
Discussiones Mathematicae
Graph Theory 44 (2024) 879–891
https://doi.org/10.7151/dmgt.2476

DOMINATED PAIR DEGREE SUM CONDITIONS

OF SUPEREULERIAN DIGRAPHS

Changchang Dong

Jixiang Meng1

College of Mathematics and System Sciences

Xinjiang University

Urumqi, Xinjiang, 830017, P.R. China

e-mail: 374813014@qq.com
mjxxju@sina.com

and

Juan Liu

College of Big Data Statistics

Guizhou University of Finance and Economics

Guiyang, Guizhou, 550025, P.R. China

e-mail: liujuan1999@126.com

Abstract

A digraph D is supereulerian if D contains a spanning eulerian subdi-
graph. In this paper, we propose the following problem: is there an integer
t with 0 ≤ t ≤ n − 3 so that any strong digraph with n vertices satisfying
either both d(u) ≥ n− 1 + t and d(v) ≥ n− 2− t or both d(u) ≥ n− 2− t
and d(v) ≥ n− 1 + t, for any pair of dominated or dominating nonadjacent
vertices {u, v}, is supereulerian? We prove the cases when t = 0, t = n − 4
and t = n−3. Moreover, we show that if a strong digraph D with n vertices
satisfies min{d+(u)+d−(v), d−(u)+d+(v)} ≥ n−1 for any pair of dominated
or dominating nonadjacent vertices {u, v} of D, then D is supereulerian.
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1. Introduction

Digraphs considered are loopless and without parallel arcs. We refer the reader
to [1] for digraphs for undefined terms and notation. In this paper, we define
[k] = {1, 2, . . . , k} for an integer k > 0 and use (w, z) to denote an arc oriented
from a vertex w to a vertex z and say that w dominates z. For any two vertices
u, v in a digraph D, if (u,w), (v, w) ∈ A(D) for some w ∈ V (D), then we say that
{u, v} dominates w or call the pair {u, v} dominating ; if (w, u), (w, v) ∈ A(D) for
some w ∈ V (D), then we say that {u, v} is dominated by w or call the pair {u, v}
dominated. We often write dipaths for directed paths, dicycles for directed cycles
and ditrails for directed trails in digraphs. The length of a ditrail is the number
of its arcs. If a ditrail T starts at w and ends at z, we may call it a (w, z)-ditrail
T or T[w,z] and say w is the initial vertex of T and z is the terminal vertex of T .
A (w, z)-ditrail of minimum length in D is called a shortest (w, z)-ditrail in D.
We often write |D| for |V (D)| and use K∗

n to represent the complete digraph with
n vertices. A digraph D is semicomplete if it has no pair of nonadjacent vertices.
A digraph D is strong if any vertex of a digraph D is reachable from all other
vertices of D.

Let T = v1v2 · · · vk denote a ditrail. For any 1 ≤ i ≤ j ≤ k, we use T[vi,vj ] =
vivi+1 · · · vj−1vj to denote the sub-ditrail of T . Likewise, if Q = u1u2 · · ·uku1
is a closed ditrail, then for any i, j with 1 ≤ i < j ≤ k, Q[ui,uj ] denotes the
sub-ditrail uiui+1 · · ·uj−1uj . If T ′ = w1w2 · · ·wk′ is a ditrail with vk = w1

and V (T ) ∩ V (T ′) = {vk}, then we use TT ′ or T[v1,vk]T
′

[vk,wk′ ]
to denote the

ditrail v1v2 · · · vkw2 · · ·wk′ . If V (T ) ∩ V (T ′) = ∅ and there is a dipath z1z2 · · · zt
with z2, . . . , zt−1 /∈ V (T ) ∪ V (T ′) and with z1 = vk and zt = w1, then we use
Tz1 · · · ztT

′ to denote the ditrail v1v2 · · · vkz2 · · · ztw2 · · ·wk′ . In particular, if T
is a (v, w)-ditrail of a digraph D and (u, v), (w, z) ∈ A(D) − A(T ), then we use
uvTwz to denote the (u, z)-ditrail D〈A(T ) ∪ {(u, v), (w, z)}〉. The subdigraphs
uvT and Twz are similarly defined.

