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Abstract

In this paper we will apply the tensor and its traces to investigate the
spectral characterization of unicyclic graphs. Let G be a graph and Gm

be the m-th power (hypergraph) of G. The spectrum of G is referring to
its adjacency matrix, and the spectrum of Gm is referring to its adjacency
tensor. The graph G is called determined by high-ordered spectra (DHS, for
short) if, whenever H is a graph such that Hm is cospectral with Gm for all
m, then H is isomorphic to G. In this paper we first give formulas for the
traces of the power of unicyclic graphs, and then provide some high-ordered
cospectral invariants of unicyclic graphs. We prove that a class of unicyclic
graphs with cospectral mates is DHS, and give two examples of infinitely
many pairs of cospectral unicyclic graphs but with different high-ordered
spectra.
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1. Introduction

The graph isomorphism problem is one of few standard problems in computa-
tional complexity theory belonging to NP. In 1956, Günthard and Primas [25]
raised the question of determining the graphs by the spectrum. In 1957, Collatz
and Sinogowitz [10] presented a pair of non-isomorphic cospectral trees. In 1973,
Schwenk [36] proved that almost every tree has a cospectral mate by construct-
ing a non-isomorphic cospectral tree for each tree of sufficiently large order. In
1982, Godsil and McKay [24] invented a powerful method called GM-switching,
which can produce lots of pairs of cospectral graphs. A graph G is said to be
determined by the spectrum (DS, for short) if, whenever H is a graph cospectral
with G, then H must be isomorphic to G. All the known DS graphs have very
special structures, and the techniques involved in proving them to be DS cannot
be applied to general graphs; see [12,13].

Since a graph cannot be determined by its spectrum in general, we need more
information to recognize a graph. Note that two graphs are isomorphic if and
only if their complements are isomorphic. Wang and Xu [40, 41] and Wang [39]
applied the spectra of a graph and also its complement to investigate whether
the graph is determined by its generalized spectrum. A similar idea appears in a
recent work by Chen, Sun and Bu [7], who applied the spectra of the powers of
a graph to characterize whether the graph is determined by high-ordered spectra
in the setting of tensor eigenvalues.

Let G = (V (G), E(G)) be a graph with vertex set V = V (G) and edge set
E = E(G). For an integer m ≥ 2, the m-th power of G, denoted by Gm =
(V m, Em), is defined to be the m-uniform hypergraph with vertex set V m =
V ∪ {ie,1, . . . , ie,m−2 : e ∈ E} and edge set Em = {e ∪ {ie,1, . . . , ie,m−2} : e ∈ E},
where ie,1, . . . , ie,m−2 are new vertices inserted to each edge e ∈ E. Note if m = 2,
Gm = G and this case is trivial. Observe that two graphs are isomorphic if and
only if their m-th powers are isomorphic for each integer m ≥ 2. Chen, Sun and
Bu [7] introduced the following notions on the spectrum of power hypergraphs.
They called the spectrum of the adjacency tensor of Gm the m-ordered spectrum
of G, and two graphs are m-ordered cospectral if they have the same m-ordered
spectra. A graph G is called determined by high-ordered spectra (DHS, for short)
if, whenever H is a graph that are m-ordered cospectral with G for all m ≥ 2,
then H must be isomorphic to G.

Surely, a graph that is DS must be DHS, but the converse does not hold. For
example, van Dam and Haemers [13] showed that not all Smith’s graphs are DS.
However, all Smith’s graphs are DHS, proved by Chen, Sun and Bu [7]. They
also showed that every tree and its cospectral mate in Schwenk’s construction
have different high-ordered spectra [7].

The traces or spectral moments play an important role in DS problems. Let
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G be a graph and let A(G) be the adjacency matrix of G. The d-th trace (or d-th
spectral moment) of G, denoted by Trd(G), is defined to be the trace of A(G)d,
which is the sum of the d-th powers of all eigenvalues of A(G), and is also equal
to the number of closed walks of length d in G starting from each vertex of G. It
is known that two graphs G and H are cospectral if and only if Trd(G) = Trd(H)
for all d (or for d = 1, 2, . . . , |V (G)|). We should note that here the spectrum of
a uniform hypergraph is defined as the spectrum of the adjacency tensor of the
hypergraph. By the traces generalized from matrices to tensors due to Morozov
and Shakirov [34], we still have the above equalities for two cospectral uniform
hypergraphs. A key problem is how to interpreter the structural information
from the traces of hypergraphs.

In this paper, we will extend the work of Chen, Sun and Bu [7] from trees to
unicyclic graphs, and characterize the unicylic graphs that are DHS. The paper
is organized as follows. In Section 2 we introduce some preliminary knowledge
about the spectra and traces of hypergraphs. In Section 3 we give formulas for
the traces of the power of unicyclic graphs by means of the sub-structure of the
graph. In the last section, we provide some high-ordered cospectral invariants for
general graphs especially for unicyclic graphs, and prove that a class of unicyclic
graphs with copectral mates is DHS. We give two examples of infinitely many
pairs of cospectral unicyclic graphs but with different high-ordered spectra. Our
work implies that high-ordered spectra of graphs can recognize more structural
information than the usual spectra.

2. Preliminaries

2.1. Tensors and hypergraphs

Let T = (ti1i2···im) be a complex tensor of order m and dimension n. Given a
vector x ∈ Cn, T xm−1 ∈ Cn, which is defined as follows:(

T xm−1
)
i

=
∑

i2,...,im∈[n]

tii2···imxi2 · · ·xim , i ∈ [n].

Let I = (ii1i2···im) be the identity tensor of order m and dimension n, that
is, ii1i2···im = 1 if i1 = i2 = · · · = im ∈ [n] and ii1i2···im = 0 otherwise. In
2005, Lim [28] and Qi [35] introduced the eigenvalues of tensors independently
as follows.

Definition [28, 35]. Let T be an m-th order n-dimensional tensor. For some
λ ∈ C, if the polynomial system (λI − T )xm−1 = 0, or equivalently T xm−1 =
λx[m−1], has a solution x ∈ Cn\{0}, then λ is called an eigenvalue of T and x is
an eigenvector of T associated with λ, where x[m−1] =

(
xm−11 , xm−12 , . . . , xm−1n

)
.
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A hypergraph H = (V,E) consists of a vertex set V = {v1, v2, . . ., vn} denoted
by V (H) and an edge set E = {e1, e2, . . ., ek} denoted by E(H), where ei ⊆ V
for i ∈ [k]. If |ei| = m for each i ∈ [k] and m ≥ 2, then H is called an m-uniform
hypergraph. The degree dv(H) of a vertex v in H is the number of edges of H
containing the vertex v. A vertex v of H is called a cored vertex if it has degree
one. A walk W inH is a sequence of alternate vertices and edges: v0e1v1e2 · · · elvl,
where vi 6= vi+1 and {vi, vi+1} ⊆ ei for i = 0, 1, . . . , l − 1. If v0 = vl, then W is
called a circuit, and is called a cycle if no vertices or edges are repeated except
v0 = vl. The hypergraph H is said to be connected if every two vertices are
connected by a walk. The hypergraph H is called simple if there exists no i 6= j
such that ei ⊆ ej , and is called nontrivial if it contains more than one vertex.
Throughout of this paper, all hypergraphs are considered nontrivial, connected,
simple and m-uniform unless stated somewhere.

In 2012, Cooper and Dutle [9] introduced the adjacency tensor of a uniform
hypergraph, and applied the eigenvalues of the tensor to characterize the struc-
tural property of the hypergraph.

Definition [9]. Let H be an m-uniform hypergraph on n vertices v1, v2, . . . , vn.
The adjacency tensor of H is defined as A(H) = (ai1i2···im), an m-th order n-
dimensional tensor, where

ai1i2···im =

{ 1
(m−1)! , if {vi1 , . . . , vim} ∈ E(H);

0, else.

The spectrum and eigenvalues of H are referring to those of A(H). If m = 2,
then A(H) is exactly the adjacency matrix of the graph H. Since the Perron-
Frobenius theorem of nonnegative matrices was generalized to nonnegative ten-
sors [4,21,42–44], the spectral hypergraph theory develops rapidly on many topics,
such as the spectral radius [2,18,22,27,30,31,33], the eigenvariety [14,15,19], the
spectral symmetry [16,17,37,46], and the eigenvalues of hypertrees [45].

Zhou et al. [46], and Cardoso et al. [3] investigated the relationship between
the eigenvalues of Gm and those of the subgraphs of G (including G). Chen et
al. [6] gave a more detailed statement as follows.

Lemma 1 [6]. Let Gm be the m-th power of a graph G.

(1) If m = 3, λ is an eigenvalue of G3 if and only if there is a signed induced
subgraph of G with eigenvalue β such that β2 = λ3.

(2) If m ≥ 4, λ is an eigenvalue of Gm if and only if there is a signed subgraph
of G with eigenvalue β such that β2 = λm.

