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Abstract

Let D = (V,A) be a digraph of order n, S a subset of V of size k and
2 ≤ k ≤ n. A strong subgraph H of D is called an S-strong subgraph if
S ⊆ V (H). A pair of S-strong subgraphs D1 and D2 are said to be arc-
disjoint if A(D1) ∩ A(D2) = ∅. Let λS(D) be the maximum number of
pairwise arc-disjoint S-strong subgraphs in D. The strong subgraph k-arc-
connectivity is defined as

λk(D) = min{λS(D) | S ⊆ V (D), |S| = k}.

The parameter λk(D) can be seen as a generalization of classical edge-
connectivity of undirected graphs.

In this paper, we first obtain a formula for the arc-connectivity of Carte-
sian product λ(G2H) of two digraphs G and H generalizing a formula for
edge-connectivity of Cartesian product of two undirected graphs obtained
by Xu and Yang (2006). Using this formula, we get a new formula for
the arc-connectivity of Cartesion product of k ≥ 2 copies of a strong di-
graph G: λ(Gk) = k · min {δ+ (G) , δ− (G)}. Then we study the strong
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subgraph 2-arc-connectivity of Cartesian product λ2(G2H) and prove that
min {λ(G)|H|, λ(H)|G|, δ+(G) + δ+(H),
δ−(G) + δ−(H)} ≥ λ2(G2H) ≥ λ2(G) + λ2(H) − 1. The upper bound for
λ2(G2H) is sharp and is a simple corollary of the formula for λ(G2H). The
lower bound for λ2(G2H) is either sharp or almost sharp i.e., differs by 1
from the sharp bound. We improve the lower bound under an additional con-
dition and prove its sharpness by showing that λ2(G2H) ≥ λ2(G) + λ2(H),
where G and H are two strong digraphs such that δ+ (H) > λ2(H). We also
obtain exact values for λ2(G2H), where G and H are digraphs from some
digraph families.

Keywords: connectivity, strong subgraph arc-connectivity, Cartesian prod-
uct, tree connectivity.
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1. Introduction

For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner
tree or, simply, an S-tree is a subgraph T of G which is a tree with S ⊆ V (T ).
Two S-trees T1 and T2 are said to be edge-disjoint if E(T1)∩E(T2) = ∅. Two arc-
disjoint S-trees T1 and T2 are said to be internally disjoint if V (T1)∩V (T2) = S.
The generalized local connectivity κS(G) is the maximum number of pairwise
internally disjoint S-trees in G. For an integer k with 2 ≤ k ≤ n, the generalized
k-connectivity [3] is defined as

κk(G) = min{κS(G) | S ⊆ V (G), |S| = k}.

Similarly, the generalized local edge-connectivity λS(G) is the maximum number
of pairwise edge-disjoint S-trees in G. For an integer k with 2 ≤ k ≤ n, the
generalized k-edge-connectivity [8] is defined as

λk(G) = min{λS(G) | S ⊆ V (G), |S| = k}.

Let κ(G) and λ(G) denote the classical vertex-connectivity and edge-connectivity
of an undirected graph G. Observe that κ2(G) = κ(G) and λ2(G) = λ(G), hence,
these two parameters are generalizations of classical connectivity of undirected
graphs and are also called tree connectivity. Now the topic of tree connectivity
has become an established area in graph theory, see a recent monograph [7] by
Li and Mao on this topic.

To extend generalized k-connectivity to directed graphs, Sun, Gutin, Yeo and
Zhang [12] observed that in the definition of κS(G), one can replace “an S-tree”
by “a connected subgraph of G containing S.” Therefore, they defined strong
subgraph k-connectivity by replacing “connected” with “strongly connected” (or,
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simply, “strong”) as follows. Let D = (V,A) be a digraph of order n, S a subset
of V of size k and 2 ≤ k ≤ n. An S-strong subgraph is a strong subgraph H of
D such that S ⊆ V (H). S-strong subgraphs D1, . . . , Dp are said to be internally
disjoint if V (Di) ∩ V (Dj) = S and A(Di) ∩A(Dj) = ∅ for all 1 ≤ i < j ≤ p. Let
κS(D) be the maximum number of pairwise internally disjoint S-strong digraphs
in D. The strong subgraph k-connectivity [12] is defined as

κk(D) = min{κS(D) | S ⊆ V, |S| = k}.

As a natural counterpart of the strong subgraph k-connectivity, Sun and
Gutin [11] introduced the concept of strong subgraph k-arc-connectivity. Let
D = (V (D), A(D)) be a digraph of order n, S ⊆ V a k-subset of V (D) and
2 ≤ k ≤ n. Let λS(D) be the maximum number of pairwise arc-disjoint S-strong
digraphs in D. The strong subgraph k-arc-connectivity is defined as

λk(D) = min{λS(D) | S ⊆ V (D), |S| = k}.

