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Abstract

Neighborhood Lights Out is a game played on graphs. Begin with a
graph and a vertex labeling of the graph from the set {0, 1, 2, . . . , ℓ− 1} for
ℓ ∈ N. The game is played by toggling vertices: when a vertex is toggled,
that vertex and each of its neighbors has its label increased by 1 (modulo
ℓ). The game is won when every vertex has label 0. For any n ≥ 2 it is clear
that one cannot win the game on Kn unless the initial labeling assigns all
vertices the same label. Given that Kn has the maximum number of edges
of any simple graph on n vertices it is natural to ask how many edges can be
in a graph so that the Neighborhood Lights Out game is winnable regardless
of the initial labeling. We find the maximum number of edges a winnable
n-vertex graph can have when at least one of n and ℓ is odd. When n and ℓ
are both even we find the maximum size in two additional cases. The proofs
of our results require us to introduce a new version of the Lights Out game
that can be played given any square matrix.

Keywords: Lights Out, light-switching game, winnability, extremal graph
theory, linear algebra.
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1. Introduction

The Lights Out game was originally created by Tiger Electronics. It has since
been reimagined as a light-switching game on graphs. Several variations of the
game have been developed (see, for example [8] and [13]), but all have some
important elements in common. In each game, we begin with a graph G and a
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labeling of V (G) with labels in Zℓ for some ℓ ≥ 2. The vertices can be toggled so
as to change the labels of some of the vertices, and there is some desired labeling
(usually the labeling with all labels being 0, called the zero labeling) that marks
the end of the game.

The most common variation of the Lights Out game is what we call the
Neighborhood Lights Out game. This is a generalization of Sutner’s σ+-game (see
[15]). Each time we toggle some v ∈ V (G), the label of each vertex in the closed
neighborhood of v, N [v], is increased by 1 modulo ℓ. The game is won when the
zero labeling is achieved. This game was developed independently in [10] and [3]
and has been studied in [4, 5, 9, 14], and [6]. The Tiger Electronics Lights Out
game is the Neighborhood Lights Out game on a grid graph with ℓ = 2 and has
been studied in [1, 11], and [15].

Much of the work on Lights Out games has centered on the conditions under
which winning the game is possible. Winnability depends on the version of the
game that is played, the graph on which the game is played, and on ℓ.

For each n ≥ 2 the Neighborhood Lights Out game on Kn is impossible to
win unless in the initial labeling every vertex has the same label. Since Kn has
the most edges of any simple graph on n vertices it makes sense to ask, given
n, ℓ ≥ 2, what is the maximum size of a simple graph on n vertices with labels in
Zℓ for which the Neighborhood Lights Out game can be won for every possible
initial labeling? We call this maximum size max(n, ℓ). In addition, we seek to
classify the winnable graphs of maximum size among all graphs on n vertices
with labels from Zℓ, which we call (n, ℓ)-extremal graphs.

Our main results are in Section 4, where we determine partial results on
the classification of (n, ℓ)-extremal graphs. In the case of n odd, we show that
all (n, ℓ)-extremal graphs are complements of near perfect matchings. We also
classify all (n, ℓ)-extremal graphs when n is even and ℓ is odd. In the remaining
case we have the following conjecture.

Conjecture 1. If n, ℓ are even, then

max(n, ℓ) =

(

n

2

)

−
(n

2
+ k

)

,

where k is the smallest nonnegative integer such that gcd(n − 2k − 1, ℓ) = 1. In

each case the (n, ℓ)-extremal graphs are precisely the graphs of order n that have

size
(

n
2

)

−
(

n
2 + k

)

that are complements of pendant graphs (defined later).

By proving that the complements of pendant graphs can be won no matter
the initial labeling, we conclude that max(n, ℓ) is at least the quantity given in
Conjecture 1. We also prove equality for 0 ≤ k ≤ 3 and in the family of all graphs
that have minimum degree at least n− 3.
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To determine winnability, we depend heavily on linear algebra methods sim-
ilar to those in [2, 5, 9], and [10]. We discuss these methods in Section 2. Our
techniques differ in that we introduce how to play Lights Out given any square
matrix. These tools allow us to determine winnability in some dense graphs by
considering winnability in a modified Lights Out game in their sparse comple-
ments, which we discuss further in Section 3.

Throughout the paper, we assume the vertex labels of any labeling are from
Zℓ for some ℓ ∈ N.

2. Linear Algebra

While winnability can be determined by giving a strategy for toggling the vertices,
it is often convenient to instead use linear algebra. We provide key ideas here.
For more details, see [2] and [10].

Let G be a graph with V (G) = {v1, v2, . . . , vn}, N(G) = [Nij ] be the neigh-
borhood matrix of G (where Nij = 1 if and only if vi is adjacent to vj or i = j,
and Nij = 0 otherwise), and b ∈ Z

n
ℓ so that b[i] is the initial label of vi. This

Neighborhood Lights Out game is winnable if and only if there exists a vector
x ∈ Z

n
ℓ such that N(G)x = −b [10, Lemma 3.1].

We can generalize the game by using any square matrix in Mn(Zℓ) (the set
of n× n matrices with entries in Zℓ). For M = [mij ] ∈ Mn(Zℓ) define the vertex

set of M as V (M) = {v1, v2, . . . , vn}. Label the elements of V (M) with a vector
b ∈ Z

n
ℓ , so each vi has label b[i]. We play the game by toggling elements of

V (M). Each time vj is toggled, we add mij to the label of vi for all 1 ≤ i ≤ n.
As with the ordinary Lights Out game, we win the game when we achieve the
labeling 0. We call this the M -Lights Out game. For M = N(G) we get the
Neighborhood Lights Out game. For M = A(G) we get a generalization of the
σ-game from Sutner (see [15]), where toggling a vertex v increases the label of
each vertex in the open neighborhood of v by 1 modulo ℓ. We call these games
the N -Lights Out game and the A-Lights Out game, respectively.

Definition. LetM and V = V (M) be as above. We call a labeling π M -winnable

if the M -Lights Out game can be won with initial labeling π. We say that V is
M -always winnable, or M -AW for short, if all labelings of V (M) areM -winnable.

The following lemma can be proved using basic linear algebra.

Lemma 2. Let M ∈ Mn(Zℓ) and V (M) = {v1, v2, . . . , vn}.

(1) Let π be a labeling of V (M), and define b[i] = π(vi). Then π is M -winnable

with the toggles given by x if and only if Mx = −b.

(2) The vertex set V (M) is M -AW if and only if M is invertible over Zℓ.
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In this paper, we focus on whether or not a graph G is N(G)-AW, so we
seek to determine whether or not a given neighborhood matrix is invertible.
One straightforward way to apply linear algebra techniques is when two rows
or columns of a matrix are identical. We call v and w M -twins if the rows or
columns of M represented by v and w are identical.

Corollary 3. Let M ∈ Mn(Zℓ), and v, w ∈ V (M). If V (M) has M -twins, then

V (M) is not M -AW.

The name twins comes from graph theory. Two vertices v and w are twins
provided that have the same open neighborhood. Twin vertices that are adjacent
in a graph result in identical rows in the neighborhood matrix and thus are N -
twins. Twin vertices that are not adjacent result in identical rows in the adjacency
matrix and thus are A-twins.

Recall a matrix is invertible if and only if its determinant is a unit [7, Corol-
lary 2.21]. As in standard linear algebra, elementary row operations (multiplying
a row by a unit in Zℓ, adding an integer multiple of one row to another, and
switching two rows) leave the determinant unchanged or multiplied by a unit. In
particular, the typical elementary row operations have no effect on whether or
not the determinant is a unit.

We say that M is row equivalent to M ′, denoted M ∼ M ′, if M can be turned
into M ′ by applying a sequence of elementary row operations. If M ∼ M ′, then a
common vertex set V is M -AW if and only if V is M ′-AW. Our general strategy
will be to use elementary row operations to change N(G) into a matrix whose
Lights Out game is easy to play. Our first result using this technique will be for
graphs that have a dominating vertex. Note G ∪ H is the disjoint union of the
graphs and G is the complement graph.

Theorem 4. Let G be a graph. Then G ∪K1 is N -AW if and only if G is A-AW.

