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Campus de Rabanales, 14071 Córdoba, Spain
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Abstract

Let G be a graph with no isolated vertex. A set D ⊆ V (G) is a total
dominating set of G if every vertex of G is adjacent to at least one vertex in
D. The total domination number of G, denoted by γt(G), is the minimum
cardinality among all total dominating sets of G. In this paper we study
the total domination number of total graphs T(G) of simple graphs G. In
particular, we give some relationships that exist between γt(T(G)) and other
domination parameters of G and of some well-known graph operators on G.
Finally, we provide closed formulas on γt(T(G)) for some well-known families
of graphs G.
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1. Introduction

The theory of domination in graphs is one of the most active research areas
within graph theory. This fact can be seen reflected in the more than 5000 papers
published on domination and related parameters. Total domination in graphs is
the most studied classical variant, with more than 600 published papers. Given a
graph G with no isolated vertex, a set D ⊆ V (G) is a total dominating set (TDS)
of G if N(v)∩D 6= ∅ for every vertex v of G. The total domination number of G
is defined to be

γt(G) = min{|D| : D is a TDS of G}.

This parameter was introduced in [10] by Cockayne, Dawes and Hedetniemi.
Recent selected results on total domination in graphs can be found in [12, 14].
Among all the papers published on total domination in graphs, at most one
tenth are related to graph products and graph operators. In particular, we cite
the following works. For instance, the reader is referred to [13, 15] for Cartesian
product graphs, [9] for lexicographic product graphs, [11, 22] for direct product
graphs, [8] for rooted product graphs, [21] for latin square graphs, [16] for middle
graphs, [18] for line graphs L(G), [23] for graph operators Q(G), R(G) and S(G),
and [1] for total graphs T(G) (where G is a tree).

This last graph operator (total graph T(G)) was introduced by Behzad [2] in
1967. Subsequently, several parameters were studied for this graph operator in
different works, including [2, 4, 19, 20, 24, 25]. In this paper we continue with
the study of the total domination number of total graphs T(G). In Subsection 1.1
we introduce some definitions and terminology needed to develop the remaining
sections. Section 2 is devoted to obtain some combinatorial results on the total
domination number of total graphs. In particular, we give some relationships
that exist between γt(T(G)) and other domination parameters of G and of some
well-known graph operators on G. Finally, in Subsection 2.1 we provide closed
formulas on γt(T(G)) for some well-known families of graphs G.

1.1. Definitions and terminology

In order to present our results, we need to introduce some definitions and ter-
minology. Let G be a graph with no isolated vertex of order n with vertex
set V (G) = {v1, . . . , vn} and edge set E(G) = {vivj : vi is adjacent to vj},
and let VE(G) = {vi,j : vivj ∈ E(G)} (remark that vi,j = vj,i). Given a vertex
v ∈ V (G), N(v) and N [v] represent the open neighbourhood and the closed neigh-

bourhood of v, respectively. For a set D ⊆ V (G), let N(D) =
⋃

v∈D N(v) and
N [D] = N(D) ∪ D. We denote by ∆(G) and δ(G) its maximum and minimum

degrees, respectively. A leaf vertex of G is a vertex of degree one, and a support

vertex of G is a vertex adjacent to a leaf. The sets of leaves and support vertices
will be denoted by L(G) and S(G), respectively. As usual, the subgraph of G
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induced by D ⊆ V (G) will be denoted by G[D]. Moreover, the graph obtained
from G by removing all the vertices in X ⊆ V (G) and all the edges incident with
a vertex in X will be denoted by G−X. Analogously, the graph obtained from
G by removing all the edges in U ⊆ E(G) will be denoted by G− U .

In [17], Krausz introduced the concept of graph operators of a graph G. Next,
we define some graph operators obtained from G.

• The graph R(G) is the graph obtained from the graph G with vertex set
V (R(G)) = V (G) ∪ VE(G), and in which each vertex vi,j ∈ VE(G) is only
adjacent to the vertices vi, vj ∈ V (G), i.e., E(R(G)) = E(G) ∪

{

viv
i,j , vjv

i,j :
vi,j ∈ VE(G)

}

.

• The line graph of the graph G, denoted by L(G), is the graph whose vertex
set is V (L(G)) = VE(G), and in which two vertices of L(G) are adjacent
if and only if the corresponding edges in G have a common vertex, i.e.,
E(L(G)) =

{

vi,jvk,l : |{i, j} ∩ {k, l}| = 1
}

.

• The graph Q(G) is the graph obtained from the graph G with vertex set
V (Q(G)) = V (G) ∪ VE(G) and edge set E(Q(G)) = E(L(G)) ∪

{

viv
i,j , vjv

i,j :
vi,j ∈ VE(G)

}

.

• The total graph of the graph G, denoted by T(G), is the graph whose vertex
set is V (T(G)) = V (G)∪VE(G), and in which two vertices of T(G) are adjacent
if they are adjacent or incident in G, i.e.,

E(T(G)) = E(G) ∪ E(L(G)) ∪
{

viv
i,j , vjv

i,j : vi,j ∈ E(G)
}

.

In Figure 1 we show a graph G, the line graph L(G), the graphs R(G) and
Q(G), and the total graph T(G).

A subset X ⊆ V (G) is an independent set of G if the subgraph induced
by X has no edges. An independent set P ⊆ V (G) is called a 2-packing if
N [x] ∩ N [y] = ∅ for every pair of different vertices x, y ∈ P . The independence

number (respectively, 2-packing number) of G, denoted by α(G) (respectively,
ρ(G)), is the maximum cardinality among all independent sets (respectively, 2-
packings) of G. A TDS D of G is a total outer-independent dominating set

(TOIDS) of G if V (G) \ D is an independent set. The total outer-independent
domination number of G is defined to be

γt,oi(G) = min{|D| : D is a TOIDS of G}.