Note that κk(D) and λk(D) are not only natural extensions of tree connectivity,
but also could be seen as generalizations of connectivity and edge-connectivity of

undirected graphs as κ2(
←→
G ) = κ(G) [12] and λ2(

←→
G ) = λ(G) [11, 13]. For more

information on the topic of strong subgraph connectivity of digraphs, the readers
can see [10] for a recent survey.

In this paper, we continue to do research on strong subgraph arc-connectivity
and focus on the strong subgraph 2-arc-connectivity of Cartesian products of
digraphs. It is well known that Cartesian products of digraphs are of interest in
graph theory and its applications; see a recent survey chapter by Hammack [4]
considering many results on Cartesian products of digraphs.

In the next section we introduce terminology and notation on digraphs and
give a simple yet useful upper bound on λ2(D), where D is Cartesian product of
any digraphs G and H i.e., D = G2H.

For a strong digraph D = (V,A), a set of arcs W ⊆ A is a cut (or a cutset) if
D−A is not strong. A digraph D is k-arc-strong (or k-arc-strongly connected) if
D has no cut with less than k arcs. The arc-strong connectivity of D, denoted by
λ (D), is the largest integer k such that D is k-arc-strongly connected. In Section
3, we prove that

λ (G2H) = min
{
λ (G) |H| , λ (H) |G| , δ+ (G) + δ+ (H) , δ− (G) + δ− (H)

}
for every pair G and H of strong digraphs, each of order at least 2,2. Also, we
get a formula for arc-connectivity of a strong digraph G on at least two vertices

2Note that the case of at least one of two digraphs having just one vertex in λ (G2H) is
trivial. Thus, we will henceforth assume that each of the two digraphs is of order at least 2.
The same holds for λ2 (G2H).
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with itself by proving that for any k ≥ 2, λ(Gk) = kδ0 (G) (Theorem 3.2), where
δ0 = min {δ+ (G) , δ− (G)}.

In Section 4 we prove that

min
{
λ (G) |H| , λ (H) |G| , δ+ (G) + δ+ (H) , δ− (G) + δ− (H)

}
and λ2(G) + λ2(H)− 1 are an upper bound and a lower bound, respectively, for
λ2(G2H) (Theorems 4.1 and 4.2). The upper bound follows from the formula for
λ (G2H) and thus it is tight. Unfortunately, we do not know whether this lower
bound is tight or not, but by Theorem 5.5 (mentioned below), the gap with a
tight bound is at most 1. Furthermore, we improve the bound under an additional
condition and prove its sharpness by proving that λ2(G2H) ≥ λ2(G) + λ2(H),
where G and H are two strong digraphs such that δ+ (H) > λ2 (H) (Theorem
4.3).

In Section 5, we obtain exact values for the strong subgraph 2-arc-connectivity
of Cartesian products of some digraph classes; our results are collated in Theo-
rem 5.5. For the classes of strong digraphs considered in Theorem 5.5, we have
λ2(G2H) = λ2(G) + λ2(H).

2. Additional Terminology and Notation

We refer the readers to [1, 2] for graph theoretical notation and terminology not
given here. Note that all digraphs considered in this paper have no parallel arcs or
loops. For a positive integer n, let [n] = {1, 2, . . . , n}. A digraph D is symmetric if
it can be obtained from its underlying undirected graph G by replacing each edge

of G with the corresponding arcs of both directions, that is, D =
←→
G . The order

|G| of a (di)graph G is the number of vertices in G. Let
←→
T n be the symmetric

digraph whose underlying undirected graph is a tree of order n. We use
−→
C n and←→

K n to denote the cycle and complete digraph of order n, respectively.
Let D = (V,A) be a digraph. For an arc (u, v), u, v ∈ V , we define that

u dominates v and denote it by u → v. For a pair X,Y ⊆ V (D), we define
(X,Y )D = {xy ∈ A (D) | x ∈ X, y ∈ Y }. For X,Y ⊆ V (D) and X ∩ Y = ∅,
we use X ⇒ Y to denote that every vertex of X dominates every vertex of
Y and (Y,X)D = ∅. The minimum out-degree (minimum in-degree) of D is
δ+ (D) = min {d+ (D) | x ∈ V (D)} (δ− (D) = min {d− (D) | x ∈ V (D)}). The
minimum semi-degree of D is δ0 (D) = min {d+ (D) , d− (D)}. We use N+

D (u)
to denote that set of all out-neighbours of u, say out-neighbourhood, that is,
N+

D (u) = {v ∈ V − u|uv ∈ A}.
For a strongly connected digraph D, a strong component of D is a maximal

induced subdigraph of D which is strong. If D1, . . . , Dt are the strong components
of D, then V (D1) ∪ · · · ∪ V (Dt) = V (D) and we can get V (Di) ∩ V (Dj) = ∅
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(i 6= j). The strong component digraph SC(D) of D is obtained by contracting
each strong component of D to a vertex and deleting any parallel arcs obtained
in this process. The strong components of D can be labelled D1, D2, . . . , Dt such
that there is no arc from Dj to Di unless j < i. We call such an ordering an
acyclic ordering of the strong components of D. A set B ⊆ A is one-way if there
is a pair of sets X,Y ⊂ V such that B = (X,Y )D, that is, B is the set of arcs
from X to Y .