Proof. We have

N(G ∪K1) =

[

N(G) 1

1 1

]

where the last row and column represent V (K1). We multiply each row except
the last by the unit −1 and then add to each of those rows the last row. This
turns every 1 of N(G) into a 0 and vice versa, resulting in the adjacency matrix
of G. So

N(G ∪K1) ∼ M =

[

A(G) 0

1 1

]

.

Thus, it suffices to show that G ∪K1 is M -AW if and only if G is A-AW.
Note that the M -Lights Out game is played as the A-Lights Out game on G, each
vertex toggled in V (G) adds 1 to the label of the vertex v ∈ V (K1), and toggling
v increases its own label by 1 and has no other effect.
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First suppose that G is A-AW, and let π be a labeling of G ∪K1. Since G is
A-AW, we can toggle the vertices of G in a way that wins the A(G)-Lights Out
game for the labeling π |V (G). At this point, every vertex has label 0 except v.
We then toggle v until it has label 0. In the M -Lights Out game, toggling v has
no effect on labels of other vertices, so this wins the M -Lights Out game. Thus
G ∪K1 is M -AW.

Conversely, suppose that G is not A-AW. Let π be a labeling of V (G) that
is not A-winnable. In the M -Lights Out game the only vertices that affect the
labels of V (G) are the vertices in V (G), so π is not M -winnable. Thus, G ∪K1

is not M -AW.

3. Winnability in Dense Graphs

In proving Theorem 4, we use elementary row operations to convert the neighbor-
hood Lights Out game on a dense graph into something resembling the adjacency
Lights Out game on a sparse graph. Since the extremal problem we are working
on seeks dense, winnable graphs and playing the game on sparse graphs is typi-
cally easier, this technique works to our advantage. The next result allows us to
make a graph denser by removing an edge from the complement graph when the
complement graph is combined with P4.

Theorem 5. Let G be a graph, U ⊆ V (G) and v be an end vertex of P4. Let H be

the graph where V (H) = V (G)∪V (P4) and E(H) = E(G)∪E(P4)∪{uv : u ∈ U}.
Then H is N -AW if and only if G ∪ P4 is N -AW.

Proof. Let V = V (G ∪ P4) = V (H), and let P4 in both G ∪ P4 and H be given
by vv2v3v4. Note that P4 is the path given by v2v4vv3. By [10, Thm. 4.3], P4 is
N -AW for all ℓ. It follows that in both H and G ∪ P4, the subgraph induced by
{v, v2, v3, v4} is N -AW. Thus, we can toggle the vertices of P4 in such a way that
each vertex in P4 has label zero.

We first assume H is N -AW and show G ∪ P4 is N -AW. To that end, we
let π : V → Zℓ and show that π is winnable on G ∪ P4. As discussed above, we
can assume that π |V (P4)= 0. Since H is N -AW, π is winnable on H. In this
winning strategy, let each w ∈ V (G) be toggled xw times, and let v2 be toggled
x times. If we apply this strategy to H but refrain from toggling v, v3, and v4,
this leaves v2 and v4 with label x +

∑

w∈V (G) xw, v with label
∑

w∈V (G) \U xw,
and v3 with label

∑

w∈V (G) xw. Since v4 is the only remaining vertex adjacent to
v2, v4 must be toggled −x −

∑

w∈V (G) xw times. This will leave both v2 and v4
with label zero. Since v is the only remaining vertex adjacent to v4, this means
we do not toggle v at all. Thus, v3 (the only remaining untoggled vertex) must
make its own label zero by being toggled −

∑

w∈V (G) xw times. This completes
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winning the game on H. An important observation is that the vertices of P4 are
collectively toggled −2

∑

w∈V (G) xw times, and none of those toggles come from v.

Since each of v2, v3, and v4 is adjacent to every vertex in V (G), this implies that
toggling the vertices of P4 adds −2

∑

w∈V (G) xw to the labeling of each vertex in
V (G). Looked at another way, if we only toggle the vertices in V (G), this leaves
each such vertex with label 2

∑

w∈V (G) xw.

With the initial labeling π, we now apply the above toggling strategy to V (G)
in G ∪ P4. By the above, each vertex in V (G) has label 2

∑

w∈V (G) xw. Since v
and each of the vi are adjacent to all vertices in V (G), it follows that toggling
the vertices in V (G) leaves v and each vi with label

∑

w∈V (G) xw. Each of v2 and
v3 is now toggled −

∑

w∈V (G) xw times. This makes the label of v and each vi
zero. In addition, it adds −2

∑

w∈V (G) xi to the labels of V (G), which gives each
of them label zero as well.

We proceed similarly for the converse. Assume G ∪ P4 is N -AW, and let
π : V → Zℓ be a labeling as above with π |V (P4)= 0. We need to prove that π is

winnable on H. As before, there is a winning toggling strategy for G ∪ P4, where
each w ∈ V (G) is toggled x′w times, and v2 is toggled x′ times. At this point,
we determine the toggles for v and each remaining vi as before, and it follows
that the vertices are collectively toggled −2

∑

w∈V (G) x
′
w times. As before, this

implies that toggling the vertices of V (G) results in the label of each vertex in
V (G) being 2

∑

w∈V (G) x
′
w.

Again, we apply the above toggling strategy just to the vertices of V (G) in
H. This leaves each of v2, v3, and v4 with label

∑

w∈V (G) x
′
w and v with label

∑

w∈V (G) \U x′w. We then win the game as follows: v2 is toggled −2
∑

w∈U x′w −
∑

w∈V (G) \U x′w times, v3 is toggled −
∑

w∈V (G) x
′
w times, and v4 is toggled

∑

w∈U x′w times.

We can apply this result to complements of graphs that include components
that are path graphs. For k ∈ N and G a graph we use kG to denote k disjoint
copies of G.

Corollary 6. Let G be a graph of order n that is N -AW.

(1) No component of G can be Pk such that k is congruent to 3 mod 4.

(2) At most one component of G can be Pk such that k is congruent to 1 modulo 4.

(3) If G is an (n, ℓ)-extremal graph, then no component of G is a path of order

more than 4.

Proof. For (1), let P be a component of G that is a path of order 4k + 3 with
k ∈ N ∪ {0}. By Lemma 5, if we replace P in G with kP4 ∪ P3, the complement
of the resulting graph is N -AW if and only if G is. Thus, we can assume P = P3.
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However, the end vertices of the P3 component in G are N(G)-twins in G, so G
is not N -AW by Corollary 3.

For (2), we apply Lemma 5 again. If we have more than one component of
G is a path with order congruent to 1 modulo 4, we can assume that all such
components are P1. But the vertices of these components are all N(G)-twins,
and so in order for G to be N -AW, G can have at most one component be a path
of order congruent to 1 modulo 4.

Finally, (3) follows from the fact that if we replace the component of G that
is Pk with k > 4 with Pk−4 ∪ P4, the complement of the resulting graph will
be N -AW with larger size, thus contradicting the assumption that G is (n, ℓ)-
extremal.

Given a matrix M , let π be a labeling of V (M). For U ⊆ V (M) and r ∈ Zℓ,
we define the labeling πU,r : V (M) → Zℓ as

πU,r(v) =

{

π(v) + r v ∈ U,

π(v) v /∈ U.

In the case U = V (M), we write πV (M),r = πr.
When we encounter these labelings in the proof of Theorem 9, we are con-

cerned not only if certain labelings are winnable, but also how many toggles can
be used to win the game for these labelings. We use 0 to denote the zero labeling,
which assigns to every vertex a label of 0.

Definition. Let M ∈ Mn(Zℓ), r ∈ Zℓ and U ⊆ V (M). We define the set of
U -toggling numbers TM

U (r) ⊆ Zℓ as follows. We say t ∈ TM
U (r) if the elements of

V (M) can be toggled to win the M -Lights Out game with initial labeling 0U,r in
such a way that the vertices in U are collectively toggled t times.