For a digraph D, a ∈ A(D) and a subdigraph S of D, we use D − S to
denote the subdigraph D〈V (D) − V (S)〉, use D − a to denote the subdigraph
D〈A(D)−a〉, and use D+a to denote the subdigraph D〈A(D)+a〉. Let D1 and
D2 be two digraphs; the union D1 ∪D2 of D1 and D2 is a digraph with vertex
set V (D1 ∪D2) = V (D1) ∪ V (D2) and arc set A (D1 ∪D2) = A (D1) ∪ A (D2).
For S, T ⊆ V (D), an (s, t)-dipath P is an (S, T )-dipath if s ∈ S, t ∈ T and
V (P )∩ (S ∪T ) = {s, t}. Note that if S ∩T 6= ∅, then a vertex s ∈ S ∩T forms an
(S, T )-dipath by itself. When S and T are subdigraphs of D, we also talk about
an (S, T )-dipath.

Let d−D(s), d
+
D(s), dD(s) = d−D(s) + d+D(s), N

−

D (s) and N+
D (s) denote, respec-

tively, the in-degree, out-degree, degree, in-neighbourhood and out-neighbourhood

of a vertex s ∈ V (D).
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In [3], Boesch et al. raised the supereulerian problem, which strives to de-
scribe graphs that contain spanning eulerian subgraphs. In [10], Pulleyblank
showed that deciding whether a graph is supereulerian, even within planar graphs,
is NP-complete. There have been many studies on this topic, as revealed in the
surveys [4, 5] and [9].

It is natural to try to relate supereulerian graphs to supereulerian digraphs. A
digraph D is supereulerian if it contains a closed ditrail S with V (S) = V (D), i.e.,
it has a spanning eulerian subdigraph, and nonsupereulerian otherwise. Results
on supereulerian digraphs can be found in [2, 6, 7, 8], among others. It is worth
pointing out that only a few of degree sum conditions are studied to ensure
supereulerianicity in digraphs. In particular, the following have been proved.

Theorem 1 [2]. If a strong digraph D with n vertices satisfies d+(u) + d−(v) ≥
n− 1 for any two vertices u and v with (u, v) /∈ A(D), then D is supereulerian.

Theorem 2 [2]. If a strong digraph D with n vertices satisfies d(u)+d(v) ≥ 2n−3
for any two nonadjacent vertices u and v, then D is supereulerian.

It is observed that in Theorems 1 and 2, degree sum conditions on every pairs
of nonadjacent vertices are needed to warrant the digraph to be supereulerian.
In this article, we will consider a degree sum condition about pairs of dominated
(dominating) nonadjacent vertices but no longer on all pairs of nonadjacent ver-
tices. First, we give the following definition.

Definition 3. Given an integer t ≥ 0, we say a digraph D of order n satisfies
the condition Ct if

d(u) ≥ n− 1 + t, d(v) ≥ n− 2− t or d(u) ≥ n− 2− t, d(v) ≥ n− 1 + t,

for any pair of dominated or dominating nonadjacent vertices {u, v} in D.

If u and v are nonadjacent for u, v ∈ V (D), then d(u) ≤ 2n − 4 and d(v) ≤
2n− 4. Thus n− 1 + t ≤ 2n− 4 implies t ≤ n− 3. Then we have 0 ≤ t ≤ n− 3
and naturally propose the following problem.

Problem 4. Is there an integer t with 0 ≤ t ≤ n− 3 so that any strong digraph
with n vertices satisfying the condition Ct is supereulerian?

Problem 4 assumes the existence of nonadjacent vertices. When a strong di-
graph D contains no nonadjacent vertices, condition Ct is automatically satisfied,
and in this case, by Theorem 1.5.3 of [1], D is hamiltonian and so supereulerian.
Hence it suffices to settle Problem 4 for strong digraphs which are not semicom-
plete digraphs. Likewise, when we discuss Theorems 5, 6, 7, 8, we may also
assume the digraph under consideration is not a semicomplete digraph.
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The purpose of this paper is to prove the cases when t = 0, t = n − 4
and t = n − 3 and show that if a strong digraph D with n vertices satisfies
min{d+(u) + d−(v), d−(u) + d+(v)} ≥ n − 1 for any pair of dominated or domi-
nating nonadjacent vertices {u, v} of D, then D is supereulerian. Moreover, our
result, Theorem 8, generalizes Theorem 1. The main results are the following,
which are independent of Theorem 2.

Theorem 5. If a strong digraph D with n vertices satisfies the condition C0,

then D is supereulerian.

