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Abstract

Jones et al. (2015) introduced the notion of u-representable graphs,
where u is a word over {1, 2} different from 22 · · · 2, as a generalization
of word-representable graphs. Kitaev (2016) showed that if u is of length
at least 3, then every graph is u-representable. This indicates that there
are only two nontrivial classes in the theory of u-representable graphs: 11-
representable graphs, which correspond to word-representable graphs, and
12-representable graphs. This study deals with 12-representable graphs.

Jones et al. (2015) provided a characterization of 12-representable trees
in terms of forbidden induced subgraphs. Chen and Kitaev (2022) pre-
sented a forbidden induced subgraph characterization of a subclass of 12-
representable grid graphs.

This paper shows that a bipartite graph is 12-representable if and only
if it is an interval containment bigraph. The equivalence gives us a forbid-
den induced subgraph characterization of 12-representable bipartite graphs
since the list of minimal forbidden induced subgraphs is known for interval
containment bigraphs. We then have a forbidden induced subgraph charac-
terization for grid graphs, which solves an open problem of Chen and Kitaev
(2022). The study also shows that a graph is 12-representable if and only if
it is the complement of a simple-triangle graph. This equivalence indicates
that a necessary condition for 12-representability presented by Jones et al.

(2015) is also sufficient. Finally, we show from these equivalences that 12-
representability can be determined in O(n2) time for bipartite graphs and
in O(n(m̄ + n)) time for arbitrary graphs, where n and m̄ are the number
of vertices and edges of the complement of the given graph.
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1. Introduction

The notion of u-representable graphs, where u is a word over {1, 2} different from
22 · · · 2, was introduced by Jones et al. [11] as a generalization of a well-studied
class of word-representable graphs [12, 14]. In this context, word-representable
graphs correspond to 11-representable graphs.

Jones et al. [11] showed that any graph is 1k-representable for every k ≥ 3,
where 1k denotes k concatenated copies of 1. Extending this result, Kitaev [13]
showed that for every u ∈ {1, 2}∗ of length at least 3, any graph is u-representable.
Therefore, only two graph classes are nontrivial in the theory of u-representable
graphs: 11-representable graphs and 12-representable graphs. This paper focuses
on 12-representable graphs. Note that the class of 21-representable graphs is
equivalent to that of 12-representable graphs, as shown in the next section.

The class of 12-representable graphs is a proper subclass of comparability
graphs and a proper superclass of both co-interval graphs and permutation graphs
[11]. The class of 12-representable graphs is not equivalent to that of 11-repre-
sentable graphs since word-representable graphs (i.e., 11-representable graphs)
generalize comparability graphs [12, 14]. It is also known that any cycle of length
at least 5 is not 12-representable [11]. This implies that 12-representable graphs
are weakly chordal since the graph Cn (the complement of the cycle of length n)
is not a comparability graph for any n ≥ 5, see, e.g., [7] and [8, Corollary 2.11].

Jones et al. [11] showed that a tree is 12-representable if and only if it is a
double caterpillar, a tree in which every vertex is within distance 2 from a central
path. It is easy to see that a tree is a double caterpillar if and only if it contains
no T3 as a subtree (see, e.g., [17, Lemma 18]), where T3 is the tree in Figure
6(a). They also initiated the study of the 12-representability of grid graphs.
They provided some 12-representable grid graphs and asked whether such graphs
could be characterized. We use the term grid graph in this paper to mean an
induced subgraph of a rectangular grid graph.

Chen and Kitaev [2] answered this question. They called a grid graph a
square grid graph if every edge belongs to a cycle of length 4, and showed that
a square grid graph is 12-representable if and only if it contains no X and no
cycle of length 2n for n ≥ 4 as an induced subgraph, where X is the graph in
Figure 6(f). They also provided a conjecture for characterizing 12-representable
line grid graph, grid graphs that are not square grid graphs [2, Conjecture 3.6].
We will deal with this conjecture in Remark 8.

