THE GENERALIZED 4-CONNECTIVITY OF BALANCED HYPERCUBES

Dongqin Cheng
Department of Mathematics
College of Information Science and Technology
Jinan University, Guangzhou, 510632, China
e-mail: dqcheng168@jnu.edu.cn

Abstract

The balanced hypercube is a kind of highly symmetrical network and possesses many good properties. Generalized connectivity is a new measurement of interconnection networks' fault tolerance. The internally disjoint N-trees are edge-disjoint trees but with intersecting vertex set N. Let $\kappa(N)$ be the maximum number of internally disjoint N-trees and the generalized k-connectivity of G be $\kappa_{k}(G)=\min \{\kappa(N) \mid N \subset V(G)$ and $|N|=k\}$. In this paper, we study the n-dimensional balanced hypercube $B H_{n}$ and demonstrate that $\kappa_{4}\left(B H_{n}\right)=2 n-1$ for $n \geq 1$.

Keywords: interconnection network, balanced hypercube, generalized connectivity, fault tolerance.
2020 Mathematics Subject Classification: 68R10.

1. Introduction

The parallel and distributed system plays a significant role in social networks, cloud computing, Big Data, and so on. Interconnection network as the topological structure of parallel and distributed system has obtained widely studied and applied. An interconnection network (network briefly) is modeled by a graph, where the processors and communication links are corresponding to vertices and edges, respectively. The hypercube [16] is one of the best-known networks. Compared with the hypercube, the balanced hypercube not only keeps many good properties like the hypercube but also has other better properties than the hypercube, including the smaller diameter and that each vertex has a paired vertex which has the same neighborhood [19], so each processor has an alternative processor
when processes the same adjacent relationship tasks. Balanced hypercube's other properties have received extensive research [3, 4, 8, 13-15, 17-23].

Connectivity is a traditional way to measure a network's fault tolerance. The connectivity of G is $\kappa(G)=\min \{|N| \mid N \subset V(G)$ and $G-N$ is disconnected or trivial $\}$. For $N \subset V(G)$, the N-tree means that the tree connects each vertex of N. The n internally disjoint N-trees T_{i} s mean that T_{i} s are pairwise edge-disjoint but with intersecting vertex set N, where $1 \leq i \leq n$. The N-trees are important in information transportation in terms of parallel routing design for large-scale networks. The more applications of N-trees in computer communication networks are described in [5]. Let $\kappa(N)=\max \left\{l \mid T_{1}, T_{2}, \ldots, T_{l}\right.$ are internally disjoint N trees $\}$. The generalized k-connectivity of G is $\kappa_{k}(G)=\min \{\kappa(N) \mid N \subset V(G)$ and $|N|=k\}[24]$. Note that it is equal to connectivity of G when k is 2 [24]. Generalized connectivity [2] uses internally disjoint trees to connect more vertices, which is more important in the application of multi-party computation or communication [17]. So it is a generalization method to determine the fault tolerance of distributed networks.

It is NP-complete to compute $\kappa_{k}(G)$ [6]. Just a few networks' generalized 4-connectivity were determined, including hypercube [10], hierarchical cubic networks [25], exchanged hypercubes [24], divide-and-swap cube [26], pancake graphs [27], (n, k)-star networks [9], crossed cubes [11], and folded hypercubes [12]. For the n-dimensional balanced hypercube $B H_{n}$, it was shown that $\kappa_{3}\left(B H_{n}\right)=2 n-1$ when $n \geq 1$ [17]. In our paper, $\kappa_{4}\left(B H_{n}\right)=2 n-1$ is further obtained, where $n \geq 1$.

This paper includes four sections. The preliminaries and main results are in the next two sections, respectively, and the conclusion is in last section.

2. Preliminaries

In a graph $G=(V(G), E(G))$, if $(u, v) \in E(G)$ is an edge, then u and v are each other's neighbors. The neighborhood of $u \in V(G)$ is $N_{G}(u)=\{v \mid(u, v) \in$ $E(G), v \in V(G)\}$ and the degree of $u \in V(G)$ is $d_{G}(u)=|\{(u, v) \mid v \in V(G)\}|$. Denote $\delta(G)$ as the minimum of all $d_{G}(u)$ for $u \in V(G)$. Denote $P[x, y]=$ $\left\langle x_{0}, x_{1}, x_{2}, \ldots, x_{l}\right\rangle$ as a path from x to y, where $x_{0}=x, x_{l}=y, x_{i} \mathrm{~s}(0 \leq i \leq l)$ are pairwise different, l is the path's length, and the path is l-path. If $x_{l}=x_{0}$ and $l \geq 3, P[x, y]$ becomes a cycle. For two distinct vertices a and c, the internally disjoint (a, c)-paths are vertex-disjoint paths except for the two common end vertices a and c. For a vertex a and a vertex set B such that $a \notin B$, the (a, B)-paths are vertex-disjoint paths connecting a and each vertex of B except for the only common end vertex a. For two vertex sets $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$, the paired (A, B)-paths are k vertex-disjoint paths $P\left[a_{i}, b_{i}\right] \mathrm{s}$,
where $1 \leq i \leq k$. The other terminology and notations not given here can be found in [1]. The $B H_{n}$ has two methods to define. (Throughout this paper, among the labels of vertices of $B H_{n}$, the " \pm " and " + " are by modulo 4 operation. We omit "(mod) 4" for simplicity.)

Definition 1 [19]. $B H_{n}=\left(V\left(B H_{n}\right), E\left(B H_{n}\right)\right)$, where $V\left(B H_{n}\right)=V_{e} \cup V_{o}$, where $V_{e}=\left\{\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \mid v_{i} \in\{0,1,2,3\}\right.$ for $\left.1 \leq i \leq n-1, v_{0} \in\{0,2\}\right\}$ and $V_{o}=\left\{\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \mid v_{i} \in\{0,1,2,3\}\right.$ for $\left.1 \leq i \leq n-1, v_{0} \in\{1,3\}\right\}$, and $E\left(B H_{n}\right)=E_{0} \cup E_{i}$, where $E_{0}=\left\{\left(\left(v_{0}, v_{1}, \ldots v_{n-1}\right),\left(v_{0} \pm 1, v_{1}, \ldots, v_{n-1}\right)\right)\right\}$ and $E_{i}=\left\{\left(\left(v_{0}, v_{1}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots, v_{n-1}\right),\left(v_{0} \pm 1, v_{1}, \ldots, v_{i-1}, v_{i}+(-1)^{v_{0}}, v_{i+1}\right.\right.\right.$, $\left.\left.\left.\ldots, v_{n-1}\right)\right) \mid 1 \leq i \leq n-1\right\}$.
$B H_{n}$ is a bipartite graph, and $\left|V\left(B H_{n}\right)\right|=2^{2 n}$. Let V_{e} be the set of white vertices and V_{0} the set of black vertices. Let E_{0} be the set of 0-dimensional edges and E_{i} the set of i-dimensional edges for $1 \leq i \leq n-1$. $B H_{1}$ is a 4-cycle, two drawing methods of BH_{2} are depicted in Figure 1.

Figure 1. Two drawing methods of BH_{2}.

Another method to define $B H_{n}$ is by a recursive definition.
Definition 2 [19]. The recursive definition of $B H_{n}$ is as follows.
(1) $B H_{1}$ is a 4 -cycle $\langle 0,1,2,3,0\rangle$.
(2) For $n \geq 2, V\left(B H_{n}\right)=\bigcup_{i=0}^{3} V\left(B H_{n-1}^{i}\right)$, where $B H_{n-1}^{i} \cong B H_{n-1}$ for $i \in$ $\{0,1,2,3\}$. Every vertex $\left(v_{0}, v_{1}, \ldots, v_{n-1}, i\right) \in V\left(B H_{n-1}^{i}\right)(i \in\{0,1,2,3\})$ has two extra neighbors:
(2.1) $\left(v_{0} \pm 1, v_{1}, \ldots, v_{n-2}, i+1\right) \in V\left(B H_{n-1}^{i+1}\right)$ if v_{0} is even.
(2.2) $\left(v_{0} \pm 1, v_{1}, \ldots, v_{n-2}, i-1\right) \in V\left(B H_{n-1}^{i-1}\right)$ if v_{0} is odd.

The $B H_{n-1}^{i} \mathrm{~s}(0 \leq i \leq 3)$ are called sub-balanced hypercubes. In $B H_{n}$, two vertices with labels $\left(v_{0}-1, v_{1}, \ldots, v_{n-1}\right)$ and $\left(v_{0}+1, v_{1}, \ldots, v_{n-1}\right)$ are called paired vertices. By Definition 2, each vertex of $B H_{n-1}^{i}(0 \leq i \leq 3)$ has two neighbors in $B H_{n-1}^{i+1}$ or $B H_{n-1}^{i-1}$, and these two neighbors are paired vertices. Two edges $e=(r, s)$ and $e^{\prime}=\left(r^{\prime}, s^{\prime}\right)$ are called paired edges if r and r^{\prime} (respectively, s and s^{\prime}) are paired vertices. Two cycles $\left\langle r_{1}, r_{2}, \ldots, r_{l}\right\rangle$ and $\left\langle r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{l}^{\prime}\right\rangle$ are called paired cycles if r_{i} and r_{i}^{\prime} are paired vertices, where $1 \leq i \leq l$. Imaging two paired vertices as one vertex, and the four edges between the two paired vertices as one edge, we have the following graph $\widetilde{B H}_{n}$ which is a contraction of $B H_{n}$.
Definition 3. Let $\widetilde{B H_{n}}=\left(V\left(\widetilde{B H_{n}}\right), E\left(\widetilde{B H_{n}}\right)\right)$ be a contraction of $B H_{n}$, where $V\left(\widetilde{B H_{n}}\right)=\left\{V \mid V=\left\{v, v^{\prime}\right\}, v\right.$ and v^{\prime} are paired vertices of $\left.B H_{n}\right\}$, and $E\left(\widetilde{B H_{n}}\right)=$ $\left\{(U, V) \mid U=\left\{u, u^{\prime}\right\}, V=\left\{v, v^{\prime}\right\} \in V\left(\widetilde{B H_{n}}\right)\right.$ such that $(u, v),\left(u, v^{\prime}\right),\left(u^{\prime}, v\right),\left(u^{\prime}, v^{\prime}\right)$ $\left.\in E\left(B H_{n}\right)\right\} . \widetilde{B H_{1}}$ is an edge, denoted by (e, o). For $n \geq 2$, if $V \in V\left(\widetilde{B H_{n}}\right)$ is a white vertex, it is denoted by $\left(e, v_{1}, v_{2}, \ldots, v_{n-1}\right)$, otherwise it is denoted by $\left(o, v_{1}, v_{2}, \ldots, v_{n-1}\right)$, where $e \in\{0,2\}$, $o \in\{1,3\}$, and $v_{i} \in\{0,1,2,3\}$ for $1 \leq i \leq n-1$.

The graphs of $\widetilde{B H_{2}}$ and $\widetilde{B H_{3}}$ are shown in Figure 2.

Figure 2. $\widetilde{B H_{2}}$ and $\widetilde{B H_{3}}$.
Lemma 4 [19]. $B H_{n}$ is $2 n$-regular and $\kappa\left(B H_{n}\right)=2 n$, where $n \geq 1$.

Lemma 5 [17]. $\kappa_{3}\left(B H_{n}\right)=2 n-1$, where $n \geq 1$.
By Definition 3 and Lemma 4, we directly get the following lemma.
Lemma 6. $\widetilde{B H_{n}}$ is n-regular, and $\kappa\left(\widetilde{B H_{n}}\right)=n$, where $n \geq 1$.
Lemma 7 [19]. $B H_{n}$ is vertex-transitive, where $n \geq 1$.
Lemma 8 [28]. $B H_{n}$ is edge-transitive, where $n \geq 1$.
Lemma 9 [19]. In $B H_{n}$, any two paired vertices have the same neighborhood.
Lemma 10 [3]. In $B H_{n}$, any edge (x, y) is included in $2 n-2$ 8-cycles C_{8}^{j} s such that C_{8}^{j} s are edge-disjoint except (x, y) and $\left|E\left(C_{8}^{j}\right) \cap E\left(B H_{n-1}^{i}\right)\right|=1$, where $1 \leq j \leq 2 n-2$ and $i \in\{0,1,2,3\}$.