Note that each number in TM
U (0) corresponds to a set of toggles that leaves

the initial labeling unchanged. Such sets of toggles are called null toggles. Null
toggles function very similarly to null spaces of a linear transformation. For
instance, there exist two sets of toggles with t toggles and t′ toggles of the vertices
of U , respectively, to have the same effect on the labels of V (M) if and only if
t′ = t+ q for some q ∈ TM

U (0).
In both the neighborhood and adjacency Lights Out games, winning a par-

ticular game is equivalent to winning the game on each individual connected
component. This simplifies the computation of toggling numbers in these cases.
Let G be a graph with U ⊆ V (G) and M is N(G) or A(G). If G1, G2, . . . , Gc are
the connected components of G, and Ui = U ∩ V (Gi), then TM

U (r) =
{
∑c

i=1 ti :

ti ∈ TMi

Ui
(r)

}

, where Mi is N(Gi) or A(Gi), respectively.
Suppose we have two different sets of toggles and look at their effect individ-

ually on each vertex. For each v ∈ V (M), suppose that the label of v is increased
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by rv for the first set of toggles and is increased by sv for the second set of toggles.
Then combining the two sets of toggles increases each v ∈ V (M) by rv + sv. We
use this observation to prove the following.

Lemma 7. Let n ∈ N and M ∈ Mn(Zℓ), let U ⊆ V (M), and let r ∈ N be

minimal such that TM
U (r) 6= ∅. Then r | ℓ, and TM

U (s) 6= ∅ if and only if r | s.

Proof. It is easy to show that
{

s ∈ Zℓ : T
M
U (s) 6= ∅

}

is an additive subgroup of
Zℓ. The result follows easily.

For graphs with a pendant vertex, it will be helpful to understand the rela-
tionship between winning the adjacency game on both the graph and a certain
subgraph.

Lemma 8. Let G be a graph with a pendant vertex p. Let v be the neighbor of p
in G, let G′ be the graph induced by V (G) \ {p, v}, let U = NG(v) \ {p}. Finally,

let π be a labeling of G, and define the labeling π′ on G′ by

π′(w) =

{

π(w)− π(p) w ∈ U,

π(w) otherwise.

Then

(1) π′ is A(G′)-winnable with t toggles from V (G′) \U (along with perhaps some

toggles from U) if and only if π is A(G)-winnable with t−π(v)−π(p) toggles
from V (G).

(2) If s ∈ Zℓ, then T
A(G)
V (G) (s) =

{

t− 2s : t ∈ T
A(G′)
V (G′) \U (s)

}

.

Proof. For (1), we first assume π′ isA(G′)-winnable with t toggles from V (G′) \U .
If we begin with the labeling π on G, we begin by toggling the vertices as we would
to win the adjacency game on G′ with labeling π′. When we do this, we subtract
π(w) from the label of each w ∈ V (G′) \U and subtract π(w) − π(p) from each
w ∈ U . This leaves each vertex in V (G′) \U with label 0 and each vertex in U
with label π(p). If the vertices of U get toggled tU times, it also leaves v with label
π(v)+tU . Then v is toggled −π(p) times and p is toggled −π(v)−tU times to win
the game. The total number of toggles is t+tU−π(p)−π(v)−tU = t−π(p)−π(v).

If we assume π is A(G)-winnable with t − π(p) − π(v) toggles, note that
since v is the only neighbor to p in G, v must be toggled −π(p) times to win
the A(G)-Lights Out game with initial labeling π. This leaves each w ∈ V (G′)
with label π′(w). We then toggle the vertices of G′ as we do for winning the
adjacency game on G with initial labeling π. This will win the adjacency game
on G′ with initial labeling π′. Note that if tU is the number of toggles among the
vertices of U , then that leaves v with label π(v)+tU . This requires p to be toggled
−π(v)−tU times. If we let t′ be the number of toggles among vertices in V (G′) \U ,
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and if we total up the number of toggles altogether, we get t − π(p) − π(v) =
−π(p) + t′ + tU − π(v) − tU = t′ − π(p) − π(v). Thus, t = t′, which proves the
result. Part (2) follows from letting π(w) = s for all w ∈ V (G).

Theorem 9. Let G be a graph with a pendant vertex p. Let v be the neighbor of

p in G, and let G′ be the graph induced by V (G) \ {p, v}.

(1) G is A(G)-AW if and only if G′ is A(G′)-AW.

(2) Let r ∈ N be minimum such that T
A(G)
V (G) (r) 6= ∅, and let t ∈ T

A(G)
V (G) (r). Then

G is N(G)-AW if and only if

(a) for each labeling π of V (G), there is some s ∈ Zℓ such that πs is A(G)-
winnable,

(b) for each z ∈ Zℓ, there exists q ∈ T
A(G)
V (G) (0) such that there is a solution

to (r + t)x ≡ z + q (mod ℓ).

Proof. For (1), we first assume G is A(G)-AW. Let G′ have an arbitrary labeling.
We extend this labeling to a labeling of G by giving each of p and v a label of 0.
This labeling of G is winnable since G is A(G)-AW, so we toggle the vertices of
G′ as we would in a winning toggling of G. If not every label of G′ becomes 0,
then we have to toggle v to give G a zero labeling. However, this leaves p with
a nonzero label. Since v is the only neighbor of p, this implies that toggling v
makes the zero labeling on G impossible. Thus, the toggles we did for G′ leaves
all vertices in G′ with label 0, and so G′ is A(G′)-AW.

If we assume G′ is A(G′)-AW and let G have an arbitrary labeling, we first
toggle v so that p has label 0. The resulting labeling restricted to G′ is winnable
since G′ is A(G′)-AW. We can then toggle the vertices of G′ so that all vertices
of G′ have label 0. This leaves all vertices with label 0, except perhaps v since v
is the only vertex not in G′ that is adjacent to a vertex in G′. We then toggle p
until v has label 0, which wins that game. Thus, G is A(G)-AW.

For (2), let U = NG(v) \ {p}. Then N(G) looks like the following.

V (G′) \U U v p

V (G′) \U N(G′ − U) ∗ 1 1

U ∗ N(U) 0 1

v 1 0 1 0

p 1 1 0 1

where G′−U is the induced subgraph with vertex set V (G′) \U and the ∗ blocks
are the entries that make the four top-left blocks N(G′). We multiply each row
except the last by the unit −1 and then add to each of those rows the last row
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to get

M =

V (G′) \U U v p

V (G′) \U A(G′ − U) ∗ −1 0

U ∗ A(U) 0 0

v 0 1 −1 1

p 1 1 0 1

where the ∗ blocks are obtained from ∗ by changing the 1 entries to 0 and the
0 entries to 1. This makes the top-left four blocks A(G′). So the M -Lights Out
game is played as the A(G′)-Lights Out game on V (G′); toggling any vertex in
V (G′) adds 1 to the label of p; toggling any vertex in U adds 1 to the label of v;
toggling v adds −1 to every vertex in (V (G) \U)∪ {v}; and toggling p adds 1 to
v and p.

We first assume G is N(G)-AW. Since M ∼ N(G), G is M -AW. To prove
(2a), consider the labeling giving v and p labels of 0, each w ∈ U a label of
π(w) − π(p), and each w ∈ V (G′) \U a label of π(w), which is M -winnable
by assumption. If we toggle v and p as part of a winning toggling, we get the
following labeling of V (G′).

λ(w) =

{

π(w)− π(p) w ∈ U,

π(w) + s otherwise,

where v is toggled −s times. We claim that πs is A(G)-winnable. If we define π′
s

similarly as π′ in Lemma 8, then π′
s = λ, which we showed to be A(G′)-winnable.

By Lemma 8(1), πs is winnable.
For (2b), let z ∈ Zℓ, and consider the labeling where p has label −z and all

other labels are 0. This labeling is M -winnable by assumption, so let y1 be the
number of times v is toggled and y2 be the number of times p is toggled in order
to win the M -Lights Out game with this labeling. This results in each vertex
of V (G′) \U having label −y1, each vertex of U having label 0, v having label
y2 − y1, and p having label −z + y2.

At this point, we have only the vertices in V (G′) to toggle, which means
the remaining toggles necessary to win the M -Lights Out game will also win the

A(G′)-Lights Out game with labeling 0V (G′) \U,−y1 . Thus, T
A(G′)
V (G′) \U (−y1) 6= ∅.

By Lemma 8(2), T
A(G)
V (G) (−y1) 6= ∅, and so −y1 = rx for some x ∈ Z by Lemma 7.