Let G and H be two digraphs with V (G) = {ui | 1 ≤ i ≤ n} and V (H) =
{vj | 1 ≤ j ≤ m}. The Cartesian product G2H of two digraphs G and H is a
digraph with vertex set

V (G2H) = V (G)× V (H) = {(x, x′) | x ∈ V (G), x′ ∈ V (H)}

and arc set

A(G2H) = {(x, x′)(y, y′) | xy ∈ A(G), x′ = y′, or x = y, x′y′ ∈ A(H)}.

We will use ui,j to denote (ui, vj) in the rest of the paper. By definition, we know
the Cartesian product is associative and commutative, and G2H is strongly
connected if and only if both G and H are strongly connected [4].

G

u1

u2

u3

v1

v2

v3

v4

H

G(v1) G(v2) G(v3)G(v4)

H(u1)

H(u2)

H(u3)

1 1 1

2 2 2

(a) (b) (c)

Figure 1. Two digraphs G, H and their Cartesian product.

We use G(vj) to denote the subgraph of G2H induced by vertex set {ui,j |
1 ≤ i ≤ n} where 1 ≤ j ≤ m, and use H(ui) to denote the subgraph of G2H
induced by vertex set {ui,j | 1 ≤ j ≤ m} where 1 ≤ i ≤ n. Clearly, we have
G(vj) ∼= G and H(ui) ∼= H. (For example, as shown in Figure 1, G(vj) ∼= G for
1 ≤ j ≤ 4 and H(ui) ∼= H for 1 ≤ i ≤ 3.) For 1 ≤ j1 6= j2 ≤ m, the vertices
ui,j1 and ui,j2 belong to the same digraph H(ui) where ui ∈ V (G); we call ui,j2
the vertex corresponding to ui,j1 in G(vj2); for 1 ≤ i1 6= i2 ≤ n, we call ui2,j the
vertex corresponding to ui1,j in H(ui2). Similarly, we can define the subgraph
corresponding to some subgraph. For example, in the digraph (c) of Figure 1, let
P1 (P2) be the path labelled 1 (2) in H(u1) (H(u2)), then P2 is called the path
corresponding to P1 in H(u2).
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It follows from the definition of strong subgraph 2-arc-connectivity that for
any digraph D, λ2(D) ≤ min{δ+(D), δ−(D)} [11]. We will use this inequality in
Section 5. Note that if D = G2H then δ+(D) = δ+(G) + δ+(H) and δ−(D) =
δ−(G) + δ−(H).

3. Formula for Arc-Connectivity of Cartesian Product of Two
Digraphs and Its Corollaries

Xu and Yang [14] (see also [6, 9] and [5, Theorem 5.5]) proved that

(1) λ(G2H) = min{λ(G)|V (H)|, λ(H)|V (G)|, δ(G) + δ(H)}

for all connected undirected graphs G and H, each with at least two vertices.

Since λ(
←→
Q ) = λ(Q) for every undirected graph Q, (1) can be easily extended to

symmetric digraphs. In this section, we generalise (1) to all strong digraphs.

Clearly, λ (D) ≤ min {δ+ (D) , δ− (D)} for every digraph D. Hence, for any
two strong digraphs G and H, we have

(2)
λ (G2H) ≤ min {δ+ (G2H) , δ− (G2H)}

= min {δ+ (G) + δ+ (H) , δ− (G) + δ− (H)} .

Furthermore, by the definitions of arc-strong connectivity and Cartesian
product of digraphs, we have

(3) λ (G2H) ≤ λ (G) |H|

and

(4) λ (G2H) ≤ λ (H) |G| .

The inequalities (2), (3) and (4) imply that
(5)
λ (G2H) ≤ min

{
λ (G) |H| , λ (H) |G| , δ+ (G) + δ+ (H) , δ− (G) + δ− (H)

}
.

In fact, we will now prove that the equality holds and it could be seen as a digraph
extension of (1). Note that the proof of Theorem 3.1 follows the lines of the proof
of (1) in [6].

Theorem 3.1. Let G and H be two strong digraphs, each of order at least 2.
Then

λ (G2H) = min
{
λ (G) |H| , λ (H) |G| , δ+ (G) + δ+ (H) , δ− (G) + δ− (H)

}
.
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Proof. Let S ⊆ A (G2H) be an arc-cut set of G2H with |S| = λ (G2H). By
(5) it suffices to show that

|S| ≥ min
{
λ (G) |H| , λ (H) |G| , δ+ (G) + δ+ (H) , δ− (G) + δ− (H)

}
.

If |S| ≥ min {λ (G) |H| , λ (H) |G|}, then the inequality clearly holds.

Therefore, we assume that |S| < min {λ (G) |H| , λ (H) |G|} in the following
argument and in this case it suffices to show that |S| ≥ δ+ (G2H) or |S| ≥
δ− (G2H).