Since $\left|N_{B H_{n-1}^{i}}(u)\right|=2 n-2$ for $u \in V\left(B H_{n-1}^{i}\right)$, where $i \in\{0,1,2,3\}$, by Lemmas 7,8 and 10 , we directly get the following lemma.

Lemma 11. In $B H_{n}$, any vertex u is contained in $2 n-2$-cycles C_{8}^{j} s such that $C_{8}^{j} s$ are edge-disjoint and $\left|E\left(C_{8}^{j}\right) \cap E\left(B H_{n-1}^{i}\right)\right|=1$, where $1 \leq j \leq 2 n-2$ and $i \in\{0,1,2,3\}$.

Lemma 12 [7]. If G includes (a, b) with $d_{G}(a)=d_{G}(b)=\delta(G)$, then $\kappa_{k}(G) \leq$ $\delta(G)-1$, where $3 \leq k \leq|V(G)|$.

Lemma 13 [1]. If $\kappa(G)=k$, for $a, b \in V(G)$, then G includes k internally disjoint paths between a and b.

Lemma 14 [1]. If $\kappa(G)=k$, for $a \in V(G)$ and $B \subset V(G) \backslash\{a\}$ with $|B|=k$, then G includes (a, B)-paths.

Lemma 15 [1]. If $\kappa(G)=k$, for $A \subset V(G), B \subset V(G)$ with $|A|=|B|=k$ and $A \cap B=\emptyset$, then G includes paired (A, B)-paths.

3. Main Results

Lemma 16. Let $P=\left\{p, p^{\prime}\right\}$ and $R=\left\{r, r^{\prime}\right\}$ be any two vertices of $\widetilde{B H_{n}}$ with $(P, R) \notin E\left(\widetilde{B H_{n}}\right)$. Then any path connecting P and R of $\widetilde{B H_{n}}$ is corresponding to two internally disjoint N-trees of $B H_{n}$, and two paired vertex-disjoint paths $P[p, r]$ and $P\left[p^{\prime}, r^{\prime}\right]$, and $P\left[p, r^{\prime}\right]$ and $P\left[p^{\prime}, r\right]$ of $B H_{n}$, where $N=\left\{p, p^{\prime}, r, r^{\prime}\right\}$ and $n \geq 2$.

Proof. Let $\left\langle P, Q_{1}, Q_{2}, \ldots, Q_{l}, R\right\rangle$ be any path in $\widetilde{B H_{n}}$, where $Q_{i}=\left\{q_{i}, q_{i}^{\prime}\right\}$ for $1 \leq i \leq l$. Then q_{i} and q_{i}^{\prime} are paired vertices for $1 \leq i \leq l$. Let $T_{1}=$ $\left\langle p, q_{1}, q_{2}, \ldots, q_{l}, r\right\rangle \cup\left(q_{1}, p^{\prime}\right) \cup\left(q_{l}, r^{\prime}\right)$ and $T_{2}=\left\langle p^{\prime}, q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{l}^{\prime}, r^{\prime}\right\rangle \cup\left(p, q_{1}^{\prime}\right) \cup$ $\left(q_{l}^{\prime}, r\right)$. Then T_{1} and T_{2} are two internally disjoint N-trees of $B H_{n}$, where $N=$ $\left\{p, p^{\prime}, r, r^{\prime}\right\}$. Clearly, $P[p, r]=\left\langle p, q_{1}, q_{2}, \ldots, q_{l}, r\right\rangle$ and $P\left[p^{\prime}, r^{\prime}\right]=\left\langle p^{\prime}, q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{l}^{\prime}\right.$, $\left.r^{\prime}\right\rangle$ are two vertex-disjoint paths, and $P\left[p, r^{\prime}\right]=\left[p, q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{l}^{\prime}, r^{\prime}\right]$ and $P\left[p^{\prime}, r\right]=$ $\left\langle p^{\prime}, q_{1}, q_{2}, \ldots, q_{l}, r\right\rangle$ are two vertex-disjoint paths.

Lemma 17. In $B H_{n}$, any edge $e=(r, s)$ and its paired edge $e^{\prime}=\left(r^{\prime}, s^{\prime}\right)$ are included in a 4-cycle $\left\langle r, s, r^{\prime}, s^{\prime}, r\right\rangle$, where $n \geq 2$.

Proof. By Lemma 8, we only need to consider $e=(r, s)$, where $r=\left(r_{0}, r_{1}, \ldots\right.$, $\left.r_{n-1}\right)$, and $s=\left(r_{0}+1, r_{1}, \ldots, r_{n-1}\right)$. Let $e^{\prime}=\left(r^{\prime}, s^{\prime}\right)$, where $r^{\prime}=\left(r_{0}+2, r_{1}, \ldots\right.$, $\left.r_{n-1}\right)$ and $s^{\prime}=\left(r_{0}+3, r_{1}, \ldots, r_{n-1}\right)$. Then $\left\langle r, s, r^{\prime}, s^{\prime}, r\right\rangle$ is a 4-cycle.

Lemma 18. In $B H_{n}$ with $n \geq 2$, any edge e and its paired edge e^{\prime} are included in two paired 8-cycles, denoted by $R=\left\langle r_{0}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, r_{0}\right\rangle$ and $R^{\prime}=$ $\left\langle r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}, r_{5}^{\prime}, r_{6}^{\prime}, r_{7}^{\prime}, r_{0}^{\prime}\right\rangle$, respectively, where $\left|E(R) \cap E\left(B H_{n-1}^{i}\right)\right|=\mid E\left(R^{\prime}\right) \cap$ $E\left(B H_{n-1}^{i}\right) \mid=1$ for $i \in\{0,1,2,3\}$, and $\left\langle r_{j}, r_{j+1}, r_{j}^{\prime}, r_{j+1}^{\prime}, r_{j}\right\rangle$ is a 4-cycle for $0 \leq j \leq 7$ (The subscript" $j+1 "$ is with operation modulo 8.).

Proof. By Lemma 10, e is included in an 8-cycle R satisfying that $\mid E(R) \cap$ $E\left(B H_{n-1}^{i}\right) \mid=1$ for $i \in\{0,1,2,3\}$. Let $E(R) \cap E\left(B H_{n-1}^{i}\right)=e_{i}$ for $i \in\{0,1,2,3\}$, where $e_{0}=\left(r_{0}, r_{1}\right), e_{1}=\left(r_{2}, r_{3}\right), e_{2}=\left(r_{4}, r_{5}\right), e_{3}=\left(r_{6}, r_{7}\right)$. By Lemma 17, each edge $\left(r_{j}, r_{j+1}\right)$ has a paired edge $\left(r_{j}^{\prime}, r_{j+1}^{\prime}\right)$, and they are included in a 4-cycle $\left\langle r_{j}, r_{j+1}, r_{j}^{\prime}, r_{j+1}^{\prime}, r_{j}\right\rangle$, where $j \in\{0,2,4,6\} . r_{k}$ and r_{k}^{\prime} are paired vertices, where $0 \leq k \leq 7$. By Lemma $9, r_{k}$ and r_{k}^{\prime} have the same neighborhood. So $\left\langle r_{j}, r_{j+1}, r_{j}^{\prime}, r_{j+1}^{\prime}, r_{j}\right\rangle$ is a 4 -cycle, where $j \in\{1,3,5,7\}$. Let $R^{\prime}=$ $\left\langle r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}, r_{5}^{\prime}, r_{6}^{\prime}, r_{7}^{\prime}, r_{0}^{\prime}\right\rangle$. Then $e^{\prime} \in E\left(R^{\prime}\right)$. R and R^{\prime} are paired 8 -cycles, (see Figure 3). Hence, the lemma is true.

Lemma 19. In $B H_{n}$ with $n \geq 2$, for any vertex a and vertex set $B(a \notin B)$ with $|B|=2 n-2$ of some $B H_{n-1}^{i}(i \in\{0,1,2,3\})$, there exist (a, B)-paths in $B H_{n-1}^{i}$. Let $d \in V\left(B H_{n-1}^{i}\right)$ be such that $d \neq a$. Then $B H_{n-1}^{i}$ includes at least one edge $\left(d, d^{\prime}\right)$ such that $\left(d, d^{\prime}\right)$ is not in (a, B)-paths.

Proof. By Lemmas 4 and 14, there are (a, B)-paths in $B H_{n-1}^{i}$. By Definition 2, d has $2 n-2$ neighbors d_{j} in $B H_{n-1}^{i}$, where $1 \leq j \leq 2 n-2$. If all the $\left(d, d_{j}\right)$ s are in (a, B)-paths, then the (a, B)-paths have two common vertices a and d, which is a contradiction. Hence, $B H_{n-1}^{i}$ includes at least one edge $\left(d, d^{\prime}\right)$ such that $\left(d, d^{\prime}\right)$ is not in (a, B)-paths.

Figure 3. Two paired 8-cycles containing e and e^{\prime}, respectively.

Lemma 20. In $B H_{n}$ with $n \geq 2$, for any two different vertices a and $c(a$ and c are not paired vertices) of some $B H_{n-1}^{i}(i \in\{0,1,2,3\})$, there exist $2 n-2$ internally disjoint (a, c)-paths $P_{k} s(1 \leq k \leq 2 n-2)$ in $B H_{n-1}^{i}$. Let $d \in V\left(B H_{n-1}^{i}\right)$ be such that $d \notin\{a, c\}$. Then $B H_{n-1}^{i}$ includes at least one edge $\left(d, d^{\prime}\right)$ such that $\left(d, d^{\prime}\right)$ is not in $\bigcup_{k=1}^{2 n-2} P_{k}$.

Proof. By Lemmas 4 and 13, there are $2 n-2$ internally disjoint (a, c)-paths $P_{k} \mathrm{~s}(1 \leq k \leq 2 n-2)$ in $B H_{n-1}^{i}$. By Definition 2 , d has $2 n-2$ neighbors $d_{j} \mathrm{~s}$ in $B H_{n-1}^{i}$, where $1 \leq j \leq 2 n-2$. If all the $\left(d, d_{j}\right)$ s are in $\bigcup_{k=1}^{2 n-2} P_{k}$, then $\bigcup_{k=1}^{2 n-2} P_{k}$ have three common vertices a, c, and d, which is a contradiction. Hence, $B H_{n-1}^{i}$ includes at least one edge $\left(d, d^{\prime}\right)$ such that $\left(d, d^{\prime}\right)$ is not in $\bigcup_{k=1}^{2 n-2} P_{k}$.

Lemma 21. Let $N \subset V\left(B H_{n}\right)$ be such that $\left|N \cap V\left(B H_{n}\right)\right|=4$ and N contains paired vertices. Then there are $2 n-1$ internally disjoint N-trees in $B H_{n}$, where $n \geq 2$.

Proof. Denote $N=\{p, q, r, s\}$. We discuss two cases.
Case 1. Two vertices of N are paired vertices, say q and p are paired vertices. By Lemma $5, B H_{n}$ includes $2 n-1$ internally disjoint N^{\prime}-trees $T_{j}^{\prime} \mathrm{S}(1 \leq j \leq 2 n-1)$, where $N^{\prime}=\{p, r, s\}$. Let p_{j} be the neighbor of p in T_{j}^{\prime} for $1 \leq j \leq 2 n-1$. Then $T_{j}=T_{j}^{\prime} \cup\left(q, p_{j}\right)$ is N-tree and T_{j} s are internally disjoint, where $1 \leq j \leq 2 n-1$.

Case 2. Four vertices of N are two different paired vertices, say p, q are paired vertices and r, s are paired vertices.

Let $P=\{p, q\}$ and $R=\{r, s\}$. By Definition 3, Lemmas 6 and 13, $\widetilde{B H_{n}}$ includes n internally disjoint paths connecting P and R. By Lemma 16, $B H_{n}$ includes $2 n$ internally disjoint N-trees.

Lemma 22. $\kappa_{4}\left(B H_{1}\right)=1$.
Proof. By Lemmas 4 and $12, \kappa_{4}\left(B H_{1}\right) \leq 1$. By Definition 2, $B H_{1}$ is a 4 -cycle, so $B H_{1}$ includes a path including its four vertices. Hence, the lemma holds.

Lemma 23. $\kappa_{4}\left(B H_{2}\right)=3$.
Proof. The proof is in Appendix 1.
Lemma 24. Let $N \subset V\left(B H_{n}\right)$ be such that $\left|N \cap V\left(B H_{n}\right)\right|=4$ and N does not contain paired vertices. If each sub-balanced hypercube has one vertex of N, then there are $2 n-1$ internally disjoint N-trees in $B H_{n}$, where $n \geq 3$.

