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Abstract

Let Z(G) be the zero forcing number of a simple connected graph G. In
this paper, we study the relationship between the zero forcing number of a
graph and its (normalized) Laplacian eigenvalues. We provide the upper and
lower bounds on Z(G) in terms of its (normalized) Laplacian eigenvalues,
respectively. Our bounds extend the existing bounds for regular graphs.
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1. Introduction

All graphs considered in this paper are undirected and simple (i.e., without loops
or multiple edges). Let G = (V,E) be a graph with vertex set V (G) and edge set
E(G). Its order is |V (G)|, denoted by n, and its size is |E(G)|, denoted by m.
For vi ∈ V (G), let dG(vi) and NG(vi) (or d(vi) and N(vi) for short) be the degree
and the set of neighbors of vi, respectively. The minimum and maximum degrees
of G are denoted by δ(G) and ∆(G) (or δ and ∆ for short), respectively. We
say G is regular if δ = ∆ = d and also call G a d-regular graph. For S ⊆ V (G),
let G[S] be the subgraph of G induced by S. Other undefined notations can be
found in [3].

For a graph G, its vertices are colored with two different colors (white and
black). Let S ⊆ V (G) be the set of black vertices in G. If u ∈ S and v is the
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only white neighbor of u, then u forces v to turn into black (color change rule).
The set S is said to be a zero forcing set of G if by iteratively applying the color
change rule, all vertices of G becomes black. The zero forcing number of G is the
minimum cardinality of zero forcing sets of G, denoted by Z(G).

The zero forcing number of G was introduced in [2] as the bounding of the
minimum rank mr(G) (and so the maximum nullity M(G)) of G. It was shown
in [2] that Z(G) ≥ n − mr(G) (or Z(G) ≥ M(G)) for any graph G, where
mr(G) is the smallest possible rank over all symmetric real matrices whose ij-
th entry (for i 6= j) is nonzero whenever ij ∈ E(G) in G and is zero otherwise
and M(G) = n − mr(G). This parameter has been extensively studied in over
half a century, largely due to its connection to inverse eigenvalue problems for
graphs and its applications to other problems. Up to now, there have been lots
of research work on bounding the zero forcing number of a graph in terms of its
various parameters, such as connected domination number [1], perfect domination
number [9], degree sequence [7, 10], girth [11] and chromatic number [12], etc.
We will not list them all here, but we will focus primarily on those related to the
spectral bounds for the zero forcing number.

Very recently, Kalinowski, Kamc̆ev and Sudakov [11] studied the relationship
between the zero forcing number of a graph and its occurrence of a witness, where
the witness in a graph is defined as follows.

Definition. For a graph G of order n, a k-witness (or a witness of order k) in G is

a pair of ordered vertex k-tuples
(

(si)i∈[k] , (ti)i∈[k]

)

such that si, ti ∈ V (G), si ∼
ti for each i, and si ≁ tj for i < j.

The above definition requires si 6= sj and ti 6= tj for i 6= j, but it might
happen that si = tj for some i > j. We will use the shortened notation s =
(si)i∈[k] and denote the image of this k-tuple by s[k] = {si : i ∈ [k]}. We say a
k-witness in G is maximal if G contains a k-witness but does not contain any
(k + 1)-witness.

Let Gn be the set of connected graphs of order n. We now divide Gn into the
following two classes of graphs according to the parity of their maximal witness.
Let Ge

n (or Go
n) be the set of connected graphs of order n containing a maximal

k-witness with even k (or odd k), where 1 ≤ k ≤ n− 1. Clearly, Gn = Ge
n ∪ Go

n.
For G ∈ Gn, let A(G) be the adjacency matrix of G. The eigenvalues of G

are the eigenvalues of A(G), and are denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)
(or λ1 ≥ λ2 ≥ · · · ≥ λn for short). An (n, d, λ)-graph is a d-regular graph of order
n for which |λi| ≤ λ for i = 2, 3, . . . , n.