Meanwhile, Jones et al. [11] gave a necessary condition for the 12-represent-
ability of a graph in terms of graph labelings (see Theorem 1). Chen and Ki-
taev [2] showed that the necessary condition is also sufficient for square grid
graphs. Whether the condition is sufficient for arbitrary graphs was left as an
open question [2].
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This study shows that a bipartite graph is 12-representable if and only if it
is an interval containment bigraph [10]. We also demonstrate that a graph is
12-representable if and only if it is the complement of a simple-triangle graph [3].
These equivalences provide some structural results on 12-representable graphs.
In particular, we obtain a forbidden induced subgraph characterization of 12-
representable bipartite graphs and then also for grid graphs. Moreover, we obtain
from a characterization of simple-triangle graphs [19] that the necessary condition
of Jones et al. [11] mentioned above is in fact also sufficient.

2. Preliminaries

This section presents some definitions, notations, and results used in this paper.

All graphs in this paper are finite, simple, and undirected. We write xy for
the edge joining two vertices x and y. For a graph G, we write V (G) and E(G)
for the vertex set and the edge set of G, respectively. We usually denote the
number of vertices and edges by n and m, respectively. The complement of a
graph G is the graph G such that V (G) = V (G) and xy ∈ E(G) if and only if
xy /∈ E(G) for any two distinct vertices x, y ∈ V (G).

2.1. Words and 12-representable graphs

For a positive integer n, let [n] = {1, 2, . . . , n} and [n]∗ be the set of all words over
[n]. For a word w ∈ [n]∗, let A(w) denote the set of letters occurring in w. For a
subset B ⊆ A(w), let wB be a word obtained from w by removing all the letters
of A(w) \ B. For a word w ∈ [n]∗, the reduced form of w, denoted by red(w), is
the word obtained from w by replacing each occurrence of the ith smallest letter
with i. Let u = u1u2 · · ·uk with red(u) = u. A word w = w1w2 · · ·wm of [n]∗ has
a u-match if there is an index i such that red(wiwi+1 · · ·wi+k−1) = u, that is, up
to reduction, u occurs consecutively in w.

A labeled graph of a graph G is obtained from G by assigning an integer
(label) to each vertex. This paper assumes that all labels are distinct and from
[n], where n denotes the number of vertices of the graph. Given a word u ∈ [2]∗

such that red(u) = u (i.e., u is different from 22 · · · 2), a labeled graph G is
u-representable if there is a word w ∈ [n]∗ such that A(w) = [n] and for any
x, y ∈ V (G), xy ∈ E(G) if and only if w{x,y} has no u-matches. In this case, we
say that the word w u-represents the graph G and w is a u-representant of G.
An unlabeled graph H is u-representable if there is a labeling of H such that the
resulting labeled graph H ′ is u-representable.

By definition, the class of u-representable graphs is hereditary (i.e., closed
under taking induced subgraphs). Note also that the class of u-representable
graphs is equivalent to that of ur-representable graphs, where ur denotes the
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reverse of u, since if a word w is a u-representant of a graph G, then its reverse
wr is a ur-representant of G and vice versa. Thus, as noted in the introduction,
the classes of 12-representable and 21-representable graphs are equivalent.

2.2. Necessary condition

Given a labeled graph G, the reduced form of G, denoted by red(G), is the labeled
graph obtained from G by relabeling so that the ith smallest label is replaced
by i. For a graph G, a graph H is an induced subgraph if V (H) ⊆ V (G) and
xy ∈ E(H) ⇐⇒ xy ∈ E(G) for any x, y ∈ V (H). We will use the following
necessary condition to determine 12-representable graphs.

Theorem 1 [11]. Let G be a labeled graph. If G has an induced subgraph H
such that red(H) is equal to one of I3, J4, or Q4 in Figure 1, then G is not

12-representable.

1 2 3

(a)

1 3

2 4

(b)

1 4

2 3

(c)

Figure 1. Forbidden labeled graphs I3 (a), J4 (b), and Q4 (c).