Proof. Without loss of generality, let $N=\{p, q, r, s\}$ and $p \in V\left(B H_{n-1}^{0}\right)$, $q \in V\left(B H_{n-1}^{3}\right), r \in V\left(B H_{n-1}^{2}\right), s \in V\left(B H_{n-1}^{1}\right)$. By Lemma 11, w is in an 8 -cycle $\left\langle w^{7}, w^{0}, w^{1}, w^{2}, w^{3}, w^{4}, w^{5}, w^{6}, w^{7}\right\rangle$ for $w \in\{p, q, r, s\}$, where $\left(w^{7}, w^{0}\right) \in$ $E\left(B H_{n-1}^{0}\right),\left(w^{1}, w^{2}\right) \in E\left(B H_{n-1}^{1}\right),\left(w^{3}, w^{4}\right) \in E\left(B H_{n-1}^{2}\right),\left(w^{5}, w^{6}\right) \in E\left(B H_{n-1}^{3}\right)$. Since $\left|V\left(B H_{n-1}^{i}\right)\right|=2^{2(n-1)}$, we have $2^{2(n-1)-1}$ black vertices and $2^{2(n-1)-1}$ white vertices in $B H_{n-1}^{i}$ for $i \in\{0,1,2,3\}$ and $n \geq 3$. Not considering the vertices of 8 -cycles that contain p, q, r, s respectively in $B H_{n-1}^{i}$, since $2^{2(n-1)-1}-4>2 n-4$ for $n \geq 3$, by Lemma 11, we can pick another $2 n-4$ vertex-disjoint 8 -cycles $\left\langle x_{i}^{7}, x_{i}^{0}, x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, x_{i}^{4}, x_{i}^{5}, x_{i}^{6}, x_{i}^{7}\right\rangle$ in $B H_{n}$, where $\left(x_{i}^{7}, x_{i}^{0}\right) \in E\left(B H_{n-1}^{0}\right),\left(x_{i}^{1}, x_{i}^{2}\right) \in$ $E\left(B H_{n-1}^{1}\right),\left(x_{i}^{3}, x_{i}^{4}\right) \in E\left(B H_{n-1}^{2}\right),\left(x_{i}^{5}, x_{i}^{6}\right) \in E\left(B H_{n-1}^{3}\right)$ for $1 \leq i \leq 2 n-4$. We deal with four cases.

Case 1. Each vertex of $\{p, q, r, s\}$ is in different $C_{8} \mathrm{~s}$. Without loss of generality, let $p^{7}=p, q^{5}=q, r^{3}=r$ and $s^{1}=s$. Let $X^{0}=\left\{q^{0}, r^{0}, s^{0}, x_{1}^{0}, x_{2}^{0}, \ldots, x_{2 n-5}^{0}\right\}$, $X^{1}=\left\{p^{2}, q^{2}, r^{2}, x_{1}^{2}, x_{2}^{2}, \ldots, x_{2 n-5}^{2}\right\}, X^{2}=\left\{p^{4}, q^{4}, s^{4}, x_{1}^{4}, x_{2}^{4}, \ldots, x_{2 n-5}^{4}\right\}$ and $X^{3}=$ $\left\{p^{6}, r^{6}, s^{6}, x_{1}^{6}, x_{2}^{6}, \ldots, x_{2 n-5}^{6}\right\}$. By Lemmas 4 and $14, B H_{n-1}^{0}$ includes $\left(p, X^{0}\right)$ paths $Q^{0}, R^{0}, S^{0}, X_{1}^{0}, X_{2}^{0}, \ldots, X_{2 n-5}^{0}, B H_{n-1}^{1}$ includes $\left(s, X^{1}\right)$-paths P^{1}, Q^{1}, R^{1}, $X_{1}^{1}, X_{2}^{1}, \ldots, X_{2 n-5}^{1}, B H_{n-1}^{2}$ includes $\left(r, X^{2}\right)$-paths $P^{2}, Q^{2}, S^{2}, X_{1}^{2}, X_{2}^{2}, \ldots, X_{2 n-5}^{2}$, and $B H_{n-1}^{3}$ includes (q, X^{3})-paths $P^{3}, R^{3}, S^{3}, X_{1}^{3}, X_{2}^{3}, \ldots, X_{2 n-5}^{3}$, where Q^{0} connects p and q^{0}, R^{0} connects p and r^{0}, S^{0} connects p and s^{0}, X_{i}^{0} connects p and x_{i}^{0}, P^{1} connects s and p^{2}, Q^{1} connects s and q^{2}, R^{1} connects s and r^{2}, X_{i}^{1} connects s and x_{i}^{2}, P^{2} connects r and p^{4}, Q^{2} connects r and q^{4}, S^{2} connects r and s^{4}, X_{i}^{2} connects r and x_{i}^{4}, P^{3} connects q and p^{6}, R^{3} connects q and r^{6}, S^{3} connects q and s^{6}, and X_{i}^{3} connects q and x_{i}^{6}, where $1 \leq i \leq 2 n-5$. Let $T_{i}=X_{i}^{0} \cup X_{i}^{1} \cup X_{i}^{2} \cup X_{i}^{3} \cup\left\langle x_{i}^{4}, x_{i}^{5}, x_{i}^{6}, x_{i}^{7}, x_{i}^{0}, x_{i}^{1}, x_{i}^{2}\right\rangle$ for $1 \leq i \leq 2 n-5, T_{2 n-4}=$ $S^{0} \cup S^{2} \cup S^{3} \cup\left\langle s^{4}, s^{5}, s^{6}, s^{7}, s^{0}, s\right\rangle, T_{2 n-3}=R^{0} \cup R^{1} \cup R^{3} \cup\left\langle r^{6}, r^{7}, r^{0}, r^{1}, r^{2}, r\right\rangle$,

Figure 4. The illustration of Case 1 in the proof of Lemma 24.
$T_{2 n-2}=Q^{0} \cup Q^{1} \cup Q^{2} \cup\left\langle q^{0}, q^{1}, q^{2}, q^{3}, q^{4}, q\right\rangle$, and $T_{2 n-1}=P^{1} \cup P^{2} \cup P^{3} \cup$ $\left\langle p, p^{6}, p^{5}, p^{4}, p^{3}, p^{2}\right\rangle$, (see Figure 4).

Case 2. Two vertices of $\{p, q, r, s\}$ are in the same C_{8}.
Case 2.1. Two vertices of $\{p, q, r, s\}$, say q and r, are in two consecutive sub-balanced hypercubes.

Without loss of generality, let $p^{7}=p, q^{5}=q, q^{3}=r$ and $s^{1}=s$, i.e., q and r are in the same 8 -cycle $C=\left\langle q^{7}, q^{0}, q^{1}, q^{2}, r, q^{4}, q, q^{6}, q^{7}\right\rangle$. By Lemma $18, C$ has a paired 8-cycle C^{\prime}. Denote $C^{\prime}=\left\langle y^{7}, y^{0}, y^{1}, y^{2}, y^{3}, y^{4}, y^{5}, y^{6}, y^{7}\right\rangle$, where $\left(y^{7}, y^{0}\right) \in$ $E\left(B H_{n-1}^{0}\right),\left(y^{1}, y^{2}\right) \in E\left(B H_{n-1}^{1}\right),\left(y^{3}, y^{4}\right) \in E\left(B H_{n-1}^{2}\right),\left(y^{5}, y^{6}\right) \in E\left(B H_{n-1}^{3}\right)$, and $\left\langle q^{7}, y^{0}, y^{7}, q^{0}, q^{7}\right\rangle,\left\langle q^{0}, y^{1}, y^{0}, q^{1}, q^{0}\right\rangle,\left\langle q^{1}, y^{2}, y^{1}, q^{2}, q^{1}\right\rangle,\left\langle q^{2}, y^{3}, y^{2}, r, q^{2}\right\rangle,\langle r$, $\left.y^{4}, y^{3}, q^{4}, r\right\rangle,\left\langle q^{4}, y^{5}, y^{4}, q, q^{4}\right\rangle,\left\langle q, y^{6}, y^{5}, q^{6}, q\right\rangle,\left\langle q^{6}, y^{7}, y^{6}, q^{7}, q^{6}\right\rangle$ are 4-cycles. In $B H_{n-1}^{0}, B H_{n-1}^{1}$ and $B H_{n-1}^{3}$, the discussions are similar to Case 1 except that we need to use $y^{k} \mathrm{~S}$ instead of $r^{k} \mathrm{~S}$ for $k \in\{0,1,2,5,6,7\}$ and use $Y^{j} \mathrm{~S}$ instead of $R^{j} \mathrm{~S}$ for $j \in\{0,1,3\}\left(Y^{3}=\left(q, y^{6}\right)\right)$. In $B H_{n-1}^{2}$, let $X^{2}=\left\{p^{4}, y^{4}, s^{4}, x_{1}^{4}, x_{2}^{4}, \ldots, x_{2 n-5}^{4}\right\}$. By Lemmas 4 and $14, B H_{n-1}^{2}$ includes $\left(r, X^{2}\right)$-paths $P^{2}, Y^{2}, S^{2}, X_{1}^{2}, \ldots, X_{2 n-5}^{2}$, where P^{2} connects r and $p^{4}, Y^{2}=\left(r, y^{4}\right), S^{2}$ connects r and s^{4}, and X_{i}^{2} connects r and x_{i}^{4} for $1 \leq i \leq 2 n-5$. Let $T_{i}=X_{i}^{0} \cup X_{i}^{1} \cup X_{i}^{2} \cup X_{i}^{3} \cup\left\langle x_{i}^{2}, x_{i}^{1}, x_{i}^{0}, x_{i}^{7}, x_{i}^{6}, x_{i}^{5}, x_{i}^{4}\right\rangle$ for $1 \leq i \leq 2 n-5, T_{2 n-4}=S^{0} \cup S^{2} \cup S^{3} \cup\left\langle s, s^{0}, s^{7}, s^{6}, s^{5}, s^{4}\right\rangle, T_{2 n-3}=Y^{0} \cup Y^{1} \cup$ $\left\langle r, y^{4}, y^{3}, y^{2}, y^{1}, y^{0}, y^{7}, y^{6}, q\right\rangle, T_{2 n-2}=Q^{0} \cup Q^{1} \cup\left\langle r, y^{2}, q^{1}, q^{0}, q^{7}, q^{6}, y^{5}, y^{4}, q\right\rangle \cup$ $\left(q^{1}, q^{2}\right)$, and $T_{2 n-1}=P^{1} \cup P^{2} \cup P^{3} \cup\left\langle p, p^{6}, p^{5}, p^{4}, p^{3}, p^{2}\right\rangle$, (see Figure 5(a)).

Figure 5. The illustration of Case 2.1 and Case 2.2 in the proof of Lemma 24.

Case 2.2. Two vertices of $\{p, q, r, s\}$, say q and s, are in two opposite subbalanced hypercubes.