From Lemma 1, we find that Gm contains more spectral information than
G as its eigenvalues are closely related to all signed (induced) subgraphs of G
(including G itself). So, it is natural that a graph has more probability to be
DHS than to be DS.
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2.2. Traces

We will introduce some knowledge about the traces of hypergraphs. Let H be an
m-uniform hypergraph on n vertices. The d-th trace of H, denoted by Trd(H),
is referring to the d-th trace of A(H). Morozov and Shakirov [34] introduced
the traces of polynomial maps f given by homogeneous polynomials of arbitrary
degrees. As a tensor T = (ti1i2···im) of order m and dimension n naturally induces
polynomial maps, the d-th trace Trd(T ) of T is expressed as follow:
(1)

Trd(T ) = (m−1)n−1
∑

d1+···+dn=d,
di∈N,i∈[n]

n∏
i=1

1

(di(m− 1))!

 ∑
yi∈[n]m−1

tiyi
∂

∂aiyi

di

Tr(Ad(m−1)),

where tiyi = tii2···im and ∂
∂aiyi

= ∂
∂aii2

· · · ∂
∂aiim

if yi = (i2, . . . , im).

Cooper and Dulte [9] gave an expression for the co-degree coefficients of the
characteristic polynomial of A(H) of H in terms of traces of H. Shao, Qi and
Hu [37] gave a graph interpretation for the d-th trace of a general tensor T of
order m and dimension n, and proved that

Trd(T ) =
N∑
i=1

λdi ,

where λ1, . . . , λN are all eigenvalues of T , and N = n(m− 1)n−1. So two tensors
T1 and T2 both of order m and dimension n are cospectral if and only if

Trd(T1) = Trd(T2)

for all d or d = 1, 2, . . . , n(m − 1)n−1. Clark and Cooper [8] expressed the trace
as a weighted sum over a family of Veblen hypergraphs. Chen, Bu and Zhou [5]
gave a formula for the spectral moments (equivalently, the traces) of a hypertree
in terms of the number of sub-hypertrees.

Given an ordering of the vertices of H, let

Fd(H) = {(e1(v1), . . . , ed(vd)) : ei ∈ E(H), v1 ≤ · · · ≤ vd},

be the set of d-tuples of ordered rooted edges, where ei(vi) is an edge ei with
root vi ∈ ei for i ∈ [d]. Define a rooted directed star Sei(vi) = (ei, {(vi, u) :
u ∈ ei\{vi}}) for each i ∈ [d], and multi-directed graph R(F ) =

⋃d
i=1 Sei(vi)

associated with F ∈ Fd(H). Let

F εd(H) = {F ∈ Fd(H) : R(F ) is Eulerian}.

For an F ∈ F εd(H), denote V (F ) = V (R(F )), rv(F ) the number of edges in F
with v as the root, and d+v (F ) = (m − 1)rv(F ) (namely, the outdegree of v in
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R(F )). Denote by τ(F ) = τu(R(F )) the number of arborescences of R(F ) with
root u (namely, a directed u-rooted spanning tree such that all vertices except u
has a directed path from itself to u), which is equal to the principal minor the
Laplacian matrix L(R(F )) of R(F ) by deleting the row and column indexed by
u ([1, 38]). As R(F ) is Eulerian, τu(R(F )) is independent of the choice of the
root u so that the root u is omitted. Fan et al. [20] give an expression of the d-th
trace of H as follows.

Lemma 2 [20]. For an m-uniform hypergraph H on n vertices,

(2) Trd(H) = d(m− 1)n
∑

F∈Fεd(H)

τ(F )∏
v∈V (F ) d

+
v (F )

.

For each F ∈ F εd(H), we get a multi-hypergraph induced by the edges in
F by omitting the roots, denoted by VF , which is an m-uniform and m-valent
multi-hypergraph called Veblen hypergraph. On the other side, given a Veblen
hypergraph H, a rooting of H is an ordering F = (e1(v1), . . . , et(vt)) of all edges
of H, where vi is the root of ei for i ∈ [t], and v1 ≤ · · · ≤ vt under the given order
of the vertices of H. If R(F ) is Eulerian, then F is called an Euler rooting of H;
in this case, H is called Euler rooted with each edge rooted as in F by omitting
the order. Denote by R(H) the set of Euler rooting of H.

Denote by Vd(H) the set of Veblen hypergraphs with d edges associated with
H as follows:

Vd(H) =
⋃

G∈C(H)

{
VF : F ∈ F εd(H),VF = G

}
,

where C(H) denotes the set of representatives of the isomorphic classes of con-
nected sub-hypergraphs of H, and H the underlying hypergraph of a multi-
hypergraph H obtained by removing duplicate edges of H. For each H ∈ Vd(H),
denote

CH =
∑

F∈R(H)

τ(F )∏
v∈V (F ) d

+
v (F )

,

and NH(H) the number of sub-hypergraphs of H that is isomorphic to H. By
Lemma 2, we have

Trd(H) = d(m− 1)n
∑

H∈Vd(H)

 ∑
F∈R(H)

τ(F )∏
v∈V (F ) d

+
v (F )

NH(H).

So we get another expression of Trd(H).

Corollary 3. For an m-uniform hypergraph H on n vertices,

(3) Trd(H) = d(m− 1)n
∑

H∈Vd(H)

CHNH(H).
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If we use Vd(H) denote the set of representatives of the isomorphism classes
of the hypergraphs in Vd(H), then we have the following expression of Trd(H),
which was proved by Clark and Cooper [8].

Trd(H) = d(m− 1)n
∑

H∈Vd(H)

CHNH(H)
|Aut(H)|
|Aut(H)|

= d(m− 1)n
∑

H∈Vd(H)

CH(#H ⊆ H),
(4)

where

(#H ⊆ H) = NH(H)
|Aut(H)|
|Aut(H)| ,

and Aut(G) denotes the automorphism group of a hypergraph G.

2.3. Traces of hypertrees

A hypertree is a connected and acyclic hypergraph. Let T be an m-uniform
hypertree. Then we have |V (T )| = (m − 1)|E(T )| + 1. We need the following
lemma to characterize the Veblen hypergraphs H ∈ Vd(T ).

Lemma 4 [20]. Let H be an m-uniform Veblen multi-hypergraph whose under-
lying hypergraph H is a hypertree. Then H is uniquely Euler rooted such that all
vertices of each edge occur as roots of the edge in a same number of times, and
hence every edge of H repeats in a multiple of m times.

By Lemma 4, for d ∈ Z+, Vd(T ) 6= ∅ if and only if m | d. So, in this
subsection we always assume that d is a positive multiple of m when discussing
Trd(T ); otherwise, Trd(T ) = 0 by Corollary 3. For each H ∈ Vd(T ), let H = T̂ ,
a sub-hypertree of T . Then H can be expressed as a weighted hypertree T̂ (ω),
where

ω : E(T̂ )→ Z+,

such that the multiplicity of an edge e ∈ E(H) ismω(e), and ω(T̂ )=
∑

e∈E(T̂ ) ω(e)

= d/m, implying that T̂ contains at most d/m edges. So we have

Vd(T ) =
⋃

T̂ ∈C(T )

{
T̂ (ω) : ω(T̂ ) = d/m

}
.

For each F ∈ R(T̂ (ω)), by a direct computation, we have

τ(F ) =
∏

e∈E(T̂ )

ω(e)m−1mm−2 = m(m−2)|E(T̂ )|

 ∏
e∈E(T̂ )

ω(e)

m−1

,
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∏
v∈V (F )

d+v (F ) =
∏

v∈V (T̂ )

(m− 1)dv(T̂ (ω)) = (m− 1)|V (T̂ )|
∏

v∈V (T̂ )

dv(T̂ (ω)),

where dv(T̂ (ω)) =
∑

e:v∈e ω(e), the weighted degree of the vertex v in T̂ (ω).

By Lemma 4, for each F ∈ R(T̂ (ω)), every vertex v ∈ V (T̂ ) occurs as a root
in dv(T (ω)) times of dv(T̂ ) distinct edges e with multiplicity ω(e) respectively.

So R(T̂ (ω)) has
∏
v∈V (T̂ )

dv(T̂ (ω))!
rv(T̂ (ω))

Euler rootings due to the ordering of the same

roots in different edges, where rv(T̂ (ω) =
∏
e:v∈e ω(e)!. So, for a given H =

T̂ (ω) ∈ Vd(T ),

CH =
∏

v∈V (T̂ )

dv(T̂ (ω))!

rv(T̂ (ω))
· τ(F )∏

v∈V (F ) d
+
v (F )

= (m− 1)−|V (T̂ )|m(m−2)|E(T̂ )|

 ∏
e∈E(T̂ )

ω(e)

m−1∏
v∈V (T̂ )

(dv(T̂ (ω))− 1)!

rv(T̂ (ω))
.

(5)

Denote

cd,m(T̂ ) =
∑

ω:ω(T̂ )=d/m

 ∏
e∈E(T̂ )

ω(e)

m−1 ∏
v∈V (T̂ )

(dv(T̂ (ω))− 1)!

rv(T̂ (ω))
.