By estimating the edge distribution of an (n, d, λ)-graph in terms of λ, Kali-
nowski, Kamc̆ev and Sudakov [11] established the upper and lower bounds on
Z(G) in terms of λ when G is an (n, d, λ)-graph, respectively. Indeed, in their
proof of the lower bound of Z(G) [11, Theorem 1.4(i)], they would like to find
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the maximum possible value of k for a maximal k-witness in any G ∈ Gn. From
their proof, the k should be even. That is among all graphs G ∈ Ge

n, they found
the maximum possible value of k for a maximal k-witness in G. So we restate
their result as follows.

Theorem 1 [11]. For an (n, d, λ)-graph G, we have

(i) if G ∈ Ge
n, then

(1) Z(G) ≥ n

(

1− 2λ

d+ λ

)

;

(ii)

(2) Z(G) ≤ n

(

1− 1

2(d− λ)
log

(
d− λ

2λ+ 1

))

.

Moreover, the bound (1) is tight, and the bound (2) is tight up to a constant

factor.

Moreover, Zhang, Wang, Wang and Ji [13] determined the graphs (respec-
tively, trees) with maximum spectral radius among all graphs (respectively, trees)
with zero forcing number at most k. By their results they also provided a sharp
lower bound for the zero forcing number of graphs involving its spectral radius.

Inspired by the above mentioned works, in this paper, we further study
the relationship between the zero forcing number of G and its another kind of
eigenvalues. Before stating our results, we need some necessary notations and
terminology. Recall that the normalized Laplacian matrix of G is defined as
L(G) = D(G)−

1
2 (D(G)−A(G))D(G)−

1
2 , where D(G) is the diagonal degree ma-

trix of G. The normalized Laplacian eigenvalues of G are the eigenvalues of L(G),
denoted by ξ1(G) ≥ ξ2(G) ≥ · · · ≥ ξn−1(G) ≥ ξn(G) = 0 (or ξ1 ≥ ξ2 ≥ · · · ≥
ξn−1 ≥ ξn = 0 for short). Let ϑ = ξ1−ξn−1

ξ1+ξn−1
and ξ = max{|1− ξ1|, |1− ξn−1|}. We

extend Theorem 1 to the setting of general graphs as follows.

Theorem 2. Let G be a graph of order n with m edges and minimum degree δ.

(i) If G ∈ Ge
n, then

(3) Z(G) ≥ n− 2

⌊
2mϑ

δ(1 + ϑ)

⌋

;

(ii) if G ∈ Go
n, then

(4) Z(G) ≥ n− 2

⌊

δ(ϑ2 − 1)− 4mϑ2 +
√

δ2(1− ϑ2)2 + 16m2ϑ2

2δ(1− ϑ2)

⌋

− 1.

Theorem 3. Let G be a graph of order n with m edges, minimum degree δ and

maximum degree ∆. Then

(5) Z(G) ≤ n−
⌈

m

∆2(1− ξ)
log

(

δn(1− ξ)

2m
[
(1 + δ

∆)ξ + δ
∆2

]

)⌉

.
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Remark 4. When G is an (n, d, λ)-graph, note that ∆ = δ = d, nd = 2m,

ξi = 1− λn−i+1

d
and ξ = λ

d
[6]. Then we have

Z(G) ≥ n− 2

⌊
2mϑ

δ(1 + ϑ)

⌋

≥ n− 4m

δ
· ϑ

1 + ϑ
= n− 4m

δ
·

λ2−λn

2d−λ2−λn

2d−2λn

2d−λ2−λn

= n− n · λ2 − λn

d− λn
≥ n− n · 2λ

d− λn
≥ n− n · 2λ

d+ λ
.