Without loss of generality, let $p^{7}=p, s^{5}=q, q^{3}=r$ and $s^{1}=s$, i.e., q and s are in the 8-cycle $C=\left\langle s^{7}, s^{0}, s, s^{2}, s^{3}, s^{4}, q, s^{6}, s^{7}\right\rangle$. By Lemma 18, C has a paired 8-cycle C^{\prime}. Denote $C^{\prime}=\left\langle y^{7}, y^{0}, y^{1}, y^{2}, y^{3}, y^{4}, y^{5}, y^{6}, y^{7}\right\rangle$, where $\left(y^{7}, y^{0}\right) \in$ $E\left(B H_{n-1}^{0}\right),\left(y^{1}, y^{2}\right) \in E\left(B H_{n-1}^{1}\right),\left(y^{3}, y^{4}\right) \in E\left(B H_{n-1}^{2}\right),\left(y^{5}, y^{6}\right) \in E\left(B H_{n-1}^{3}\right)$, and $\left\langle y^{7}, s^{0}, s^{7}, y^{0}, y^{7}\right\rangle,\left\langle y^{0}, s, s^{0}, y^{1}, y^{0}\right\rangle,\left\langle y^{1}, s^{2}, s, y^{2}, y^{1}\right\rangle,\left\langle y^{2}, s^{3}, s^{2}, y^{3}, y^{2}\right\rangle,\left\langle y^{3}\right.$, $\left.s^{4}, s^{3}, y^{4}, y^{3}\right\rangle,\left\langle q, s^{4}, y^{5}, y^{4}, q\right\rangle,\left\langle q, y^{6}, y^{5}, s^{6}, q\right\rangle,\left\langle s^{7}, y^{6}, y^{7}, s^{6}, s^{7}\right\rangle$ are 4 -cycles. In $B H_{n-1}^{0}, B H_{n-1}^{1}, B H_{n-1}^{2}$, the proofs of this case are similar to Case 2.1, except that Y^{2} is now a path connecting r and y^{4}. Let $X^{3}=\left\{p^{6}, q^{6}, y^{6}, x_{1}^{6}, x_{2}^{6}, \ldots, x_{2 n-5}^{6}\right\}$. By Lemma $14, B H_{n-1}^{3}$ contains $\left(~ q, X^{3}\right)$-paths $P^{3}, Q^{3}, Y^{3}, X_{1}^{3}, X_{2}^{3}, \ldots, X_{2 n-5}^{3}$, where P^{3} connects q and p^{6}, Q^{3} connects q and $q^{6}, Y^{3}=\left(q, y^{6}\right), X_{i}^{3}$ connects q and x_{i}^{6} for $1 \leq i \leq 2 n-5$. Let $T_{i}=X_{i}^{0} \cup X_{i}^{1} \cup X_{i}^{2} \cup X_{i}^{3} \cup\left\langle x_{i}^{2}, x_{i}^{1}, x_{i}^{0}, x_{i}^{7}, x_{i}^{6}, x_{i}^{5}, x_{i}^{4}\right\rangle$ for $1 \leq i \leq 2 n-5, T_{2 n-4}=S^{0} \cup S^{2} \cup\left\langle s, s^{0}, s^{7}, s^{6}, q, s^{4}\right\rangle, T_{2 n-3}=Y^{0} \cup Y^{1} \cup$ $Y^{2} \cup\left\langle y^{4}, y^{3}, y^{2}, y^{1}, y^{0}, y^{7}, y^{6}, q\right\rangle, T_{2 n-2}=Q^{0} \cup Q^{1} \cup Q^{3} \cup\left\langle q^{2}, q^{1}, q^{0}, q^{7}, q^{6}, q^{5}, q^{4}, r\right\rangle$, $T_{2 n-1}=P^{1} \cup P^{2} \cup P^{3} \cup\left\langle p, p^{6}, p^{5}, p^{4}, p^{3}, p^{2}\right\rangle$, (see Figure $5(\mathrm{~b})$).

Case 3. Three vertices of $\{p, q, r, s\}$ are in the same C_{8}. Without loss of generality, let q, r, s be in the same 8 -cycle C, i.e., $C=\left\langle q^{7}, s^{0}, s, r^{2}, r, q^{4}, q, q^{6}, q^{7}\right\rangle$. By Lemma $18, C$ has a paired 8 -cycle $C^{\prime}=\left\langle y^{7}, y^{0}, y^{1}, y^{2}, y^{3}, y^{4}, y^{5}, y^{6}, y^{7}\right\rangle$, where $\left(y^{7}, y^{0}\right) \in E\left(B H_{n-1}^{0}\right),\left(y^{1}, y^{2}\right) \in E\left(B H_{n-1}^{1}\right),\left(y^{3}, y^{4}\right) \in E\left(B H_{n-1}^{2}\right),\left(y^{5}, y^{6}\right) \in$ $E\left(B H_{n-1}^{3}\right)$, and $\left\langle q^{7}, y^{0}, y^{7}, s^{0}, q^{7}\right\rangle,\left\langle s^{0}, y^{1}, y^{0}, s, s^{0}\right\rangle,\left\langle s, y^{2}, y^{1}, r^{2}, s\right\rangle,\left\langle r^{2}, y^{3}, y^{2}\right.$,
$\left.r, r^{2}\right\rangle,\left\langle q^{4}, y^{3}, y^{4}, r, q^{4}\right\rangle,\left\langle q, y^{4}, y^{5}, q^{4}, q\right\rangle,\left\langle q, y^{6}, y^{5}, q^{6}, q\right\rangle,\left\langle q^{7}, y^{6}, y^{7}, q^{6}, q^{7}\right\rangle$ are 4cycles. Since $\left|V\left(B H_{n-1}^{i}\right)\right|=2^{2(n-1)}$ with $2^{2(n-1)-1}$ black vertices and $2^{2(n-1)-1}$ white vertices and $2^{2(n-1)-1}>2 n-1$ for $i \in\{0,1,2,3\}$ and $n \geq 3$, by Lemma 11, we can find another 8 -cycle $\left\langle z^{7}, z^{0}, z^{1}, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}\right\rangle$ in $B H_{n}$, where $\left(z^{7}, z^{0}\right) \in E\left(B H_{n-1}^{0}\right),\left(z^{1}, z^{2}\right) \in E\left(B H_{n-1}^{1}\right),\left(z^{3}, z^{4}\right) \in E\left(B H_{n-1}^{2}\right)$, and $\left(z^{5}, z^{6}\right) \in$ $E\left(B H_{n-1}^{3}\right)$. In each $B H_{n-1}^{i} \mathrm{~s}$ for $i \in\{0,2,3\}$, the discussions are similar to Case 2.1 except that we only need to use z^{k} instead of s^{k} s for $k \in\{0,3,4,5,6,7\}$ and use Z^{j} s instead of $S^{j_{\mathrm{S}}}$ for $j \in\{0,2,3\}$. In $B H_{n-1}^{1}$, let $X^{1}=\left\{p^{2}, y^{2}, z^{2}, x_{1}^{2}, x_{2}^{2}, \ldots\right.$, $\left.x_{2 n-5}^{2}\right\}$. By Lemmas 4 and $14, B H_{n-1}^{1}$ includes $\left(s, X^{1}\right)$-paths $P^{1}, Y^{1}, Z^{1}, X_{1}^{1}, \ldots$, $X_{2 n-5}^{1}$, where P^{1} connects s and $p^{2}, Y^{1}=\left(s, y^{2}\right), Z^{1}$ connects s and z^{2}, X_{i}^{1} connects s and x_{i}^{2} for $1 \leq i \leq 2 n-5$. Let $T_{i}=X_{i}^{0} \cup X_{i}^{1} \cup X_{i}^{2} \cup X_{i}^{3} \cup$ $\left\langle x_{i}^{2}, x_{i}^{1}, x_{i}^{0}, x_{i}^{7}, x_{i}^{6}, x_{i}^{5}, x_{i}^{4}\right\rangle$ for $1 \leq i \leq 2 n-5, T_{2 n-4}=Z^{0} \cup Z^{1} \cup Z^{2} \cup Z^{3} \cup$ $\left\langle z^{2}, z^{1}, z^{0}, z^{7}, z^{6}, z^{5}, z^{4}\right\rangle, T_{2 n-3}=Y^{0} \cup Y^{3} \cup\left\langle s, y^{0}, y^{7}, y^{6}, y^{5}, y^{4}, r\right\rangle, T_{2 n-2}=S^{0} \cup$ $\left\langle s^{0}, s, y^{2}, r\right\rangle \cup\left\langle y^{2}, y^{3}, y^{4}, q\right\rangle$, and $T_{2 n-1}=P^{1} \cup P^{2} \cup P^{3} \cup\left\langle p, p^{6}, p^{5}, p^{4}, p^{3}, p^{2}\right\rangle$, (see Figure 6(a)).

Figure 6. The illustration of Case 3 and Case 4 in the proof of Lemma 24.
Case 4. Four vertices of $\{p, q, r, s\}$ are in the same C_{8}. Denote $C=\left\langle p, s^{0}, s\right.$, $\left.r^{1}, r, q^{2}, q, p^{3}, p\right\rangle$. By Lemma $18, C$ has a paired cycle C^{\prime}. Denote $C^{\prime}=\left\langle y^{7}, y^{0}, y^{1}\right.$, $\left.y^{2}, y^{3}, y^{4}, y^{5}, y^{6}, y^{7}\right\rangle$, where $\left(y^{7}, y^{0}\right) \in E\left(B H_{n-1}^{0}\right),\left(y^{1}, y^{2}\right) \in E\left(B H_{n-1}^{1}\right),\left(y^{3}, y^{4}\right) \in$ $E\left(B H_{n-1}^{2}\right),\left(y^{5}, y^{6}\right) \in E\left(B H_{n-1}^{3}\right)$, and $\left\langle p, y^{0}, y^{7}, s^{0}, p\right\rangle,\left\langle s^{0}, y^{1}, y^{0}, s, s^{0}\right\rangle,\left\langle s, y^{2}\right.$, $\left.y^{1}, r^{1}, s\right\rangle,\left\langle r^{1}, y^{3}, y^{2}, r, r^{1}\right\rangle,\left\langle r, y^{4}, y^{3}, q^{2}, r\right\rangle,\left\langle q, y^{4}, y^{5}, q^{2}, q\right\rangle,\left\langle p^{3}, y^{5}, y^{6}, q, p^{3}\right\rangle,\langle p$, $\left.y^{6}, y^{7}, p^{3}, p\right\rangle$ are 4 -cycles. Let $X^{0}=\left\{s^{0}, y^{0}, x_{1}^{0}, x_{2}^{0} \ldots, x_{2 n-4}^{0}\right\}, X^{1}=\left\{r^{1}, y^{2}, x_{1}^{2}\right.$,
$\left.x_{2}^{2}, \ldots, x_{2 n-4}^{2}\right\}, X^{2}=\left\{q^{2}, y^{4}, x_{1}^{4}, x_{2}^{4}, \ldots, x_{2 n-4}^{4}\right\}$ and $X^{3}=\left\{p^{3}, y^{6}, x_{1}^{6}, x_{2}^{6}, \ldots\right.$, $\left.x_{2 n-4}^{6}\right\}$. By Lemmas 4 and 14, $B H_{n-1}^{0}$ includes (p, X^{0})-paths $S^{0}, Y^{0}, X_{1}^{0}, X_{2}^{0}, \ldots$, $X_{2 n-4}^{0}, B H_{n-1}^{1}$ includes $\left(s, X^{1}\right)$-paths $R^{1}, Y^{1}, X_{1}^{1}, X_{2}^{1}, \ldots, X_{2 n-4}^{1}, B H_{n-1}^{2}$ includes $Q^{2}, Y^{2}, X_{1}^{2}, X_{2}^{2}, \ldots, X_{2 n-4}^{2}$, and $B H_{n-1}^{3}$ includes $\left(q, X^{3}\right)$-paths $P^{3}, Y^{3}, X_{1}^{3}, X_{2}^{3}$, $\ldots, X_{2 n-4}^{3}$, where $S^{0}=\left(p, s^{0}\right), Y^{0}=\left(p, y^{0}\right), X_{i}^{0}$ connects p and $x_{i}^{0}, R^{1}=\left(s, r^{1}\right)$, $Y^{1}=\left(s, y^{2}\right), X_{i}^{1}$ connects s and $x_{i}^{2}, Q^{2}=\left(r, q^{2}\right), Y^{2}=\left(r, y^{4}\right), X_{i}^{2}$ connects r and $x_{i}^{4}, P^{3}=\left(q, p^{3}\right), Y^{3}=\left(q, y^{6}\right), X_{i}^{3}$ connects q and x_{i}^{6}, where $1 \leq i \leq 2 n-4$. Let $T_{i}=X_{i}^{0} \cup X_{i}^{1} \cup X_{i}^{2} \cup X_{i}^{3} \cup\left\langle x_{i}^{2}, x_{i}^{1}, x_{i}^{0}, x_{i}^{7}, x_{i}^{6}, x_{i}^{5}, x_{i}^{4}\right\rangle$ for $1 \leq i \leq 2 n-4$, $T_{2 n-3}=\left\langle p, s^{0}, y^{1}, r^{1}, r, q^{2}, q\right\rangle \cup\left(s^{0}, s\right), T_{2 n-2}=\left\langle q, y^{6}, p, y^{0}, s, y^{2}, r\right\rangle$, and $T_{2 n-1}=$ $\left\langle p, p^{3}, q, y^{4}, y^{3}, r^{1}, s\right\rangle \cup\left(y^{4}, r\right)$, (see Figure 6(b)).