Denote by Tm
≤t (respectively, Tm

t ) the set of m-uniform hypertrees with at most
t edges (respectively, exactly t edges) up to isomorphism. Then by Corollary 3,
for m | d,

Trd(T ) = d(m− 1)|V (T )|
∑

H∈Vd(T )

CHNT (H)

=
∑

T̂ (ω):T̂ ∈Tm≤d/m,ω(T̂ )=d/m

d(m− 1)|V (T )|−|V (T̂ )|m(m−2)|E(T̂ )|

·

 ∏
e∈E(T̂ )

ω(e)

m−1 ∏
v∈V (T̂ )

(dv(T̂ (ω))− 1)!

rv(T̂ (ω))
·NT (T̂ )

=
∑

T̂ ∈Tm≤d/m

d(m− 1)|V (T )|−|V (T̂ )|m(m−2)|E(T̂ )|

·
∑

ω:ω(T̂ )=d/m

 ∏
e∈E(T̂ )

ω(e)

m−1 ∏
v∈V (T̂ )

(dv(T̂ (ω))− 1)!

rv(T̂ (ω))
·NT (T̂ )

(6)
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=
∑

T̂ ∈Tm≤d/m

d(m− 1)(m−1)(|E(T )|−|E(T̂ )|)m(m−2)|E(T̂ )|cd,m(T̂ )NT (T̂ )

=

d/m∑
k=1

d(m− 1)(m−1)(|E(T )|−k|)mk(m−2)
∑
T̂ ∈Tmk

cd,m(T̂ )NT (T̂ ).

Now suppose that T = Tm, the m-th power of a tree T . Then H = T̂ (ω) =
T̂m(ω) for some sub-tree T̂ of T . For each edge e = {u, v} ∈ E(T ), it corresponds
to an edge em = {u, v, ei1, . . . , ei,m−2} ∈ E(Tm). The weighted hypertree T̂m(ω)
induces a weighted tree T̂ (ω) with weight ω : E(T̂ )→ Z+ such that ω(e) = ω(em)
and ω(T̂ ) =

∑
e∈E(T̂ ) ω(e) = d/m. We have

∏
v∈V (T̂m)

(dv(T̂
m(ω))− 1)!

rv(T̂m(ω))
=

∏
v∈V (T̂ )

(dv(T̂ (ω))− 1)!

rv(T̂ (ω))

∏
e∈E(T̂ )

(
(ω(e)− 1)!

ω(e)!

)m−2
.

Hence

(7) cd,m(T̂m) =
∑

ω:ω(T̂ )=d/m

∏
e∈E(T̂ )

ω(e)
∏

v∈V (T̂ )

(dv(T̂ (ω))− 1)!

rv(T̂ (ω))
=: c̃d/m(T̂ ).

So, for m | d,

(8) Trd(T
m) =

d/m∑
k=1

d(m− 1)(m−1)(|E(T )|−k)mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )NT (T̂ ).

We note that equations (6) and (8) with a slightly modification were proved
by Chen, Bu and Zhou [5]. Here we show them in a different way also for the
convenience in the following discussion.

3. Traces of Power of Unicyclic Graphs

In this section, we will give a decomposition formula for the traces of the power
of unicyclic graphs. Denote by Cn a cycle on n vertices (as a graph). Let Um be
the m-th power of a unicyclic graph U which contains a cycle Cn, where m ≥ 3.
The following lemma is important for our discussion.

Lemma 5 [20]. Let H be an m-uniform Veblen multi-hypergraph, and let e be
an edge of H which contains a cored vertex. If H has an Euler rooting, then e
repeats k ·m times for some positive integer k, and all cored vertices in e occur
as a root of e in k times.
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Let H ∈ Vd(Um). As m ≥ 3, each edges of H contains m− 2 cored vertices.
By Lemma 5, each edge of H occurs in a multiple of m times. So, for d ∈ Z+,
Vd(Um) 6= ∅ if and only if m | d. We will assume m | d in this section.

3.1. Traces of power of cycles

We first consider a special case, namely, U = Cn, where Cn has vertices v1, . . . , vn
and edges ei = {vi, vi+1} for i ∈ [n], vn+1 = v1. We label the edges of Cmn as
emi = {vi, vi+1, ei1, . . . , ei,m−2} for i ∈ [n]. Let

Vd
(
Cmn ; [Cmn ]

)
=
{
H ∈ Vd(Cmn ) : H = Cmn

}
.

Let H ∈ Vd(Cmn ; [Cmn ]). By Lemma 5, H is a weighted cycle Cmn (ω) with ω :
E(Cmn ) → Z+ such that emi repeats mω(emi ) times for i ∈ [n], where ω(Cmn ) =∑n

i=1 ω(emi ) = d/m. So

Vd
(
Cmn ; [Cmn ]

)
=
{
Cmn (ω) : ω(Cmn ) = d/m

}
.

Let H = Cmn (ω) and F ∈ R(Cmn (ω)). It is known that each cored vertex
of emi occurs as a root of emi in ω(emi ) times for i ∈ [n] by Lemma 5. Let tii
(respectively, ti,i+1) be the times of vi (respectively, vi+1) as a root of emi for
i ∈ [n], where the subscripts are taken modulo n. As emi repeats mω(emi ) times
and each cored vertex of emi occurs as a root of emi in ω(emi ) times, we have

(9) tii + ti,i+1 = 2ω(emi ).

As R(F ) is Eulerian,

(ti−1,i + tii)(m− 1) = mω(emi−1)− ti−1,i +mω(emi )− tii,

which implies that

(10) ti−1,i + ti,i = ω(emi−1) + ω(emi ).

Suppose that i0 ∈ [n] such that ω(emi0 ) = mini∈[n] ω(emi ) = ωmin. By equations
(9) and (10), we have

tii = ω(emi )− ω(emi0 ) + ti0i0 , ti,i+1 = ω(emi ) + ω(emi0 )− ti0i0 , ti0i0 ∈
[
0, 2ω(emi0 )

]
,

or equivalently

tii = ω(emi )− ωmin + x, ti,i+1 = ω(emi ) + ωmin − x, x ∈
[
0, 2ωmin

]
.

So

R(Cmn (ω)) =

2ωmin⋃
x=0

R(Cmn (ω);x),
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where R(Cmn (ω);x) consists of those rootings F ∈ R(Cmn (ω)) such that each
cored vertex of emi acts as a root of emi in ω(emi ) times, and for i ∈ [n], vi
(respectively, vi+1) acts as a root of emi in tii = ω(emi ) − ωmin + x (respectively,
ti,i+1 = ω(emi ) + ωmin − x) times.

For each F ∈ R(Cmn (ω);x), we now calculate τ(F ). Note that τ(F ) is the
principal minor of L(R(F )) by deleting the row and column both indexed by a
specified vertex v. Here we take v = v1 and write the L(R(F )) as follows, where
ti = (ti−1,i + tii)(m − 1), ωi = ω(emi ) for i ∈ [n], 1 is an all-one’s column vector
of size m − 2, K = mI − J of size m − 2, I is an identity matrix and J is an
all-one’s matrix.

L(R(F )) =

 t1 a b
c A B
d C D

 ,
where

a = (−t11, 0, . . . , 0,−tn1), b =
(
−t111>, 0, . . . , 0,−tn11>

)
,

c = (−t12, 0, . . . , 0,−tnn)>, d =
(
−ω11

>, 0, . . . , 0,−ωn1>
)>
,

A =


t2 −t22 0 · · · 0
−t23 t3 −t33 · · · 0

...
. . .

. . .
. . .

...
0 · · · −tn−2,n−1 tn−1 −tn−1,n−1
0 · · · 0 −tn−1,n tn

 ,

B =


−t121> −t221> 0 · · · 0

0 −t231> −t331> · · · ...
...

...
...

...
...

0 · · · −tn−2,n−11> −tn−1,n−11> 0
0 · · · 0 −tn−1,n1> −tn,n1>

 ,

C =


−ω11 0 0 · · · 0
−ω21 −ω21 0 · · · 0

...
...

...
...

...
0 0 · · · −ωn−11 −ωn−11
0 0 · · · 0 −ωn1

 ,

D =


ω1K O O · · · O
O ω2K O · · · O
...

. . .
. . .

. . .
...

O · · · O ωn−1K O
O · · · O O ωnK

 .
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So

τ(F ) = det

[
A B
C D

]
= detD det(A−BD−1C).

We easily get

detD = 2nmn(m−3)

(
n∏
i=1

ωi

)m−2
.

Note that 1>K = 21> so that 1>K−1 = 1
21>. We have

BD−1C =
m− 2

2


t2

m−1 t22 0 · · · 0

t23
t3

m−1 t33 · · · 0
...

. . .
. . .

. . .
...

0 · · · tn−2,n−1
tn−1

m−1 tn−1,n−1
0 · · · 0 tn−1,n

tn
m−1

 ,

and hence

A−BD−1C=
m

2


t12 + t22 −t22 0 · · · 0
−t23 t23 + t33 −t33 · · · 0

...
. . .

. . .
. . .

...
0 · · · −tn−2,n−1 tn−2,n−1 + tn−1,n−1 −tn−1,n−1
0 · · · 0 −tn−1,n tn−1,n + tnn

 .

We get

det(A−BD−1C) =
(m

2

)n−1( n∏
i=2

tii +

n−2∑
l=1

l∏
i=1

ti,i+1

n∏
i=l+2

tii +

n−1∏
i=1

ti,i+1

)

=
(m

2

)n−1 n−1∑
l=0

l∏
i=1

ti,i+1

n∏
i=l+2

tii,

and therefore

τ(F ) = 2mn(m−2)−1

(
n∏
i=1

ωi

)m−2 n−1∑
l=0

l∏
i=1

ti,i+1

n∏
i=l+2

tii.