This parameter was studied in [5] on graph products and in [7] from combinatorial
and complexity point of view. We define a γt,oi(G)-set as a TOIDS of G of
cardinality γt,oi(G). The same agreement will be assumed for optimal parameters
associated to other characteristic sets defined in the paper. In this paper, we use
the notation Kn, Wn, Pn, Cn and K1,n−1 for complete graphs, wheel graphs, path
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G L(G) T(G)

R(G) Q(G)

Figure 1. A graph G, and the corresponding graphs L(G), R(G), Q(G) and T(G).

graphs, cycle graphs and star graphs of order n, respectively. A graph is claw-free
if it does not contain K1,3 as an induced subgraph.

2. Combinatorial Results

If G is a disconnected graph with no isolated vertex and G1, . . . , Gr (r ≥ 2) are
the components of G, then

T(G) =
r
⋃

i=1

T(Gi).

From the result above, we can deduce that every γt(T(G))-set D satisfies that
D ∩ V (T(Gj)) is a γt(T(Gj))-set, for every j ∈ {1, . . . , r}. Therefore, the next
remark for the case of disconnected graphs with no isolated vertex is obtained.

Remark 1. If G is a disconnected graph with no isolated vertex and G1, . . . , Gr

(r ≥ 2) are the components of G, then

γt(T(G)) =

r
∑

i=1

γt(T(Gi)).

As a consequence of the remark above, throughout this article we will only
focus our study on the total graph T(G) of the nontrivial connected graphs G.

The next results will be two useful tools to provide new bounds for the total
domination number of total graphs.
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Remark 2. For any nontrivial connected graph G, the following statements hold.

(i) The subgraph of T(G) induced by V (G) is isomorphic to the graph G.

(ii) The subgraph of T(G) induced by VE(G) is isomorphic to the graph L(G).

(iii) The spanning subgraph T(G)− E(L(G)) is isomorphic to the graph R(G).

(iv) The spanning subgraph T(G)− E(G) is isomorphic to the graph Q(G).

Lemma 3. If G is a nontrivial connected graph, then there exists a γt(T(G))-set
D satisfying the next conditions.

(i) No vertex in D ∩ V (G) is adjacent to a vertex in D \ V (G).

(ii) S(G) ⊆ D.

Proof. Let V (G) = {v1, . . . , vn} be the vertex set of G. Let D be a γt(T(G))-
set such that |D ∩ V (G)| is maximum. Now, we suppose that there exist i, j ∈
{1, . . . , n} such that vi, v

i,j ∈ D. Since N [vi,j ] ⊆ N [{vi, vj}], we deduce that
D′ =

(

D \
{

vi,j
})

∪{vj} is a γt(T(G))-set and |D′∩V (G)| > |D∩V (G)|, which is
a contradiction. Therefore, D is a γt(T(G))-set such that no vertex in D ∩ V (G)
is adjacent to a vertex in D \ V (G), which completes the proof of (i). Now, we
proceed to prove (ii). If S(G) = ∅, then we are done. Assume that S(G) 6= ∅
and suppose that there exists k ∈ {1, . . . , n} such that vk ∈ S(G) \ D. Let
vl ∈ N(vk) ∩ L(G). Since |N(vl) ∩ V (T(G))| = 2, it follows that vk,l ∈ D (recall
that N [vk,l] ⊆ N [{vk, vl}] = N [vk]). So, D′′ =

(

D \
{

vk,l
})

∪ {vk} is a γt(T(G))-
set and |D′′ ∩ V (G)| > |D ∩ V (G)|, which is a contradiction. Therefore, D is a
γt(T(G))-set such that S(G) ⊆ D, which completes the proof.

The following result provides lower and upper bounds for the total domina-
tion number of T(G) in terms of the total domination numbers of G and L(G).

Theorem 4. If G is a connected graph of order at least three, then

max{γt(G), γt(L(G))} ≤ γt(T(G)) ≤ γt(G) + γt(L(G)).

Proof. Let D be a γt(T(G))-set which satisfies Lemma 3. First, we proceed to
prove that γt(G) ≤ γt(T(G)). If D ⊆ V (G), then D is also a TDS of T(G)[V (G)].
So, by Remark 2 we deduce that γt(G) = γt(T(G)[V (G)]) ≤ |D| = γt(T(G)).
Hence, from now on we assume that D ∩ VE(G) 6= ∅. Now, we define a set
W ⊆ V (G)∩N(D ∩VE(G)) of minimum cardinality which satisfies the following
conditions.

(a) W ∩ {vi, vj} 6= ∅ for every vertex vi,j ∈ D.

(b) The subgraph induced by W has no isolated vertex.

Notice that W is well-defined because N [D ∩ VE(G)] satisfies conditions (a)
and (b). Now, we observe that the subgraph induced by D ∩ VE(G) does not
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have isolated vertices by Lemma 3. Then, and by the minimality of |W |, we
deduce that |W | ≤ |D ∩ VE(G)|. We claim that W ′ = W ∪ (D ∩ V (G)) is a
TDS of G. By definitions of D and W , it is straightforward that N(x) ∩W ′ 6= ∅
for every vertex x ∈ W ∪ (N [D ∩ V (G)] ∩ V (G)). Let i ∈ {1, . . . , n} such that
vi ∈ V (G) \ (W ∪ N [D ∩ V (G)]). Hence, there exists j ∈ {1, . . . , n} \ {i} such
that vi,j ∈ D. By definition it follows that vi ∈ N(vj), and by condition (a) it
follows that vj ∈ W , as desired. Therefore, W ′ is a TDS of G, as required. Thus,

γt(G) ≤ |W ′| = |W |+ |D ∩V (G)| ≤ |D ∩VE(G)|+ |D ∩V (G)| = |D| = γt(T(G)).