Now there must exist a strong component B of G2H − S which contains
some G (vj), say G (v1), (as |S| < λ (G) |H|) and some H (ui), say H (u1), in
G2H − S (as |S| < λ (H) |G|). Let (u, v) ∈ V (G2H) \ V (B).

We want to prove that |S| ≥ d+ ((u, v)) by the following operation that
assigns each out-neighbor of (u, v) in G2H a unique arc from S.

We first consider out-neighbors of (u, v) in G (v). Let (u′, v) be an out-
neighbor of (u, v) in G (v). If the arc a = (u, v) (u′, v) ∈ S, we assign a to (u′, v).
Otherwise, we must have (u′, v) /∈ B.

We next consider out-neighbors of (u, v) in H (u). Let (u, v′) be an out-
neighbor of (u, v) in H (u). If a′ = (u, v) (u, v′) ∈ S, we assign a′ to (u, v′).
Otherwise, we must have (u, v′) /∈ B. Therefore, the subdigraph of G2H − S
induced by V (G (v′)) is not strong and so G (v′) contains at least one arc from
S, and we assign this arc to (u, v′).

The above operations mean that |S| ≥ d+ ((u, v)) ≥ δ+ (G2H). With a sim-
ilar argument, we can prove that |S| ≥ δ− (G2H). This completes the proof.

In many cases, we have λ (G2H) = min {δ+ (G) + δ+ (H) , δ− (G) + δ− (H)}
in Theorem 3.1. This holds for the Cartesian product of a strong digraph of
at least two vertices and itself, as the following theorem asserts. We use Gk to
denote the Cartesian product of k copies of G.

Theorem 3.2. Let G be a strong digraph with order n ≥ 2. For any integer
k ≥ 2, we have λ(Gk) = kδ0 (G).

Proof. Our proofs are divided into two cases, according to whether λ(G) = 1.

Case 1. λ (G) = 1. The case that n = 2 is trivial, and we just consider the
case that n ≥ 3. Now G contains a cut arc e. Let G′ = G − e. The strong
component digraph SC(G′) of G′ is acyclic and hence has an acyclic ordering.
Let G1, G2, . . . , Gt be the components of G′ labelled in such an acyclic ordering.
Observe that e must be an arc of G from Gt to G1. Without loss of generality,
we assume that the digraph G has as many arcs as possible, that is, Gi1 ⇒ Gi2

whenever 1 ≤ i1 < i2 ≤ t, and each Gi is a complete digraph (Note that in this
case, G has the maximum minimum semi-degree.)
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Subcase 1.1. |G1| = min{|Gi| | i ∈ [t]} or |Gt| = min{|Gi| | i ∈ [t]}. Clearly,
δ0 (G) ≤ n/t ≤ n/2.

Subcase 1.2. |Gi′ | = min{|Gi| | i ∈ [t]} for some 1 < i′ < t. Without
loss of generality, let |Gt| ≥ |G1| ≥

∣∣Gi′
∣∣. Furthermore, by the assumption

that G1 ⇒ Gi′ ⇒ Gt, we have min {d+ (v) , d− (v)} ≥ min {|G1| , |Gt|} for any
v ∈ V (Gi′), hence

δ0 (G) = min {|G1| − 1 + 1, |Gt| − 1 + 1} = min {|G1| , |Gt|} = |G1|

(since G1 and Gt are both complete digraphs, and there is exactly one arc e from
Gt to G1), which means that δ0 (G) ≤ n/2.

In both subcases, we have δ0 ≤ n/2. By Theorem 3.1,

λ (G2G) = min
{
λ (G)n, 2δ0 (G)

}
= 2δ0 (G) .

Now let k ≥ 3 and we prove the result by induction on k. Assume that λ(Gk−1) =
(k − 1) δ0 (G). We have

λ
(
G2Gk−1) = min

{
λ (G)nk−1, λ(Gk−1)n, δ0 (G) + δ0

(
Gk−1)}

= min
{
nk−1, (k − 1)δ+ (G)n, (k − 1)δ− (G)n, kδ0 (G)

}
.

Clearly, kδ0 (G) ≤ (k − 1) δ0 (G)n (since n ≥ 2). If G =
←→
K 2, then kδ0 (G) =

k ≤ 2k−1 =
∣∣Gk−1∣∣. If n ≥ 3, then kδ0 (G) ≤ kn ≤

∣∣Gk−1∣∣ = nk−1. Therefore,
λ(Gk) = kδ0 (G) when λ (G) = 1.

Case 2. λ (G) ≥ 2. In this case, we clearly have 2δ0 (G) ≤ λ (G)n. When
k = 2, by Theorem 3.1, we have λ(G2) = 2δ0 (G). When k ≥ 3, by induction,
λ(Gk−1) = (k − 1) δ0 (G), and

λ
(
G2Gn−1) = min

{
λ (G)nk−1, (k − 1)δ0 (G)n, kδ0 (G)

}
.