By the diagonal entries of L(R(F )), we also get

∏
v∈V (F )

d+v (F ) =

n∏
i=1

ti

n∏
i=1

(ωi(m− 1))m−2

= (m− 1)n(m−1)

(
n∏
i=1

ωi

)m−2 n∏
i=1

(ti−1,i + tii).
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Note R(Cmn (ω);x) contains exactly
∏n
i=1

(
ti−1,i+tii

tii

)
rootings F , all corre-

sponding the same values of τ(F ) and
∏
v∈V (F ) d

+
v (F ). So we get CH for H =

Cmn (ω) as follows:

CCmn (ω) =
∑

F∈R(Cmn (ω))

τ(F )∏
v∈V (F ) d

+
v (F )

=

2ωmin∑
x=0

∑
F∈R(Cmn (ω);x)

τ(F )∏
v∈V (F ) d

+
v (F )

=

2ωmin∑
x=0

n∏
i=1

(
ti−1,i + tii

tii

)
· 2mn(m−2)−1∑n−1

l=0

∏l
i=1 ti,i+1

∏n
i=l+2 tii

(m− 1)n(m−1)
∏n
i=1(ti−1,i + tii)

(11)

=
2mn(m−2)−1

(m− 1)n(m−1)
∏n
i=1(ωi−1 + ωi)

·
2ωmin∑
x=0

n∏
i=1

(
ωi−1 + ωi

ωi − ωmin + x

)n−1∑
l=0

l∏
i=1

(ωi + ωmin − x)
n∏

i=l+2

(ωi − ωmin + x).

Denote

fCn(ω) =
1∏n

i=1(ωi−1 + ωi)

·
2ωmin∑
x=0

n∏
i=1

(
ωi−1 + ωi

ωi − ωmin + x

) n−1∑
l=0

l∏
i=1

(ωi + ωmin − x)

n∏
i=l+2

(ωi − ωmin + x)

and

Trd(C
m
n ; [Cmn ]) = d(m− 1)|V (Cmn )|

∑
H∈Vd(Cmn ;[Cmn ])

CHNCmn (H).

Lemma 6. For m | d,

(12) Trd(C
m
n ; [Cmn ]) =

∑
ω:ω(Cmn )=d/m

2dmn(m−2)−1fCn(ω).

If d/m = n, then

(13) Trnm(Cmn ; [Cmn ]) = 2n(n+ 1)mn(m−2).

Proof. By the previous discussion, each H ∈ Vd(Cmn ; [Cmn ]) is a weighted cycle
Cmn (ω), and H = Cmn , implying that NCmn (H) = 1. By definition and equa-
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tion (11),

Trd(C
m
n ; [Cmn ]) = d(m− 1)n(m−1)

∑
H∈Vd(Cmn ;[Cmn ])

CHNCmn (H)

=
∑

ω:ω(Cmn )=d/m

d(m− 1)n(m−1)CCmn (ω)

=
∑

ω:ω(Cmn )=d/m

d(m− 1)n(m−1)
2mn(m−2)−1

(m− 1)n(m−1)
fCn(ω)

=
∑

ω:ω(Cmn )=d/m

2dmn(m−2)−1fCn(ω).

If d/m = n, then ωi = 1 for i ∈ [n], fCn(ω) = n+ 1, and therefore

Trnm(Cmn ; [Cmn ]) = 2n(n+ 1)mn(m−2).

3.2. Trace of power of unicyclic graphs

Let Um be the m-th power of a unicyclic graph U which contains a cycle Cn.
The labeling of the vertices and edges of Cmn is the same as in Section 3.1. We
have a decomposition:

(14) Vd(Um) = Vd(Um; [Ĉmn ]) ∪ Vd(Um; [Cmn ]),

where Vd(Um; [Ĉmn ]) (respectively, Vd(Um; [Cmn ])) denotes the subset of Vd(Um)
which consists of Veblen hypergraphs that contain not all edges of Cmn (respec-
tively, contain all edges of Cmn ). By Lemma 5, either of three sets in (14) is
nonempty if and only if m | d. So we assume m | d in the following discussion.

For each H ∈ Vd(Um; [Ĉmn ]), H is a hypertree, and by Lemma 4, H is uniquely
rooted and H = T̂m(ω) for some tree T̂ contained in U with ω(T̂ ) = d/m. So by
Corollary 3, equations (5) and (7),

Trd(U
m; [Ĉmn ]) = d(m− 1)|V (Um)|

∑
H∈Vd(Um;[Ĉmn ])

CHNUm(H)

=

d/m∑
k=1

d(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )NU (T̂ ).

(15)

Suppose that U is obtained from Cn by attaching rooted trees T1, . . . , Tn with
their roots identified with v1, . . . , vn of the cycle respectively, where some trees Ti
may be trivial containing only one vertex (namely vi). Here we stress that each
Ti is a rooted tree with root vi for i ∈ [n]. Note an isomorphism between two
rooted trees is one preserving the roots. If T̂ is a rooted tree with root v, then
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NTi(T̂ ) denotes the number of subgraphs of Ti with root vi that is isomorphic to
T̂ mapping vi to v.

For each H ∈ Vd(Um; [Cmn ]), H|Tmi (if nonempty) for i ∈ [n] and H|Cmn are

all Vebelen hypergraphs. By Lemma 4, H|Tmi = T̂mi (ωi) for some subtree T̂i of

Ti containing the vertex vi such that each edge e of T̂mi repeat mωi(e) times in
H|Tmi . Similarly, by Lemma 5, H|Cmn = Cmn (ω0) such that each edge e of Cmn
repeat mω0(e) times in H|Cmn . Surely, the number of edges of H|Tmi for i ∈ [n] and
the number of edges of H|Cmn are multiples of m. We also note Vd(Um; [Cmn ]) 6= ∅
only if d/m ≥ n, with equality only if Vd(Um; [Cmn ]) = {Cmn (ω0)} with ω0(e) = 1
for each edge e ∈ E(Cmn ).

By the discussion before, we have

(16) Vd(Um; [Cmn ]) =
⋃

d0+···+dn=d,d0/m≥n
m|di,i∈{0,1,...,n}

⋃
0≤si≤di/m

Vs1,...,snd0,d1,...,dn
(Um),

where Vs1,...,snd0,d1,...,dn
(Um) is the set of Veblen hypergraphs contains d0 > 0 edges of

Cmn , and di edges of Tmi among of which msi edges contains the vertex vi for
i ∈ [n]. Furthermore,

Vs1,...,snd0,d1,...,dn
(Um) = ∪

{
Cmn (ω0) ∪

n⋃
i=1

T̂mi (ωi) : Cmn (ω0) ∈ Vd0(Cmn ; [Cmn ]),

T̂mi (ωi) ∈ Vdi;si(Tmi ; [vi]), i ∈ [n]

}
,

where Vdi;si(Tmi ; [vi]) = {T̂mi (ωi) ∈ Vdi(Tmi ) : dvi(T̂
m
i (ωi)) = si, T̂i ⊆ Ti}, and T̂i

is a rooted tree with root vi. Note that in the above decomposition, some di’s
are zeros, and di = 0 if and only if si = 0.

Denote N = (m − 1)|E(U)| the number of vertices of Um, Ni = (m − 1)
|E(Ti)| + 1 the number of vertices of Tmi for i ∈ [n], and N0 = (m − 1)n the
number of vertices of Cmn . Then N = N0 +

∑
i∈[n]Ni − n. Let H = Cmn (ω0) ∪⋃

i∈I(s) T̂
m
i (ωi) ∈ Vs1,...,snd0,d1,...,dn

(Um), where I(s) = {i ∈ [n] : si > 0}. For each F ∈
R(H), F0 = F |Cmn (ω0) is an Euler rooting of Cmn (ω0), and d+vi(F0) = (ω0(emi−1) +
ω0(emi ))(m− 1) =: ti(m− 1) for i ∈ [n]; Fi = F |T̂mi (ωi) is also an Euler rooting of

T̂mi (ωi), and d+vi(Fi) = si(m−1) for i ∈ I(s). We have τ(F ) = τ(F0)
∏
i∈I(s) τ(Fi)

and NUm(H) =
∏
i∈I(s)NTi(T̂i). Denote

Trdi;si(T
m
i ; [vi]) = d(m− 1)Ni

∑
H∈Vdi;si (T

m
i ;[vi])

CHNTmi
(H), i ∈ I(s).
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By Lemma 6, we have

Trs1,...,snd0,d1,...,dn
(Um) = d(m− 1)N

∑
H∈Vs1,...,snd0,d1,...,dn

CHNUm(H)

= d(m− 1)N
∑

H∈Vs1,...,snd0,d1,...,dn

 ∑
F∈R(H)

τ(F )∏
v∈V (F ) d

+
v (F )

NUm(H)

= d(m− 1)N
∑

Cmn (ω0)∈Vd0 ,T̂
m
i (ωi)∈Vdi;si ,i∈I(s)

∏
i∈I(s)

(
si + ti
si

)

·
∑

F∈R(∪i∈I(s)T̂mi (ωi))

∏
i∈I(s)

siti(m− 1)

si + ti

τ(Fi)∏
v∈V (Fi)

d+v (Fi)
NTi(T̂i)

·
∑

F0∈R(Cmn (ω0))

τ(F0)∏
v∈V (F0)

d+v (F0)
=
d(m− 1)N−N0−

∑
i∈I(s)(Ni−1)

d0
(17)

·
∏
i∈I(s)

si
di

∑
Tmi (ωi)∈Vdi;si

∑
F∈R(T̂mi (ωi))

di(m− 1)Niτ(Fi)∏
v∈V (Fi)

d+v (Fi)
NTi(T̂i)

·
∑

Cmn (ω0)∈Vd0

∏
i∈I(s)

ti
si + ti

(
si + ti
ti

) ∑
F∈R(Cmn (ω0))

d0(m− 1)N0τ(F0)∏
v∈V (F0)

d+v (F0)

=
d(m− 1)N−N0−

∑
i∈I(s)(Ni−1)

d0

∏
i∈I(s)

si
di

Trdi;si(T
m
i ; [vi])

·
∑

ω0:ω0(Cmn )=
d0
m

n∏
i=1

(
ω0
i−1 + ω0

i + si − 1

si

)
· 2d0mn(m−2)−1fCn(ω0),

where Vs1,...,snd0,d1,...,dn
= Vs1,...,snd0,d1,...,dn

(Um), Vd0 = Vd0(Cmn ; [Cmn ]), Vdi;si = Vdi;si(Tmi ; [vi]).