Now, we proceed to prove that γt(L(G)) ≤ γt(T(G)). If D ⊆ VE(G), then
D is also a TDS of T(G)[VE(G)]. So, by Remark 2 we deduce that γt(L(G)) =
γt(T(G)[VE(G)]) ≤ |D| = γt(T(G)). Hence, from now on we assume that D ∩
V (G) 6= ∅.

Let F be a spanning forest of T(G)[D ∩ V (G)]. From F , let us define a set
X ⊆ VE(G) \D of minimum cardinality which satisfies the following conditions.

(a’) vi,j ∈ X whenever vivj ∈ E(F ).

(b’) If there exists a component Fi,j of F isomorphic to P2 (with vertex set
V (Fi,j) = {vi, vj}), then X ∩N(vi,j) 6= ∅.

By the minimality of |X|, we deduce that |X| ≤ |V (F )| = |D∩V (G)|. Moreover,
we notice that the subgraph induced by X has no isolated vertex. We claim
that X ′ = X ∪ (D ∩ VE(G)) is a TDS of L(G). By definitions of D and X, it is
straightforward that N(x) ∩X ′ 6= ∅ for every vertex x ∈ X ∪ (N [D ∩ VE(G)] ∩
VE(G)). Let i, j ∈ {1, . . . , n} such that vi,j ∈ VE(G) \ (X ∪ N [D ∩ VE(G)]).
Hence, D ∩ {vi, vj} 6= ∅, and without loss of generality, we suppose that vi ∈ D.
By definitions of D and F , there exists k ∈ {1, . . . , n} \ {i} such that vk ∈
N(vi)∩D ∩ V (F ). Hence, vi,k ∈ N(vi,j)∩X, as desired. Therefore, X ′ is a TDS
of L(G), as required. Thus,

γt(L(G)) ≤ |X ′| = |X|+|D∩VE(G)| ≤ |D∩V (G)|+|D∩VE(G)| = |D| = γt(T(G)).

Finally, we proceed to prove the upper bound. Let D be a γt(T(G)[V (G)])-
set and D′ be a γt(T(G)[VE(G)])-set. By Remark 2(i) and (ii) we deduce that
|D| = γt(G) and |D′| = γt(L(G)). Now, we observe that D∪D′ is a TDS of T(G).
Hence, γt(T(G)) ≤ |D ∪D′| = γt(G) + γt(L(G)), which completes the proof.

The lower bound above is achieved for the graph T(G) given in Figure 1 as
γt(T(G)) = γt(L(G)) = γt(G) = 2. In addition, it is achieved for any star graph
and double star graph. After numerous attempts, we have not been able to find
examples of graphs that reach the equality in the upper bound given in Theorem
4. In this sense, we propose as a problem to find examples of graphs for which
the equality is reached, or to improve this bound.
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We continue with an upper bound for the total domination number of T(G)
in terms of the total outer-independent domination numbers of G and L(G). For
this purpose, we shall need to give the following remark.

Remark 5. If G′ is a spanning subgraph (with no isolated vertex) of a non-
trivial connected graph G, then every TDS of G′ is also a TDS of G, and as a
consequence,

γt(G) ≤ γt(G
′).

Theorem 6. The following statements hold for any connected graph G of order

n ≥ 3.

(i) γt(T(G)) ≤ min{γt(Q(G)), γt(R(G))} ≤ γt,oi(G).

(ii) γt(T(G)) ≤ γt,oi(L(G)) + |S(G)|.

Proof. From Remarks 2 and 5 it follows that γt(T(G)) ≤ min{γt(Q(G)), γt(R(G))}.
In addition, we have that γt(R(G)) = γt,oi(G), due to Sigarreta [23]. Therefore,
(i) follows.

To conclude the proof, we proceed to prove that γt(T(G)) ≤ γt,oi(L(G)) +
|S(G)|. Let D be a γt,oi(T(G)[VE(G)])-set. By Remark 2(ii) we deduce that
|D| = γt,oi(L(G)). Now, we claim that D∪S(G) is a TDS of T(G). It is clear that
N(x)∩ (D∪S(G)) 6= ∅ for every vertex x ∈ VE(G)∪L(G). Let vi ∈ V (G)\L(G).
As |N(vi) ∩ V (G)| ≥ 2, let vj , vk ∈ N(vi). Since vij ∈ N(vik), it follows that
D ∩ {vij , vik} 6= ∅, which implies that N(vi) ∩ D 6= ∅, as required. Hence,
γt(T(G)) ≤ |D ∪ S(G)| = γt,oi(L(G)) + |S(G)|, as desired.

The following result is a direct consequence of Theorems 4 and 6. Observe
that the lower bound given in Theorem 4 is achieved for the family of graphs
given in the next proposition.

Proposition 7. The following statements hold for any connected graph G of

order n ≥ 3.

(i) If γt,oi(G) = γt(G), then γt(T(G)) = γt(R(G)) = γt(G).

(ii) If δ(G) ≥ 2 and γt,oi(L(G)) = γt(L(G)), then γt(T(G)) = γt(L(G)).

By Theorem 6, we have that any upper bound for the total outer-independent
domination number ofG gives us an upper bound for the total domination number
of T(G). In such a sense, the next result provides new upper bounds for γt,oi(G).
Recall that γ(G) represents the well-known domination number of G, i.e., the
minimum cardinality among all dominating sets of G.