We now define the notion of F -free labeling.

Definition 2. Let F be a set of labeled graphs. (Recall that we assume all
labels are distinct and from [n], where n is the number of vertices of the graph.)
A graph labeling is F -free if it contains no induced subgraphs in F in the reduced
form.

Note that {I3, J4, Q4}-free labeling is said to be good by Chen and Kitaev [2].
They showed that the existence of a good labeling for a square grid graph implies
that the graph is 12-representable.

2.3. Interval containment bigraphs

A graph G is bipartite if V (G) can be partitioned into two independent setsX and
Y . Such a partition (X,Y ) is called a bipartition of G. A bipartite graph G with
bipartition (X,Y ) is an interval containment bigraph [10] if there is an interval Iv
for each vertex v ∈ V (G) such that for any x ∈ X and y ∈ Y , xy ∈ E(G) if and
only if Ix contains Iy. The set {Iv : v ∈ V (G)} is called a model or representation
of G. See Figures 2(a) and 2(b) for example.

The class of interval containment bigraphs is equivalent to some classes of
graphs, such as bipartite graphs whose complements are circular-arc graphs [5]
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Figure 2. (a) An interval containment bigraph G1. (b) A model of G1. (c) An ordering of
the vertices of G1. White and black vertices are in X and Y , respectively. The vertices
are labeled based on the left endpoints of the intervals. As shown in Example 6, the
word w = 3578.53284761.1246 is a 12-representant of G1 (the dots are not part of the
word, they are only included as delimiters of the word parts as constructed in the proof
of Theorem 5).

and two-directional orthogonal ray graphs [17]. We will use this equivalence in
Section 3. The other equivalent classes can be found in [16, 22]. Among those,
we choose the model of interval containment bigraphs because of the simplicity
of the construction of 12-representants.

Many results have been obtained for these classes, including a forbidden
induced subgraph characterization [5, 17, 23] and polynomial-time recognition
algorithms [17]. The class of interval containment bigraphs is a proper subclass
of chordal bipartite graphs and a superclass of bipartite permutation graphs [17].

2.4. Simple-triangle graphs

Let L1 and L2 be two horizontal lines in the plane with L1 above L2. A point
on L1 and an interval on L2 define a triangle between L1 and L2. A graph is
a simple-triangle graph if there is a triangle Tv for each vertex v ∈ V (G) such
that for any x, y ∈ V (G), xy ∈ E(G) if and only if Tx intersects Ty. The set
{Tv : v ∈ V (G)} is called a model or representation of G. See Figures 3(a) and
3(b) for example.

Simple-triangle graphs were introduced in [3] as a generalization of both inter-
val graphs and permutation graphs and have been studied under PI graphs [1, 18],
where PI stands for Point-Interval. The recognition of simple-triangle graphs has
been a longstanding open problem [18, Open Problem 13.3], and some polynomial-
time recognition algorithms have been presented recently [15, 20, 21]. The class
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Figure 3. (a) A simple-triangle graph G2. (b) A model of G2. (c) The complement G2 of
G2. (d) An ordering of the vertices of G2. The vertices are labeled based on the points
on L1. As shown in Example 12, the word w = 464365235121 is a 12-representant of G2.

of simple-triangle graphs is known to be a proper subclass of trapezoid graphs
[3]. It is also known that a simple-triangle graph is a cocomparability graph and
alternately orientable [19].

2.5. Vertex ordering characterizations

Recall that the necessary condition for 12-representability (i.e., Theorem 1) is
stated in terms of graph labelings. A labeling of a graph G can be viewed as
ordering the vertices of G such that x ≺ y in the ordering if the label of x is
smaller than that of y. Then, the graphs I3, J4, and Q4 in Figure 1 correspond to
ordered graphs in 4(a), 4(b), and 4(c), respectively. We will use characterizations
of interval containment bigraphs and simple-triangle graphs defined in terms of
forbidden ordered induced subgraphs. We will refer to such an ordered graph as
a pattern.