Theorem 6. If a strong digraph D with n vertices satisfies the condition Cn−4

for any pair of dominated nonadjacent vertices {u, v}, then D is supereulerian.

Theorem 7. If a strong digraph D with n vertices satisfies the condition Cn−3

for any pair of dominated nonadjacent vertices {u, v}, then D is supereulerian.

Theorem 8. If a strong digraph D with n vertices satisfies, for any pair of

dominated or dominating nonadjacent vertices {u, v}, min{d+(u)+d−(v), d−(u)+
d+(v)} ≥ n− 1, then D is supereulerian.

In Section 2, we give the proofs of Theorems 5–8 and shall display examples
of nonsupereulerian digraphs to demonstrate the sharpness of our results in some
sense. The last section is devoted to some concluding remarks.

2. Main Results

The following lemmas will be useful.

Lemma 9. Let D be a digraph, S = u1u2 · · ·us and T = v1v2 · · · vt be two arc

disjoint ditrails of D. If D does not contain a (u1, us)-ditrail with vertex set

V (S) ∪ V (T ), then d−S (v1) + d+S (vt) ≤ |S|.

Proof. As D does not contain a (u1, us)-ditrail with vertex set V (S)∪V (T ), we
have |{(ui, v1), (vt, ui)} ∩ A(D)| ≤ 1 for any ui ∈ V (S). Accordingly, we obtain
d−S (v1) + d+S (vt) ≤ |S| as required.

Corollary 10. Let D be a digraph, S = u1u2 · · ·us be a ditrail in D and x ∈
V (D)−V (S). If D does not contain a (u1, us)-ditrail with vertex set V (S)∪{x},
then dS(x) ≤ |S|.

Throughout the proofs of Theorems 5–8, we let D denote a strong non-
supereulerian digraph with n vertices, and let S = {S1, . . . , Sk} be the collection
of closed ditrails such that |V (S1)| = · · · = |V (Sk)| is maximized in D (possibly
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k = 1). Let S = y0y1 · · · ypyp+1 · · · ymy0 be the closed ditrail such that |A(S)| is
maximized in S. Thus

(1) |V (S)| is maximized in D and |A(S)| is maximized in S.

Let |V (S)| = s. As D is not supereulerian, 1 < s < n. Since D is strong, there
exists an (S, S)-dipath T with |T | ≥ 3.

Throughout the proofs of Theorems 5–7, for an integer l ≥ 1 and i ∈ [l], let Ti

be an (S, S)-dipath with |Ti| ≥ 3 such that |V (Pi)| of the ditrail Pi is minimum in
S, where |V (P1)| = · · · = |V (Pl)| and Pi is a shortest (ui, vi)-ditrail which travels
along S from ui to vi such that the initial vertex ui of Pi is the initial vertex
of Ti and the terminal vertex vi of Pi is the terminal vertex of Ti. Choose an
(S, S)-dipath T with |T | ≥ 3 in {T1, . . . , Tl} such that |A(P )| of the ditrail P is
minimum in {P1, . . . , Pl}. Thus |V (P )| is minimum in S and |A(P )| is minimum
in {P1, . . . , Pl}. Without loss of generality, write T = y0x1x2 · · ·xtyp+1. Let
W = {y1, y2, . . . , yp} be the set of internal vertices of P , P ′ be the ditrail which
travels along S from yp+1 to y0, r be the maximum integer 1 ≤ i ≤ p such that D
contains a (yp+1, y0)-ditrail P1 with vertex set V (P1) = V (P ′)∪{y0, y1, . . . , yr−1}
and R = D−S. Then |P ′| = s− p+ c′, and |P1| = s− p+ c, where c′ = |W ∩P ′|
and c = |W ∩ P1|.

y0 y1
yp yp+1

x1

xt

S

T

P

R

P1

A nonsupereulerian strong digraph D

Figure 1. The illustration for the proofs of Theorems 5–7.