Theorem 8. The following statements hold for any connected graph G of order

n ≥ 3.

(i) γt,oi(G) ≤ min{2n− 2α(G)− δ(G)− 1, n− α(G) + γ(G)}.

(ii) If G is a claw-free graph with δ(G) ≥ 3, then γt,oi(G) = n− α(G).
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Proof. First, we proceed to prove (i). The bound γt,oi(G) ≤ 2n−2α(G)−δ(G)−1
follows due to Cabrera Mart́ınez et al. [6]. We next prove that γt,oi(G) ≤ n −
α(G) + γ(G). Let I be an α(G)-set such that L(G) ⊆ I and let D be a γ(G)-set
such that S(G) ⊆ D. Now, we define a set W ⊆ V (G) of minimum cardinality
which satisfies the following conditions.

(a) (V (G) \ I) ∪D ⊆ W .

(b) N(x) ∩W 6= ∅ for every vertex x ∈ D.

We claim that W is a TOIDS of G. As V (G) \ I and D are dominating sets,
we deduce by (a) that N(x) ∩W 6= ∅ for every x ∈ V (G) \ (D ∩W ). Moreover,
if x ∈ D ∩ W ⊆ D, then by (b) we have that N(x) ∩ W 6= ∅. Hence, W is
a TDS of G. Moreover, it is easy to check that V (G) \ W is an independent
set because V (G) \ W ⊆ I. Therefore, W is a TOIDS of G, as desired. Thus,
γt,oi(G) ≤ |W |. Now, by the minimality of |W | we deduce that |W | ≤ |V (G) \
I|+ |D| = n−α(G)+γ(G), which completes the proof of (i). Finally, we proceed
to prove (ii). From now on, we assume that G is a claw-free graph with δ(G) ≥ 3.
In order to show that V (G) \ I is a TOIDS of G, we only need to prove that
the subgraph induced by V (G) \ I has no isolated vertex. Let v ∈ V (G) \ I and
v1, v2, v3 ∈ N(v). Since G is claw-free, we deduce that {v1, v2, v3} 6⊆ I, which
implies that N(v) \ I 6= ∅, as required. Therefore, V (G) \ I is a TOIDS of G and
so, γt,oi(G) ≤ |V (G) \ I| = n − α(G). The equality follows by the well-known
trivial lower bound γt,oi(G) ≥ n− α(G), which completes the proof.

The following result is a direct consequence of Theorems 6 and 8.

Theorem 9. The following statements hold for any connected graph G of order

n ≥ 3.

(i) γt(T(G)) ≤ min{2n− 2α(G)− δ(G)− 1, n− α(G) + γ(G)}.

(ii) If G is a claw-free graph with δ(G) ≥ 3, then γt(T(G)) ≤ n− α(G).

The bounds given in the two previous theorems are tight. For instance, the
bounds given in Theorems 8(i) and 9(i) are achieved for the star graph K1,n−1

because γt(T(K1,n−1)) = |V (K1,n−1)| − α(K1,n−1) + γ(K1,n−1) = 2. In addition,
the bound given in Theorem 9(ii) is achieved for the complete graph K4 because
γt(T(K4)) = γt,oi(K4) = |V (K4)| − α(K4) = 3.

We continue with other bounds for the total domination number of total
graphs.

Theorem 10. If G is a connected graph with diameter diam(G) and order n ≥ 3,
then

2 ≤ γt(T(G)) ≤ n− ρ(G) ≤ n−

⌈

diam(G)

3

⌉

.

Furthermore,
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(i) γt(T(G)) = 2 if and only if γt,oi(G) = 2.

(ii) γt(T(G)) = 3 if and only if γt,oi(G) = 3.

Proof. The lower bound is straightforward. Now, we proceed to prove the upper
bound. Let P be a ρ(G)-set such that P ∩ S(G) = ∅. It is easy to deduce
that V (G) \ P is a TOIDS of G. Hence, γt,oi(G) ≤ |V (G) \ P | = n − ρ(G).
Now, for any diametrical path R = v0v1 · · · vr (r = diam(G)), it follows that

PR = {v0, v3, . . . , v3⌊r/3⌋} is a 2-packing of G. Hence, ρ(G) ≥ |PR| =
⌈

diam(G)
3

⌉

.

From these two previous inequalities and Theorem 6, we obtain that

γt(T(G)) ≤ γt,oi(G) ≤ n− ρ(G) ≤ n−

⌈

diam(G)

3

⌉

.

Now, we proceed to prove (i). We first suppose that γt(T(G)) = 2. Let D
be a γt(T(G))-set which satisfies Lemma 3. In this case, either D ⊆ VE(G) or
D ⊆ V (G). If D ⊆ VE(G), then it is straightforward to see that |V (G)| = 3,
which implies that γt,oi(G) = 2. Now, we suppose that D ⊆ V (G). This implies
that D is also a TDS of G. If there exist two adjacent vertices vi, vj ∈ V (G) \D,
then N(vi,j)∩D = ∅, which is a contradiction. Hence, V (G)\D is an independent
set, which implies that D is a TOIDS of G. Therefore, 2 ≤ γt,oi(G) ≤ |D| = 2, as
required. Finally, if γt,oi(G) = 2, then by Theorem 6 we have that 2 ≤ γt(T(G)) ≤
2, which completes the proof of (i).