Clearly, kδ0 (G) ≤ (k − 1) δ0 (G)n, and kδ0 (G) ≤ k(n − 1) ≤ kn ≤ 2nk−1 ≤
λ (G)nk−1. Therefore, λ(Gk) = kδ0 (G) when λ (G) ≥ 2.

By Theorem 3.2 and the fact that λk (D) ≤ λ (D) for any digraph D [11],
we have the following sharp upper bound for λ2 (G2G). To see its sharpness, we

just consider the following example: λ2(
←→
K n2

←→
K n) = 2n− 2 = 2δ0(

←→
K n).

Corollary 1. Let G be a strong digraph on at least two vertices. We have

λ2(G2G) ≤ 2δ0 (G) .

Moreover, this bound is sharp.
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4. General Bounds

By Theorem 3.1 and the fact that λk (D) ≤ λ (D) for any digraph D [11], we
get the following sharp bound for λ2 (G2H) given in Theorem 4.1, where the
sharpness is proved by Theorems 5.5.

Theorem 4.1. Let G and H be two strong digraphs, each with at least two
vertices. Then

λ2 (G2H) ≤ min
{
λ (G) |H| , λ (H) |G| , δ+ (G) + δ+ (H) , δ− (G) + δ− (H)

}
.

Moreover, this bound is sharp.

Now we will provide a lower bound for λ2(G2H) for strong digraphsG andH.

Theorem 4.2. Let G and H be two strong digraphs. We have

λ2(G2H) ≥ λ2(G) + λ2(H)− 1.

Proof. It suffices to show that there are at least λ2(G)+λ2(H)−1 pairwise arc-
disjoint S-strong subgraphs for any S ⊆ V (G2H) with |S| = 2. Let S = {x, y}
and S = {(ui1 , vj1), (ui2 , vj2)}. Consider the following two cases.

Case 1. x and y are in the sameH(ui) orG(vj) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m.
We will prove that, in this case, λ2(G2H) ≥ λ2(G) + λ2(H). Without loss of
generality, we may assume that x = u1,1, y = u1,2. We know there are at least
λ2(H) pairwise arc-disjoint S-strong subgraphs in the subgraph H(u1), and so it
suffices to find the remaining λ2(G) S-strong subgraphs in G2H.

We know there are at least λ2(G) pairwise arc-disjoint {x, u2,1}-strong sub-
graphs, say Di(v1) (i ∈ [λ2(G)]), in G(v1). For each i ∈ [λ2(G)], we can choose
an out-neighbor, say uti,1 (i ∈ [λ2(G)]), of x in Di(v1) such that these out-
neighbors are distinct. Then in H(uti), we know there are λ2(H) pairwise arc-
disjoint {uti,1, uti,2}-strong subgraphs, we choose one such strong subgraph, say
D(H(uti)). For each i ∈ [λ2(G)], let Di(v2) be the {uti,2, y}-strong subgraph cor-
responding to Di(v1) in G(v2). We now construct the remaining λ2(G) S-strong
subgraphs by letting Di = Di(v1)∪D(H(uti))∪Di(v2) for each i ∈ [λ2(G)]. Com-
bining the former λ2(H) pairwise arc-disjoint S-strong subgraphs with the λ2(G)
S-strong subgraphs, we can obtain λ2(G) +λ2(H) strong subgraphs. Observe all
these strong subgraphs are pairwise arc-disjoint.

Case 2. x and y belong to distinct H(ui) and G(vj). Without loss of gener-
ality, we may assume that x = u1,1, y = u2,2.

There are at least λ2(G) pairwise arc-disjoint {x, u2,1}-strong subgraphs, say
Ai(v1) (i ∈ [λ2(G)]), in G(v1). For each i ∈ [λ2(G)], we can choose an out-
neighbor, say uti,1 (i ∈ [λ2(G)]), of x in Ai(v1) such that these out-neighbors
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are distinct. Then in H(uti), we know that there are λ2(H) pairwise arc-disjoint
{uti,1, uti,2}-strong subgraphs; we choose one such strong subgraph, sayA(H(uti)).
For each i ∈ [λ2(G)], let Ai(v2) be the {uti,2, y}-strong subgraph corresponding
to Ai(v1) in G(v2). We now construct the λ2(G) S-strong subgraphs by letting
Ai = Ai(v1) ∪A(H(uti)) ∪Ai(v2) for each i ∈ [λ2(G)].

Similarly, there are at least λ2(H) pairwise arc-disjoint {x, u1,2}-strong sub-
graphs, say Bj(u1) (j ∈ [λ2(H)]), in H(u1). For each j ∈ [λ2(H)], we can
choose an out-neighbor, say u1,t′j (j ∈ [λ2(H)]), of x in Bj(u1) such that these

out-neighbors are distinct. Then in G(vt′j ), we know there are λ2(G) pairwise

arc-disjoint {u1,t′j , u2,t′j}-strong subgraphs, we choose one such strong subgraph,

say B(G(vt′j )). For each j ∈ [λ2(H)], let Bj(u2) be the {u2,t′j , y}-strong subgraph

corresponding to Bj(u1) in H(u2). We now construct the other λ2(H) S-strong
subgraphs by letting Bj = Bj(u1) ∪B(G(vt′j )) ∪Bj(u2) for each j ∈ [λ2(H)].