Proof of Theorem 5. By (1), we have y0 6= yp+1, (y0, yp+1) /∈ A(S) and p ≥ 1.
This together with the fact that P is a (y0, yp+1)-ditrail implies d+P (y0)−d−P (y0) =
1 and d−P (yp+1)− d+P (yp+1) = 1. If for an integer k ≥ 1, d+P (y0) = k+1 ≥ 2, then
d−P (y0) = k. Hence we can denote the ditrail P = y0 · · · y

1
0 · · · y

2
0 · · · y

k
0 · · · yp+1,

where y0 = y10 = y20 = · · · = yk0 . For any h ∈ [k], P[yh
0
,yp+1]

= yh0 · · · yp+1 is also

a (y0, yp+1)-ditrail which travels along S from y0 to yp+1. If
∣

∣

∣
V
(

P[yh
0
,yp+1]

)
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∣

∣
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|V (P )|, then
∣

∣
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A
(

P[yh
0
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∣
< |A(P )|, contrary to the choice of P . If
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∣
6= |V (P )|, then
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∣

∣
V
(

P[yh
0
,yp+1]
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∣

∣
< |V (P )| and

∣

∣

∣
A
(

P[yh
0
,yp+1]

)∣

∣

∣
<

|A(P )|, contrary to the choice of P . Hence k = 0, d+P (y0) = 1 and d−P (y0) = 0. By
similar arguments, we can get that d−P (yp+1) = 1 and d+P (yp+1) = 0. Therefore,

d+P (y0) = d−P (yp+1) = 1 and d−P (y0) = d+P (yp+1) = 0.(2)

First for any i ∈ [t] we have dW (xi) = 0 by the choice of T and (1). If
d+W (xi) > 0 or d−W (xi) > 0, then without loss of generality, we may assume that
d+W (xi) > 0, and so there exists a vertex yj ∈ W (j ∈ [p]) such that (xi, yj) ∈
A(D). If 2 ≤ j ≤ p, then we can get another (S, S)-dipath T ′ with the initial
vertex y0 and the terminal vertex yj such that the length of (y0, yj)-ditrail P

′ in S
is less then the length of P in S, contrary to the choice of T above. If j = 1, then
S∪T[y0,xi]+(xi, y1)−(y0, y1) is a closed ditrail with

∣

∣S∪T[y0,xi]+(xi, y1)−(y0, y1)
∣

∣ >

|S|, contrary to (1). Therefore d+W (xi) = 0. The proof for d−W (xi) = 0 is similar.
In particular, xi and yj are nonadjacent, for i ∈ [t] and j ∈ [p].

By the definition of P ′, xi /∈ V (P ′). If for some xi ∈ V (T ), D contains a
(yp+1, y0)-ditrail S

′ with vertex set V (P ′) ∪ {xi}, then S′ ∪ P is a closed ditrail
with |S′ ∪ P | > |S|, contrary to (1). Thus D does not have a (yp+1, y0)-ditrail
with vertex set V (P ′)∪{xi}, for any xi ∈ V (T ). By Corollary 10 and dW (xi) = 0,
we can deduce that

(3) dS(xi) = dP ′(xi) = dP ′
−W (xi) ≤ |P ′| − c′ = s− p.

Obviously,

(4) dW−P1
(yj) ≤ 2(p− c− 1).

Furthermore, by the choice of T and (1), there is no vertex z ∈ R satisfying
{(yj , z), (z, xi)} ⊆ A(D) or {(xi, z), (z, yj)} ⊆ A(D), for i ∈ [t] and j ∈ [p].
Accordingly,

(5) dR(xi) + dR(yj) ≤ 2(n− s− 1).

Let yk be any vertex in W such that (y0, yk) ∈ A(D). Combining (3)–(5)
with the fact that the pair of nonadjacent vertices {x1, yk} is dominated by y0
and the pair of nonadjacent vertices {xt, yp} dominates yp+1, we get

2n− 3 ≤ d(x1) + d(yk) ≤ dP1
(yk) + 2n− |P1| − 4− c

and
2n− 3 ≤ d(xt) + d(yp) ≤ dP1

(yp) + 2n− |P1| − 4− c.

Accordingly,

(6) dP1
(yk) ≥ |P1|+ 1 + c and dP1

(yp) ≥ |P1|+ 1 + c.
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Now we consider two cases in the following.

Case 1. c = |W ∩P1| = 0. In this case, we have W ∩P1 = ∅ and S = P +P1.
By (1), D does not have a (yp+1, y0)-ditrail with vertex set V (P1) ∪ V

(

P[y1,yp]

)

.
Then by Lemma 9, we get

(7) d−P1
(y1) + d+P1

(yp) ≤ |P1| = s− p.