By assumption, t ∈ T
A(G)
V (G) (r), and so t = t′ − 2r for some t′ ∈ T

A(G′)
V (G′) \U (r) by

Lemma 8(2). Thus, there exists tU ∈ Z such that we can collectively toggle the
vertices of U tU times and the vertices of V (G′) \U t′ times to win the A(G′)-
Lights Out Game with labeling 0V (G′) \U,r. By repeating x times the toggles we
use for the labeling 0V (G′) \U,r, we can toggle the vertices of U and V (G′) \U
xtU and xt′ times, respectively, to win the A(G′)-Lights Out Game with labeling
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0V (G′) \U,rx. Since toggling the vertices of G′ to win the M -Lights Out game also
must win the adjacency game on G′ with labeling 0V (G′) \U,rx, we must toggle

the vertices of G′ xtU + xt′ + k for some k ∈ T
A(G′)
V (G′) (0). If we let k = q1 + q2,

where q1 is the number of toggles from V (G′) \U and q2 is the number of toggles

from U in the null toggle, we have q1 ∈ T
A(G′)
V (G′) \U (0). Note that by negating all

toggles in this null toggle, we still get a null toggle, and so −q1 ∈ T
A(G′)
V (G′) \U (0).

This leaves all vertices in V (G′) with label 0, v with label y2 + xr+ xtU + q2 (by
setting −y1 = xr), and p with label −z + y2 + xtU + xt′ + q1 + q2.

All of the toggles have been accounted for, and so the labels of v and p
must be 0. We then eliminate y2 in the resulting system of equations to get
(r − t′)x = −z + q1. Recall that t = t′ − 2r, and so t′ = t + 2r. This gives us
(−r− t)x = −z+ q1, and so (r+ t)x = z− q1. Now let q = −q1. As noted above,

q ∈ T
A(G′)
V (G′) \U (0). By Lemma 8(2), T

A(G′)
V (G′) \U (0) = T

A(G)
V (G) (0), and so q ∈ T

A(G)
V (G) (0).

Since (r + t)x = z + q, this proves (2b).

Now we assume that (2a) and (2b) hold, and we prove that G is N(G)-
AW. Since M ∼ N(G), we need only prove that G is M -AW. Let π be a label-
ing of V (G). Consider the labeling λ of V (G) that is 0 on p and v and π on
V (G′). By (2a), λs is A(G)-winnable for some s ∈ Zℓ. If we define λ′

s as in
Lemma 8(1), we get λ′

s = πV (G′) \U,s|V (G′). By Lemma 8(1), πV (G′) \U,s|V (G′) is
A(G′)-winnable. Then v can be toggled in the M -Lights Out game −s times to
obtain πV (G′) \U,s|V (G′) on V (G′), and we can then toggle the vertices of V (G′)
to give every vertex in V (G′) a label of 0. This leaves v with label a and p with
label b for some a, b ∈ Zℓ.

By Lemma 8(2), t = t′−2r for some t′ ∈ T
A(G′)
V (G′) \U (r). Thus, there exists tU ∈

Zℓ such that we can toggle the vertices of V (G′) \U t′ times and the vertices of U
tU times to win the A(G′)-Lights Out game with labeling 0V (G′) \U,r. Lemma 8(2)

implies that T
A(G)
V (G) (0) = T

A(G′)
V (G′) \U (0), and so q ∈ T

A(G′)
V (G′) \U (0). As we reasoned

above, −q ∈ T
A(G′)
V (G′) \U (0), and so there exists qU ∈ TA

U (0) such that qU − q ∈

T
A(G′)
V (G′) (0). Now let x be a solution to (2b), where z = a − b. This gives us

(r− t′)x = b− a− q. If v is toggled −xr times and p is toggled −b− x(tU + t′) +
(q− qU ) times, this leaves each vertex of V (G′)−U with label xr, each vertex of
U with label 0, v with label a− b+ xr − x(tU + t′) + (q − qU ), and p with label
−x(tU + t′) + (q− qU ). As we reasoned above, we can then win the A(G′)-Lights
Out game with labeling 0V (G′) \U,xr (and thus make the labels of V (G′) to be 0)
by toggling the vertices of U xtU times and the vertices of V (G′) \U a total of
xt′ times. The vertices of V (G′) can be toggled in such a way that the vertices of
U are toggled qU times, the vertices of V (G′) \U are toggled −q times, and these
toggles collectively have no effect on the labels of V (G′). So we combine these to
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toggle the vertices of U collectively xtU + qU times and the vertices of V (G′) \U
collectively xt′ − q times. This leaves the vertices of V (G′) with label 0, p with
label (−x[tU + t′] + [q − qU ]) + (xtU + qU + xt′ − q) = 0, and v with label

a− b+ xr − x(tU + t′) + (q − qU ) + xtU + qU = a− b+ x(r − t′) + q

= a− b+ (b− a− q) + q = 0.

This wins the game and shows that G is N(G)-AW.

In Theorem 9(2), if G is A-AW, then πs is automatically A(G)-winnable
for all s ∈ Zℓ. Thus, G satisfies Theorem 9(2a) and makes r = 1. Furthermore,
A(G) is invertible, so the only null toggle possible is where no buttons are pushed,

making T
A(G)
V (G) (0) = {0}. This gives us the following.

Corollary 10. Let G be an A-AW graph with a pendant vertex. Let t ∈ T
A(G)
V (G) (1).

Then G is N -AW if and only if gcd(1 + t, ℓ) = 1.

Proof. Since G is A-AW, part (2a) of Theorem 9 is automatically satisfied.

Moreover, since G is A-AW, A is invertible, which implies that T
A(G)
V (G) (0) = {0}.

The result then follows directly from Theorem 9.

Furthermore, for possible (n, ℓ)-extremal graphs with a dominating vertex,
Theorem 9(1) gives us a way to eliminate most graphs with pendant vertices.

Corollary 11. Let G be a graph with a dominating vertex. If G has a pendant

vertex that is not part of a component isomorphic to P2, then G is not (n, ℓ)-
extremal for any n and ℓ.

Proof. For contradiction, assume G is (n, ℓ)-extremal, that G has a pendant
vertex p with neighbor v, and that p and v are not the only vertices in their
connected component of G. Thus, v has a neighbor other than p in G. Let w
be the dominating vertex in G, and let G′ be the subgraph of G induced by
V (G) \ {p, v, w}. If we remove the edges in G incident to v but not p, we get the
graph H = G′ ∪P2 ∪P1. Note that H has size smaller than G, and so H has size
greater than G. To contradict the assumption that G is (n, ℓ)-extremal, it then
suffices to prove that H is N -AW.

Since G is N -AW, Theorem 4 implies that G − {w} is A-AW. By Theo-
rem 9(2), this implies that G′ is A-AW. Since P2 is A-AW for all ℓ, it follows that
G′ ∪ P2 = H − {w} is A-AW. By Theorem 4, H is N -AW. This means G is not
(n, ℓ)-extremal, a contradiction.

A pendant graph is a graph where every non-pendant vertex is adjacent to a
pendant vertex. As in [12] we write H⊙K1 for the graph in which, for each vertex
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v of H, we add a new vertex adjacent only to v. In the case that a pendant graph
is a tree or a forest, we use the terms pendant tree or pendant forest, respectively.
One nice property of pendant graphs is that it is really easy to play the A-Lights
Out game on them. This is demonstrated in the following result.

Lemma 12. Let H be a graph, and G = H⊙K1. Then we have the following.

(1) G is A-AW for all ℓ ∈ N.

(2) If G has size m and order n, then T
A(G)
V (G) (1) = {2(m− n)}.

(3) If G is a pendant forest with c components, then T
A(G)
V (G) (1) = {−2c}.

Proof. For (1), we have the following algorithm for winning any A-Lights Out
game on G. Toggle each vertex in V (H) until its pendant neighbor has label 0.
Then toggle each vertex not in V (H) until its neighbor has label 0. This results
in the zero labeling, which makes G A-AW.