Subcase 2.1. ti 6= 2 for any i ∈ [λ2(G)] and t′j 6= 2 for any j ∈ [λ2(H)], that is,
u2,1 was not chosen as an out-neighbor of u1,1 in G(v1) and u1,2 was not chosen as
an out-neighbor of u1,1 in H(u1). We can check the above λ2(G) + λ2(H) strong
subgraphs are pairwise arc-disjoint.

Subcase 2.2. ti = 2 for some i ∈ [λ2(G)] or t′j = 2 for some j ∈ [λ2(H)],
that is, u2,1 was chosen as an out-neighbor of u1,1 in G(v1) or u1,2 was chosen
as an out-neighbor of u1,1 in H(u1). We also assume that not both conditions
are fulfilled. Without loss of generality, we may assume that ti = 2 and t′j 6= 2,
that is, u2,1 was chosen as an out-neighbor of u1,1 in G(v1) and u1,2 was not
chosen as an out-neighbor of u1,1 in H(u1). Since A (H (ut1)) is the only digraph
that is potentially not disjoint with a digraph Bj (u2) we find that there are
at least λ2(G) + λ2(H) − 1 pairwise disjoint {x, y}-strong subgraphs Ai, Bj for
i ∈ [λ2 (G)] , j ∈ [λ2 (H)]. Otherwise, we can check the above λ2(G) + λ2(H)
strong subgraphs are pairwise arc-disjoint and get the desired S-strong subgraphs.

Subcase 2.3. ti = 2 for some i ∈ [λ2(G)] and t′i = 2 for some j ∈ [λ2(H)], we
may assume that t1 = 2 and t′1 = 2, and replace A1, B1 by A1, B1, respectively
as follows: let A1 = A1(v1)∪B(H(ut1)) and B1 = B1(u1)∪A1(v2). We can check
that the current λ2(G) + λ2(H) strong subgraphs are pairwise arc-disjoint.

Hence, the bound holds. This completes the proof.

In order to improve upper bound for λ2 (G2H), we add an additional con-
dition and prove that this lower bound is tight.

Theorem 4.3. Let G and H be two strong digraphs such that δ+ (H) > λ2 (H).
We have

(6) λ2(G2H) ≥ λ2(G) + λ2(H).

Moreover, this bound is sharp.
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Proof. It suffices to show that there are at least λ2(G) + λ2(H) pairwise arc-
disjoint S-strong subgraphs for any S = {x, y} ⊆ V (G2H). We consider the
following two cases.

Case 1. x and y are in the same H(ui) or G(vj) (i ∈ [n], j ∈ [m]) as shown in
Figure 2. This proof is similar to Case 1 of Theorem 4.2, so we omit the details.

Figure 2. x and y are in the same H(ui) or G(vj).

Case 2. x and y belong to distinct H(ui) and G(vj) (i ∈ [n], j ∈ [m]) (as
shown the figure in Figure 3). Without loss of generality, assume that x = u1,1,
y = u2,2.

Figure 3. x and y belong to distinct H(ui) and G(vj).

Subcase 2.1. ti 6= 2 (i ∈ [λ2(G)]) and t′j 6= 2 (j ∈ [λ2(H)]) (as shown the left
figure in Figure 3), this proof is similar to that of Subcase 2.1 of Theorem 4.2
and we omit the details.
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Subcase 2.2. ti = 2 for some i ∈ [λ2(G)] or t′j = 2 for some j ∈ [λ2(H)] (as

shown the middle figure in Figure 3), that is, u2,1 ∈ N+
G (x) in G(v1) or u1,2 ∈

N+
H (x) in H(u1). Without loss of generality, assume that u2,1 ∈ N+

G (x) in G(v1)
and u1,2 /∈ N+

H (x) in H(u1). Since δ+ (H) > λ2 (H), that is, A(Ai) ∩A(Aj) = ∅,
the above λ2(G) + λ2(H) strong subgraphs, Ai, Bj (i ∈ [λ2(G)], j ∈ [λ2(H)]), are
desired pairwise arc-disjoint strong subgraphs. It can be checked that the current
λ2(G) + λ2(H) strong subgraphs are pairwise arc-disjoint.

Subcase 2.3. ti = 2 for some i ∈ [λ2(G)] and t′j = 2 for some j ∈ [λ2(H)] (as
shown the right figure in Figure 3), this proof is similar to that of Subcase 2.3 of
Theorem 4.2 and we omit the details.

By Case 1 and Case 2, the lower bound (6) holds. To prove its sharpness,

we need the following example: Let G =
←→
K 2, and let H be a symmetric digraph

whose underlying graph H1 is defined as follows: V (H1) = A∪B, both A and B
induce a clique of H1 and there is an edge between v3 and v4, where A = {vi | 1 ≤
i ≤ 3}, B = {vi | 3 ≤ i ≤ 6}. Observe that δ+ (H) > λ2 (H), λ2(G) = λ2(H) = 1.
We will prove that λ2(G2H) = 2. As λ2(G2H) ≤ δ0(G2H) = 2, it suffices to
show that for any S = {x, y} ⊆ V (G2H), there are at least two pairwise arc-
disjoint S-strong subgraphs in G2H.

