,q",v',v",s',s"} Cc V(BH?_ ;). Se-
lect one vertex v € V(BH?_;) and v ¢ N’. By Lemmas 4 and 14, BH?_,
includes (v, N')-paths P, P2, Q', Q% R!', R% S',S2 where X! connects 2’ and v
and X? connects z” and v for X = P,Q, R, S and = = p, q,, s, respectively. Let
Tono =P UQ'UR'USTU P[pL,pUQl¢', ¢ U Rlrt, 7 U S[st,s'TU (p,p') U
(g,¢") U (r,rt) U (s,s') and Ty,_1 = PPUQ?*U R2U S? U P[p?,p" U Q[¢%, ¢"| U
R[r?,r")U S[s2,s"] U (p, p?) U (q,¢*) U (r,7%) U (s, s2).

Case 2. Each sub-balanced hypercube has one vertex of N.

Case 3. Two sub-balanced hypercubes have two vertices of N, respectively.
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Case 4. Three sub-balanced hypercubes have 2, 1, and 1 vertices of IV,
respectively.

Case 5. Two sub-balanced hypercubes have 3 and 1 vertices of N, respec-
tively.

By Lemmas 24, 25, 26, and 27, BH,, includes 2n—1 internally disjoint N-trees
for the above Cases 2-5, respectively.

Hence, the theorem holds. [ |

4. CONCLUSION

In [17], k3(BH,) = 2n — 1 is determined, in this paper, we further obtain that
k4(BH,) = 2n—1, where n > 1. Since it is NP-complete to compute k;(G) when
G is general [6], the method of our paper can be a reference to determine the
generalized 4-connectivity of other special networks.
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APPENDIX

Appendix 1. The proof of Lemma 23.

Proof. For any vertex set N C V(BHy) with |N| = 4, we denote N = {p, q, s,t}.
By Lemmas 4 and 12, k4(BHs) < 2 x 2 —1 = 3. We need to show that BHo
includes 3 internally disjoint N-trees. Note that any two black vertices (re-
spectively, white vertices) of BH! are paired vertices, where i € {0,1,2,3}. If
3 <|NNV(BH})| <4 for some i € {0,1,2,3}, then N contains paired vertices.
By Lemma 21, BH> contains 3 internally disjoint N-trees if N contains paired
vertices. Hence, we only need to consider the following two cases.

Case 1. INNV(BH?Y)| =2, say NNV (BH}) = {p,q}, and (p,q) € E(BH?),
where i € {0,1,2,3}. Without loss of generality, let i = 0. By Lemma 8, we
only need to consider {p,q} = {(0,0),(3,0)}. By symmetry of BHs, we only
need to consider (s,t) € E(BH}), (s,t) € E(BH?), and s,t are in two different
sub-balanced hypercubes of BH{ U BH? U BH;. Since the two black vertices
(respectively, white vertices) of BH? for i € {0,1,2,3} are paired vertices, we
only need to consider the distributions of s,t shown in Figure 10. The 3 internally
disjoint N-trees with red, green, blue colors, respectively, are shown in Figure 10.

Case 2. INNV(BH})| = 1 for any i € {0,1,2,3}. Without loss of generality,
let p, q,s,t bein BHY, BH}, BH{, BH?, respectively. By Lemma 7, let p = (0, 0).
Since the two black vertices (respectively, white vertices) of BH? fori € {0,1,2,3}
are paired vertices, we only need to consider s € {(1,1),(0,1)}, ¢ € {(0,3),(1,3)},
t €{(0,2),(3,2)}. The 3 internally disjoint N-trees with red, green, blue colors,
respectively, are shown in Figure 11. [ |
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(3.3) (I 0) ' (3.3) (1 1) (22)

Figure 10. The illustration of Case 1 in the proof of Lemma 23.



Figure 11. The illustration of Case 2 in the proof of Lemma 23.
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Appendix 2. The graphs of other cases in the proof of Lemma 25.

BH,

Figure 12. p and q are black vertices of BHY_,
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Figure 13. p and q are black vertices of BH?_;, and r and s are the same color of BH?2_
in the proof of Lemma 25.
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BH'

n-1

B H -l

n
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Figure 14. p and q are black vertices of BH?_;, and r and s are different colors of BH}
and BH?2_, in the proof of Lemma 25.
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Figure 15. p and ¢ are different colors of BH? |, and r and s are the same color of
BH} _, in the proof of Lemma 25.
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Figure 16. p and ¢ are different colors of BH? ;, and r and s are the same color of
BH?_, in the proof of Lemma 25.

Appendix 3. The proof of Lemma 26.