An example of forbidden pattern characterization is as follows. A graph G is
a comparability graph if each edge can be oriented so that if x → y and y → z then
x → z for any x, y, z ∈ V (G). It is known that a graph G is a comparability graph
if and only if there is a vertex ordering σ of G such that for any x, y, z ∈ V (G)
with x ≺ y ≺ z in σ, if xy ∈ E(G) and yz ∈ E(G) then xz ∈ E(G). In other
words, a graph is a comparability graph if and only if it has a vertex ordering
which does not contain the pattern in Figure 4(a) as an induced pattern. Other
examples can be found in [1, Section 7.4] and [6].
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Theorem 3 [19]. A graph G is a simple-triangle graph if and only if the comple-

ment G of G has a vertex ordering which does not contain any pattern in Figure 4
as an induced pattern. Moreover, for any such ordering σ, there is a model of

G such that σ coincides with the ordering of the points on L1. (Recall that the
triangle in the model is defined by a point on L1 and an interval on L2.) Such a

model of G can be obtained in O(n2) time if σ is given.

(a) (b) (c)

Figure 4. Forbidden patterns of complements of simple-triangle graphs.

Figures 3(c) and 3(d) show the complement G2 of G2 and its vertex ordering,
which does not contain any pattern in Figure 4.

Notice that an {I3, J4, Q4}-free labeling of a graph can be viewed as a vertex
ordering which does not contain any pattern in Figure 4. Thus, we have from
Theorems 1 and 3 that any 12-representable graph is the complement of a simple-
triangle graph.

For interval containment bigraphs, the following characterization is known.

Theorem 4 [10]. A bipartite graph G with bipartition (X,Y ) is an interval con-

tainment bigraph if and only if G has a vertex ordering which does not contain

any pattern in Figure 5 as an induced pattern.

(a) (b) (c)

Figure 5. Forbidden patterns of interval containment bigraphs. White and black vertices
are in X and Y , respectively, or the other way around.

Figure 2(c) shows a vertex ordering of G1, which does not contain any pattern
in Figure 5. Notice that a {J4, Q4}-free labeling of a bipartite graph can be viewed
as a vertex ordering which does not contain any pattern in Figure 5. Thus, we
have from Theorems 1 and 4 that any 12-representable bipartite graph is an
interval containment bigraph.

3. Interval Containment Bigraphs

This section shows the equivalence of 12-representable bipartite graphs and in-
terval containment bigraphs and its consequences.
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Theorem 5. Let G be a bipartite graph. The following statements are equivalent:

(i) G is 12-representable;

(ii) there is a {J4, Q4}-free labeling of G;

(iii) G is an interval containment bigraph.

Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) follow from Theorems 1
and 4, respectively. To prove (iii) =⇒ (i), we construct a labeling and a 12-
representant of an interval containment bigraph. See Example 6 for an instance
of construction.

Let G be an interval containment bigraph with bipartition (X,Y ) such that
there is an interval Iv for each v ∈ V (G) and xy ∈ E(G) ⇐⇒ Ix ⊇ Iy for any
x ∈ X and y ∈ Y . As stated in [9], it is possible to choose intervals so that all
endpoints are distinct. Thus, without loss of generality, we can assume that all
endpoints are distinct. Let ℓv and rv denote the left and right endpoint of the
interval Iv, respectively. We assign a label i to a vertex v ∈ V (G) if ℓv is the ith
point among all left endpoints from left to right.

Let πr be a permutation of [n] such that the ith letter of πr is the label
of a vertex v if rv is the ith point among all right endpoints from left to right.
Let πx and πy be arbitrary permutations of the labels of vertices of X and Y ,
respectively.