Similarly, it is easy to check that m
(1−ξ)∆2 = n

2(d−λ) and δn(1−ξ)

2mξ+ 2m
∆2 (ξ∆+1)δ

=

d−λ
2λ+1 . Then we have

Z(G) ≤ n−
⌈

m

∆2(1− ξ)
log

(

δn(1− ξ)

2m
[
(1 + δ

∆)ξ + δ
∆2

]

)⌉

≤ n− m

∆2(1− ξ)
log

(

δn(1− ξ)

2m
[
(1 + δ

∆)ξ + δ
∆2

]

)

= n− n

2(d− λ)
log

(
d− λ

2λ+ 1

)

= n

(

1− 1

2(d− λ)
log

(
d− λ

2λ+ 1

))

.

Those suggest that Theorems 2 and 3 can be viewed as a slight generalization of
Theorem 1, respectively.

Remark 5. As mentioned above, for G ∈ Go
n, the lower bound of (1) is not tight,

but our bound (4) is tight. This is shown by the following example. If G ∼= Kn,
one can check that Z(Kn) = n− 1 and Kn contains a maximal 1-witness. Then
Kn ∈ Go

n. Moreover, it is known that the eigenvalues and normalized Laplacian
eigenvalues of Kn are n − 1,−1, . . . ,−1

︸ ︷︷ ︸

n−1

and n
n−1 , . . . ,

n
n−1

︸ ︷︷ ︸

n−1

, 0, respectively. Thus

λ = 1 and ϑ = ξ1−ξn−1

ξ1+ξn−1
= 0. By (1) and (4), we then have

n− 1 = Z(Kn) ≥ n

(

1− 2λ

d+ λ

)

= n

(

1− 2

n

)

= n− 2,

and

n− 1 = Z(G) ≥ n− 2

⌊

δ(ϑ2 − 1)− 4mϑ2 +
√

δ2(1− ϑ2)2 + 16m2ϑ2

2δ(1− ϑ2)

⌋

− 1

= n− 1− 2

⌊−(n− 1) + (n− 1)

2(n− 1)

⌋

= n− 1.
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Remark 6. Moreover, the lower and upper bounds in Theorems 2 and 3 are
also tight for some non-regular graphs. For example, if G = K2,3, one can check
that Z(K2,3) = 3 and K2,3 contains a maximal 2-witness. Then K2,3 ∈ Ge

5. By a
little calculation, we have that the normalized Laplacian eigenvalues of K2,3 are

2, 1, 1, 1, 0. Thus ϑ = ξ1−ξn−1

ξ1+ξn−1
= 1

3 and 2mϑ
δ(1+ϑ) =

3
2 . By (3), we have

3 = Z(K2,3) ≥ n− 2

⌊
2mϑ

δ(1 + ϑ)

⌋

= 5− 2

⌊
3

2

⌋

= 3.

This shows that the bound of (3) is tight for K2,3.

If G = K+
3,4, whereK

+
3,4 is the graph obtained fromK3,4 by adding a new edge

e to one part ofK3,4 with 3 vertices, one can check that Z(K+
3,4) = 4 andK+

3,4 con-

tains a maximal 3-witness. Then K+
3,4 ∈ Go

7 . By a little calculation, we have that

the normalized Laplacian eigenvalues ofK+
3,4 are

21+
√
51

15 , 65 , 1, 1, 1,
21−

√
51

15 , 0. Thus

ϑ = ξ1−ξn−1

ξ1+ξn−1
=
√

17
147 and

δ(ϑ2−1)−4mϑ2+
√

δ2(1−ϑ2)2+16m2ϑ2

2δ(1−ϑ2)
= 49

260

(

−26
3 + 26

√
3407
7203

)

.

By (4), we have

4 = Z(K+
3,4) ≥ n− 1− 2

⌊

δ(ϑ2 − 1)− 4mϑ2 +
√

δ2(1− ϑ2)2 + 16m2ϑ2

2δ(1− ϑ2)

⌋

= 7− 1− 2

⌊

49

260

(

−26

3
+ 26

√

3407

7203

)⌋

= 4.

This shows that the bound of (4) is tight for K+
3,4.