Figure 4. Digraphs G and H and their Cartesian product.

We will consider only the case when x, y are neither in the same G nor in the
same H, as the arguments for the remaining cases are similar. Without loss of
generality, let x = u1,1, y = u2,6. We obtain two pairwise arc-disjoint S-strong
subgraphs in G2H, say D1, D2 (as shown in Figure 4) such that

V (D1) = {x, y, u2,1, u1,3, u1,4, u1,6, u2,3, u2,4} and
A (D1) = {xu1,3, u1,3u1,4, u1,4u1,6, u1,6y, yu2,4, u2,4u2,3, u2,3u2,1, u2,1x}.
V (D2) = {x, y, u2,1, u1,3, u1,4, u1,6, u2,3, u2,4} and
A (D2) = {xu2,1, u2,1u1,4, u1,4u1,6, u1,6y, yu2,4, u2,4u2,3, u2,3u2,1, u2,1x}.

Hence, the bound holds and is sharp. This completes the proof.
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5. Exact Values for Digraph Classes

In this section, we will obtain exact values for the strong subgraph 2-arc-connectiv-
ity of Cartesian product of two digraphs belonging to some digraph classes.

Proposition 5.1. We have λ2(
−→
C n2

−→
Cm) = 2.

Proof. Let S = {x, y}, we will consider only the case when x, y are neither in

the same
−→
C n (ui) nor in the same

−→
Cm (vj) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, since

the arguments for remaining cases are similar. Without loss of generality, we may
assume that x = u1,1, y = u2,2. We can get two pairwise arc-disjoint S-strong

subgraphs in
−→
C n2

−→
Cm, say D1 and D2 (as shown in Figure 5) such that

V (D1) = {x, y, u1,2, . . . , u2,m−1, u2,m, . . . , un,m, u1,m} and

A (D1) = {xu1,2, u1,2y, . . . , u2,m−1u2,m, . . . , un−1,mun,m, un,mu1,m, u1,mx}.
V (D2) = {x, y, u2,1, . . . , un−1,2, . . . , un−1,m−1, un−1,m, un−1,1} and

A (D2) =
{
xu2,1, u2,1y, . . . , un−2,2un−1,2, . . . , un−1,m−1un−1,m, un−1,mun−1,1,

un−1,1un,1, un,1x
}

.

Figure 5.
−→
C n,

−→
Cm and their Cartesian product.

Then we have 2 = min{δ+(D), δ−(D)} ≥ λ2(
−→
C n2

−→
Cm) ≥ 2. This completes the

proof.

Proposition 5.2. We have λ2(
−→
C n2

←→
C m) = 3.

Proof. Let S = {x, y}, we will consider only the case when x, y are neither in

the same
−→
C n (ui) nor in the same

←→
C m (vj) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, since
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Figure 6.
−→
C n,

←→
C m and their Cartesian product.

the arguments for remaining cases are similar. Without loss of generality, we may
assume that x = u1,1, y = u2,2. We can get three pairwise arc-disjoint S-strong

subgraphs in
−→
C n2

←→
C m, say D1, D2 and D3 (as shown in Figure 6) such that

V (D1) = {x, y, . . . , un−1,2, un,2, u1,2} and

A (D1) = {xu1,2, u1,2y, . . . , un−1,2un,2, un,2u1,2, u1,2x}.
V (D2) = {x, y, u1,m, u2,m, u2,m−1, . . . , un−1,m−1, un,m} and

A (D2) =
{
xu1,m, u1,mu2,m, u2,mu2,m−1, . . . , u2,3y, yu2,3, . . . , u2,m−1u2,m, . . . ,

un−1,mun,m, un,mu1,m, u1,mx
}

.

V (D3) = {x, y, u2,1, . . . , un−1,1, un,1} and

A (D3) = {xu2,1, u2,1y, yu2,1, . . . , un−1,1un,1, un,1x}.

Then we have 3 = min{δ+(D), δ−(D)} ≥ λ2(
−→
C n2

←→
C m) ≥ 3. This completes the

proof.

Proposition 5.3. We have λ2(
−→
C n2

←→
T m) = 2.

Proof. Let S = {x, y}, we will consider only the case when x, y are neither in

the same
−→
C n (ui) nor in the same

←→
T m (vj) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, as the

arguments for the remaining cases are similar. Without loss of generality, we may
assume that x = u1,1, y = u2,2. We can get two pairwise arc-disjoint S-strong

subgraphs in
−→
C n2

←→
T m, say D1 and D2 (as shown in Figure 7) such that

V (D1) = {x, y, . . . , un−1,2, un,2, u1,2, u2,1} and

A (D1) = {xu2,1, u2,1y, . . . , un−1,2un,2, un,2u1,2, u1,2x}.
V (D2) = {x, y, u1,2, u2,1, . . . , un−1,1, un,1} and
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A (D2) = {xu1,2, u1,2y, yu2,1, . . . , un−1,1un,1, un,1x}.