By a similar discussion as in Section 2.3, we have a formula for Trd;s(T
m; [v]).

Denote by T (k; [v]) the set of representatives of the isomorphic classes of subtrees
of T with root v and k edges, and for each T̂ ∈ T (k; [v]) denote c̃`;s(T̂ ) as follows:

c̃`;s(T̂ ) =
∑

ω:ω(T̂ )=`,dv(T̂ (ω))=s

∏
e∈E(T̂ )

ω(e)
∏

u∈V (T̂ )

(du(T̂ (ω))− 1)!

ru(T̂ (ω))
.

We have

(18) Trd;s(T
m; [v]) =

d/m∑
k=1

d(m− 1)(m−1)(|E(T )|−k)mk(m−2)
∑

T̂∈T (k;[v])

c̃d/m;s(T̂ )NT (T̂ ).
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So ∏
i∈I

Trdi;si(T
m
i ; [vi]) =

∏
i∈I

di
∑

ki∈[di/m]
i∈I

(m− 1)(m−1)
∑
i∈I(|E(Ti)|−ki)m(m−2)

∑
i∈I ki

·
∏

T̂i∈Ti(ki;[vi])
i∈I

c̃di/m;si(T̂i)NTi(T̂i).
(19)

We now give a formula for the traces of the power of unicyclic graphs.

Theorem 7. Let U be a unicyclic graph which is obtained from a cycle Cn
by attaching rooted trees T1, . . . , Tn with their roots identified with the vertices
v1, . . . , vn of the cycle respectively. For each d with m | d,

Trd(U
m)=

d/m∑
k=1

d(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )NU (T̂ )

+2mn(m−2)−1
∑

∑n
i=0

di=d,
d0
m ≥n

m|di,i∈{0,1,...,n}

∑
0≤si≤di/m

i∈[n]

d(m− 1)(m−1)(|E(U)|−n−
∑
i∈I(s) |E(Ti)|)

∏
i∈I(s)

si

·
∑

ki∈[di/m]
i∈I(s)

(m− 1)
(m−1)

∑
i∈I(s)

(|E(Ti)|−ki)
m

(m−2)
∑

i∈I(s)
ki∏

T̂i∈Ti(ki;[vi])
i∈I(s)

c̃di/m;si(T̂i)NTi(T̂i)(20)

·
∑

ω0:ω0(Cmn )=d0/m

n∏
i=1

(
ω0
i−1 + ω0

i + si − 1

si

)
fCn(ω0).

Proof. By the decomposition (16), equations (17) and (19), we have

Trd(U
m; [Cmn ]) = d(m− 1)|V (Um)|

∑
H∈Vd(Um;[Cmn ])

CHNUm(H)

=
∑

∑n
i=0

di=d,
d0
m ≥n

m|di,i∈{0,1,...,n}

∑
0≤si≤di/m

i∈[n]

Trs1,...,snd0,d1,...,dn
(Um)

=
∑

∑n
i=0

di=d,
d0
m ≥n

m|di,i∈{0,1,...,n}

∑
0≤si≤di/m

i∈[n]

d(m− 1)
N−N0−

∑
i∈I(s)

(Ni−1)

d0

∏
i∈I(s)

si
di

Trdi;si(T
m
i ;[vi])

·
∑

ω0:ω0(Cmn )=
d0
m

n∏
i=1

(
ω0
i−1 + ω0

i + si − 1

si

)
2d0m

n(m−2)−1fCn(ω0)(21)

= 2mn(m−2)−1
∑

∑n
i=0

di=d,
d0
m ≥n

m|di,i∈{0,1,...,n}

∑
0≤si≤di/m

i∈[n]

d(m− 1)N−N0−
∑
i∈I(s)(Ni−1)

∏
i∈I(s)

si
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·
∑

ki∈[di/m]
i∈I(s)

(m− 1)
(m−1)

∑
i∈I(s)

(|E(Ti)|−ki)
m

(m−2)
∑

i∈I(s)
ki∏

T̂i∈Ti(ki;[vi])
i∈I(s)

c̃di/m;si(T̂i)NTi(T̂i)

·
∑

ω0:ω0(Cmn )=d0/m

n∏
i=1

(
ω0
i−1 + ω0

i + si − 1

si

)
fCn(ω0),

where N = (m − 1)|E(U)|, N0 = (m − 1)n and Ni = (m − 1)|E(Ti)| + 1 are
respectively the number of vertices of Um, Cmn and Tmi for i ∈ [n].

By the decomposition (14), we have

Trd(U
m) = Trd(U

m; [Ĉmn ]) + Trd(U
m; [Cmn ])

and get the desired result by combing equations (15) and (21).

Corollary 8. Let U be the unicyclic graph as defined in Theorem 7. If d/m = n,
then

Trd(U
m) =

n∑
k=1

n(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)+1
∑
T̂∈Tk

c̃n(T̂ )NU (T̂ )

+ 2n(n+ 1)(m− 1)(m−1)(|E(U)|−n)mn(m−2).

(22)

If d/m < n, then

(23) Trd(U
m) =

d/m∑
k=1

d(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )NU (T̂ ).

Proof. If d/m = n, then d0 = d = mn, di = si = 0 for i ∈ [n], and I(s) = ∅ in
equation (20). Also in this case, ω0

i = 1 for i ∈ [n], and fCn(ω0) = n+ 1. So we
have

Trnm(Um) =

d/m∑
k=1

d(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )NU (T̂ )

+ 2d(m− 1)(m−1)(|E(U)|−n)mn(m−2)−1(n+ 1)

=

n∑
k=1

n(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)+1
∑
T̂∈Tk

c̃n(T̂ )NU (T̂ )

+ 2n(n+ 1)(m− 1)(m−1)(|E(U)|−n)mn(m−2).

If d/m < n, then the second summand in equation (20) does not appear.
The result follows.
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Recall that the girth of a graph G, denoted by g(G), is the minimum length
of the cycles of G. If G contains no cycles, then we define g(G) = +∞. At the
end of this section, we will consider some special traces of a general graph with
girth g.

Theorem 9. Let G be a graph with n vertices and p edges. Then for each m ≥ 3
and each d with m | d and d/m < g(G),

(24) Trd(G
m) =

d/m∑
k=1

d(m− 1)n−1−p+(m−1)(p−k)mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )NG(T̂ ).

Proof. Observe that Gm has N = n+ p(m− 2) vertices. As m ≥ 3, each edge of
Gm contains a cored vertex. By Lemma 5, each edge of H ∈ Vd(Gm) repeats in a
multiple of m times, which implying that d is multiple of m if Vd(Gm) 6= ∅. Also
H is a weighted graph, namely H = H(ω) such that each edge e of H repeats
mω(e) times in H, where ω : E(H) → Z+. So, ω(H) =

∑
e∈E(H) ω(e) = d/m,

which implies that H has at most d/m edges.
Now assume that m | d and d/m < g(G). Then H contains no cycles, and

hence H = T̂m for some tree T̂ ⊆ G. So

Vd(Gm) = {T̂m(ω) : T̂ ⊆ G,ω(T̂m) = d/m}.
By Corollary 3, equation (7) and a similar discussion as in equation (6) by re-
placing T with Gm, T̂ with T̂m,

Trd(G
m) = d(m− 1)N

∑
H∈Vd(Gm)

CHNGm(H)

=
∑

T̂m∈Tm≤d/m

d(m− 1)N−|V (T̂m|)m(m−2)|E(T̂m)|cd,m(T̂m)NGm(T̂m)

=

d/m∑
k=1

d(m− 1)n−1−p+(m−1)(p−k)mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )NG(T̂ ).

We note that if G is a tree T or unicyclic graph U , then equation (24) becomes
equations (8) or (23).

4. Spectral Characterization of Unicyclic Graphs

In this section, we give some high-ordered cospectral invariants of graphs, in
particular for unicylic graphs. As applications, we prove that a class of unicylic
graphs which are not DS but DHS. We give two examples of infinitely many pairs
of cospectral unicyclic graphs with different high-ordered spectra. Denote by Pn
a path on n vertices (as a graph).
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4.1. General graphs

It is known that if G1 is cospectral with G2, then they have the same number of
vertices and edges, respectively, namely

NG1(P1) = NG2(P1), NG1(P2) = NG2(P2).