If G = K−
35, where K−

35 is the graph obtained from K35 by deleting any
e ∈ E(K35) from K35, one can check that Z(K−

35) = 33. By a little calculation,
we have that the normalized Laplacian eigenvalues of K−

35 are 18
17 ,

35
34 , . . . ,

35
34

︸ ︷︷ ︸

32

, 1, 0.

Thus ξ = max{|1 − ξ1|, |1 − ξ34|} = 1
17 and m

∆2(1−ξ)
log

(

δn(1−ξ)

2m
[

(1+ δ
∆
)ξ+ δ

∆2

]

)

=

297
544 log

(
9520
1503

)
. By (5), we have

33 = Z(K−
35) ≤ n−

⌈

m

∆2(1− ξ)
log

(

δn(1− ξ)

2m
[
(1 + δ

∆)ξ + δ
∆2

]

)⌉

= 35−
⌈
297

544
log

(
9520

1503

)⌉

= 33.

This shows that the bound of (5) is tight for K−
35. In fact, it could be check that

the bound of (5) is also tight for K−
n for n = 36, . . . , 264 by a little calculation,

respectively.
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2. Preliminaries

In [11], the relationship between the zero forcing number of a graph and the
occurrence of a witness was explored as follows.

Lemma 7. Let G be a graph of order n and k ∈ N. If Z(G) ≤ n − k, then

G contains a k-witness. Moreover, if G contains a k-witness (s, t) with s[k]∩
t[k] = ∅, then Z(G) ≤ n− k.

Remark 8. Lemma 7 means that if G does not contain any k-witness, then
Z(G) > n − k. Otherwise, if Z(G) ≤ n − k, then G contains a k-witness, a
contradiction.

For X ⊆ V (G), let Vol(X) =
∑

v∈X d(v). Clearly, Vol(G) = Vol(V (G)) =
∑

v∈V (G) d(v) = 2m. For any X,Y ⊆ V (G) with X∩Y = ∅, E(X,Y ) denotes the
set of edges between X and Y and e(X,Y ) = |E(X,Y )|. The following theorem
is an irregular expander mixing lemma, which can be found in [8]. The expander
mixing lemma is a truly remarkable result, connecting edge distribution and graph
eigenvalues, and providing a very good quantitative handle for the uniformity of
edge distribution based on graph eigenvalues.

Lemma 9. Let G be a graph of order n. For any two subsets X,Y ⊆ V (G), we
have

(6)
∣
∣
∣
∣
e(X,Y )− Vol(X)Vol(Y )

Vol(G)

∣
∣
∣
∣
≤ ξ

√

Vol(X)Vol(Y )

(

1− Vol(X)

Vol(G)

)(

1− Vol(Y )

Vol(G)

)

.

In particular,

∣
∣
∣
∣
2e(X)− Vol2(X)

Vol(G)

∣
∣
∣
∣
≤ ξ ·Vol(X)

(

1− Vol(X)

Vol(G)

)

.

The following separation inequality from [6] provides a bridge between graph
parameters and its normalized Laplacian eigenvalues.

Lemma 10. Let G be a graph of order n. For X,Y ⊆ V (G) with X ∩Y = ∅ and

e(X,Y ) = 0, we have

Vol(X)Vol(Y )

Vol(X)Vol(Y )
≤ ϑ2,

where X = V \X and Y = V \Y .
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3. Proofs of Theorems 2 and 3

We now give the proofs of Theorems 2 and 3, respectively.

Proof of Theorem 2. Firstly, it is known that for any graph G ∈ Gn, Z(G) ≤
n−1 with equality holds if and only if G ∼= Kn. That is Z(Kn) = n−1. Moreover,
note that the normalized Laplacian eigenvalues of Kn are n

n−1 , . . . ,
n

n−1
︸ ︷︷ ︸

n−1

, 0, and

Kn contains a maximal 1-witness. Then ϑ = ξ1−ξn−1

ξ1+ξn−1
= 0, which implies that the

inequality (4) holds for G = Kn. In what follows, we assume that G 6= Kn. That
is Z(G) ≤ n − 2. Thus Lemma 7 implies that G contains a maximal k-witness

with k ≥ 2. Without loss of generality, we assume that
(

(si)i∈[k] , (ti)i∈[k]