By symmetry, assume that y1 = yk. If y1 = yp, then dP1
(y1) ≤ |P1|, contrary to

(6). Thus y1 6= yp. By (6), dP1
(y1) ≥ |P1|+1+c. There must exist vertices ya, yc ∈

V (P1) such that {(ya, y1), (y1, ya), (yp, yc), (yc, yp)} ⊆ A(D). SinceW∩P1 = ∅ and
S = P + P1, we have y1, yp ∈ W, y1, yp 6∈ V (P1), ya, yc ∈ V (P1) and ya, yc 6∈ W .
Then (ya, y1), (y1, ya), (yp, yc), (yc, yp) 6∈ A(P1).

By (2), we have d−P (yp+1) = |{(yp, yp+1)} ∩ A(D)| = 1 and d+P (yp+1) = 0.
If ya = yp+1, then as yp 6= y1, we have (yp+1, y1), (y1, yp+1) 6∈ A(P ). There-
fore (ya, y1), (y1, ya) 6∈ A(S). But then we can get a closed ditrail S′ = S ∪
{(ya, y1), (y1, ya)} with |A(S′)| > |A(S)|, contrary to (1). Thus ya 6= yp+1. Simi-
larly, we can get that yc 6= y0.

If ya 6= y0, then (y1, ya), (ya, y1) 6∈ A(P ). Therefore (ya, y1), (y1, ya) 6∈ A(S).
But then we can get a closed ditrail S′ = S ∪ {(ya, y1), (y1, ya)} with |A(S′)| >
|A(S)|, contrary to (1). Thus ya = y0. Similarly, we can get that yc = yp+1.
Then {(y0, y1), (y1, y0), (yp, yp+1), (yp+1, yp)} ⊆ A(D)−A(P1).

By (1) with (6), for any yi ∈ V (P1) − y0 and yj ∈ V (P1) − yp+1, we have
|{(yi, y1), (y1, yi) ∩ A(D)}| = 1 and |{(yj , yp), (yp, yj)} ∩ A(D)| = 1. By (2),
(y1, y0), (yp+1, yp) 6∈ A(P ). Then (y1, y0), (yp+1, yp) 6∈ A(S). If (ym, y1) ∈ A(D),
note that (ym, y1) 6∈ A(S), then we can get a closed ditrail S′ = S + (ym, y1) +
(y1, y0) − (ym, y0) with |A(S′)| > |A(S)|, contrary to (1). Thus (ym, y1) 6∈ A(D)
and (y1, ym) ∈ A(D). Continuing this process, we finally conclude that for any
yi ∈ V (P1)− y0, (yi, y1) 6∈ A(D) and (y1, yi) ∈ A(D). Similarly, we can get that
for any yj ∈ V (P1) − yp+1, (yp, yj) 6∈ A(D) and (yj , yp) ∈ A(D). In particular,
(yp+1, y1) 6∈ A(D).

Now we have d+P1
(y1) = |P1| = d−P1

(yp) and d−P1
(y1) = 1 = d+P1

(yp). Combining
(3) with the fact that dR(x1) + dR(y1) ≤ 2(n− s− 1) and the assumption of the
theorem, note that the pair of nonadjacent vertices {x1, y1} is dominated by y0,
we obtain dS(y1) ≥ s+p−1. Since dP1

(y1) = |P1|+1 = s−p+1, dW (y1) ≥ 2(p−1).
That is, for any yj ∈ W , (yj , y1), (y1, yj) ∈ A(D). But then we can get a closed
ditrail S′ = T ∪P1∪{(yj , y1), (y1, yj)}∪{(y0, y1), (y1, y0)}, for every yj ∈ W , with
|S′| > |S|, contrary to (1).

Case 2. c = |W ∩ P1| ≥ 1. From (6) and Corollary 10 it follows that D
contains a (yp+1, y0)-ditrail with vertex set V (P1) ∪ {yk}. Note that V (P1) =
V (P ′) ∪ {y0, y1, . . . , yr−1}. By (1), r − 1 ≤ p− 1. Then there exists an integer r
with 2 ≤ r ≤ p such that D contains a (yp+1, y0)-ditrail with vertex set V (P1) ∪
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{yr−1} but does not contain a (yp+1, y0)-ditrail with vertex set V (P1) ∪ {yr}. In
particular, yr−1 ∈ V (P1). Therefore D does not contain a (yp+1, y0)-ditrail with
vertex set V (P1) ∪ V (S[yr−1,yr ]).