Finally, we proceed to prove (ii). We first suppose that γt(T(G)) = 3. Let
D be a γt(T(G))-set which satisfies Lemma 3. As above, notice that either D ⊆
VE(G) or D ⊆ V (G). If D ⊆ VE(G), then γt,oi(G) ≤ 3 and by (i) we deduce that
γt,oi(G) = 3, as required. Moreover, if D ⊆ V (G), then proceeding analogously
to the previous case, it follows that D is a TOIDS of G. Therefore, γt,oi(G) ≤
|D| = 3, and by (i) we deduce that γt,oi(G) = 3, as required. On the other hand,
if γt,oi(G) = 3, then by (i) and Theorem 6 it follows that γt(T(G)) = 3, which
completes the proof.

The next result provides an upper bound on γt(T(T )), where T is a tree of
order at least three.

Theorem 11. For any tree T of order n ≥ 3 and l(T ) leaves,

γt(T(T )) ≤
3n− l(T ) + 2

4
.

Proof. We proceed by induction on the order n ≥ 3. It is easy to check that
γt(T(T )) ≤

3n−l(T )+2
4 for any tree T of order n ∈ {3, 4}. These particular cases

establish the base cases. Let n ≥ 5 be an integer and we assume that any tree

T ′ of order n′ < n satisfies that γt(T(T
′)) ≤ 3n′−l(T ′)+2

4 . We next proceed to
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prove that γt(T(T )) ≤
3n−l(T )+2

4 for any tree T of order n. For this purpose, let
v1 · · · vdvd+1 be a diametrical path in T . Notice that vd ∈ S(T ) and vd+1 ∈ L(T ).
Let us consider the following three cases, which depend on the three schemes
given in Figure 2 (Case i works with the scheme (i), with i ∈ {1, 2, 3}).

T(T ′)

vd vd+1

(1)

T(T ′)

vd−1
vd vd+1

(2)

T(T ′)

vd−2
vd−1 vd vd+1

(3)

Figure 2. The schemes for the graph T(T ) used in the proof of Theorem 11.

Case 1. |N(vd)| ≥ 3. In this case, let T ′ = T − {vd+1}. Notice that l(T ′) =
l(T ) − 1. Let D′ be a γt(T(T

′))-set which satisfies Lemma 3. Hence, |D′| ≤
3n′−l(T ′)+2

4 by induction hypothesis . Also, we have that vd ∈ S(T ′). By Lemma
3(ii), it follows that vd ∈ D′, which implies that D′ is also a TDS of T(T ).
Therefore,

γt(T(T )) ≤ |D′| ≤
3n′ − l(T ′) + 2

4

=
3(n− 1)− (l(T )− 1) + 2

4
≤

3n− l(T ) + 2

4
,

as desired. By Case 1, we may henceforth assume in the next cases that |N(x)| =
2 for every vertex x ∈ S(T ).

Case 2. |N(vd)| = 2 and |N(vd−1)| ≥ 3. In this case, let T ′ = T −{vd, vd+1}.
Notice that l(T ′) ≥ l(T )− 1 and vd−1 ∈ S(T ′) ∪N(S(T ′)). Among all γt(T(T

′))-
sets which satisfy Lemma 3, let D′ be a γt(T(T

′))-set such that |D′ ∩ L(T ′)|

is minimum. This implies that vd−1 ∈ D′. In addition, |D′| ≤ 3n′−l(T ′)+2
4 by

induction hypothesis. Now, it is easy to see that D′ ∪ {vd} is a TDS of T(T ).
Therefore,

γt(T(T )) ≤ |D′ ∪ {vd}| ≤
3n′ − l(T ′) + 2

4
+ 1

≤
3(n− 2)− (l(T )− 1) + 2

4
+ 1 ≤

3n− l(T ) + 2

4
,

as desired.

Case 3. |N(vd)| = |N(vd−1)| = 2. In this case, let T ′ = T − {vd−1, vd, vd+1}.
Notice that l(T ′) ≥ l(T )− 1. Let D′ be a γt(T(T

′))-set which satisfies Lemma 3.

Hence, |D′| ≤ 3n′−l(T ′)+2
4 by induction hypothesis. Now, we observe that D′ ∪

{vd−1, vd} is a TDS of T(T ), which implies that
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γt(T(T )) ≤ |D′ ∪ {vd−1, vd}| ≤
3n′ − l(T ′) + 2

4
+ 2

≤
3(n− 3)− (l(T )− 1) + 2

4
+ 2 =

3n− l(T ) + 2

4
,

as desired. Therefore, the proof is complete.

2.1. γt(T(G)) for some specific graphs G

We begin this subsection with the following result given in [1], which states the
total domination number of T(Pn).

Proposition 12. [1] For any path Pn with n ≥ 2,

γt(T(Pn)) =

{ ⌈

4n
7

⌉

− 1 if n ≡ 4 (mod 7),
⌈

4n
7

⌉

otherwise.

Now, we obtain the total domination number of T(Cn). For this purpose,
we need to state the following three lemmas. In particular, we highlight that
Lemmas 13 and 15 lead to the total domination number of T(Cn).

Lemma 13. For any cycle Cn with n ≥ 3,

γt(T(Cn)) ≤

{ ⌈

4n
7

⌉

+ 1 if n ≡ 5 (mod 7),
⌈

4n
7

⌉

otherwise.