For (2), we begin with the labeling 01. Applying the above strategy, each
vertex in V (H) is toggled −1 times, giving a total of −n

2 toggles. Each vertex
toggled also decreases by 1 the label of each adjacent vertex in H. Collectively,
this decreases the labels of V (H) by 2|E(H)| = 2

(

m− n
2

)

. That means that
when we toggle the pendant vertices, we must toggle −1 each for the initial label
of 1 for each vertex in H plus

(

m− n
2

)

for the decrease in labels from toggling
V (H). In total, we get −n

2 − n
2 + 2

(

m− n
2

)

= 2(m − n), which completes the
proof.

Finally, (3) follows from the fact that for a forest, we have m = n− c.

We can now determine the N -winnability of the complements of pendant
graphs. Interestingly, the issue of whether or not a pendant graph is N -AW
depends entirely on the size and order of the pendant graph.

Lemma 13. Let G be a pendant graph of size m and order n. Then G is N -AW

if and only if gcd(2[n−m]− 1, ℓ) = 1. Equivalently, if G is a graph of even order

n and size
(

n
2

)

−
(

n
2 + k

)

such that G is a pendant graph, then G is N -AW if and

only if gcd(n− 2k − 1, ℓ) = 1.

Proof. By Lemma 12(1), G is A-AW, and so we can apply Corollary 10. By

Lemma 12(2), T
A(G)
V (G) (1) = {2(m− n)}. By Corollary 10, G is N -AW if and only

if gcd(2(m−n)+ 1, ℓ) = 1. The second part follows from substituting m = n
2 + k

or k = m− n
2 to get 2(n−m)− 1 = n− 2k − 1.

If G is a forest, then n −m is the number of components of G. This along
with Lemma 13 gives us the following.
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Corollary 14. Let G be a graph such that the components of G are all pendant

trees. If c is the number of components of G, then G is N -AW if and only if

gcd(2c− 1, ℓ) = 1.

When we are classifying (n, ℓ)-extremal graphs in Section 4, it will be helpful
to replace connected components of the complement of one graph with another
graph without affecting the N -winnability of the original graph. The following
guarantees that the conditions of Theorem 9(2) are unaffected by the replacement.

Corollary 15. Let G be a graph with a pendant vertex, and let C be a connected

component of G that is A-AW. If there exists a graph C ′ such that

(1) C ′ is A-AW,

(2) T
A(C′)
V (C′) (1) = T

A(C)
V (C) (1),

(3) C and C ′ have the same order,

(4) C ′ has smaller size than C,

then G is not (n, ℓ)-extremal.

Proof. Let G′ be the graph identical to G except that the component C is
replaced with C ′. The winnability of the adjacency game is determined by the
winnability of the adjacency game on each connected component of a given graph.
Since both C and C ′ are A-AW, then given a labeling π on G (respectively, a
labeling π′ on G′), we have that πs is A(G)-winnable (respectively, π′

s is A(G′)-
winnable) if and only if πs restricted to G − C (respectively, π′

s restricted to
G′−C ′) is A(G−C)-winnable (respectively, A(G′−C ′)-winnable). Since G−C =
G′ − C ′, this condition is identical for both G and G′. Thus, either both of G
and G′ satisfy Theorem 9(2a) or neither does. A similar argument gives us that
either both of G and G′ satisfy Theorem 9(2b) or neither does. Thus, G is N -AW
if and only if G′ is N -AW. Furthermore, since C and C ′ have the same order, so
do G and G′. Finally, since C ′ has smaller size than C, G′ has larger size than
G. Since G′ and G have the same order and same winnability but G′ has larger
size, G cannot be (n, ℓ)-extremal.

4. Extremal Graphs

Recall that max(n, ℓ) is the maximum number of edges in an N -AW graph
with n vertices and a graph is (n, ℓ)-extremal provided that it has order n, size
max(n, ℓ), and is N -AW. We begin with straightforward upper and lower bounds
on max(n, ℓ).

Proposition 16. For any n, ℓ ∈ N we have
(

n

2

)

− (n− 1) ≤ max(n, ℓ) ≤

(

n

2

)

−
⌊n

2

⌋

.
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Proof. For the right inequality, if |E(G)| <
⌊

n
2

⌋

, at most
⌊

n
2

⌋

− 1 edges are
removed from Kn to obtain G. Thus, at most 2

(⌊

n
2

⌋

− 1
)

≤ n − 2 vertices of
Kn can have their degrees reduced by one or more to obtain G. So, at least two
vertices in G are dominating vertices. Two dominating vertices are N -twins, and
such a G is not N -AW by Corollary 3. On the other hand we know max(n, ℓ) ≥
(

n
2

)

− (n − 1) since the complement of any pendant tree is N -AW for all ℓ by
Corollary 14.

To obtain the upper bound of Proposition 16, we need G to be a perfect or
near-perfect matching. Let Mn be a perfect matching on n vertices when n is
even and a near-perfect matching on n vertices when n is odd. The following two
results show us when Mn is (n, ℓ)-extremal.

Proposition 17. If n is odd, then

max(n, ℓ) =

(

n

2

)

−
⌊n

2

⌋

for all ℓ ∈ N. Moreover, Mn is the unique N -AW of maximum size on n vertices.

Proof. We have that Mn−1 is a pendant graph, specifically
(

n−1
2 K1

)

⊙K1, so
by Lemma 12(1), Mn−1 is A-AW for all ℓ. By Theorem 4, Mn is N -AW. So,
max(n, ℓ) ≥

(

n
2

)

−
⌊

n
2

⌋

when n is odd. By Proposition 16, max(n, ℓ) =
(

n
2

)

−
⌊

n
2

⌋

.
Any graph G 6= Mn with

(

n
2

)

−
⌊

n
2

⌋

edges must have at least two dominating
vertices in G, which are N -twins. Thus, Mn is unique.

However, when n is even, not all complements of perfect matchings give us
(n, ℓ)-extremal graphs.

Proposition 18. If n is even, then

max(n, ℓ) =
(

n
2

)

− n
2 if and only if gcd(n− 1, ℓ) = 1.

If n is even and gcd(n−1, ℓ) = 1, then Mn is the unique N -AW graph of maximum

size on n vertices.

Proof. Each component of Mn is a pendant tree. By Corollary 14, Mn is N -AW
if and only if gcd

(

2
(

n
2

)

− 1, ℓ
)

= gcd(n−1, ℓ) = 1. That Mn is the unique N -AW
graph of maximum size on n vertices again follows from two dominating vertices
being N -twins in any other case.

It turns out that when n is even, finding max(n, ℓ) is considerably more com-
plicated, though we conjecture that almost all extremal graphs are complements
of pendant graphs. In Proposition 19 we find the extremal graphs where n is even
and ℓ is odd. This is the only situation we have found in which an (n, ℓ)-extremal
graph is not the complement of a pendant graph.
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Proposition 19. Suppose that n ≥ 4 is even. If ℓ is odd and gcd(n − 1, ℓ) 6=
1, then max(n, ℓ) =

(

n
2

)

−
(

n
2 + 1

)

. In this case an (n, ℓ)-extremal graph is

C3 ∪
(

n−4
2

)

P2 ∪K1.

Proof. We first show that H = C3 ∪
(

n−4
2

)

P2 ∪K1, which has
(

n
2

)

−
(

n
2 + 1

)

edges, is N -AW. By Theorem 4, we need only prove that C3∪
(

n−4
2

)

P2 is A-AW.
Clearly, P2 is A-AW for all ℓ ∈ N. We can see that C3 is A-AW if and only if ℓ is
odd by row reducing the adjacency matrix of C3. By playing on each component,
C3 ∪

(

n−4
2

)

P2 is A-AW, and so H is N -AW.
We now show thatH is (n, ℓ)-extremal. Since gcd(n−1, ℓ) 6= 1, Proposition 18

implies that Mn is not (n, ℓ)-extremal. By the uniqueness of Mn, max(n, ℓ) ≤
(

n
2

)

−
(

n
2 + 1

)

. Since H is N -AW and |E(H)| =
(

n
2

)

−
(

n
2 + 1

)

max(n, ℓ) =
(

n
2

)

− n
2 + 1.

Since Mn is the (n, ℓ)-extremal graph in the case that n is odd and

C3 ∪
(

n−4
2

)

P2 ∪K1 is an (n, ℓ)-extremal graph in the case that n is even and
ℓ is odd, from here on we consider only cases where n and ℓ are both even. In
this case we find the quantity given in Conjecture 1 is a lower bound.