We will prove that NG(P3) is a high-ordered cospectral invariant of G.

Lemma 10. If G1 is high-ordered cospectral with G2, then

(25)
∑
T̂∈Tk

c̃`(T̂ )NG1(T̂ ) =
∑
T̂∈Tk

c̃`(T̂ )NG2(T̂ )

for all `, k with 1 ≤ k ≤ ` < min{g(G1), g(G2)}.
Proof. As Trd(G

m
1 )=Trd(G

m
2 ), by Theorem 9, form|d and d

m<min{g(G1),g(G2)},
d/m∑
k=1

(m− 1)n−1−p+(m−1)(p−k)mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )(NG1(T̂ )−NG2(T̂ )) = 0,

where n, p are respectively the number of vertices and edges of G1 or G2. Let
d/m = `, g(m, k) = (m−1)n−1−p+(m−1)(p−k)mk(m−2), y(k) =

∑
T̂∈Tk

c̃`(T̂ )(NU2(T̂ )−

NU1(T̂ )). Then we have ∑̀
k=1

g(m, k)y(k) = 0.

As g(m, k) = g(m, k − 1) mm−2

(m−1)m−1 =: g(m, k − 1)α(m) for k > 1, g(m, k) =

g(m, 1)α(m)k−1. Now taking m as ` different integers m1, . . . ,m` that are greater
than 2, we have

(26)


1 α(m1) α(m1)

2 · · · α(m1)
`−1

1 α(m2) α(m2)
2 · · · α(m2)

`−1

...
...

... · · · ...
1 α(m`) α(m2)

2 · · · α(m`)
`−1



y(1)
y(2)

...
y(`)

 = 0.

As the matrix in equation (26) is nonsingular, we have y(k) = 0 for k ∈ [`].

Remark 11. In Lemma 10, suppose Tk has exactly tk trees T̂1, . . . , T̂tk . If we
can take ` as tk different integers `1, . . . , `tk such that min{`i : i ∈ [tk]} ≥ k and
max{`i : i ∈ [tk]} < min{g(G1), g(G2)}, then by Lemma 10, we have

(27)


c̃`1(T̂1) c̃`1(T̂2) · · · c̃`1(T̂tk)

c̃`2(T̂1) c̃`2(T̂2) · · · c̃`2(T̂tk)
...

... · · · ...

c̃`tk (T̂1) c̃`tk (T̂2) · · · c̃`tk (T̂tk)



z(1)
z(2)

...
z(tk)

 = 0,
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where z(i) = NG1(T̂i) − NG2(T̂i) for i ∈ [tk]. If the matrix in equation (27),
denoted by C̃, is nonsingular, then the equation in equation (27) has only zero
solution, which implies that for all T̂ ∈ Tk,

NG1(T̂ ) = NG2(T̂ ).

Obviously, T2 = {P3}. By definition, c̃2(P3) > 0. As any graph has girth
greater than 2, if G1 is high-order cospectral with G2, then

(28) NG1(P3) = NG2(P3).

Chen, Sun and Bu [7] defined a parameter c2`(T̂ ) and a matrix C = (c2`i(T̂j))
of size tk similar to C̃. By definition, we find that

(29) c̃`(T̂ ) =
c2`(T̂ )

2`
,

which implies that

C̃ = diag

{
1

2`1
, . . . ,

1

2`tk

}
C.

So C̃ and C have the same singularity.

Corollary 12. If G1 is high-ordered cospectral with G2, then

NG1(P3) = NG2(P3).

Corollary 13. If G1 is high-ordered cospectral with G2, then

NG1(Pk) = NG2(Pk), k ∈ {1, 2, 3},
and

NG1(C3) = NG2(C3), NG1(C4) = NG2(C4).

Proof. It is known for a graph G, Tr3(G) = 6NG(C3) and Tr4(G) = 2NG(P2) +
4NG(P3) + 8NG(C4) in [11]. The result follows by Corollary 12 and the above
equalities.

Corollary 14. Let G1 and G2 be two graphs with girth greater than or equal to
g. If G1 is high-order cospectral with G2, then

(1) if g = 5, then NG1(T̂ ) = NG2(T̂ ) for all trees T̂ with at most 3 edges;

(2) if g = 7, then NG1(T̂ ) = NG2(T̂ ) for all trees T̂ with at most 4 edges;

(3) if g = 11, then NG1(T̂ ) = NG2(T̂ ) for all trees T̂ with at most 5 edges.

Proof. By Tables 1 and 2 in [7] and Remark 11, T3 has 2 trees, and the matrix
in (27) is nonsingular by taking ` ∈ {3, 4}. Similarly, T4 has 3 trees, and the
matrix in (27) is nonsingular by taking ` ∈ {4, 5, 6}; T5 has 6 trees, and the
matrix in (27) is nonsingular by taking ` ∈ {5, 6, . . . , 10}. The result follows by
Remark 11.
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4.2. Unicylic graphs

We first prove that the girth is a high-ordered cospectral invariant of unicyclic
graphs.

Lemma 15. Let U1 (respectively, U2) be a unicyclic graph containing a cycle Cn1

(respectively, Cn2). If U1 is high-order cospectral with U2, then n1 = n2.

Proof. Since U1 is high-order cospectral with U2, we have Trd(U
m
1 ) = Trd(U

m
2 )

for all d and m ≥ 3. Suppose that n1 < n2. Now taking d = n1m, by Corollary
8 we have

n1∑
k=1

n1(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)+1
∑
T̂∈Tk

c̃n1(T̂ )(NU2(T̂ )−NU1(T̂ ))

= 2n1(n1 + 1)(m− 1)(m−1)(|E(U)|−n1)mn1(m−2).

By a simple calculation, we have

n1∑
k=1

(m−1)(m−1)(n1−k)−1m(k−n1)(m−2)+1
∑
T̂∈Tk

c̃n1(T̂ )(NU2(T̂ )−NU1(T̂ ))= 2(n1+1).

Let h(m, k) = (m−1)(m−1)(n1−k)−1m(k−n1)(m−2)+1, y(k) =
∑

T̂∈Tk c̃n1(T̂ )(NU2(T̂ )

−NU1(T̂ )). Then h(m, k) = h(m, 1)α(m)k−1, and

n1∑
k=1

h(m, 1)α(m)k−1y(k) = 2(n1 + 1),

where α(m) = mm−2

(m−1)m−1 . Taking m as n1 different integers m1, . . . ,mn1 that are

greater than 2, we have
(30)

h(m1, 1) h(m1, 1)α(m1) · · · h(m1, 1)α(m1)n1−1

h(m2, 1) h(m2, 1)α(m2) · · · h(m2, 1)α(m2)n1−1

...
...

...
...

h(mn1
, 1) h(mn1

, 1)α(mn1
) · · · h(mn1

, 1)α(mn1
)n1−1



y(1)
y(2)

...
y(n1)

=


2(n1 + 1)
2(n1 + 1)

...
2(n1 + 1)

 .
It is easily found the matrix H = (h(mi, 1)α(mi)

j−1) in equation (30) is nonsin-
gular, and by Cramer’s rule

(31) y(1) = (detH)−1 detM,

where

M =


2(n1 + 1) h(m1, 1)α(m1) · · · h(m1, 1)α(m1)

n1−1

2(n1 + 1) h(m2, 1)α(m2) · · · h(m2, 1)α(m2)
n1−1

...
... · · · ...

2(n1 + 1) h(mn1 , 1)α(mn1) · · · h(mn1 , 1)α(mn1)n1−1

 ,
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which is obtained fromH by replacing the first column by (2(n1+1), . . . , 2(n1+1))>.

We will prove that there exists distinct integers m1,m2, . . . ,mn1 such that
detM 6= 0. First given any n1−1 distinct integers m1,m2, . . . ,mn1−1, the matrix
M(n1, 1) is nonsingular so that the equation

(2(n1 + 1), . . . , 2(n1 + 1))> = M(n1, 1)x

has a unique solution x = (x1, . . . , xn1−1)
>, where M(n1, 1) is obtained from M

by deleting the last row and the first column. Let ` be the smallest index such
that x` 6= 0. Then ` ≤ n1 − 2; otherwise we have(

2(n1 + 1), . . . , 2(n1 + 1)
)>

=
(
h(m1, 1)α(m1)

n1−1, . . . , h(mn1−1, 1)α(mn1−1)
n1−1

)> · xn1−1,

a contradiction. Now consider the following equation in the variable m:

(32) 2(n1 + 1) = h(m, 1)α(m)x1 + · · ·+ h(m, 1)α(m)n1−1xn1−1.

Let
f(m) = h(m, 1)α(m)x1 + · · ·+ h(m, 1)α(m)n1−1xn1−1

= h(m, 2)x1 + · · ·+ h(m,n1)xn1−1.

Note that h(m, k) ∼ e−(n1−k)(m − 1)n1−k when m → +∞. As x` 6= 0 for some
smallest ` ≤ n1 − 2,

f(m) ∼ x`h(m, `+ 1) ∼ x`e−(n1−`−1)(m− 1)n1−`−1.