)

is

a maximal k-witness in G. In what follows, we may estimate the maximum

possible value of k among all graphs G ∈ Gn. Let X =
{

s1, s2, . . . , s⌊ k
2⌋
}

and

Y =
{

t⌊ k
2⌋+1, t⌊ k

2⌋+2, . . . , tk

}

. According to the definition of k-witness, we have

X ∩ Y = ∅ and e(X,Y ) = 0. Let ϑ = ξ1−ξn−1

ξ1+ξn−1
. Note that Vol(X) ≥ δ|X| = δ

⌊
k
2

⌋

and Vol(Y ) ≥ δ|Y | = δ
⌈
k
2

⌉
. Then Lemma 10 implies that

(7)
δ2
⌊
k
2

⌋ ⌈
k
2

⌉

(
2m− δ

⌊
k
2

⌋) (
2m− δ

⌈
k
2

⌉) ≤ Vol(X)Vol(Y )

(Vol(G)−Vol(X)) (Vol(G)−Vol(Y ))
≤ ϑ2.

We now consider the following two cases according to the parity of k.

Case 1. k is even. Let
⌊
k
2

⌋
=
⌈
k
2

⌉
= t. Then from (7), we have δ2·t2

(2m−δt)2
≤ ϑ2.

It follows that t ≤
⌊

2mϑ
δ(1+ϑ)

⌋

. Hence k = 2t ≤ 2
⌊

2mϑ
δ(1+ϑ)

⌋

.

Case 2. k is odd. Let
⌊
k
2

⌋
= t. Then

⌈
k
2

⌉
= t + 1. From (7), we have

δ2·t(t+1)
(2m−δt)(2m−δ(t+1)) ≤ ϑ2. It follows that t ≤

⌊
δ(ϑ2−1)−4mϑ2+

√
δ2(1−ϑ2)2+16m2ϑ2

2δ(1−ϑ2)

⌋

.

Hence

k = 2t+ 1 ≤ 2

⌊

δ(ϑ2 − 1)− 4mϑ2 +
√

δ2(1− ϑ2)2 + 16m2ϑ2

2δ(1− ϑ2)

⌋

+ 1.

From the above arguments, we know that the maximum possible value of

k is 2
⌊

2mϑ
δ(1+ϑ)

⌋

when G ∈ Ge
n and 2

⌊
δ(ϑ2−1)−4mϑ2+

√
δ2(1−ϑ2)2+16m2ϑ2

2δ(1−ϑ2)

⌋

+ 1 when

G ∈ Go
n. This means that G does not contain any k-witness with k > 2

⌊
2mϑ

δ(1+ϑ)

⌋

when G ∈ Ge
n and k > 2

⌊
δ(ϑ2−1)−4mϑ2+

√
δ2(1−ϑ2)2+16m2ϑ2

2δ(1−ϑ2)

⌋

+ 1 when G ∈ Go
n.

Then Lemma 7 and Remark 8 imply that Z(G) ≥ n− 2
⌊

2mϑ
δ(1+ϑ)

⌋

for G ∈ Ge
n, and
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Z(G) ≥ n− 2

⌊
δ(ϑ2−1)−4mϑ2+

√
δ2(1−ϑ2)2+16m2ϑ2

2δ(1−ϑ2)

⌋

− 1 for G ∈ Go
n. This completes

the proof of Theorem 2.

Now we are in a position to give the proof of Theorem 3. Our strategy for
proving Theorem 3 is employed the similar argument as that was used in [11].