Proof. For any vertex set N C V(BH3) with |[N| = 4, we denote N = {p, ¢, s, t}.
By symmetry of BH,, let {p,q} C V(BH?_;). Without loss of generality, let p
and ¢ be different colors, say p is white vertex and ¢ is black vertex. (If p and ¢
are with the same color, by Lemma 19 and Definition 2, BHg_l includes a path
or an edge connecting p or ¢ with the other end vertex in BH3_; (respectively,
BH?_,) for Case 1 (respectively, Case 2).) By Lemmas 4 and 13, BH?_; includes
2n — 2 internally disjoint paths Pjs connecting p and ¢, where 1 < j < 2n — 2.
Without loss of generality, we only need to consider that r is black vertex and s
is white vertex. (If r is white vertex and s is black vertex, or r and s are with
the same colors, by Lemma 19 and Definition 2, BH,, includes a path or an edge
connecting 7 or s such that the other end vertices are in BH>_; (respectively,
BH?_,) for Case 1 (respectively, Case 2).) By symmetry of BH} ; and BH?_,
we only need to consider two cases.

Case 1. r and s are in BH! | and BHTQL_I, respectively, say r € V(BH,%_I)
and s € V(BH?2_,). By Definition 2, we select one edge (a:?,:c}), where m? €
V(P;), and zj € V(BH,_;) for 1 <j < 2n —2. Let X' = {21, 23,...,25, »}.
By Lemmas 4 and 14, BH} | includes (r, X!)-paths Q;s, where @Q; connects x]l
and r for 1 < j < 2n — 2. Pick one white vertex yj1 € Qj, where 1 < j < 2n — 2.
By Definition 2, yjl- has a neighbor yJZ- € V(BH2_,), where 1 < j < 2n — 2. Let

Y% = {y},43,....¥3, o} By Lemmas 4 and 14, BH?_, includes (s,Y?)-paths
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Rjs, where R; connects yjz- and s for 1 < j < 2n —2. Let T} = P; U (:1:9,3:]1) U
QU (yjl-,y]z) URjfor 1 <j<2n—2.

BNy Lemma 19 and Definition 2, BH,, includes three paths P = <p, pt,p°, p6,p3>
and R = (r,7, 7t r?, r3, 74 %) where {r%,p° p®} C V(BHY_,), {p',r',7*} C
V(BH! ), {r*,v*} Cc V(BH?2_,), and {p*,r°} C V(BH?_,). By Definition 2,
q (respectively, s) has a neighbor ¢ (respectively, s3) in BH? |. Since BH?
is connected, BH:g_l includes a tree ~TQ’n_l connecting p3,¢3, s> and 7°. Let
Ton1=T5 1 UPU(¢q)U (s s)UR, (see Figure 17(a)).

BH®

n-1

7 7
TZH—I 53
D)
BH;—I 15"&(}1 BHI?—I BHI‘J:—I BHH B‘an—l
(a) (b)

Figure 17. The illustrations of Case | and Case 2 in the proof of Lemma 26.

Case 2. r and s are in BH! | and BH?_,, respectively, say r € V(BH}_,)
and s € V(BH3_,).

Pick one white vertex x? € V(P;) and denote (z?,y?) € E(Pj) for1 <j<
2n — 2. By Definition 2, x? (respectively, y?) has a neighbor m]l € V(BH} ) (re-
spectively, y? € V(BH3 _,)), where 1 < j < 2n—2. Let X! = {x%,m%, e ,x%n_Q}
and Y3 = {yi”,yg’,...,ygn_Q}. By Lemmas 4 and 14, BH! | includes (r, X!)-
paths @);s, where ); connects :J[:j1 and r for 1 < j < 2n—2. By Lemmas 4 and 14,
BHf;fl includes (s, Y3)-paths Rjs, where R; connects y;’ and sforl < j <2n-—2.
Let T; = P,UQ; UR; U (x?,x}) U (y?,yg’) for 1 <j<2n-—2.

By Lemma 19 and Definition 2, BH,, includes four paths P= <p,p1,p2,p3>,
Q = <q,q1,q2,q3>, R= <7“, ro,rl,TQ,r3>, and S = <s, 80,81,82,83>, where {pl,pQ,
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rt 7“2} CcV(BH! ), {p* ¢ r® s3}CV(BH?_,), and {ql, ¢, st 52} CV(BH?_)).
Since BHEF1 is connected, BH%?1 includes a tree T4, ; connecting p3,¢%,r3 and
s%. Let Ton_ 1 = T4 UPUQUSUR, (see Figure 17(b)). |
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