When m → +∞, then |f(m)| → +∞. So, there exists a positive integer m =
m0 such that equation (32) does not hold. Surely, m0 is not equal to any of
m1, . . . ,mn1−1 by the definition of x. Taking mn1 = m0, detM 6= 0 as the first
column cannot be a linear combination of other columns.

By equation (31), we get y(1) 6= 0. However, by the definition of y(k),
y(1) = 0 as NU2(T̂ ) = NU1(T̂ ) when T̂ = P2. So we get the desired result,
namely n1 = n2.

Lemma 16. Let U1 (respectively, U2) be a unicyclic graph containing a cycle Cn.
If U1 is high-order cospectral with U2, then∑

T̂∈Tk

c̃`(T̂ )NU1(T̂ ) =
∑
T̂∈Tk

c̃`(T̂ )NU2(T̂ )

for all `, k with 1 ≤ k ≤ ` ≤ n.
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Proof. As Trd(U
m
1 ) = Trd(U

m
2 ), by Corollary 8, for m | d and d/m ≤ n, we have

d/m∑
k=1

(m− 1)(m−1)(|E(U)|−k)−1mk(m−2)
∑
T̂∈Tk

c̃d/m(T̂ )(NU2(T̂ )−NU1(T̂ )) = 0.

Let d/m = `, g(m, k) = (m − 1)(m−1)(|E(U)|−k)−1mk(m−2), y(k) =
∑

T̂∈Tk c̃`(T̂ )

(NU2(T̂ ) −NU1(T̂ )). Then we have

∑̀
k=1

g(m, k)y(k) = 0.

By a similar discussion as in Lemma 10, we get the desired result.

Remark 17. In Lemma 16, suppose Tk has exactly tk trees T̂1, . . . , T̂tk . If we
can take ` as tk different integers `1, . . . , `tk such that min{`i : i ∈ [tk]} ≥ k
and max{`i : i ∈ [tk]} ≤ n, then by Lemma 16, we have the matrix equation
in equation (27): C̃z = 0. If the matrix C̃ is nonsingular, then z has only zero
solution, which implies that for all T̂ ∈ Tk,

NU1(T̂ ) = NU2(T̂ ).

Corollary 18. Let U1 and U2 be unicyclic graphs both with girth g. If U1 is
high-order cospectral with U2, then

(1) if g ≥ 4, then NU1(T̂ ) = NU2(T̂ ) for all trees T̂ with at most 3 edges;

(2) if g ≥ 6, then NU1(T̂ ) = NU2(T̂ ) for all trees T̂ with at most 4 edges;

(3) if g ≥ 10, then NU1(T̂ ) = NU2(T̂ ) for all trees T̂ with at most 5 edges.

Proof. The proof is similar to that of Corollary 14 by noting that the number `
in Lemma 16 is allowed to equal the girth g. We omit the details.

We further investigate the high-order cospectral pairs of unicyclic graphs
with girth at most 4.

Corollary 19. Let U1 and U2 be high-order cospectral unicyclic graphs with
girth g.

(1) If g = 3, then

NU1(P4) + 2NU1(S4) = NU2(P4) + 2NU2(S4).

(2) If g = 4, then

NU1(P5) + 2NU1(Q5) + 6NU1(S5) = NU2(P5) + 2NU2(Q5) + 6NU2(S5).
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P2 P3 P4 S4 P5 Q5

S5

P6 Q6 R6 H6

J6 S6

Figure 1. The trees with at most 5 edges.

Proof. By Lemma 16, we have

(33)
∑
T̂∈Tg

c̃g(T̂ )NU1(T̂ ) =
∑
T̂∈Tg

c̃g(T̂ )NU2(T̂ ).

If g = 3, then T3 = {P4, S4} and c̃3(P4) = 1, c̃3(S4) = 2; and if g = 4, then
T4 = {P5, Q5, S5} and c̃4(P5) = 1, c̃4(Q5) = 2 and c̃4(S5) = 6, where the graphs
S4, Q5, S5 are listed in Figure 1. The result follows by substituting the above
values into equation (33).

4.3. A class of DHS unicylic graphs

By Lemma 15, the girth is a high-ordered cospectral invariant of unicyclic graphs.
However, it does not hold for the usual cospectral invariant of unicyclic graphs.
Let H(n; q, n1, n2) denotes the unicyclic graph on n vertices which is obtained
from a cycle Cq by attaching two paths Pn1+1 and Pn2+1 at the same vertex
of the cycle Cq, and n1, n2 ≥ 1. Liu et al. [32] proved the following cospectral
mates: H(12; 6, 1, 5) and H(12; 8, 2, 2), H(n; 2a+ 6, a, a+ 2) and Λ(a, a, 2a+ 2),
H(n; 2b, b, b) and Θ(b− 2, 2b− 3, b− 1), where Λ(a, a, 2a+ 2) is a unicyclic graph
with girth 6 and a being positive even number, and Θ(b − 2, 2b − 3, b − 1) is a
bicyclic graph with b being even number greater than 2; see Theorem 3.4, Lemma
5.8 and Lemma 5.11 in [32]. We now further investigate the high-ordered spectral
property of H(n; q, n1, n2).

Theorem 20. The unicyclic graph H(n; q, n1, n2) is DHS when q ≥ 5.

Proof. Let H = H(n; q, n1, n2). Suppose that G is a graph high-ordered cospec-
tral with H, which has n1 vertices of degree 1, n2 vertices of degree 2 and n3
vertices of degree greater than or equal to 3. By the relation NH(Pi) = NG(Pi)
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for i ∈ [3], and noting that NH(P3) = n+ 3, we have

(34) n1 + n2 + n3 = n, n1 + 2n2 +
∑
v:dv≥3

dv = 2n, n2 +
∑
v:dv≥3

(
dv
2

)
= n+ 3.

By the 3rd and 2nd equalities,

n+ 3 ≥ n2 +
∑
v:dv≥3

dv = 2n− n1 − n2,

which implies that n3 ≤ 3. The result will be arrived by the following discussion.

Case 1. n3 = 3. Then for each v with dv ≥ 3, dv = 3. So we get n1 =
3, n2 = n − 6, n3 = 3. By Corollary 13, NH(Ck) = NG(Ck) for k = 3, 4. As H
contains no C3 or C4, the girth of G is at least 5. Observe that NG(S4) = 3 and
NH(S4) = 4. However, by Corollary 14, NH(S4) = NG(S4); a contradiction. So
this case cannot happen.

Case 2. n3 = 2. Then G contains exactly two vertices, say u, v, both with
degree greater than or equal to 3. By the 1st and 2nd equalities in equation (34),
we have du + dv = n+ 2− n2. If both du and dv are greater than or equal to 4,
then by the 3rd equality in equation (34),

n+ 3 ≥ n2 +
3

2
(du + dv) = n2 +

3

2
(n+ 2− n2) =

3

2
n− 1

2
n2 + 3,

which implies that n ≤ n2; a contradiction. So there exists a vertex among u, v,
say u with du = 3. Also by equation (34),

dv = n− n2 − 1,

(
dv
2

)
= n− n2.

If letting x = n− n2, by the above equalities, we have

x2 − 5x+ 2 = 0,

which implies that x is an irrational number; a contradiction. So this case also
cannot happen.

Case 3. n3 = 1. Then G have only one vertex say v with degree greater than
or equal to 3. By equation (34), we have

dv = n− n2 + 1,

(
dv
2

)
= n− n2 + 3.

By a simple computation, we have n1 = 2, n2 = n− 3, n3 = 1 and dv = 4.
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Let G0 be a component of G containing the vertex v. Then G0 must contain
a cycle; otherwise G0 is a tree with at least 4 vertices of degree 1; a contradiction
to n1 = 2. As G0 contains exactly one vertex greater than 2, namely the vertex
v with degree 4, G0 is of form H(n; q′, n′1, n

′
2).

We assert that G has no other components other than G0. Otherwise, let
G1 be another component of G. Then G1 is a cycle with the largest eigenvalue
λ1(G1) = 2 as it only contains vertices with degree 2. We also note λ1(G0) > 2 as
G0 contains the cycle Cq as a proper subgraph. So the second eigenvalue λ2(G)
of G holds that

λ2(G) ≥ min{λ1(G0), λ1(G1)) ≥ 2.

Let ṽ be the vertex of H with degree 4. Note that H − ṽ consists of paths, and
the largest eigenvalue of a path is less than 2. By the interlacing theorem,

λ2(H) ≤ λ1(H − ṽ) < 2,

which yields a contradiction as λ2(G) = λ2(H). So G is of form H(n; q′, n′1, n
′
2).

By Theorem 3.4 of [32], except for H(12; 6, 1, 5) and H(12; 8, 2, 2), no two non-
isomorphic graphs of form H(n′; q′, n′1, n

′
2) are cospectral. As two high-ordered

cospectral unicyclic graphs has the same girth by Lemma 15, G is isomorphic to
H(n; q, n1, n2).

Case 4. n3 = 0. Then G is a union of paths and/or cycles. This is impossible
as λ1(G) ≤ 2 < λ1(H).

4.4. Cospectral unicyclic graph mates with different high-ordered
spectra

There are two methods to construct cospectral graphs. The first is to use coales-
cence introduced by Schwenk [36] (or see [12]). Let G be a graph with root u and
H be a graph with root v. The coalescence of G and H is obtained by identifying
the root u of G with the root v of H, denoted by G(u)�H(v).