Proof of Theorem 3. Firstly, we greedily construct a witness. Start with
U0 = V , the vertex set of G. In each step i, we will select vertices si, ti ∈ Ui−1

and a set Ui ⊆ Ui−1. Assuming that the steps 1, . . . , i− 1 were executed. Let si

be any vertex in Ui−1 satisfying 1 ≤ dG[Ui](si) ≤ (1− ξ) |Ui|∆2

2m + ξ∆. We fix any
ti ∈ NG (si)∩Ui−1, and set Ui = Ui−1\ (NG (si) ∪ {si}). The algorithm continues
as long as |Ui| > 2mξ

δ(1+ξ) . Denote the total number of steps by k.

By the above construction, the pair (s, t) is a k-witness in G. In what follows,
we will show that there is a choice for si throughout the algorithm, and that

k ≥
⌈

m

∆2(1− ξ)
log

(

δn(1− ξ)

2m
[
(1 + δ

∆)ξ + δ
∆2

]

)⌉

.

Firstly, we have the following claim.

Claim 11. If |Ui| > 2mξ
δ(1+ξ) , then the induced subgraph G [Ui] contains at lest one

vertex u a vertex u satisfying 1 ≤ dG[Ui](u) ≤ (1− ξ) |Ui|∆2

2m + ξ∆.

Proof. Suppose to the contrary that there is some set Ui with |Ui| > 2mξ
δ(1+ξ) ,

but for each u ∈ Ui, dG[Ui](u) = 0 or dG[Ui](u) > (1 − ξ) |Ui|∆2

2m + ξ∆. Note that

Lemma 9 implies that Ui is not an independent set as |Ui| > 2mξ
δ(1+ξ) . It follows

that there are some vertices u ∈ Ui with dG[Ui](u) > (1−ξ) |Ui|∆2

2m +ξ∆. Moreover,
by removing the isolated vertices in G [Ui], we get a nonempty set W ⊆ Ui in

which every vertex u ∈ W satisfies dG[Ui](u) = dG[W ](u) > (1− ξ) |Ui|∆2

2m + ξ∆. In
particular,

e(W,W ) =
∑

u∈W
dG[W ](u) > |W |

(

(1− ξ)
|Ui|∆2

2m
+ ξ∆

)

,

recalling that each edge in E(W,W ) is counted twice in e(W,W ). On the other
hand, Lemma 9 implies that

e(W,W ) ≤ Vol(W )

[
Vol(W )

Vol(G)
+ ξ

(

1− Vol(W )

Vol(G)

)]

≤ Vol(W )

(

(1− ξ)
Vol(Ui)

Vol(G)
+ ξ

)

≤ |W |
(

(1− ξ)
|Ui|∆2

2m
+ ξ∆

)

,

a contradiction. This completes the proof of Claim 11. 2
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Let ai =
|Ui|
n
. By the construction of Ui, a0 = 1, and for i > 1,

(8)

ai =
|Ui−1| − dG[Ui−1] (si)− 1

n
≥ 1

n

[

|Ui−1| −
(

(1− ξ)
|Ui−1|∆2

2m
+ ξ∆

)

− 1

]

=

(

1− (1− ξ)∆2

2m

)

ai−1 −
ξ∆+ 1

n
.

By induction on i, it follows that for all i,

ai ≥
(

1 +
2m

n∆2
· ξ∆+ 1

1− ξ

)(

1− (1− ξ)∆2

2m

)i

− 2m

n∆2
· ξ∆+ 1

1− ξ
.

We further have the following claim.

Claim 12. ai >
2mξ

δn(1+ξ) for i ≤
⌈

m
∆2(1−ξ)

log

(

δn(1−ξ)

2m
[

(1+ δ
∆
)ξ+ δ

∆2

]

)⌉

.