Proposition 20. If n and ℓ are both even, then

max(n, ℓ) ≥

(

n

2

)

−
(n

2
+ k

)

,

where k is the smallest nonnegative integer such that gcd(n− 2k − 1, ℓ) = 1.

Proof. Suppose that k is the smallest nonnegative integer such that gcd(n−2k−
1, ℓ) = 1. Let G = kP4 ∪

(

n
2 − 2k

)

P2. Then G is a pendant graph and G has size
(

n
2

)

−
(

n
2 + k

)

. So by Lemma 13 we have G is N -AW and the result follows.

Note when k = n
2−1 we have n−2k−1 = 1 and so gcd(n−2k−1, ℓ) = 1. This

gives us the lower bound in Proposition 16. In the following two subsections we
find max(n, ℓ) in two cases: finding all graphs with minimum degree n−2 or n−3
that are (n, ℓ)-extremal for any ℓ in Section 4.1, and finding all combinations of n
and ℓ such that the (n, ℓ)-extremal graph has

(

n
2

)

−
(

n
2 + k

)

edges for 0 ≤ k ≤ 3 in
Section 4.2. In both perspectives we are led to pendant graphs, which supports
Conjecture 1.

4.1. Extremal graphs with a given minimum degree

The minimum degree of an (n, ℓ)-extremal graph cannot be n− 1 because Kn is
not N -AW. Moreover, if the minimum degree is n − 2 then, to avoid twins, the
complement graph must be Mn. So, Propositions 17 and 18 tell us that if G is
an (n, ℓ)-extremal graph with minimum degree n− 2, then G = Mn, which is the
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complement of a pendant graph when n is even. Thus, in this section we find
max(n, ℓ) among all graphs with minimum degree n − 3. Recall we can assume
n and ℓ are even.

If G has minimum degree n − 3, the complement has maximum degree 2.
So the components of the complement graph are paths and cycles. We denote
the cycle graph Ck by V (Ck) = {vi : 1 ≤ i ≤ k}, E(Ck) = {vivi+1, vkv1 : 1 ≤
i ≤ k − 1}. Our approach to the A-Lights Out game on Ck is similar to our
approach to the N -Lights Out game in [10]. We first reduce an arbitrary labeling
to a canonical labeling, and then determine when these canonical labelings can
be won.

To that end, for a, b ∈ Zℓ we define λa,b to be the labeling where v1 has
label a, v2 has label b, and the other vertices have label 0. By a straightforward
induction proof, given any initial labeling of Ck in the A-Lights Out game, the
vertices can be toggled to achieve the λa,b labeling for some a, b ∈ Zℓ. These
are our canonical labelings. The following lemma shows how we deal with the
labelings λa,b and (λa,b)s.

Lemma 21. Let π be a labeling of V (Ck), and let ℓ be even.

(1) The labeling λa,b is A-winnable precisely in the following circumstances.

• When n ≡ 0 (mod 4) and a = b = 0.

• When n ≡ 1, 3 (mod 4) and a and b have the same parity.

• When n ≡ 2 (mod 4) and a and b are both even.

(2) The labeling (λa,b)s can be toggled in the A-Lights Out game to obtain the

following labelings.

• When n ≡ 0 (mod 4), λa,b.

• When n ≡ 1 (mod 4), λa,b−s.

• When n ≡ 2 (mod 4), λa−s,b−s.

• When n ≡ 3 (mod 4), λa−s,b.

Proof. For (1), let ti be the number of times we toggle vi. By a straightforward
induction proof, it follows that λa,b is A-winnable if and only if tn−1 + t1 = 0,
tn + a+ t2 = 0, and for 2 ≤ i ≤ n we have

ti =























−t2 i ≡ 0 (mod 4),

b+ t1 i ≡ 1 (mod 4),

t2 i ≡ 2 (mod 4),

−b− t1 i ≡ 3 (mod 4) .

Then (1) follows from using the equations above with i = n− 1 and i = n.
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For (2), we begin with the labeling (λa,b)s, and then each vi with 2 ≤ i <
4
⌊

n
4

⌋

and i ≡ 2, 3 (mod 4) is toggled −s times. This results in the labeling where
each vi with 1 ≤ i ≤ 4

⌊

n
4

⌋

has label λa,b(vi) and each vi with i > 4
⌊

n
4

⌋

has label
(λa,b)s(vi). This gives us the n ≡ 0 (mod 4) case, and the other cases follow from
appropriately toggling some combination of v1, vn−1, and vn.

The next result helps us see how the presence of cycle components in a graph
can affect how we apply Theorem 9(2).

Lemma 22. Let G be a graph.

(1) If G has a connected component that is a cycle of even order, then G has a

labeling π such that πs is not A-winnable for all s ∈ Zℓ.

(2) If G has two connected components that are cycles, then G has a labeling π
such that πs is not A-winnable for all s ∈ Zℓ.

Proof. For (1), let C be a cycle component of G with even order, and define a
labeling that is λ1,0 on C and arbitrary on the remaining vertices of G. Since a
labeling is winnable on a graph if and only if it is winnable on each connected
component, it suffices to prove that (λ1,0)s is not winnable on C for all s ∈ Zℓ. If
C has order divisible by 4, then Lemma 21(2) implies that the vertices of C can
be toggled to achieve λ1,0, which is not winnable by Lemma 21(1). If C has order
not divisible by 4, then by Lemma 21(2), the vertices can be toggled to achieve
the labeling λ1−s,−s. Since 1 − s and s can never both be even, Lemma 21(1)
implies that λ1−s,−s is not winnable for all s ∈ Zℓ. In either case, (λ1,0)s is not
winnable on C for all s ∈ Zℓ, and so (λ1,0)s is not A-winnable for all s ∈ Zℓ.

For (2), let C and C ′ be two cycle components of G. By (1), we can assume
each of C and C ′ has odd order. We claim that for any labeling π that restricts
to λ1,0 on C and λ0,0 on C ′, πs is not A-winnable for all s ∈ Zℓ. By Lemma 21(2),
with initial labeling πs, we can toggle the vertices of G to obtain a labeling that
restricts either to λ1−s,0 or λ1,−s on C and restricts either to λ−s,0 or λ0,−s on
C ′. If s is even, then 1− s and 0 as well as 1 and −s have opposite parity. If s is
odd, then −s and 0 have opposite parity. In any case, Lemma 21(1) implies that
πs is not winnable, and so π is not A-winnable for all s ∈ Zℓ.

Our next lemma helps us when we want to apply Theorem 4 to graphs with
both a dominating vertex and a cycle component in its complement.

Lemma 23. If ℓ is even, then every cycle graph is not A-AW.

Proof. By Lemma 21(1), if a, b ∈ Zℓ have opposite parity, then λa,b is not A-
winnable. The result follows.
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The following theorem gives us a connection between (n, ℓ)-extremal graphs
and pendant graphs, in support of Conjecture 1. We use ∆(G) to denote the
maximum degree of a graph G.

Theorem 24. Let ℓ be even, and let G be an (n, ℓ)-extremal graph of even order

with ∆(G) ≤ 2. Then each connected component of G is either P2 or P4.

Proof. Suppose ∆(G) = 1. All dominating vertices in G are N -twins so by
Corollary 3, G has at most 1 dominating vertex. However, G cannot have only one
dominating vertex since G has even order. Thus, G has no dominating vertices,
and so G has no isolated vertices. It follows that each connected component of
G is P2.

In the case ∆(G) = 2, we first prove that G has at least one path component.
If not, all connected components are cycles, and so |E(G)| = |V (G)|. However,
note that any pendant tree of order |V (G)| is N -AW for all ℓ by Corollary 14.
Since the pendant tree has size |V (G)| − 1, this implies that G is not (n, ℓ)-
extremal. Thus, G has at least one path component (possibly P1).

By Corollary 6, no component of G is Pk with k ≥ 5 or k = 3. Furthermore
two components of P1 in G would be N -twins in G, which is prohibited by
Corollary 3. If we have one component of P1, Theorem 4 implies that all other
connected components of G are A-AW. This excludes cycles by Lemma 23. Since
the remaining paths have even order, this would force G to have odd order, which
is a contradiction.