Proof. In Figure 3 we show how to construct a γt(T(Cn))-set for n ∈ {3, . . . , 9}.
In this scheme, the set of black-coloured vertices forms a γt(T(Cn))-set. We now
proceed to describe the construction of a TDS D of T(Cn) for any n = 7q + r,
where q ≥ 1 and 0 ≤ r ≤ 6. Let us partition V (Cn) = {v1, . . . , vn} into q sets of
cardinality 7 and for r ≥ 1 one additional set of cardinality r, in such a way that
the subgraph induced by all these sets are paths. For any r ∈ {0, 3, 4, 5, 6}, the
restriction of D to each of these q paths of length 7 corresponds to the scheme
associated with T(C7) in Figure 3, while for the path of length r (if any) we take
the scheme associated with T(Cr). In the cases r = 1 or r = 2 (with q ≥ 2), for
the first q−1 paths of length 7 we take the scheme associated with T(C7), and for
the path associated with the last 8 or 9 vertices, we take the scheme associated
with T(C8) or T(C9), respectively. From the previous construction, it is easy to
deduce that, for n ≡ 5 (mod 7) we have that γt(T(Cn)) ≤ |D| = 4q+4 =

⌈

4n
7

⌉

+1,
while for n 6≡ 5 (mod 7) we have that γt(T(Cn)) ≤ |D| =

⌈

4n
7

⌉

, which completes
the proof.

Lemma 14. Let Cn be a cycle with vertex set V (Cn) = {v1, . . . , vn} (n ≥ 3),
where vivi+1 ∈ E(Cn) for any i ∈ {1, . . . , n − 1} and v1vn ∈ E(Cn). For any
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i ∈ {1, . . . , n}, let P7,i = vivi+1 · · · vi+6 be a subgraph of Cn (the subscripts are

taken modulo n). If D is a γt(T(Cn))-set, then

∣

∣D ∩
(

V (T(P7,i)) ∪
{

vi−1,i
})∣

∣ ≥ 4.

Proof. LetD′ = D∩
(

V (T(P7,i))∪
{

vi,i−1
})

. Notice that
∣

∣D′\
{

vi, v
i,i−1

}∣

∣ ≥ 3. In
addition, if

∣

∣D′\
{

vi, v
i,i−1

}∣

∣ = 3, then it is easy to deduce that
∣

∣D′∩
{

vi, v
i,i−1

}∣

∣ ≥
1. Therefore, |D′| =

∣

∣D′ \
{

vi, v
i,i−1

}∣

∣+
∣

∣D′ ∩
{

vi, v
i,i−1

}∣

∣ ≥ 4, which completes
the proof.

T(C3): T(C4):

T(C5):

T(C6):

T(C7):

T(C8):

T(C9):

Figure 3. The scheme used in the proof of Lemma 13.

Lemma 15. For any cycle Cn with n ≥ 3,

γt(T(Cn)) ≥

{ ⌈

4n
7

⌉

+ 1 if n ≡ 5 (mod 7),
⌈

4n
7

⌉

otherwise.

Proof. Let D be a γt(T(Cn))-set which satisfies Lemma 3. By the upper bound
given in Lemma 13 we deduce that there exists i ∈ {1, . . . , n} such that vi, v

i,i+1 /∈
D or vi+1, v

i,i+1 /∈ D. In any case, we deduce that
(

T(Cn)−
{

vi,i+1
})

−{vivi+1} ∼=
T(Pn). Hence, D is also a TDS of this previous subgraph isomorphic to T(Pn).
Therefore, by this previous fact and Proposition 12, it follows that γt(T(Cn)) =
|D| ≥ γt(T(Pn)) ≥

⌈

4n
7

⌉

for any integer n 6≡ 4, 5 (mod 7).
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From now on, we assume that n ≡ 4, 5 (mod 7). In Figure 3 we show how to
construct a γt(T(Cn))-set for n ∈ {4, 5}, and these values satisfy the lower bound.
Let n = 7q + r, with r ∈ {4, 5} and q ≥ 1. Let V (Cn) = {v1, . . . , vn}, where
vivi+1 ∈ E(Cn) for any i ∈ {1, . . . , n−1} and v1vn ∈ E(Cn). We partition V (Cn)
into X = {v1, . . . , vr} and Y = {vr+1, . . . , vn}. Let Pr be the subgraph of Cn

induced by X. For any i ∈ {1, 8, . . . , 7q− 6}, let P7,r+i = vr+ivr+i+1 · · · vr+i+6 be
a subgraph of Cn. Notice that

(1)

V (T(Cn)) =
(

V (T(Pr)) ∪
{

v1,n
})

∪





⋃

i∈{1,8,...,7q−6}

(

V (T(P7,r+i)) ∪
{

vr+i,r+i−1
})



 .

Let D be a γt(T(Cn))-set which satisfies Lemma 3. Now, we define the following
subsets of D.

Dr = D ∩
(

V (T(Pr)) ∪ {v1,n}
)

,

Dq = D ∩
(

⋃

i∈{1,8,...,7q−6}

(

V (T(P7,r+i)) ∪ {vr+i,r+i−1}
)

)

.

By Equality (1) we deduce that D = Dr ∪Dq. By Lemma 14 we have that

(2) |Dq| ≥ 4q =
4(n− r)

7
=

4n

7
−

4r

7
.

Now, we analyse the following two possibilities.

Case 1. r = 4. In this case, we have that |D4| ≥ 2. By Inequality chain
(2) we have that |Dq| ≥ 4q. If |Dq| ≥ 4q + 1, then we have that |D| = |D4| +
|Dq| ≥ 4q + 3 ≥

⌈

4n
7

⌉

. Otherwise, we have that |Dq| = 4q, which implies that
∣

∣D ∩
(

V (T(P7,4+i)) ∪
{

v4+i,4+i−1
})∣

∣ = 4 for every i ∈ {1, 8, . . . , 7q − 6}. So,
D ∩

(

V (T(P7,4+i)) ∪
{

v4+i,4+i−1
})

(in each T(P7,4+i)) is induced by the set of
black-coloured vertices in the scheme of T(C7)) used in Figure 3. This consequence
implies that |D4| ≥ 3 and as above, it follows that |D| = |D4|+|Dq| ≥ 3+ 4n

7 − 16
7 ≥

⌈

4n
7

⌉

, as required.