We claim that w = πyπrπx is a 12-representant of G. Let u and v be two
vertices of G with labels i and j, respectively. Without loss of generality, we
assume i < j, that is, ℓu < ℓv. If u, v ∈ X then w{i,j} has a 12-match since both
πr and πx contain i and j. Similarly, if u, v ∈ Y then w{i,j} has a 12-match since
both πy and πr contain i and j. Suppose u ∈ X and v ∈ Y . If ru > rv then
w{i,j} = jjii, and if ru < rv then w{i,j} = jiji. Thus, w{i,j} has no 12-match
if and only if Iu contains Iv. If u ∈ Y and v ∈ X, then w{i,j} has a 12-match
since πy is to the left of πx, which is consistent with the fact that Iv does not
contain Iu.

Example 6. The graph G1 in Figure 2(a) is an interval containment bigraph.
The vertices are labeled based on the left endpoints of the intervals in Figure 2(b).
By reading the labels of the right endpoints from left to right, we obtain the
permutation πr = 53284761. Let πx = 1246 and πy = 3578. It is straightforward
to check that the word w = 3578.53284761.1246 is a 12-representant of G1 (the
dots are not part of the word, they are only included as delimiters of the word
parts as constructed in the proof of Theorem 5).

Recall that the class of interval containment bigraphs coincides with the class
of bipartite graphs whose complements are circular-arc graphs [5] and the class
of two-directional orthogonal ray graphs [17]. As stated in [5, 17], Trotter and
Moore [23] provide the list of minimal forbidden induced subgraphs for bipartite
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graphs whose complements are circular-arc graphs. Therefore, Theorem 5 pro-
vides a forbidden induced subgraph characterization of 12-representable bipartite
graphs. See [17] for figures of the forbidden subgraphs.

From the list of forbidden induced subgraphs for 12-representable bipartite
graphs, we also have a characterization of 12-representable grid graphs.

Corollary 7. A grid graph is 12-representable if it contains no cycle of length

2n for n ≥ 4 and no graph in Figure 6 as an induced subgraph.

(a) (b) (c) (d) (e) (f)

Figure 6. Forbidden induced subgraphs of 12-representable grid graphs.

Proof. It is easy to verify that the other graphs in the list of forbidden induced
subgraphs for 12-representable bipartite graphs (see [17] for figures) are not in-
duced subgraphs of a rectangular grid graph.

Remark 8. Chen and Kitaev [2] presented certain non-12-representable graphs
and conjectured that these graphs would give us a forbidden induced subgraph
characterization of 12-representable line grid graphs, see [2, Conjecture 3.6 and
Figure 3.26]. Corollary 7 indicates that the graphs in [2, Conjecture 3.6] are
not sufficient to characterize 12-representable line grid graphs. For example, the
graph in Figure 6(b) is a proper induced subgraph of Gi, i ∈ {3, 4, 5} in [2, Figure
3.26] and the graph in Figure 6(c) is a proper induced subgraph of G6 in [2, Figure
3.26].

Interval containment bigraphs can be recognized in O(n2) time [17] because
their complements (i.e., circular-arc graphs that can be partitioned into two
cliques) can be recognized in O(n2) time [4], [18, Section 13.3]. Thus, Theo-
rem 5 yields the following.

Corollary 9. 12-representable bipartite graphs can be recognized in O(n2) time.

A graph G is a circular-arc graph if there is a circular arc Av on a circle for
each vertex v ∈ V (G) such that for any u, v ∈ V (G), uv ∈ E(G) if and only if
Au intersects Av. The set {Av : v ∈ V (G)} is called a model or representation of
G. If the given bipartite graph G is the complement of a circular-arc graph, the
recognition algorithm [4], [18, Section 13.3] provides a model of G. The model can
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be easily transformed into a model of interval containment bigraphs [9]. Thus,
we have the following from Theorem 5.

Corollary 10. A 12-representant of a bipartite graph can be obtained in O(n2)
time if the graph is 12-representable.

4. Simple-Triangle Graphs

This section shows the equivalence of 12-representable graphs and complements
of simple-triangle graphs and its consequences.

Theorem 11. Let G be a graph. The following statements are equivalent:

(i) G is 12-representable;

(ii) there is an {I3, J4, Q4}-free labeling of G;

(iii) the complement G of G is a simple-triangle graph.

Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) follow from Theorems 1
and 3, respectively. To prove (iii) =⇒ (i), we construct a labeling and a 12-
representant of the complement of a simple-triangle graph. See Example 12 for
an instance of construction.

Recall that L1 and L2 are two horizontal lines in the plane with L1 above
L2. Let G be a simple-triangle graph such that there is a triangle Tv for each
v ∈ V (G) and uv ∈ E(G) ⇐⇒ Tu ∩Tv 6= ∅ for any u, v ∈ V (G). Without loss of
generality, we can assume that the endpoints of the triangles are distinct. Let pv
and Iv be the point on L1 and the interval on L2 of Tv, respectively. We assign
a label i to a vertex v ∈ V (G) if pv is the ith point on L1 from left to right.

We form a word w using the endpoints of the intervals on L2 so that the ith
letter of w is the label of a vertex v if, among all endpoints of the intervals (i.e.,
both left and right endpoints) from right to left, the ith endpoint is of Iv. We
claim that w is a 12-representant of the complement G of G. Let u and v be
two vertices of G with labels i and j, respectively. Without loss of generality, we
assume i < j, that is, pu < pv. It is easy to see that w{i,j} = jjii if and only

if Iu lies entirely to the left of Iv. Thus, uv ∈ E(G) if and only if w{i,j} has no
12-match.

Example 12. The graph G2 in Figure 3(a) is a simple-triangle graph. The
vertices are labeled based on the points on L1 in Figure 3(b). By reading the labels
of the endpoints on L2 from right to left, we obtain the word w = 464365235121. It
is straightforward to check that the word w is a 12-representant of the complement
G2 of G2.

By Theorems 3 and 11, we have the following.
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Corollary 13. From an {I3, J4, Q4}-free labeling of a 12-representable graph G,

a 12-representant of G can be obtained in O(n2) time without relabeling of G.

Proof. An {I3, J4, Q4}-free labeling of a graph G can be viewed as a vertex
ordering σ, which does not contain any pattern in Figure 4. Thus, by Theorem 3,
we can obtain a model of the complement G of G in O(n2) time such that σ
coincides with the ordering of the points on L1. A 12-representant of G can be
obtained from the model, as shown in the proof of Theorem 11.

Theorem 11 also yields the following, since simple-triangle graphs can be
recognized in O(nm) time [20] and the complement of a graph can be obtained
in O(n2) time.

Corollary 14. 12-representable graphs can be recognized in O(n(m̄ + n)) time,

where m̄ is the number of edges of the complement of the given graph.

The recognition algorithm [20] provides a vertex ordering which does not
contain any pattern in Figure 4, and we have the following from Corollary 13.

Corollary 15. A 12-representant of a graph can be obtained in O(n(m̄ + n))
time if the graph is 12-representable.

5. Concluding Remarks

The 12-representants constructed in the proof of Theorems 5 and 11 are of length
2n, but they are not necessarily optimal (shortest possible). Indeed, for example,
as shown in [2, Theorem 2.18], the graph G1 in Figure 2(a) can be 12-represented
by a word of length n+1 (the labeling used in [2, Theorem 2.18] is different from
that shown in Figure 2(a)). It is still an open question to improve the upper
bound of the length of 12-representants of graphs.

Section 3 gives a forbidden induced subgraph characterization for 12-repre-
sentable bipartite graphs and grid graphs from the equivalence between 12-repre-
sentable bipartite graphs and interval containment bigraphs. Although the char-
acterization has been known for interval containment bigraphs, no such character-
ization is known for simple-triangle graphs [20]. Thus, it is still an open question
to characterize the class of 12-representable graphs in terms of forbidden induced
subgraphs.

In this paper, we obtained some results on 12-representable graphs from
the known facts on interval containment bigraphs and simple-triangle graphs.
Studying these graphs via 12-representability is a possible direction for further
research.
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