By Corollary 10 and the fact that D does not contain a (yp+1, y0)-ditrail
with vertex set V (P1) ∪ {yr}, dP1

(yr) ≤ |P1| = s− p+ c. By (6), yr 6= yk, that is
(y0, yr) 6∈ A(D). From this with (3)–(5), we obtain d(yr) + d(x1) ≤ 2n − 5. By
assumption, note that {x1, y1} is a pair of dominated nonadjacent vertices, we
have d(x1) ≥ n− 2. Therefore, we get

(8) d(yr) ≤ n− 3.

Note that yr−1∈V (P1) and yr /∈V (P1). Let P1=yp+1ya−dya−d+1 · · · ya−2yr−1

yaya+1 · · · ya+ly0.
Therefore by (8) and the assumption of the theorem, as the pair {yr, ya} is

dominated by yr−1, we have that yr and ya are adjacent. If (yr, ya) ∈ A(D), then
D contains a (yp+1, y0)-ditrail with vertex set V (P1) ∪ V (S[yr−1,yr ]), a contradic-
tion. So assume that (ya, yr) ∈ A(D). Then the pair {ya+1, yr} is dominated
by ya, we similarly conclude that (ya+1, yr) ∈ A(D). Continuing this process,
we can deduce that (y0, yr) ∈ A(D), which contradicts the conclusion above
(y0, yr) 6∈ A(D). This proves Theorem 5.

Proof of Theorem 6. By similar arguments as in the proof of Theorem 5, we
obtain that dW (xi) = 0 for any i ∈ [t] and dP1

(y1) ≥ |P1| + 1. From this and
Corollary 10 it follows that D contains a (yp+1, y0)-ditrail with vertex set V (P1)∪
{y1}. Since D does not contain a (yp+1, y0)-ditrail with vertex set V (P1) ∪ {yr},
|W | ≥ 2. This together with dW (x1) = 0 implies

d(x1) ≤ 2(n− 3) = 2n− 6.

Since {y1, x1} is a pair of dominated nonadjacent vertices and by assumption,
we get that d(y1) ≥ 2n− 5 and d(x1) ≥ 2. By the choice of T , y1 and any vertex
of T[x1,xt] are not adjacent. This together with d(y1) ≥ 2n − 5, we obtain t = 1.
As we known the pair of nonadjacent vertices {y1, x1} satisfying d(y1) ≤ 2n − 4
and d(x1) ≤ 2n − 4. Then we have 2n − 5 ≤ d(y1) ≤ 2n − 4. If d(y1) = 2n − 4,
then we get (z, y1), (y1, z) ∈ A(D) for any z ∈ V (D) − {y1, x1}. Thus, for all
j ∈ [m] and j 6∈ {0, 1, p + 1}, S′ = y0x1yp+1y1y0 ∪ {(y1, yj), (yj , y1)} is a closed
ditrail with |S′| > |S|, contrary to (1). So assume that d(y1) = 2n − 5. We can
assume that d(yp) = 2n− 5 by similar arguments as above.

If {(y1, yj), (yj , y1)} ⊆ A(D) for any j ∈ [m], then, for all i ∈ [m] and
i 6∈ {0, 1, p + 1}, S′ = y0x1yp+1y1y0 ∪ {(y1, yi), (yi, y1)} is a closed ditrail with
|S′| > |S|, a contradiction. Thus, we consider two cases in the following.

Case 1. (y1, yj) /∈ A(D) for some j ∈ [m]. In this case, (yj , y1) ∈ A(D)
and {(yi, y1), (y1, yi)} ⊆ A(D), where i ∈ [m] and i 6∈ {1, j}. If j = 0, then,
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for all i ∈ [m] and i 6∈ {0, 1, p + 1,m}, S′ = y0x1yp+1y1ymy0 ∪ {(y1, yi), (yi, y1)}
is a closed ditrail with |S′| > |S|, a contradiction. Thus j 6= 0. If j < p + 1,
then, for all i ∈ [m] and i 6∈ {0, 1, . . . , j, p + 1}, S′ = y0x1yp+1S[y1,yj ]y1y0 ∪
{(y1, yi), (yi, y1)} is a closed ditrail with |S′| > |S|, contrary to (1). So j ≥ p+1.
Then S′ = y0x1yp+1S[yp+1,yj ]y1y2y1y3 · · · y1ypy1yj+1y1yj+2 · · · y1ymy1y0 is a closed
ditrail with |S′| > |S|, contrary to (1).