So G is N -AW and G has a pendant tree (P2 or P4) as a component. Thus, G
has a pendant vertex, so we can use Theorem 9(2). This implies that G is (A, ℓ, s)-
winnable for some s ∈ Zℓ. However, Lemma 22 implies that this cannot happen
if either G has more than one cycle component or if G has a cycle component
of even order. Moreover, if G has precisely one cycle component, and if that
connected component has odd order, this implies that G has odd order, which
is a contradiction. Thus, G has no cycle components, and so each connected
component is either P2 or P4, which completes the proof.

Note that the (n, ℓ)-extremal graphs given in Theorem 24 are pendant graphs.
By Lemma 13, kP4 ∪

n−4k
2 P2 is N -AW if and only if gcd(n− 2k− 1, ℓ) = 1. This

implies Conjecture 1 for the family of graphs that have minimum degree at least
n− 3.

4.2. Extremal graphs with
(

n

2

)

−

(

n

2
+ k

)

edges

In this section we prove Conjecture 1 for 0 ≤ k ≤ 3. We state Theorem 25 in the
language of that conjecture.
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Theorem 25. For n, ℓ even and 0 ≤ k ≤ 3

max(n, ℓ) =

(

n

2

)

−
(n

2
+ k

)

,

where k is the smallest nonnegative integer such that gcd(n − 2k − 1, ℓ) = 1.
In each case the (n, ℓ)-extremal graphs are precisely the complements of pendant

graphs of order n that have size
(

n
2

)

−
(

n
2 + k

)

.

We will prove this result using separate propositions for each k. When k = 0,
Proposition 18 implies Theorem 25. The following lemma will help us for the cases
1 ≤ k ≤ 3.

Lemma 26. Let n ∈ N be even, let ℓ ∈ N, and let G be a N -AW graph with

|E(G)| = n
2 + t, where t ≥ 1. Then ∆(G) ≤ t + 1 where ∆(G) is the maximum

degree of G.

Proof. We let v ∈ V (G) and show deg(v) ≤ t + 1, where deg(v) is the degree
of v in G. Let W = V (G) \NG[v], and note that deg(v) = |NG(v)|. Then
|W | = n − deg(v) − 1. In the graph G, let k be the number of edges incident
only to vertices in NG(v), let r be the number of edges incident only to vertices
in W , and let s be the number of edges between a vertex in NG(v) and a vertex
in W . Since |E(G)| = n

2 + t, we have n
2 + t = deg(v) + k + r + s, and so

k + r + s = n
2 + t− deg(v).

Since G is N -AW, it cannot have any N -twins. Thus, no vertices in NG(v)
can be N -twins, so we can have at most one vertex in NG(v) that is adjacent in
G to every vertex except v. In other words, there are at least deg(v)− 1 vertices
in W that are adjacent in G to vertices other than v. There can be at most two
such vertices for each of the k edges in G incident with two vertices in NG(v),
and at most one such vertex for each of the s edges between vertices in NG(v)
and W . This means that there are at most 2k + s such vertices in NG(v). It
follows that deg(v)− 1 ≤ 2k + s, and so deg(v) ≤ 2k + s+ 1.

In order to prevent any vertices in W from becoming N -twins, we can have
at most one vertex in W that is adjacent to every vertex in G. In other words,
there are at least |W |−1 = n−deg(v)−2 vertices in W with nonzero degree in G.
Similar reasoning as in the previous paragraph implies that there are at most 2r+s
such vertices in W , and so n−deg(v)−2 ≤ 2r+s. Thus, deg(v) ≥ n−2r−s−2.

Since we have n−2r−s−2 ≤ deg(v) ≤ 2k+s+1, it follows that n−2r−s−2 ≤
2k+ s+1. This gives us n− 2k− 2r− 2s ≤ 3. Since the left side of the equation
is even, this actually gives us n − 2k − 2r − 2s ≤ 2, and so n

2 − k − r − s ≤ 1.
Rearranging this a bit gives us k + r + s ≥ n

2 − 1.

Now we use the fact k+ r+ s = n
2 + t−deg(v) to get n

2 + t−deg(v) ≥ n
2 − 1.

Solving for deg(v) gives deg(v) ≤ t+ 1.
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In the next proposition, we resolve the k = 1 case of Theorem 25.

Proposition 27. Suppose that n and ℓ are even and n ≥ 4. Then

max(n, ℓ) =
(

n
2

)

−
(

n
2 + 1

)

if and only if gcd(n− 1, ℓ) 6= 1 and gcd(n− 3, ℓ) = 1.

Moreover, the only (n, ℓ)-extremal graph in this case is the complement of the

unique pendant graph of order n and size
(

n
2

)

−
(

n
2 + 1

)

, which is P4 ∪
(

n
2 − 2

)

P2.

Proof. Suppose gcd(n − 1, ℓ) 6= 1 and gcd(n − 3, ℓ) = 1. Consider H = P4 ∪
(

n
2 − 2

)

P2. Note that H is a pendant graph with n vertices and n
2 +1 edges. By

Lemma 13, H is N -AW if and only if gcd(n − 3, ℓ) = 1. Since gcd(n − 1, ℓ) 6= 1
it follows from Proposition 18 that max(n, ℓ) =

(

n
2

)

−
(

n
2 + 1

)

.
Suppose max(n, ℓ) =

(

n
2

)

−
(

n
2 + 1

)

. Then gcd(n− 1, ℓ) 6= 1, since otherwise
max(n, ℓ) =

(

n
2

)

− n
2 by Proposition 18. By Lemma 26, if G is N -AW with

|E(G)| = n
2 + 1, then ∆(G) ≤ 2. So by Theorem 24 each connected component

of G is either P2 or P4. The only such graph with n
2 + 1 edges is H. Thus

gcd(n− 3, ℓ) = 1. It is clear that H is the only pendant graph of order n
2 + 1.

In the next proposition, we resolve the k = 2 case of Theorem 25. The proof
considers the possible degree sequences of the complements of (n, ℓ)-extremal
graphs. To ease our explanation we introduce a notation. Let a d-vertex refer to
a vertex of degree d. A d+-vertex is a vertex of degree d or more.

Lemma 28. Suppose G is an N -AW graph. Then any d-vertex in G with d ≥ 2
must have at least d− 1 neighbors that are 2+-vertices.

Proof. Suppose that v is a d-vertex in G with d ≥ 2 and that v has fewer than
d− 1 neighbors that are 2+ vertices. Then v has two neighbors of degree 1 in G,
which results in G having N -twins. By Corollary 3, G is not N -AW.

Proposition 29. Let n, ℓ ∈ N be even and n ≥ 6. Then

max(n, ℓ) =
(

n
2

)

−
(

n
2 + 2

)

if and only if gcd(n− 1, ℓ) 6= 1, gcd(n− 3, ℓ) 6= 1,
and gcd(n− 5, ℓ) = 1.

Moreover, the (n, ℓ)-extremal graphs in this case are precisely the complements of

pendant graphs of order n and size n
2 + 2 : (P3⊙K1) ∪

n−6
2 P2 and 2P4 ∪

n−8
2 P2

with the latter only possible when n ≥ 8.

Proof. Suppose gcd(n − 1, ℓ) 6= 1, gcd(n − 3, ℓ) 6= 1 and gcd(n − 5, ℓ) = 1.
By Proposition 18 and Proposition 27, max(n, ℓ) ≤

(

n
2

)

−
(

n
2 + 2

)

. Consider
H = (P3⊙K1) ∪

n−6
2 P2 which has size n

2 + 2. By Lemma 13, H is N -AW if and
only if gcd(n− 5, ℓ) = 1. So, max(n, ℓ) =

(

n
2

)

−
(

n
2 + 2

)

.
Now suppose that max(n, ℓ) =

(

n
2

)

−
(

n
2 + 2

)

. Then gcd(n − 1, ℓ) 6= 1 and
gcd(n − 3, ℓ) 6= 1 by Propositions 18 and 27. We will describe all G such that
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G is N -AW and E(G) = n
2 + 2 and show either that these graphs are not (n, ℓ)-

extremal or that they are N -AW if and only if gcd(n− 5, ℓ) = 1.