Lemma 25. Let $N \subset V\left(B H_{n}\right)$ be such that $\left|N \cap V\left(B H_{n}\right)\right|=4$ and N does not contain paired vertices. If there exist two sub-balanced hypercubes such that each has two vertices of N, then there are $2 n-1$ internally disjoint N-trees in $B H_{n}$, where $n \geq 3$.

Proof. Denote $N=\{p, q, r, s\}$. Without loss of generality, let $N \cap V\left(B H_{n-1}^{0}\right)=$ $\{p, q\}$. By symmetry of $B H_{n-1}^{1}$ and $B H_{n-1}^{3}$, we only need to consider that both r and s are in $B H_{n-1}^{1}$ or $B H_{n-1}^{2}$.

Let p and q be different color vertices, and r and s be different colors. Without loss of generality, let p and r be black vertices and q and s be white vertices. If p and q are the same color (since $B H_{n}$ is a bipartite graph), we only need to consider that p and q are black vertices (see Figure 12-14), or p and q are different colors but r and s are the same color (see Figure 15-16), the proofs are similar. To save space, we only show the graphs in the Appendix 2.) By Lemmas 4 and 13, $B H_{n-1}^{0}$ includes $2 n-2$ internally disjoint paths P_{i} s connecting p and q, where $1 \leq i \leq 2 n-2$. By Definition 2, p has a neighbor $p^{3} \in V\left(B H_{n-1}^{3}\right)$, and q has a neighbor $q^{1} \in V\left(B H_{n-1}^{1}\right)$. By Lemma 19 and Definition $2, B H_{n}$ includes a path $\tilde{Q}=\left\langle q, q^{0}, q^{2}, q^{3}, q^{4}\right\rangle$, where $q^{0} \in V\left(B H_{n-1}^{1}\right),\left\{q^{2}, q^{3}\right\} \subset V\left(B H_{n-1}^{0}\right)$ and $q^{4} \in V\left(B H_{n-1}^{3}\right)$.

Case 1. $\{r, s\} \subset V\left(B H_{n-1}^{1}\right)$. By Lemmas 4 and $13, B H_{n-1}^{1}$ includes $2 n-2$ internally disjoint paths R_{i} s connecting r and s, where $1 \leq i \leq 2 n-2$. (If $(p, q) \in$ $E\left(B H_{n-1}^{0}\right)$, let $P_{2 n-3}=(p, q)$. If $(r, s) \in E\left(B H_{n-1}^{1}\right)$, let $R_{2 n-2}=(r, s)$.) By Definition 2, r has a neighbor $r^{7} \in V\left(B H_{n-1}^{0}\right)$, and s has a neighbor $s^{2} \in V\left(B H_{n-1}^{2}\right)$. By Lemma 19 and Definition 2, $B H_{n}$ includes a path $\tilde{R}=\left\langle r, r^{0}, r^{1}, r^{2}, r^{3}\right\rangle$, where $r^{0} \in V\left(B H_{n-1}^{0}\right),\left\{r^{1}, r^{2}\right\} \subset V\left(B H_{n-1}^{1}\right)$, and $r^{3} \in V\left(B H_{n-1}^{2}\right)$. Since $B H_{n-1}^{0}$ is connected, $B H_{n-1}^{0}$ includes a path R^{1} connecting r^{7} and q. Let v be the first intersection vertex of R^{1} and $\bigcup_{i=1}^{2 n-2} P_{i}$. Since $B H_{n-1}^{1}$ is connected, $B H_{n-1}^{1}$ includes a path Q^{1} connecting q^{1} and r. Let u be the first intersection vertex of Q^{1} and $\bigcup_{i=1}^{2 n-2} R_{i}$. Suppose that $v \in V\left(P_{2 n-2}\right)$ and $u \in V\left(R_{2 n-3}\right)$. Let $R\left[r^{7}, v\right]$ be the sub-path of R^{1} and $Q\left[q^{1}, u\right]$ be the sub-path of Q^{1}. Pick black vertex
$x_{j}^{0} \in V\left(P_{j}\right)$ and white vertex $y_{j}^{1} \in V\left(R_{j}\right)$ for $1 \leq j \leq 2 n-4$. By Definition 2 , x_{j}^{0} has a neighbor $x_{j}^{3} \in V\left(B H_{n-1}^{3}\right)$ and y_{j}^{1} has a neighbor $y_{j}^{2} \in V\left(B H_{n-1}^{2}\right)$ for $1 \leq j \leq 2 n-4$.

By Lemma $17, B H_{n}$ includes a 4-cycle $\left\langle b^{3}, b^{2}, c^{3}, c^{2}, b^{3}\right\rangle$, where $\left\{b^{2}, c^{2}\right\} \subset$ $V\left(B H_{n-1}^{2}\right)$ and $\left\{b^{3}, c^{3}\right\} \subset V\left(B H_{n-1}^{3}\right)$. Pick another $2 n-4\left(a_{j}^{3}, a_{j}^{2}\right)$ s, where $a_{j}^{3} \in$ $V\left(B H_{n-1}^{3}\right)$ and $a_{j}^{2} \in V\left(B H_{n-1}^{2}\right)$ for $1 \leq j \leq 2 n-4$. Let $X^{3}=\left\{p^{3}, q^{4}, x_{1}^{3}, x_{2}^{3}, \ldots\right.$, $\left.x_{2 n-4}^{3}\right\}, A^{3}=\left\{b^{3}, c^{3}, a_{1}^{3}, a_{2}^{3}, \ldots, a_{2 n-4}^{3}\right\}, Y^{2}=\left\{s^{2}, r^{3}, y_{1}^{2}, y_{2}^{2}, \ldots, y_{2 n-4}^{2}\right\}$, and $A^{2}=$ $\left\{b^{2}, c^{2}, a_{1}^{2}, a_{2}^{2}, \ldots, a_{2 n-4}^{2}\right\}$. By Lemmas 4 and $15, B H_{n-1}^{3}$ includes $\left(X^{3}, A^{3}\right)$-paths $P, Q, Q_{1}, Q_{2}, \ldots, Q_{2 n-4}$ and $B H_{n-1}^{2}$ includes $\left(A^{2}, Y^{2}\right)$-paths $R, S, S_{1}, S_{2}, \ldots$, $S_{2 n-4}$, where P connects p^{3} and b^{3}, Q connects q^{4} and c^{3}, Q_{j} connects x_{j}^{3} and a_{j}^{3}, R connects b^{2} and s^{2}, S connects c^{2} and r^{3}, and S_{j} connects a_{j}^{2} and $y_{j}^{2}, 1 \leq j \leq$ $2 n-4$. Let $T_{j}=P_{j} \cup\left(x_{j}^{0}, x_{j}^{3}\right) \cup Q_{j} \cup\left(a_{j}^{3}, a_{j}^{2}\right) \cup S_{j} \cup\left(y_{j}^{2}, y_{j}^{1}\right) \cup R_{j}$ for $1 \leq j \leq 2 n-4$, $T_{2 n-3}=P_{2 n-3} \cup\left(q, q^{1}\right) \cup Q\left[q^{1}, u\right] \cup R_{2 n-3}, T_{2 n-2}=P_{2 n-2} \cup R\left[v, r^{7}\right] \cup\left(r^{7}, r\right) \cup$ $R_{2 n-2}$, and $T_{2 n-1}=P \cup Q \cup R \cup S \cup \tilde{Q} \cup\left(p, p^{3}\right) \cup\left\langle b^{3}, b^{2}, c^{3}, c^{2}\right\rangle \cup \tilde{R} \cup\left(s, s^{2}\right)$, (see Figure 7(a)).

Figure 7. The illustrations of Case 1 and Case 2 in the proof of Lemma 25.
Case 2. $\{r, s\} \subset V\left(B H_{n-1}^{2}\right)$. By Lemmas 4 and $13, B H_{n-1}^{2}$ includes $2 n-2$ internally disjoint paths $Q_{i} \mathrm{~s}$ connecting r and s, where $1 \leq i \leq 2 n-2$. (If $(p, q) \in E\left(B H_{n-1}^{0}\right)$, let $P_{2 n-2}=(p, q)$. If $(r, s) \in E\left(B H_{n-1}^{2}\right)$, let $Q_{2 n-3}=(r, s)$.) By Lemma 19 and Definition 2, $B H_{n}$ includes a path $\tilde{R}=\left\langle r, r^{1}, r^{5}, r^{4}, r^{3}\right\rangle$, an edge $\left(r, r^{2}\right)$, and an edge $\left(s, s^{3}\right)$, where $\left\{r^{1}, r^{2}\right\} \subset V\left(B H_{n-1}^{1}\right),\left\{r^{4}, r^{5}\right\} \subset$ $V\left(B H_{n-1}^{2}\right)$, and $\left\{r^{3}, s^{3}\right\} \subset V\left(B H_{n-1}^{3}\right)$. Select white vertex $x_{j}^{0} \in V\left(P_{j}\right)$ (re-
spectively, black vertex $\left.y_{k}^{2} \in V\left(Q_{k}\right)\right)$, by Definition $2, x_{j}^{0}$ (respectively, y_{k}^{2}) has a neighbor $x_{j}^{1} \in V\left(B H_{n-1}^{1}\right)$ (respectively, $y_{k}^{1} \in V\left(B H_{n-1}^{1}\right)$), where $1 \leq j \leq$ $2 n-3$ (respectively, $1 \leq k \leq 2 n-2$). Let $\left(y_{2 n-3}^{2}, y_{2 n-3}^{1}\right)=\left(r, r^{2}\right)$. Let $X^{1}=\left\{x_{1}^{1}, x_{2}^{1}, \ldots, x_{2 n-4}^{1}, x_{2 n-3}^{1}, q^{1}\right\}$ and $Y^{1}=\left\{y_{1}^{1}, y_{2}^{1}, \ldots, y_{2 n-4}^{1}, r^{2}, y_{2 n-2}^{1}\right\}$. By Lemmas 4 and $15, B H_{n-1}^{1}$ includes paired (X^{1}, Y^{1})-paths $R_{1}, R_{2}, \ldots, R_{2 n-2}$, where R_{j} connects x_{j}^{1} and y_{j}^{1} for $1 \leq j \leq 2 n-4, R_{2 n-3}$ connects $x_{2 n-3}^{1}$ and r^{2}, and $R_{2 n-2}$ connects q^{1} and $y_{2 n-2}^{1}$. Since $B H_{n-1}^{3}$ is connected, $B H_{n-1}^{3}$ includes a tree $T_{2 n-1}^{\prime}$ connecting q^{4}, p^{3}, r^{3} and s^{3}. Let $T_{i}=P_{j} \cup\left(x_{j}^{0}, x_{j}^{1}\right) \cup R_{j} \cup\left(y_{j}^{1}, y_{j}^{2}\right) \cup Q_{j}$ for $1 \leq j \leq 2 n-4, T_{2 n-3}=P_{2 n-3} \cup\left(x_{2 n-3}^{0}, x_{2 n-3}^{1}\right) \cup R_{2 n-3} \cup\left(r^{2}, r\right) \cup Q_{2 n-3}$, $T_{2 n-2}=P_{2 n-2} \cup\left(q, q^{1}\right) \cup R_{2 n-2} \cup\left(y_{2 n-2}^{1}, y_{2 n-2}^{2}\right) \cup Q_{2 n-2}$, and $T_{2 n-1}=T_{2 n-1}^{\prime} \cup$ $\tilde{Q} \cup\left(p^{3}, p\right) \cup \tilde{R} \cup\left(s^{3}, s\right)$, (see Figure $7(\mathrm{~b})$).

Lemma 26. Let $N \subset V\left(B H_{n}\right)$ be such that $\left|N \cap V\left(B H_{n}\right)\right|=4$ and N does not contain paired vertices. If there exist three sub-balanced hypercubes having 2,1 , and 1 vertices of N, respectively, then there are $2 n-1$ internally disjoint N-trees in $B H_{n}$, where $n \geq 3$.

Proof. The proof is in Appendix 3.
Lemma 27. Let $N \subset V\left(B H_{n}\right)$ be such that $\left|N \cap V\left(B H_{n}\right)\right|=4$ and N does not contain paired vertices. If there exist two sub-balanced hypercubes having 3 and 1 vertices of N, respectively, then there are $2 n-1$ internally disjoint N-trees in $B H_{n}$, where $n \geq 3$.