Case 2. (yj , y1) /∈ A(D) for some j ∈ [m]. In this case, (y1, yj) ∈ A(D)
and {(yi, y1), (y1, yi)} ⊆ A(D), where i ∈ [m] and i 6∈ {1, j}. If j = p, that
is (yp, y1) /∈ A(D), then by d(yp) = 2n − 5, we have {(yp, yp+1), (yp+1, yp)} ⊆
A(D). Then S′ = y0x1yp+1ypyp+1y1y0y1y2 · · · y1yp−1y1yp+2y1yp+3 · · · y1ymy1y0 is
a closed ditrail with |S′| > |S|, contrary to (1). If j = p + 1, then, for all
i ∈ [m] and i 6∈ {0, 1, p + 1, p + 2}, S′ = y0x1yp+1yp+2y1y0 ∪ {(y1, yi), (yi, y1)} is
a closed ditrail with |S′| > |S|, contrary to (1). If j ≤ p− 1, then, for all i ∈ [m]
and i 6∈ {0, 1, . . . , j + 1, p + 1}, S′ = y0x1yp+1S[y1,yj+1]y1y0 ∪ {(y1, yi), (yi, y1)}
is a closed ditrail with |S′| > |S|, contrary to (1). Thus j ≥ p + 2, then S′ =
y0x1yp+1y1yjS[yj ,y0]y1y2y1y3 · · · y1ypy1 is a closed ditrail with |S′| > |S|, contrary
to (1). This proves Theorem 6.

Proof of Theorem 7. By the same arguments as in the proof of Theorem 6,
we obtain

d(x1) ≤ 2(n− 3) = 2n− 6.

By assumption and since {y1, x1} is a pair of dominated nonadjacent vertices,
we see that d(y1) ≥ 2n−4 and d(x1) ≥ 1. This implies that (z, y1), (y1, z) ∈ A(D)
for any z ∈ V (D)−{y1, x1}. By the choice of T , y1 and any vertex of T[x1,xt] are
not adjacent. This together with d(y1) ≥ 2n − 4, we obtain t = 1. Then, for all
j ∈ [m] and j 6∈ {0, 1, p + 1}, S′ = y0x1yp+1y1y0 ∪ {(y1, yj), (yj , y1)} is a closed
ditrail with |S′| > |S|, contrary to (1). This proves Theorem 7.

Proof of Theorem 8. First, we show that D contains an (S, S)-dipath T with
V (T ) = 3.

Since D is strong, there exists a vertex r ∈ V (R) and a vertex yi ∈ V (S)
such that (yi, r) ∈ A(D), and a dipath P from r to a vertex yj ∈ V (S) such
that V (P )∩V (S) = {yj}, where i, j ∈ {0, 1, . . . ,m}. If (ya, r) ∈ A(D) for all a ∈
{0, 1, . . . ,m}, then S′ = S∪P+(yj , r) is a closed ditrail with |S′| > |S|, contrary to
the maximality of S. So there exists a vertex ya ∈ V (S) such that (ya, r) 6∈ A(D).
Using this together with the fact that there exists a vertex yi ∈ V (S) such that
(yi, r) ∈ A(D) we can conclude, without loss of generality, that (yi, r) ∈ A(D) but
(yi+1, r) 6∈ A(D). If (r, yi+1) ∈ A(D), then S′ = S + (yi, r) + (r, yi+1)− (yi, yi+1)
is a closed ditrail with |S′| > |S|, contrary to the maximality of S. Therefore
r and yi+1 are nonadjacent. By assumption, as the pair {r, yi+1} is dominated
by yi, we get d+(r) + d−(yi+1) ≥ n − 1. Then we can obtain that there exists a
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vertex z ∈ V (D)−{r, yi+1} such that {(r, z), (z, yi+1)} ⊆ A(D). By (1), we have
that z ∈ V (S). Then, T = yirz is an (S, S)-dipath with three vertices.