Figure 7.
−→
C n,

←→
T m and their Cartesian product.

Then we have 2 = min{δ+(D), δ−(D)} ≥ λ2(
−→
C n2

←→
T m) ≥ 2. This completes the

proof.

Proposition 5.4. We have λ2(
−→
C n2

←→
K m) = m.

Proof. Let S = {x, y}, we will consider only the case when x, y are neither in

the same
−→
C n (ui) nor in the same

←→
K m (vj) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, as

the arguments for the remaining cases are similar. Without loss of generality, we
may assume that x = u1,1, y = u2,2.

We first show that λ2(
−→
C n2

←→
K 2) = 2. When m = 2, we can get two pairwise

arc-disjoint S-strong subgraphs in
−→
C n2

←→
K 2, say D1 and D2 (as shown in Figure

8) satisfying:

V (D1) = {x, y, u1,2, u2,1, . . . , un−1,1, un,1} and

A (D1) = {xu1,2, u1,2y, yu2,1, . . . , un−1,1un,1, un,1x}.
V (D2) = {x, y, u1,2, u2,1, . . . , un−1,1, un,1} and

A (D2) = {xu2,1, u2,1y, . . . , un−1,2un,2, un,2u1,2, u1,2x}.

The propositon is now proved by induction on m. Suppose that when m = k,

we have λ2(
−→
C n2

←→
K k) = k. We shall show that λ2(

−→
C n2

←→
K k+1) = k + 1 when

m = k + 1. Since we can get k pairwise arc-disjoint S-strong subgraphs in−→
C n2

←→
K k, say D1, D2, . . . , Dk. When m = k+1, that is, the degree of each vertex

increases by 2 in
←→
K k, we can get k+1 pairwise arc-disjoint S-strong subgraphs in−→

C n2
←→
K k+1, sayD1, D2, . . . , Dk, Dk+1. By the symmetry of the complete digraph,

the same conclusion is drawn in the two cases where x, y belong to
←→
K k+1, and x,



928 Y. Dong, G. Gutin and Y. Sun

Figure 8.
−→
C n,

←→
K 2 and their Cartesian product.

y belong to
←→
K k and

←→
K k+1, respectively. From the above argument, the original

proposition holds for any positive integer, we can get m pairwise arc-disjoint S-

strong subgraphs in
−→
C n2

←→
K m, say D1, D2, . . . , Dj(2 < j ≤ m), . . . , Dm−1, Dm

(as shown in Figure 9) such that

Figure 9.
−→
C n,

←→
K m and their Cartesian product.

V (D1) = {x, y, u1,2, . . . , un−1,2, un,2} and

A (D1) = {xu1,2, u1,2y, . . . , un−1,2un,2, un,2u1,2, u1,2x}.
V (D2) = {x, y, u2,1, . . . , un−1,2, un,2} and
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A (D2) = {xu2,1, u2,1y, yu2,1, . . . , un−1,1un,1, un,1x}.
V (Dj) = {x, y, u1,2, u2,j , . . . , un−1,j , un,j} and

A (Dj) = {xu1,j , u1,ju2,j , u2,jy, yu2,j , . . . , un−1,jun,j , un,ju1,j , u1,jx}.

Then we have m = min{δ+(D), δ−(D)} ≥ λ2(
−→
C n2

←→
K m) ≥ m. This completes

the proof.

Since λ2(
←→
Q ) = λ(Q) for any undirected graph Q, using Cartesian product

definition, we have

(7) λ2(
←→
G2
←→
H ) = λ(G2H)

for undirected graphs G and H.
Propositions 5.1–5.4 and formulas (7) and (1) imply the following theorem.

Indeed, entries in the first row and columns of Table 1 follow from Propositions
5.1–5.4 and all other entries can be easily computed using (7) and (1).

Theorem 5.5. The following table for the strong subgraph 2-arc-connectivity of
Cartesion products of some digraph classes holds.

−→
Cm

←→
C m

←→
T m

←→
K m

−→
C n 2 3 2 m

←→
C n 3 4 3 m+ 1

←→
T n 2 3 2 m

←→
K n n n+ 1 n n+m−2

Table 1. Exact values of λ2 for Cartesian products of some digraph classes.
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[6] S. Klavžar and S. Špacapan, On the edge-connectivity of Cartesian product graphs,
Asian-Eur. J. Math. 1 (2008) 93–98.
https://doi.org/10.1142/S1793557108000102

[7] X. Li and Y. Mao, Generalized Connectivity of Graphs (Springer, Switzerland,
2016).
https://doi.org/10.1007/978-3-319-33828-6

[8] X. Li, Y. Mao and Y. Sun, On the generalized (edge−)connectivity of graphs, Aus-
tralas. J. Combin. 58 (2014) 304–319.
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