Proof. We estimate ai for i ≤
⌈

m
∆2(1−ξ)

log

(

δn(1−ξ)

2m
[

(1+ δ
∆
)ξ+ δ

∆2

]

)⌉

, ignoring the

constant
(

1 + 2m
n∆2 · ξ∆+1

1−ξ

)

and using the inequality

1− (1− ξ)∆2

2m
≥ e(−2)· (1−ξ)∆2

2m = e−
(1−ξ)∆2

m

for (1−ξ)∆2

2m < 1/2. We have

ai≥ exp

(

−(1− ξ)∆2

m
·
⌈

m

∆2(1−ξ)
log

(

δn(1− ξ)

2m
[
(1+ δ

∆)ξ + δ
∆2

]

)⌉)

− 2m

n∆2
· ξ∆+1

1− ξ

≥ exp

(

−(1− ξ)∆2

m
· m

∆2(1− ξ)
log

(

δn(1− ξ)

2m
[
(1 + δ

∆)ξ + δ
∆2

]

))

− 2m

n∆2
· ξ∆+ 1

1− ξ

=
2m
[
(1 + δ

∆)ξ + δ
∆2

]

δn(1− ξ)
− 2mδ( ξ

∆ + 1
∆2 )

δn(1− ξ)
=

2mξ

δn(1− ξ)
>

2mξ

δn(1 + ξ)
,

as required. 2

We conclude that the algorithm continues for at least⌈

m
∆2(1−ξ)

log

(

δn(1−ξ)

2m
[

(1+ δ
∆
)ξ+ δ

∆2

]

)⌉

steps, at the same time, G contains a k-witness

(s, t) with s[k]∩ t[k] = ∅ by the above construction. Then by Lemma 7, we have

n− Z(G) ≥
⌈

m

∆2(1− ξ)
log

(

δn(1− ξ)

2m
[
(1 + δ

∆)ξ + δ
∆2

]

)⌉

.

This completes the proof of Theorem 3.
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4. Related to Laplacian Eigenvalues

In this section, using the separation inequality concerning Laplacian eigenvalues
(Lemma 13) and a similar argument as that in the proof of Theorem 2, we also
derive the lower bound for Z(G) in terms of its Laplacian eigenvalues. Recall that
the Laplacian eigenvalues of a graph G are the eigenvalues of L(G) = D(G) −
A(G), denoted by µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) = 0 (or µ1 ≥ µ2 ≥
· · · ≥ µn−1 ≥ µn = 0 for short). Let ζ = µ1−µn−1

µ1+µn−1
. One of the main tools for

connecting the zero forcing number of a graph to its Laplacian eigenvalues is the
following separation inequality.

Lemma 13 [4]. Let G be a graph of order n. For X,Y ⊆ V (G) with X ∩ Y = ∅
and e(X,Y ) = 0, we have

|X||Y |
(n− |X|)(n− |Y |) ≤ ζ2.

This together with a similar argument as that in the proof of Theorem 2
gives the following lower bound for Z(G) in terms of its Laplacian eigenvalues.

Theorem 14. For any G ∈ Gn,

(i) if G ∈ Ge
n, then

(9) Z(G) ≥ n− 2

⌊
ζn

1 + ζ

⌋

;

(ii) if G ∈ Go
n, then

(10) Z(G) ≥ n− 2

⌊

(1− 2n)ζ2 − 1 +
√

(1− ζ2)2 + 4n2ζ2

2(1− ζ2)

⌋

− 1.

Moreover, the above bounds are sharp.

Remark 15. When G is a d-regular graph, we have ∆ = δ = d, nd = 2m, ξi =
µi

d

and ζ = ϑ. Then we have

n− 2

⌊
ζn

1 + ζ

⌋

= n− 2

⌊
2mϑ

δ(1 + ϑ)

⌋

,

and

n− 2

⌊

(1− 2n)ζ2 − 1 +
√

(1− ζ2)2 + 4n2ζ2

2(1− ζ2)

⌋

− 1

= n− 2

⌊

(1− 2n)δζ2 − δ +
√

δ2(1− ζ2)2 + 4n2δ2ζ2

2δ(1− ζ2)

⌋

− 1

= n− 2

⌊

δ(ϑ2 − 1)− 4mϑ2 +
√

δ2(1− ϑ2)2 + 16m2ϑ2

2δ(1− ϑ2)

⌋

− 1.
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Those show that the bounds of (3) and (9), (4) and (10) are consistent when G
is a regular graph, respectively.
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