Case 2. r = 5. In this case, we have that |D5| ≥ 2. By Inequality chain (2)
we have that |Dq| ≥ 4q. First, we suppose that |Dq| = 4q + 1 and |D5| =
2. Without loss of generality, we consider that Dr = {v2, v3}. In order to
guarantee that N [x] ∩ D 6= ∅ for every x ∈

{

v1,n, v5, v
4,5

}

, it is necessary that
∣

∣D∩
(

V (T(P7,6))∪
{

v5,6
})∣

∣ ≥ 5 and
∣

∣D∩
(

V (T(P7,7q−1))∪
{

v7q−2,7q−1
})∣

∣ ≥ 5, which
would imply that |Dq| > 4q + 1, a contradiction. Now, suppose that |Dq| = 4q
and |D5| ∈ {2, 3}. By proceeding analogously to Case 1, we can deduce that
|D5| ≥ 4 (in order to dominate all vertices in V (T(P5))), a contradiction. For
the rest of the cases it is satisfied that |D5| + |Dq| ≥ 4q + 4. This implies that
|D| = |D5|+ |Dq| ≥ 4q + 4 ≥

⌈

4n
7

⌉

+ 1, as required.

Therefore, the proof is complete.
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The following result, which is a direct consequence of Lemmas 13 and 15,
provides the total domination number of T(Cn).

Proposition 16. For any cycle Cn with n ≥ 3,

γt(T(Cn)) =

{ ⌈

4n
7

⌉

+ 1 if n ≡ 5 (mod 7),
⌈

4n
7

⌉

otherwise.

Now, we obtain the total domination number of T(Wn).

Proposition 17. For any wheel Wn with n ≥ 4,

γt(T(Wn)) =

⌈

n+ 1

2

⌉

.

Proof. Let V (Wn) = {v1, v2, . . . , vn}. We assume that v1 is the center of the
wheel and that consecutive vertices in V (Wn) \ {v1} are adjacent in Wn (in
addition, let us assume that v2vn ∈ E(Wn)). By Theorem 6 and the fact that
γt,oi(Wn) =

⌈

n+1
2

⌉

(see [6]), we deduce that γt(T(Wn)) ≤
⌈

n+1
2

⌉

. We only need
to prove that γt(T(Wn)) ≥

⌈

n+1
2

⌉

. Let D be a γt(T(Wn))-set that satisfies the
conditions of Lemma 3, has the maximum number of vertices in V (Wn) and,
among those satisfying the previous conditions, has the maximum number of
vertices in {v1,2, v1,3, . . . , v1,n}.

First, we suppose that D ⊆ V (Wn). Since N(v1,i) ∩ V (Wn) = {v1, vi} for
every i ∈ {2, . . . , n} and |D| ≤

⌈

n+1
2

⌉

, it follows that v1 ∈ D. For every i ∈
{2, . . . , n}, it follows that N(vi,i+1)∩D 6= ∅, which implies that |D∩{vi, vi+1}| ≥
1 (we identify n + 1 with 2). Hence, |D ∩ {v2, . . . , vn}| ≥

⌈

n−1
2

⌉

, and as a
consequence,

|D| = |D ∩ {v2, . . . , vn}|+ |{v1}| ≥

⌈

n− 1

2

⌉

+ 1 =

⌈

n+ 1

2

⌉

,

as desired. From now on, we consider that D ∩ VE(Wn) 6= ∅. If v1 ∈ D, then
v1,j /∈ D for any j ∈ {2, . . . , n} by Lemma 3(i), which implies that there exists
i ∈ {2, . . . , n} such that vi,i+1, vi+1,i+2 ∈ D. So, D′ = (D \ {vi,i+1, vi+1,i+2}) ∪
{vi, vi+2} is a γt(T(Wn))-set satisfying that |D′∩V (G)| > |D∩V (G)|, which con-
tradicts the conditions assumed in the proof of Lemma 3. Hence, v1 /∈ D. Now,
if there exists i ∈ {2, . . . , n} such that v1,i, vi,i+1 ∈ D (this previous condition is
analogous to assuming that v1,i+1, vi,i+1 ∈ D), then D′′ = (D\{vi,i+1})∪{v1,i+1}
is a γt(T(Wn))-set satisfying that |D′′ ∩ {v1,2, . . . , v1,n}| > |D ∩ {v1,2, . . . , v1,n}|,
which is a contradiction. From the above, we can deduce that if there exist
i, j ∈ {2, . . . , n} such that v1,i, vj,j+1 ∈ D, then j /∈ {i, i − 1}. This implication
leads to the next complementary cases.
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Case 1. D ∩ {v1,2, . . . , v1,n} = ∅. Notice that |D ∩ {vi, v
i−1,i, vi,i+1}| ≥ 1 for

every i ∈ {2, . . . , n} because N(v1,i) ∩ D 6= ∅. Moreover, as N(v1) ∩ D 6= ∅, it
follows that |D ∩ {v2, . . . , n}| ≥ 2 by Lemma 3(i). Therefore,

2γt(T(Wn)) = 2|D| =
∑

i∈{2,...,n}

∣

∣D ∩
{

vi, v
i−1,i, vi,i+1

}∣

∣+ |D ∩ {v2, . . . , n}| ≥ n+ 1.

Hence, γt(T(Wn)) ≥
⌈

n+1
2

⌉

, as required.