Proof. Denote $N=\{p, q, r, s\}$. Without loss of generality, let $\{p, q, r\} \subset V\left(B H_{n-1}^{0}\right)$, p, r be black vertices, and q be white vertex. (If p, r are white vertices and q is black vertex, or p, q, r are the same color, the discussions are similar except that we need to use Lemma 19 and Definition 2 to find two paths connecting p or q or r such that the other end vertices of the two paths connecting p or r are in $B H_{n-1}^{3}$ and the other end vertices of the two paths connecting q are in $B H_{n-1}^{2}$ for Case 1, and find two neighbors of p or r in $B H_{n-1}^{1}$ and find two paths connecting with q and the other end vertices in $B H_{n-1}^{1}$ for Case 2.) By Definition 2, p has two neighbors p^{3}, p^{4} in $B H_{n-1}^{3}, r$ has two neighbors r^{3}, r^{4} in $B H_{n-1}^{3}$, and q has two neighbors q^{1}, q^{2} in $B H_{n-1}^{1}$. By Lemmas 4 and $5, B H_{n-1}^{0}$ includes $2 n-3$ internally disjoint N-trees $T_{j}^{\prime} \mathrm{s}$, where $1 \leq j \leq 2 n-3$. Since $B H_{n}$ is symmetric, we deal with the following Case 1 and Case 2.

Case 1. $s \in V\left(B H_{n-1}^{1}\right)$. Pick one white vertex $x_{j}^{0} \in V\left(T_{j}^{\prime}\right)$ for $1 \leq j \leq 2 n-3$. By Definition 2, x_{j}^{0} has a neighbor $x_{j}^{1} \in V\left(B H_{n-1}^{1}\right)$, where $1 \leq j \leq 2 n-3$. Let $X^{1}=\left\{x_{1}^{1}, x_{2}^{1}, \ldots, x_{2 n-3}^{1}\right\}$. By Lemmas 4 and $14, B H_{n-1}^{1}$ includes $\left(s, X^{1}\right)$-paths $R_{j} \mathrm{~s}$, where R_{j} connects s and x_{j}^{1} for $1 \leq j \leq 2 n-3$. Let $T_{j}=T_{j}^{\prime} \cup\left(x_{j}^{0}, x_{j}^{1}\right) \cup R_{j}$ for $1 \leq j \leq 2 n-3$. By Lemma 19 and Definition $2, B H_{n}$ includes two paths $\tilde{Q}_{1}=$ $\left\langle q, q^{1}, q^{3}, q^{5}\right\rangle$ and $\tilde{Q}_{2}=\left\langle q, q^{2}, q^{4}, q^{6}\right\rangle$, where $\left\{q^{1}, q^{2}, q^{3}, q^{4}\right\} \subset V\left(B H_{n-1}^{1}\right)$ and
$\left\{q^{5}, q^{6}\right\} \subset V\left(B H_{n-1}^{2}\right)$. By Lemma 17 and Definition $2, B H_{n}$ includes two vertexdisjoint 4-cycles $\left\langle c^{3}, c^{2}, d^{3}, d^{2}, c^{3}\right\rangle$ and $\left\langle a^{3}, a^{2}, b^{3}, b^{2}, a^{3}\right\rangle$, where $\left\{a^{3}, b^{3}, c^{3}, d^{3}\right\} \subset$ $V\left(B H_{n-1}^{3}\right)$ and $\left\{a^{2}, b^{2}, c^{2}, d^{2}\right\} \subset V\left(B H_{n-1}^{2}\right)$.

Case 1.1. s is white vertex. By Definition 2, s has two neighbors s^{1} and s^{2} in $B H_{n-1}^{2}$. By Lemma $15, B H_{n-1}^{3}$ includes vertex-disjoint paths $P, Q, P^{\prime}, Q^{\prime}$ connecting $r^{3}, p^{4}, r^{4}, p^{3}$ and $c^{3}, d^{3}, a^{3}, b^{3}$, respectively, and $B H_{n-1}^{2}$ includes vertexdisjoint paths $R, S, R^{\prime}, S^{\prime}$ connecting $q^{6}, s^{1}, s^{2}, q^{5}$ and $c^{2}, d^{2}, a^{2}, b^{2}$, respectively. Let $T_{2 n-2}=P \cup Q \cup R \cup S \cup\left(p, p^{4}\right) \cup\left(r, r^{3}\right) \cup\left(s, s^{1}\right) \cup \tilde{Q}_{2} \cup\left\langle c^{3}, c^{2}, d^{3}, d^{2}\right\rangle$, and $T_{2 n-1}=P^{\prime} \cup Q^{\prime} \cup R^{\prime} \cup S^{\prime} \cup\left(p, p^{3}\right) \cup\left(r, r^{4}\right) \cup\left(s, s^{2}\right) \cup \tilde{Q}_{1} \cup\left\langle a^{3}, a^{2}, b^{3}, b^{2}\right\rangle$, (see Figure 8(a)).

Figure 8. The illustrations of Case 1.1 and Case 1.2 in the proof of Lemma 27.

Case 1.2. s is black vertex. The proof of this case is similar to Case 1.1 except that we need to use $\tilde{S}_{1}=\left\langle s, s^{0}, s^{2}, s^{4}, s^{6}\right\rangle$ and $\tilde{S}_{2}=\left\langle s, s^{1}, s^{3}\right\rangle$ to replace $\left(s, s^{1}\right)$ and $\left(s, s^{2}\right)$ of Case 1.1, respectively, where $s^{0} \in V\left(B H_{n-1}^{0}\right), s^{2}$ is a paired vertex of s in $B H_{n-1}^{1}, s^{1}$ is not in $\left(s, X^{1}\right)$-paths, s^{4} is in some path of $\left(s, X^{1}\right)$-paths, $\left(s^{2}, s^{1}\right) \in E\left(B H_{n-1}^{1}\right),\left\{s^{6}, s^{3}\right\} \subset V\left(B H_{n-1}^{2}\right)$. (Since $\left|N_{B H_{n-1}^{1}}(s)\right|=2 n-2$, there exists one neighbor s^{1} not in (s, X^{1})-paths.) Let $T_{2 n-2}=P \cup Q \cup R \cup S \cup\left(p, p^{4}\right) \cup$ $\left(r, r^{3}\right) \cup\left\langle c^{3}, c^{2}, d^{3}, d^{2}\right\rangle \cup \tilde{S}_{1} \cup \tilde{Q}_{2}$ and $T_{2 n-1}=P^{\prime} \cup Q^{\prime} \cup R^{\prime} \cup S^{\prime} \cup\left(p, p^{3}\right) \cup\left(r, r^{4}\right) \cup$ $\left\langle a^{3}, a^{2}, b^{3}, b^{2}\right\rangle \cup \tilde{S}_{2} \cup \tilde{Q}_{1}$, (see Figure $8(\mathrm{~b})$).

Case 2. $s \in V\left(B H_{n-1}^{2}\right)$. Select $2 n-3$ edges $\left(x_{j}^{0}, x_{j}^{3}\right) \mathrm{s}$, where $x_{j}^{0} \in V\left(T_{j}^{\prime}\right)$ and
$x_{j}^{3} \in V\left(B H_{n-1}^{3}\right)$ for $1 \leq j \leq 2 n-3$. Pick p and r 's paired vertices and denote by \tilde{p} and \tilde{r}, respectively. Since p (respectively, r) has $2 n-2$ neighbors in $B H_{n-1}^{0}$, there exists one neighbor p^{1} (respectively, r^{1}) in $B H_{n-1}^{0}$ such that $\left(p, p^{1}\right)$ (respectively, $\left(r, r^{1}\right)$) is not in T_{j} s for $1 \leq j \leq 2 n-3$. By Lemma $18,\left(p, p^{1}\right)$ and its paired edge $\left(\tilde{p}, \tilde{p}^{1}\right)$ are in two paired cycles C and C^{\prime}, respectively. Let $\left\langle p, p^{1}, p^{2}\right\rangle$ (respectively, $\left\langle\tilde{p}, \tilde{p}^{1}, \tilde{p}^{2}\right\rangle$) be part of C (respectively, C^{\prime}), where $\left\{p^{2}, \tilde{p}^{2}\right\} \subset V\left(B H_{n-1}^{1}\right)$. The discussion for vertex r is similar, thus we have that $\left\langle r, r^{1}, r^{2}\right\rangle$ and $\left\langle\tilde{r}, \tilde{r}^{1}, \tilde{r}^{2}\right\rangle$ are parts of two paired cycles, respectively, where $\left\{r^{2}, \tilde{r}^{2}\right\} \subset V\left(B H_{n-1}^{1}\right)$. Let $\widetilde{Q}=\left\{q^{1}, q^{2}\right\}, \widetilde{P}=\left\{p^{2}, \tilde{p}^{2}\right\}, \widetilde{R}=\left\{r^{2}, \tilde{r}^{2}\right\}$.

Case 2.1. s is black vertex. By Definition 2, s has two neighbors s^{1} and s^{2} in $B H_{n-1}^{1}$. Let $\widetilde{S}=\left\{s^{1}, s^{2}\right\}$. By Definition 3 and Lemmas 6 and $14, \widetilde{B H_{n-1}^{1}}$ has $(\widetilde{S},\{\widetilde{P}, \widetilde{Q}, \widetilde{R}\})$-paths. By Lemma $16, B H_{n-1}^{1}$ includes vertex-disjoint paths $Q\left[q^{1}, s^{1}\right], Q\left[q^{2}, s^{2}\right], P\left[\tilde{p}^{2}, s^{1}\right], P\left[p^{2}, s^{2}\right], R\left[r^{2}, s^{1}\right], R\left[\tilde{r}^{2}, s^{2}\right]$. Select $2 n-3$ neighbors of s in $B H_{n-1}^{2}$ and denote by s_{j}^{2} s for $1 \leq j \leq 2 n-3$. By Definition 2, let s_{j}^{3} be a neighbor of s_{j}^{2} in $B H_{n-1}^{3}$, where $1 \leq j \leq 2 n-3$. Let $X^{3}=\left\{x_{1}^{3}, x_{2}^{3}, \ldots, x_{2 n-3}^{3}\right\}$ and $S^{3}=\left\{s_{1}^{3}, s_{2}^{3}, \ldots, s_{2 n-3}^{3}\right\}$. By Lemmas 4 and 15 , there are paired $\left(X^{3}, S^{3}\right)$ paths $Q_{j} \mathrm{~s}$ in $B H_{n-1}^{3}$, where Q_{j} connects x_{j}^{3} and s_{j}^{3} for $1 \leq j \leq 2 n-3$. Let $T_{j}=T_{j}^{\prime} \cup\left(x_{j}^{0}, x_{j}^{3}\right) \cup Q_{j} \cup\left\langle s_{j}^{3}, s_{j}^{2}, s\right\rangle$ for $1 \leq j \leq 2 n-3, T_{2 n-2}=\left(q, q^{1}\right) \cup$ $Q\left[q^{1}, s^{1}\right] \cup\left\langle p, p^{3}, \tilde{p}, \tilde{p}^{1}, \tilde{p}^{2}\right\rangle \cup P\left[\tilde{p}^{2}, s^{1}\right] \cup\left\langle r, r^{1}, r^{2}\right\rangle \cup R\left[r^{2}, s^{1}\right] \cup\left(s^{1}, s\right)$ and $T_{2 n-1}=$ $\left(q, q^{2}\right) \cup Q\left[q^{2}, s^{2}\right] \cup\left\langle p, p^{1}, p^{2}\right\rangle \cup P\left[p^{2}, s^{2}\right] \cup\left\langle r, r^{3}, \tilde{r}, \tilde{r}^{1}, \tilde{r}^{2}\right\rangle \cup R\left[\tilde{r}^{2}, s^{2}\right] \cup\left(s^{2}, s\right)$, (see Figure 9(a)).