Lemma 21 [12,36]. Let G be a graph with root u and H be a graph with root v.
If G is cospectral with H and G− u is cospectral with H − v, then for any graph
Γ with root w, G(u)� Γ(w) is cospectral with H(v)� Γ(w).

The second method is to use rooted product introduced by Godsil and McKay
[23] (or see [29]). Let G be a graph and let Γ be a rooted graph. The root product
G(Γ) is the graph obtained by identifying each vertex of G with the root of a
copy of Γ.

Lemma 22 [29]. If G is cospectral with a graph H, then for any rooted graph Γ,
G(Γ) is cospectral with H(Γ).
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u v

w

U

w

U

T

u v

T

(a) T (u)⊖ U(w) (b) T (v)⊖ U(w)

Figure 2. The graphs T (u)	 U(w) and T (v)	 U(w).

We now construct infinitely many pairs of cospectral unicyclic graphs with
different high-order spectrum. Let T be the tree in Figure 2 (the graph with solid
edges) with two specified vertices u and v. It was shown that T − u and T − v
have the same spectrum [36]. Let U be any unicyclic graph with root w. Denote
by T (u) 	 U(w) (respectively, T (v) 	 U(w)) the graph obtained by adding an
edge between u and w (respectively, between v and w); see Figure 2. By Lemma
21, T (u)	U(w) is cospectral with T (v)	U(w). We now prove that T (u)	U(w)
is not high-ordered cospectral with T (v)	 U(w).

Corollary 23. T (u)	 U(w) is not high-ordered cospectral with T (v)	 U(w).

Proof. Let Guw = T (u)	U(w) and Gvw = T (v)	U(w), and let Cn be the cycle
contained in U . We will compare Trd(G

m
uw) and Trd(G

m
vw) with d = 5m.

Let H ∈ Vd(Gmuw, [Cmn ]). By Lemma 5, H is a weighted hypergraph H(ω)
which contains Cmn such that each edge e of H repeats in mω(e) times. So
ω(H) = 5m/5 = 5, which implies that H has at most 5 edges. As Cmn has at
least 3 edges, H has at most 2 edges outside Um. Let G̃uw be the subgraph of
Guw induced by the vertices of U , u and its neighbors. Then H is contained
in G̃muw. So Vd(Gmuw, [Cmn ]) = Vd(G̃muw, [Cmn ]). Similarly, if letting G̃vw be the
subgraph of Gvw induced by the vertices of U , v and its neighbors, then for
each H ∈ Vd(Gmvw, [Cmn ]), H is contained in G̃mvw, and hence Vd(Gmvw, [Cmn ]) =
Vd(G̃mvw, [Cmn ]). Note that G̃uw is isomorphic to G̃vw. So Vd(Gmuw, [Cmn ]) is equal
to Vd(Gmvw, [Cmn ]) under isomorphism.

By definition,

Trd(G
m
uw; [Cmn ]) = d(m− 1)|V (Gmuw)|

∑
H∈Vd(Gmuw,[Cmn ])

CHNGmuw(H)
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= d(m− 1)|V (Gmuw)|
∑

H∈Vd(G̃muw,[Cmn ])

CHNG̃muw
(H)

= d(m− 1)|V (Gmvw)|
∑

H∈Vd(G̃mvw,[Cmn ])

CHNG̃mvw
(H)

= d(m− 1)|V (Gmvw)|
∑

H∈Vd(Gmvw,[Cmn ])

CHNGmvw(H)

= Trd(G
m
vw; [Cmn ]).

By equations (14) and (15), we have

Trd(G
m
uw)− Trd(G

m
vw)

= Trd(G
m
uw; [Ĉmn ])− Trd(G

m
vw; [Ĉmn ])

=
5∑

k=1

d(m− 1)(m−1)(p−k)−1mk(m−2)
∑
T̂∈Tk

c̃5(T̂ )(NGuw(T̂ )−NGvw(T̂ )),

where p denotes the number of edges of Guw or Gvw. We find that for each tree
T̂ ∈ T≤5 \{P5, Q5, P6, Q6, H6}, NGuw(T̂ ) = NGvw(T̂ ), where Q5, Q6, H6 are listed
in Figure 1. So

Trd(G
m
uw)− Trd(G

m
vw) = dg(m, 4)

[
c̃5(P5)(NGuw(P5)−NGvw(P5))

+ c̃5(Q5)(NGuw(Q5)−NGvw(Q5)
]

+ dg(m, 5)
[
c̃5(P6)(NGuw(P6)−NGvw(P6))

+ c̃5(Q6)(NGuw(Q6)−NGvw(Q6))

+ c̃5(H6)(NGuw(H6)−NGvw(H6))
]
,

where g(m, k) = (m− 1)(m−1)(p−k)−1mk(m−2). By a direct computation or refer-
ring Tables 1 and 2 in [7] with the relation (29), we have

c̃5(P5) = 6, c̃5(Q5) = 14, c̃5(P6) = 1, c̃5(Q6) = 2, c̃5(H6) = 4.

We also have

NGuw(P5)−NGvw(P5) = −2, NGuw(Q5)−NGvw(Q5) = 1,

NGuw(P6)−NGvw(P6) = −2dw(U), NGuw(Q6)−NGvw(Q6) = dw(U) − 3,

NGuw(H6)−NGvw(H6) = 1.

So,

Trd(G
m
uw)− Trd(G

m
vw) = 2dg(m, 4)− 2dg(m, 5)

= 2d(m− 1)(m−1)(p−5)−1m4(m−2) ((m− 1)m−1 −mm−2) .
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Clearly, there exists m = m0 (e.g. m0 = 3) such that Trd(G
m
uw)− Trd(G

m
vw) 6= 0,

which implies that Gm0
uw is not cospectral with Gm0

vw . The result follows.

Finally we note that the smallest cospectral pair of graphs are G1 = K1,4

(also S5 in Figure 1) and G2 = C4 + K1. Consider Trd(G
m
1 ) and Trd(G

m
2 ) with

d/m = 2. By equation (8),

Trd(G
m
1 ) =

2∑
k=1

d(m− 1)(m−1)(4−k)mk(m−2)
∑
T̂∈Tk

c̃2(T̂ )NG1(T̂ ).

Noting that V (Gm2 ) = V (Cm4 ) ∪ V (K1), by equation (23) we have

Trd(G
m
2 ) =

2∑
k=1

d(m− 1)(m−1)(4−k)mk(m−2)
∑
T̂∈Tk

c̃2(T̂ )NG2(T̂ ).

As NG1(P2) = NG2(P2) = 4 and NG1(P3) = 6 6= NG2(P3) = 4, we have
Trd(G

m
1 ) 6= Trd(G

m
2 ). So K1,4 and C4 +K1 are not high-order cospectral pair.

We consider the rooted products G1(Pn) and G2(Pn), where Pn has one of
its pendent vertices as the root and n ≥ 2. By Lemma 22, G1(Pn) and G2(Pn)
are cospectral. As NG1(Pn)(P3) − NG2(Pn)(P3) = 2 6= 0, by a similar discussion
we have Trd((G1(Pn))m) 6= Trd((G2(Pn))m) for d/m = 2. So G1(Pn) and G2(Pn)
are also not high-order cospectral pair.

Corollary 24. Let G1 = K1,4 and G2 = C4 + K1, and let Pn be a path on n
vertices with one of its pendent vertices as root. Then G1(Pn) and G2(Pn) are
not high-order cospectral pair.

5. Conclusion

In this paper, we investigate the spectral characterization of unicyclic graphs by
the high-ordered spectra of unicyclic graphs. It is seen that the high-ordered
spectra can recognize more structural information than the usual spectra, which
implies that high-ordered spectra may have potential value on the graph iso-
morphism problem. We also find there are two questions for further study on
high-ordered spectral characterization of graphs.

(1) Recall that two graphs G1 and G2 are high-ordered cospectral if the
spectrum of Gm1 is the same as that of Gm2 for all m ≥ 2. In fact, from the
discussion in Section 4 (e.g. Lemmas 10 and 15), we only need finitely many m’s
such that G1 and G2 are m-ordered cospectral. So, could we give an upper bound
for the m on the definition of high-ordered cospectral? If it does, we will save
times on comparing the high-ordered spectra of two graphs.
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In addition, it is known thatGm1 is cospectral withGm2 if and only if Trd(G
m
1 ) =

Trd(G
m
2 ) for all d or d = 1, 2, . . . , n(m− 1)n−1, where n is the number of vertices

of Gm1 or Gm2 . If m ≥ 3, then Trd(G
m) 6= 0 only if m | d. As seen in Lemmas 10

and 16, Corollaries 14, 18, 19, 23 and 24, we care more about d/m than d. This
also can be found from the definition c̃d/m(T̂ ) in equation (7).

(2) It is harder to compute the spectra or the characteristic polynomials of
uniform hypergraphs than graphs, as it is closely related to the computation of
resultants. Though Chen et al. [6] gave a method to get the eigenvalues of the
power Gm from the eigenvalues of signed subgraphs of G (see Lemma 1), we still
do not know the multiplicities of the eigenvalues of Gm. So, how to compute
the spectra of the power hypergraphs is a key question. Fortunately, we can use
traces instead of spectra to recognize high-ordered cospectral graphs, and can
compute the traces of hypergraphs with simple structure by Corollary 3.
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