Case 2.
∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣ ≥ 3. Let H be the subgraph T(Wn) −N
[

D ∩
{

v1,2, . . . , v1,n
}]

. We notice that H has no isolated vertex. By Lemma 3(i)
and the previous implications, we deduce that |V (H)| ≥ 2(n − 1) − 3

∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣ and ∆(H) ≤ 4. Moreover, we observe that D′ = D \
{

v1,2, . . . ,
v1,n

}

is a γt(H)-set (otherwise, for some γt(H)-set, the set DH ∪
(

D ∩
{

v1,2, . . . ,
v1,n

})

is a γt(T(Wn))-set of cardinality less than |D|, a contradiction). There-
fore, and using the well-known inequality γt(H) ≥ |V (H)|/∆(H), we deduce the
following.

|D| = |D′|+
∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣ ≥
|V (H)|

∆(H)
+
∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣

≥
2(n− 1)− 3

∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣

4
+
∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣

=
n− 1

2
+

∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣

4
≥

n− 1

2
+

3

4
.

Hence, γt(T(Wn)) ≥
⌈

n−1
2 + 3

4

⌉

=
⌈

n+1
2

⌉

, as required.

Case 3.
∣

∣D ∩
{

v1,2, . . . , v1,n
}∣

∣ = 2. Without loss of generality, we assume
that v1,2 ∈ D. Let j ∈ {3, . . . , n} such that {v1,j} = D ∩

{

v1,3, . . . , v1,n
}

. Now,
we consider the next subcases.

Subcase 3.1. j ∈ {3, n}. Without loss of generality, we consider that j = 3.
In this subcase, we proceed analogously to Case 2, considering that |V (H)| ≥
2(n − 1) − 5. From this previous condition we deduce that γt(T(Wn)) ≥

⌈

n+1
2

⌉

,
as required.

Subcase 3.2. j ∈ {4, n − 1}. Without loss of generality, we consider that
j = 4. In this subcase, we have that v2, v4, v

2,3, v3,4 /∈ D as v1,2, v1,4 ∈ D. This
implies that N(v3) ∩D = ∅ because v1 /∈ D, which is a contradiction.

Subcase 3.3. j ∈ {5, . . . , n − 2}. In this subcase, we have that n ≥ 8.
Now, let Pj−3 and Pn−j be the subgraphs induced by

{

v1,3, . . . , v1,j−1
}

and
{

v1,j+1, . . . , v1,n
}

, respectively. Observe that Pj−3 and Pn−j are paths of j − 3
and n − j vertices, respectively. With all the above in mind, we deduce that
D ∩ V (T(Pj−3)) and D ∩ V (T(Pn−j)) are total dominating sets of T(Pj−3) and
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T(Pn−j), respectively. SinceD = (D∩V (T(Pj−3)))∪(D∩V (T(Pn−j)))∪
{

v1,2, v1,j
}

and γt(T(Pr)) ≥
4r−2
7 by Proposition 12, we obtain the following.

|D| =
∣

∣

{

v1,2, v1,j
}∣

∣+ |D ∩ V (T(Pj−3))|+ |D ∩ V (T(Pn−j))|

≥ 2 + γt(T(Pj−3)) + γt(T(Pn−j))

≥ 2 +
4(j − 3)− 2

7
+

4(n− j)− 2

7
=

4n

7
−

2

7
.

If n ≥ 11, then 4n
7 − 2

7 ≥ n+1
2 , which implies that γt(T(Wn)) ≥

⌈

n+1
2

⌉

, as required.
Finally, in the case in that n ∈ {8, 9, 10}, the result can be easily derived by
proceeding as before.

From the three cases above, the proof is complete.

Finally, we compute the total domination number of T(Kn). For this purpose,
we shall need the following known results.

Proposition 18. The following equalities hold for any integer n ≥ 3.

(i) [23] γt(Q(Kn)) =
⌈

2n
3

⌉

.

(ii) [18] γt(L(Kn)) =

{

2
⌊

n
3

⌋

if n ≡ 0, 1 (mod 3),

2
⌊

n
3

⌋

+ 1 if n ≡ 2 (mod 3).

Proposition 19. For any complete graph Kn with n ≥ 3,

γt(T(Kn)) =

⌈

2n

3

⌉

.

Proof. By Theorem 6 and Proposition 18(i) we deduce the inequality chain
γt(T(Kn)) ≤ γt(Q(Kn)) =

⌈

2n
3

⌉

. We only need to prove that γt(T(Kn)) ≥
⌈

2n
3

⌉

.
Let V (Kn) = {v1, . . . , vn} be the vertex set ofKn. LetD be a γt(T(Kn))-set which
satisfies Lemma 3, and without loss of generality we assume that D ∩ V (Kn) =
{v1, . . . , vr}. If r = 0, then D is a TDS of the spanning subgraph T(Kn)−E(Kn)
(which is isomorphic to the graph Q(Kn) by Remark 2(iv)). Therefore,

⌈

2n
3

⌉

=
γt(Q(Kn)) ≤ |D| = γt(T(Kn)), as required.

From now on, we suppose that r > 0 (by Lemma 3 we deduce that r ≥ 2).
Now, we consider the next sets: A = {v1, . . . , vr} ∪

{

vi,j : 1 ≤ i < j ≤ r
}

,
C =

{

vi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ n
}

and B = V (T(Kn)) \ (A ∪ C). By Lemma
3 we have that D ∩ C = ∅. This implies that D ∩ B is a TDS of the subgraph
induced by VE(Kn) \C, which is isomorphic to L(Kn−r). This previous fact and
Proposition 18(ii) lead to the following inequality chain.

γt(T(Kn)) = |D| = r + |D ∩B| ≥ r + γt(L(Kn−r)) ≥
2n

3
.

From the above, we obtain that γt(T(Kn)) ≥
⌈

2n
3

⌉

, which completes the proof.
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