Case 2.2. s is white vertex. The proof of this case is similar to Case 2.1 except that we need to use $\tilde{S}_{j}=\left\langle s, s_{j}, s_{j}^{2}, s_{j}^{3}\right\rangle$ to instead of $\left\langle s, s_{j}^{2}, s_{j}^{3}\right\rangle$ of Case 2.1 for $1 \leq j \leq 2 n-3$, and use $S_{1}=\left\langle s, s^{3}, \tilde{s}, s_{1}, s^{1}\right\rangle$ and $S_{2}=\left\langle s, \tilde{s}^{3}, \tilde{s}, \tilde{s}^{2}, \tilde{s}^{1}\right\rangle$ to instead of $\left(s, s^{1}\right)$ and $\left(s, s^{2}\right)$ of Case 2.1, respectively, where \tilde{s} is the paired vertex of s, \tilde{s}^{3} and s^{3} are common neighbors of s and \tilde{s} in $B H_{n-1}^{3}, \tilde{s}^{2} \notin\left\{s_{1}, s_{2}, \ldots, s_{2 n-3}\right\}$, and s^{1} and \tilde{s}^{1} are common neighbors of \tilde{s}^{2} and s_{1} and they are paired vertices. (Since \tilde{s} has $2 n-2$ neighbors in $B H_{n-1}^{2}$, there exists such vertex \tilde{s}^{2}. Without loss of generality, let s_{1} be the paired vertex of \tilde{s}^{2}.) So $\left(\tilde{s}, s_{j}\right) \in E\left(B H_{n-1}^{2}\right)$ for $1 \leq j \leq 2 n-3$. Let $T_{j}=T_{j}^{\prime} \cup\left(x_{j}^{0}, x_{j}^{3}\right) \cup Q_{j} \cup \tilde{S}_{j}$ for $1 \leq j \leq 2 n-3$, $T_{2 n-2}=\left(q, q^{1}\right) \cup Q\left[q^{1}, s^{1}\right] \cup\left\langle p, p^{3}, \tilde{p}, \tilde{p}^{1}, \tilde{p}^{2}\right\rangle \cup P\left[\tilde{p}^{2}, s^{1}\right] \cup\left\langle r, r^{1}, r^{2}\right\rangle \cup R\left[r^{2}, s^{1}\right] \cup S_{1}$ and $T_{2 n-1}=\left(q, q^{2}\right) \cup Q\left[q^{2}, \tilde{s}^{1}\right] \cup\left\langle p, p^{1}, p^{2}\right\rangle \cup P\left[p^{2}, \tilde{s}^{1}\right] \cup\left\langle r, r^{3}, \tilde{r}, \tilde{r}^{1}, \tilde{r}^{2}\right\rangle \cup R\left[\tilde{r}^{2}, \tilde{s}^{1}\right] \cup S_{2}$, (see Figure 9(b)).

Theorem 28. $\kappa_{4}\left(B H_{n}\right)=2 n-1$, where $n \geq 1$.
Proof. The proof is by induction hypothesis on n. By Lemmas 22 and 23 , the theorem holds when $n \leq 2$. Assume that the theorem holds for $m \leq n-1$. We prove that the theorem holds for $m=n \geq 3$ as follows. For any $N \subset V\left(B H_{n}\right)$ with $|N|=4$, we denote $N=\{p, q, r, s\}$. By Lemmas 4 and $12, \kappa_{4}\left(B H_{n}\right) \leq 2 n-1$.

We need to show that $B H_{n}$ includes $2 n-1$ internally disjoint N-trees. By Lemma 21, $B H_{n}$ includes $2 n-1$ internally disjoint N-trees if N contains paired vertices. In the following, we consider that N contains no paired vertices for $n \geq 3$.

Figure 9. The illustrations of Case 2.1 and Case 2.2 in the proof of Lemma 27.
Case 1. All the vertices of N are in the same sub-balanced hypercube. By symmetry of $B H_{n}$, let $N \subset V\left(B H_{n-1}^{0}\right)$. By induction hypothesis, $B H_{n-1}^{0}$ contains $2 n-3$ internally disjoint N-trees T_{j} s for $1 \leq j \leq 2 n-3$. By Definition 1 , each vertex of p, q, r, s has paired neighbors $p^{1}, p^{2}, q^{1}, q^{2}, r^{1}, r^{2}, s^{1}, s^{2}$ in $B H_{n-1}^{1}$ or $B H_{n-1}^{3}$, respectively. By Lemma 18, each paired neighbors of N is included in vertex-disjoint 8 -cycles of $B H_{n}$. Let $P\left[p^{1}, p^{\prime}\right]$ and $P\left[p^{2}, p^{\prime \prime}\right], Q\left[q^{1}, q^{\prime}\right]$ and $Q\left[q^{2}, q^{\prime \prime}\right]$, $R\left[r^{1}, r^{\prime}\right]$ and $R\left[r^{2}, r^{\prime \prime}\right]$, and $S\left[s^{1}, s^{\prime}\right]$ and $S\left[s^{2}, s^{\prime \prime}\right]$ be sub-paths of the two disjoint 8 -cycles, respectively, where $N^{\prime}=\left\{p^{\prime}, p^{\prime \prime}, q^{\prime}, q^{\prime \prime}, r^{\prime}, r^{\prime \prime}, s^{\prime}, s^{\prime \prime}\right\} \subset V\left(B H_{n-1}^{2}\right)$. Select one vertex $v \in V\left(B H_{n-1}^{2}\right)$ and $v \notin N^{\prime}$. By Lemmas 4 and $14, B H_{n-1}^{2}$ includes (v, N^{\prime})-paths $P^{1}, P^{2}, Q^{1}, Q^{2}, R^{1}, R^{2}, S^{1}, S^{2}$, where X^{1} connects x^{\prime} and v and X^{2} connects $x^{\prime \prime}$ and v for $X=P, Q, R, S$ and $x=p, q, r, s$, respectively. Let $T_{2 n-2}=P^{1} \cup Q^{1} \cup R^{1} \cup S^{1} \cup P\left[p^{1}, p^{\prime}\right] \cup Q\left[q^{1}, q^{\prime}\right] \cup R\left[r^{1}, r^{\prime}\right] \cup S\left[s^{1}, s^{\prime}\right] \cup\left(p, p^{1}\right) \cup$ $\left(q, q^{1}\right) \cup\left(r, r^{1}\right) \cup\left(s, s^{1}\right)$ and $T_{2 n-1}=P^{2} \cup Q^{2} \cup R^{2} \cup S^{2} \cup P\left[p^{2}, p^{\prime \prime}\right] \cup Q\left[q^{2}, q^{\prime \prime}\right] \cup$ $R\left[r^{2}, r^{\prime \prime}\right] \cup S\left[s^{2}, s^{\prime \prime}\right] \cup\left(p, p^{2}\right) \cup\left(q, q^{2}\right) \cup\left(r, r^{2}\right) \cup\left(s, s^{2}\right)$.

Case 2. Each sub-balanced hypercube has one vertex of N.
Case 3. Two sub-balanced hypercubes have two vertices of N, respectively.

Case 4. Three sub-balanced hypercubes have 2, 1, and 1 vertices of N, respectively.

Case 5. Two sub-balanced hypercubes have 3 and 1 vertices of N, respectively.

By Lemmas $24,25,26$, and $27, B H_{n}$ includes $2 n-1$ internally disjoint N-trees for the above Cases $2-5$, respectively.

Hence, the theorem holds.

4. Conclusion

In [17], $\kappa_{3}\left(B H_{n}\right)=2 n-1$ is determined, in this paper, we further obtain that $k_{4}\left(B H_{n}\right)=2 n-1$, where $n \geq 1$. Since it is NP-complete to compute $\kappa_{k}(G)$ when G is general [6], the method of our paper can be a reference to determine the generalized 4-connectivity of other special networks.

Acknowledgments

This work was supported by China Scholarship Council (CSC NO. 202006785015), and was completed during the period of the author visiting Nanyang Technological University with financial support under this grant. This work was also supported by Guangdong Basic and Applied Basic Research Foundation (2023A1515011049).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, in: Grad. Texts in Math. 244 (Springer, New York, 2008).
[2] G. Chartrand, S.F. Kapoor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
[3] D. Cheng, R.-X. Hao and Y.-Q. Feng, Two node-disjoint paths in balanced hypercubes, Appl. Math. Comput. 242 (2014) 127-142. https://doi.org/10.1016/j.amc.2014.05.037
[4] D. Cheng, The h-restricted connectivity of balanced hypercubes, Discrete Appl. Math. 305 (2021) 133-141.
https://doi.org/10.1016/j.dam.2021.08.036
[5] D. Du and X. Hu, Steiner Tree Problem in Computer Communication Networks (World Scientific, Singapore, 2008).
https://doi.org/10.1142/6729
[6] S. Li, X. Li and W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310 (2010) 2147-2163.
https://doi.org/10.1016/j.disc.2010.04.011
[7] S. Li, Some Topics on Generalized Connectivity of Graphs, Ph.D. Thesis (Nankai University, 2012).
[8] L. Li, X. Zhang, Q. Zhu and Y. Bai, The 3-extra conditional diagnosability of balanced hypercubes under $M M^{*}$ model, Discrete Appl. Math. 309 (2022) 310-316. https://doi.org/10.1016/j.dam.2021.04.004
[9] C. Li, S. Lin and S. Li, The 4-set tree connectivity of (n, k)-star networks, Theoret. Comput. Sci. 844 (2020) 81-86. https://doi.org/10.1016/j.tcs.2020.08.004
[10] S. Lin and Q. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl. Math. 220 (2017) 60-67.
https://doi.org/10.1016/j.dam.2016.12.003
[11] H. Liu and D. Cheng, The generalized 3-connectivity and 4-connectivity of crossed cube, Discuss. Math. Graph Theory (2022), in press.
https://doi.org/10.7151/dmgt. 2474
[12] H. Liu and D. Cheng, The generalized 4-connectivity of folded hypercube, Int. J. Comput. Math. Comput. Syst. Theory 7(4) (2022) 235-245. https://doi.org/10.1080/23799927.2022.2123405
[13] H. Liu and D. Cheng, Structure fault tolerance of balanced hypercubes, Theoret. Comput. Sci. 845 (2020) 198-207. https://doi.org/10.1016/j.tcs.2020.09.015
[14] H. Lü and H. Zhang, Hyper-Hamiltonian laceability of balanced hypercubes, J. Supercomput. 68 (2014) 302-314.
https://doi.org/10.1007/s11227-013-1040-6
[15] H. Lü and T. Wu, Edge-disjoint Hamiltonian cycles of balanced hypercubes, Inform. Process. Lett. 144 (2019) 25-30. https://doi.org/10.1016/j.ipl.2018.12.004
[16] Y. Saad and M.H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput. 37 (1988) 867-872. https://doi.org/10.1109/12.2234
[17] C. Wei, R.-X. Hao and J.-M. Chang, The reliability analysis based on the generalized connectivity in balanced hypercubes, Discrete Appl. Math. 292 (2021) 19-32. https://doi.org/10.1016/j.dam.2020.12.011
[18] C. Wei, R.-X. Hao and J.-M. Chang, Two-disjoint-cycle-cover bipancyclicity of balanced hypercubes, Appl. Math. Comput. 381 (2020) 125305.
https://doi.org/10.1016/j.amc.2020.125305
[19] J. Wu and K. Huang, The balanced hypercube: a cube-based system for fault-tolerant applications, IEEE Trans. Comput. 46 (1997) 484-490. https://doi.org/10.1109/12.588063
[20] M. Xu, X.-D. Hu and J.-M. Xu, Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes, Appl. Math. Comput. 189 (2007) 1393-1401.
https://doi.org/10.1016/j.amc.2006.12.036
[21] M. Xu and Y. Wei, The h-edge tolerable diagnosability of balanced hypercubes, Theoret. Comput. Sci. 795 (2019) 540-546.
https://doi.org/10.1016/j.tcs.2019.08.007
[22] M.-C. Yang, Conditional diagnosability of balanced hypercubes under the PMC model, Inform. Sci. 222 (2013) 754-760. https://doi.org/10.1016/j.ins.2012.08.014
[23] Y. Yang and L. Zhang, Fault-tolerant-prescribed hamiltonian laceability of balanced hypercubes, Inform. Process. Lett. 145 (2019) 11-15. https://doi.org/10.1016/j.ipl.2019.01.002
[24] S.-L. Zhao and R.-X. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput. 347 (2019) 342-353. https://doi.org/10.1016/j.amc.2018.11.023
[25] S.-L. Zhao, R.-X. Hao and J. Wu, The generalized 4-connectivity of hierarchical cubic networks, Discrete Appl. Math. 289 (2021) 194-206. https://doi.org/10.1016/j.dam.2020.09.026
[26] S-L. Zhao and J.-M. Chang, Reliability assessment of the divide-and-swap cube in terms of generalized connectivity, Theoret. Comput. Sci. 943 (2023) 1-15. https://doi.org/10.1016/j.tcs.2022.12.005
[27] S.-L. Zhao, J.-M. Chang and H.-Z. Li, The generalized 4-connectivity of pancake graphs, Discrete Appl. Math. 327 (2023) 77-86.
https://doi.org/10.1016/j.dam.2022.11.020
[28] J.-X. Zhou, Z.-L. Wu, S.-C. Yang and K.-W. Yuan, Symmetric property and reliability of balanced hypercube, IEEE Trans. Comput. 64 (2015) 876-881. https://doi.org/10.1109/TC.2014.2304391

Appendix

Appendix 1. The proof of Lemma 23.