Suppose that G is N -AW with E(G) = n
2 +2. The degree sum of G is n+4.

By Lemma 26, ∆(G) ≤ 3. To avoid N -twins in G, G can have at most one 0-
vertex. Thus the only possible degree sequences for G are d0 = (3, 3, 1, 1, . . . , 1),
d1 = (3, 2, 2, 1, 1, . . . , 1), d2 = (2, 2, 2, 2, 1, 1, . . . , 1), d3 = (3, 3, 2, 1, 1, . . . , 1, 0),
d4 = (3, 2, 2, 2, 1, 1, . . . , 1, 0), and d5 = (2, 2, 2, 2, 2, 1, 1, . . . , 1, 0). For a graph
with degree sequence d0 note that each of the 3-vertices must have at least two
pendant neighbors. So by Lemma 28, no graph with degree sequence d0 is N -AW.

If G has degree sequence d1, Lemma 28 implies that all 2+-vertices are in
the same component. The other components of G must be a matching. So our
options are G′ ∪ n−4

2 P2 where G′ is shown in Figure 1 or H = (P3⊙K1)∪
n−6
2 P2.

Note H is N -AW if and only if gcd(n− 5, ℓ) = 1 as shown above. The graph G′

has order 4 and size 4. Moreover, given the initial labeling 01 we can achieve the 0
labeling by toggling the vertices b and c each −1 times. Thus, TA

V (G1)
(1) = {−2}.

By Lemma 2, G′ is A-AW because the adjacency matrix is invertible. The graph
P4 = P2⊙K1 has order 4, size 3, is A-AW by Lemma 12(1), and, by Lemma 12(2),

TA
V (P4)

(1) = {−2}. Thus, G′ ∪ n−4
2 P2 is not (n, ℓ)-extremal by Corollary 15.

a

b

d

c

Figure 1. One option for the non-matching component of a graph with degree sequence
d1 in the proof of Proposition 29.

If G has degree sequence d2, then ∆(G) = 2 and so, by Theorem 24, each
component is P2 or P4. This leaves just 2P4 ∪

n−8
2 P2 which is a pendant graph

and thus, by Lemma 13, N -AW if and only if gcd(n− 5, ℓ) = 1.

Suppose G has degree sequence d3, d4 or d5. In these cases G has an isolated
vertex so by Corollary 11, any component with non-pendant vertices has no
pendant vertices. Degree sequence d3 is impossible because there are not enough
2+ vertices to be in a component with a 3-vertex. If G has degree sequence d4, this
implies one of the components must have odd degree sum which is impossible. If
G has degree sequence d5, then ∆(G) = 2. By Theorem 24, if G is (n, ℓ)-extremal,
then each component of G is either P2 or P4. Since the number of 2-vertices is
odd no such graph exists.

Thus if max(n, ℓ) =
(

n
2

)

−
(

n
2 + 2

)

, then gcd(n − 5, ℓ) = 1. Moreover the

unique (n, ℓ)-extremal graphs are (P3⊙K1) ∪
n−6
2 P2 and 2P4 ∪

n−8
2 P2 which are

the complements of the only pendant graphs of order n and size n
2 + 2.
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In the next proposition, we resolve the case k = 3 of Theorem 25.

Proposition 30. Let n, ℓ ∈ N be even and n ≥ 8. Then

max(n, ℓ) =
(

n
2

)

−
(

n
2 + 3

)

if and only if gcd(n− 2k − 1, ℓ) 6= 1 for 0 ≤ k ≤ 2,
and gcd(n− 7, ℓ) = 1.

In this case the unique (n, ℓ)-extremal examples are exactly those graphs whose

complements are pendant graphs with n
2 +3 edges : (C3⊙K1)∪

n−6
2 P2, (P4⊙K1)∪

n−8
2 P2, (K1,3⊙K1) ∪

n−8
2 P2, (P3⊙K1) ∪ P4 ∪

n−10
2 P2, and 3P4 ∪

n−12
2 P2.

Proof. Since the proof is a case analysis using the same techniques as in Proposi-
tion 29, we offer a summary of the proof here. The proof of the forward direction
is essentially the same. Suppose that max(n, ℓ) =

(

n
2

)

−
(

n
2 + 3

)

. We describe all
G such that G is (N, ℓ)-AW with E(G) = n

2 + 3 and show that these graphs are
either not (n, ℓ)-extremal or are (N, ℓ)-AW if and only if gcd(n − 7, ℓ) = 1. To
avoid N -twins in G, G can have at most one 0-vertex. We consider two cases: G
having a 0-vertex or having no 0-vertices.

If G has a 0-vertex, using Corollary 11 and Lemma 26, the possible de-
gree sequences are d0 = (4, 4, 2, 1, 1, . . . , 1, 0); d1 = (4, 3, 3, 1, 1, . . . , 1, 0); d2 =
(4, 2, 2, 2, 2, 1, . . . , 1, 0); d3 = (3, 3, 2, 2, 2, 1, . . . , 1, 0); and d4 = (2, 2, 2, 2, 2, 2, 2, 1,
. . . , 1, 0). Using a combination of Corollary 11 and Lemma 28 we find the possi-
ble graphs associated with these degree sequences. Then we use Theorem 4 and
row reduction of the resulting adjacency matrix to show these graphs are never
(N, ℓ)-AW or not extremal.

a

b

e

c d

f

Figure 2. One option for the non-matching component for a graph with degree sequence
d7 in the proof of Proposition 30.

Suppose G has no 0-vertex. To get a degree sum of n+ 6 we add all integer
partitions of 6 that have parts of size at most 3 (because the max degree is 4 by
Lemma 26) and add these partitions to (1, 1, . . . , 1). We get the following degree
sequences: d5 = (4, 4, 1, 1, . . . , 1); d6 = (4, 3, 2, 1, . . . , 1); d7 = (4, 2, 2, 2, 1, . . . , 1);
d8 = (3, 3, 3, 1, . . . , 1); d9 = (3, 3, 2, 2, 1, . . . , 1); d10 = (3, 2, 2, 2, 2, 1, . . . , 1); d11 =
(2, 2, 2, 2, 2, 2, 1, . . . , 1). We can eliminate d5 and d6 using Lemma 28. Consider-
ing the possible adjacencies among the 2-vertices in d7 the possible graphs are
K1,3⊙K1 ∪ n−4

2 P2 and the graph G in Figure 2. This graph has order 6, size
6, and TA

G (1) = −2 (by toggling b and c each −1 times). However, P3⊙K1 is
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(A, ℓ)-AW by Lemma 12(1), has order 6, size 5, and has TA
V (P3⊙K1)

= −2 by

Lemma 12(3). Thus by Corollary 15, G2 ∪
n−6
2 P2 is not (n, ℓ)-extremal.

For degree sequence d8, by Lemma 28 the only possibility is the pendant
graph (C3⊙K1) ∪

n−6
2 P2 which is (N, ℓ)-AW if and only if gcd(n − 7, ℓ) = 1 by

Lemma 13. For degree sequences d9 and d10 we generate all possible graphs
using Lemma 28. Then we can eliminate all possibilities that are not pendant
graphs using Corollary 3 and Corollary 15. Finally, for degree sequence d11 we
apply Theorem 24 to get the only possibility is a pendant graph which is always
winnable if and only if gcd(n− 7, ℓ) = 1 by Lemma 13.

Note that we have now proved Theorem 25 by Propositions 18, 27, 29, 30.

5. Open Problems

We close with three open problems related to our results.

(1) Does Theorem 25 hold for k ≥ 4? We made much progress on this result by
considering the possible degree sequences. However, when k = 4, there are 37
partitions of 7 and 8. Even with the additional restriction of Lemma 26 there are
23 different degree sequences to consider. Thus, we need an alternative method
to solve the general problem.

(2)What are the graphs of maximum size that are (N, ℓ)-AW for all ℓ? This would
be the graphs with neighborhood adjacency matrices that have determinant 1 or
−1. The best candidates we have found are complements of pendant trees, which
have size

(

n
2

)

− (n− 1). They are all (N, ℓ)-AW for all ℓ, but it is not clear that
they are (n, ℓ)-extremal.

(3) What are the (n, ℓ)-extremal graphs for other Lights Out games, such as the

adjacency game?
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