Proof. For any vertex set $N \subset V\left(B H_{2}\right)$ with $|N|=4$, we denote $N=\{p, q, s, t\}$. By Lemmas 4 and 12, $\kappa_{4}\left(B H_{2}\right) \leq 2 \times 2-1=3$. We need to show that $B H_{2}$ includes 3 internally disjoint N-trees. Note that any two black vertices (respectively, white vertices) of $B H_{1}^{i}$ are paired vertices, where $i \in\{0,1,2,3\}$. If $3 \leq\left|N \cap V\left(B H_{1}^{i}\right)\right| \leq 4$ for some $i \in\{0,1,2,3\}$, then N contains paired vertices. By Lemma 21, BH_{2} contains 3 internally disjoint N-trees if N contains paired vertices. Hence, we only need to consider the following two cases.

Case 1. $\left|N \cap V\left(B H_{1}^{i}\right)\right|=2$, say $N \cap V\left(B H_{1}^{i}\right)=\{p, q\}$, and $(p, q) \in E\left(B H_{1}^{i}\right)$, where $i \in\{0,1,2,3\}$. Without loss of generality, let $i=0$. By Lemma 8 , we only need to consider $\{p, q\}=\{(0,0),(3,0)\}$. By symmetry of $B H_{2}$, we only need to consider $(s, t) \in E\left(B H_{1}^{1}\right),(s, t) \in E\left(B H_{1}^{2}\right)$, and s, t are in two different sub-balanced hypercubes of $B H_{1}^{1} \cup B H_{1}^{2} \cup B H_{1}^{3}$. Since the two black vertices (respectively, white vertices) of $B H_{1}^{i}$ for $i \in\{0,1,2,3\}$ are paired vertices, we only need to consider the distributions of s, t shown in Figure 10. The 3 internally disjoint N-trees with red, green, blue colors, respectively, are shown in Figure 10.

Case 2. $\left|N \cap V\left(B H_{1}^{i}\right)\right|=1$ for any $i \in\{0,1,2,3\}$. Without loss of generality, let p, q, s, t be in $B H_{1}^{0}, B H_{1}^{3}, B H_{1}^{1}, B H_{1}^{2}$, respectively. By Lemma 7 , let $p=(0,0)$. Since the two black vertices (respectively, white vertices) of $B H_{1}^{i}$ for $i \in\{0,1,2,3\}$ are paired vertices, we only need to consider $s \in\{(1,1),(0,1)\}, q \in\{(0,3),(1,3)\}$, $t \in\{(0,2),(3,2)\}$. The 3 internally disjoint N-trees with red, green, blue colors, respectively, are shown in Figure 11.

Figure 10. The illustration of Case 1 in the proof of Lemma 23.

Figure 11. The illustration of Case 2 in the proof of Lemma 23.

Appendix 2. The graphs of other cases in the proof of Lemma 25.

Figure 12. p and q are black vertices of $B H_{n-1}^{0}$, and r and s are the same color of $B H_{n-1}^{1}$ in the proof of Lemma 25 .

Figure 13. p and q are black vertices of $B H_{n-1}^{0}$, and r and s are the same color of $B H_{n-1}^{2}$ in the proof of Lemma 25.

Figure 14. p and q are black vertices of $B H_{n-1}^{0}$, and r and s are different colors of $B H_{n-1}^{1}$ and $B H_{n-1}^{2}$ in the proof of Lemma 25.

Figure 15. p and q are different colors of $B H_{n-1}^{0}$, and r and s are the same color of $B H_{n-1}^{1}$ in the proof of Lemma 25.

Figure 16. p and q are different colors of $B H_{n-1}^{0}$, and r and s are the same color of $B H_{n-1}^{2}$ in the proof of Lemma 25.

Appendix 3. The proof of Lemma 26.

Proof. For any vertex set $N \subset V\left(B H_{2}\right)$ with $|N|=4$, we denote $N=\{p, q, s, t\}$. By symmetry of $B H_{n}$, let $\{p, q\} \subset V\left(B H_{n-1}^{0}\right)$. Without loss of generality, let p and q be different colors, say p is white vertex and q is black vertex. (If p and q are with the same color, by Lemma 19 and Definition $2, B H_{n-1}^{0}$ includes a path or an edge connecting p or q with the other end vertex in $B H_{n-1}^{3}$ (respectively, $B H_{n-1}^{2}$) for Case 1 (respectively, Case 2).) By Lemmas 4 and $13, B H_{n-1}^{0}$ includes $2 n-2$ internally disjoint paths P_{j} s connecting p and q, where $1 \leq j \leq 2 n-2$. Without loss of generality, we only need to consider that r is black vertex and s is white vertex. (If r is white vertex and s is black vertex, or r and s are with the same colors, by Lemma 19 and Definition $2, B H_{n}$ includes a path or an edge connecting r or s such that the other end vertices are in $B H_{n-1}^{3}$ (respectively, $B H_{n-1}^{2}$) for Case 1 (respectively, Case 2).) By symmetry of $B H_{n-1}^{1}$ and $B H_{n-1}^{3}$, we only need to consider two cases.

Case 1. r and s are in $B H_{n-1}^{1}$ and $B H_{n-1}^{2}$, respectively, say $r \in V\left(B H_{n-1}^{1}\right)$ and $s \in V\left(B H_{n-1}^{2}\right)$. By Definition 2, we select one edge $\left(x_{j}^{0}, x_{j}^{1}\right)$, where $x_{j}^{0} \in$ $V\left(P_{j}\right)$, and $x_{j}^{1} \in V\left(B H_{n-1}^{1}\right)$ for $1 \leq j \leq 2 n-2$. Let $X^{1}=\left\{x_{1}^{1}, x_{2}^{1}, \ldots, x_{2 n-2}^{1}\right\}$. By Lemmas 4 and $14, B H_{n-1}^{1}$ includes $\left(r, X^{1}\right)$-paths Q_{j} s, where Q_{j} connects x_{j}^{1} and r for $1 \leq j \leq 2 n-2$. Pick one white vertex $y_{j}^{1} \in Q_{j}$, where $1 \leq j \leq 2 n-2$. By Definition 2, y_{j}^{1} has a neighbor $y_{j}^{2} \in V\left(B H_{n-1}^{2}\right)$, where $1 \leq j \leq 2 n-2$. Let $Y^{2}=\left\{y_{1}^{2}, y_{2}^{2}, \ldots, y_{2 n-2}^{2}\right\}$. By Lemmas 4 and $14, B H_{n-1}^{2}$ includes $\left(s, Y^{2}\right)$-paths
$R_{j} \mathrm{~s}$, where R_{j} connects y_{j}^{2} and s for $1 \leq j \leq 2 n-2$. Let $T_{j}=P_{j} \cup\left(x_{j}^{0}, x_{j}^{1}\right) \cup$ $Q_{j} \cup\left(y_{j}^{1}, y_{j}^{2}\right) \cup R_{j}$ for $1 \leq j \leq 2 n-2$.

By Lemma 19 and Definition 2, $B H_{n}$ includes three paths $\tilde{P}=\left\langle p, p^{1}, p^{0}, p^{6}, p^{3}\right\rangle$ and $\tilde{R}=\left\langle r, r^{0}, r^{1}, r^{2}, r^{3}, r^{4}, r^{5}\right\rangle$, where $\left\{r^{0}, p^{0}, p^{6}\right\} \subset V\left(B H_{n-1}^{0}\right),\left\{p^{1}, r^{1}, r^{2}\right\} \subset$ $V\left(B H_{n-1}^{1}\right),\left\{r^{3}, r^{4}\right\} \subset V\left(B H_{n-1}^{2}\right)$, and $\left\{p^{3}, r^{5}\right\} \subset V\left(B H_{n-1}^{3}\right)$. By Definition 2, q (respectively, s) has a neighbor q^{3} (respectively, s^{3}) in $B H_{n-1}^{3}$. Since $B H_{n-1}^{3}$ is connected, $B H_{n-1}^{3}$ includes a tree $T_{2 n-1}^{\prime}$ connecting p^{3}, q^{3}, s^{3} and r^{5}. Let $T_{2 n-1}=T_{2 n-1}^{\prime} \cup \tilde{P} \cup\left(q^{3}, q\right) \cup\left(s^{3}, s\right) \cup \tilde{R}$, (see Figure 17(a)).

Figure 17. The illustrations of Case 1 and Case 2 in the proof of Lemma 26.

Case 2. r and s are in $B H_{n-1}^{1}$ and $B H_{n-1}^{3}$, respectively, say $r \in V\left(B H_{n-1}^{1}\right)$ and $s \in V\left(B H_{n-1}^{3}\right)$.

Pick one white vertex $x_{j}^{0} \in V\left(P_{j}\right)$ and denote $\left(x_{j}^{0}, y_{j}^{0}\right) \in E\left(P_{j}\right)$ for $1 \leq j \leq$ $2 n-2$. By Definition 2, x_{j}^{0} (respectively, y_{j}^{0}) has a neighbor $x_{j}^{1} \in V\left(B H_{n-1}^{1}\right)$ (respectively, $\left.y_{j}^{3} \in V\left(B H_{n-1}^{3}\right)\right)$, where $1 \leq j \leq 2 n-2$. Let $X^{1}=\left\{x_{1}^{1}, x_{2}^{1}, \ldots, x_{2 n-2}^{1}\right\}$ and $Y^{3}=\left\{y_{1}^{3}, y_{2}^{3}, \ldots, y_{2 n-2}^{3}\right\}$. By Lemmas 4 and $14, B H_{n-1}^{1}$ includes $\left(r, X^{1}\right)$ paths $Q_{j} \mathrm{~s}$, where Q_{j} connects x_{j}^{1} and r for $1 \leq j \leq 2 n-2$. By Lemmas 4 and 14, $B H_{n-1}^{3}$ includes $\left(s, Y^{3}\right)$-paths $R_{j} \mathrm{~s}$, where R_{j} connects y_{j}^{3} and s for $1 \leq j \leq 2 n-2$. Let $T_{j}=P_{j} \cup Q_{j} \cup R_{j} \cup\left(x_{j}^{0}, x_{j}^{1}\right) \cup\left(y_{j}^{0}, y_{j}^{3}\right)$ for $1 \leq j \leq 2 n-2$.

By Lemma 19 and Definition 2, $B H_{n}$ includes four paths $\tilde{P}=\left\langle p, p^{1}, p^{2}, p^{3}\right\rangle$, $\tilde{Q}=\left\langle q, q^{1}, q^{2}, q^{3}\right\rangle, \tilde{R}=\left\langle r, r^{0}, r^{1}, r^{2}, r^{3}\right\rangle$, and $\tilde{S}=\left\langle s, s^{0}, s^{1}, s^{2}, s^{3}\right\rangle$, where $\left\{p^{1}, p^{2}\right.$,
$\left.r^{1}, r^{2}\right\} \subset V\left(B H_{n-1}^{1}\right),\left\{p^{3}, q^{3}, r^{3}, s^{3}\right\} \subset V\left(B H_{n-1}^{2}\right)$, and $\left\{q^{1}, q^{2}, s^{1}, s^{2}\right\} \subset V\left(B H_{n-1}^{3}\right)$. Since $B H_{n-1}^{2}$ is connected, $B H_{n-1}^{2}$ includes a tree $T_{2 n-1}^{\prime}$ connecting p^{3}, q^{3}, r^{3} and s^{3}. Let $T_{2 n-1}=T_{2 n-1}^{\prime} \cup \tilde{P} \cup \tilde{Q} \cup \tilde{S} \cup \tilde{R}$, (see Figure 17(b)).

Received 11 November 2022
Revised 6 February 2023
Accepted 7 February 2023
Available online 10 March 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