Now choose an (S, S)-dipath T with V (T ) = 3 such that the length of the
ditrail P is minimum in S, where P is a shortest (u, v)-ditrail which travels along
S from u to v such that the initial vertex u of P is the initial vertex of T and the
terminal vertex v of P is the terminal vertex of T . Without loss of generality,
write T = y0x1yp+1, that is u = y0 and v = yp+1. Let W = {y1, y2, . . . , yp} be the
set of internal vertices of P , P1 be a longest ditrail from yp+1 to y0 in S. Then
|P1| = s− p+ c, where c = |W ∩ P1|.

By the choice of T and (1), we have

(9) dW (x1) = 0.

If D contains a (yp+1, y0)-ditrail P
′ with vertex set V (P1) ∪ V (P[y1,yp]), then

S′ = P ′ ∪ T is a closed ditrail with |S′| > |S|, contrary to the maximality of
S. Thus D does not have a (yp+1, y0)-ditrail with vertex set V (P1) ∪ V

(

P[y1,yp]

)

.
Then by Lemma 9, we have

(10) d+P1
(yp) + d−P1

(y1) ≤ |P1|.

From (1) and Corollary 10, we have that D does not have a (yp+1, y0)-ditrail
with vertex set V (P1) ∪ {x1} and

(11) dP1
(x1) ≤ |P1|.

By (1), there is no vertex u ∈ R satisfying {(yp, u), (u, x1)} ⊆ A(D) or
{(x1, u), (u, y1)} ⊆ A(D). Then

(12) d−R(x1) + d+R(yp) + d+R(x1) + d−R(y1) ≤ 2(n− s− 1).

It is obvious that

(13) d+W−P1
(yp) + d−W−P1

(y1) ≤ 2(p− c− 1).

By adding (9)–(13), note that {x1, y1} is a pair of dominated nonadjacent
vertices and {x1, yp} is a pair of dominating nonadjacent vertices, we get

2n− 2 ≤ d+(x1) + d−(y1) + d+(yp) + d−(x1) ≤ 2n− 4,

a contradiction. This proves Theorem 8.

It is obvious that Theorems 6 and 7 are best possible in some sense, since
the condition of Theorem 6 or 7 cannot be weakened by more than a constant,
otherwise, it is not strong and impossible to be supereulerian. Now we demon-
strate an example with the condition d+(u) + d−(v) = d+(v) + d−(u) = n − 2
for a pair of dominated (dominating) nonadjacent vertices {u, v} which does not
necessarily imply being supereulerian. Theorems 5 and 8 are thus best possible.
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Example 11. We construct a strong digraph D with V (D) = {u, v, w,w′} ∪
V (K∗

n−4) and the arcs of D are shown in (i) and (ii) below. (See Figure 2.)

(i) w′ ∪K∗

n−4 is a complete digraph.

(ii) (w′, w) ∈ A(D), N+(w) = {u, v}∪V (K∗

n−4) and N+(u) = {w′}∪V (K∗

n−4) =
N+(v).

u v

w

w′

K∗

n−4

Figure 2. The strong digraph D.

It is not difficult to show that the digraph D of Figure 2 is nonsupereulerian.
In fact, as d−D(u) = d−D(v) = 1 in D, any spanning eulerian subdigraph S (if it
exists) of D has to contain the arcs (w, u), (w, v), that is d+S (w) = d−S (w) ≥ 2
in any spanning eulerian subdigraph S (if it exists) of D. And d−D(w) ≥ d−S (w).
However d−D(w) = 1, so such a spanning eulerian subdigraph does not exist. Con-
sequently, it is obvious that d+D(u)+d−D(v) = d+D(v)+d−D(u) = n−2 and {u, v} is
the only pair of dominated or dominating nonadjacent vertices. Therefore, Ex-
ample 11 demonstrates that there are infinitely many nonsupereulerian digraphs
satisfying d+D(u) + d−D(v) = d+D(v) + d−D(u) = n − 2 for a pair of dominated or
dominating nonadjacent vertices {u, v}. Thus conditions of Theorems 5 and 8
cannot be weakened by more than a constant. So the result of Theorems 5 and
8 are sharp.

3. Concluding Remarks

The remaining case of Problem 4 is 1 ≤ t ≤ n− 5.

Conjecture 12. There exists an integer t with 1 ≤ t ≤ n− 5 so that any strong

digraph with n vertices satisfying the condition Ct is supereulerian.

We believe this can be generalized to the following. If the result is ture, then
it, together with the fact that any strong semicomplete digraph is supereulerian,
can be seen as a generalization of Theorem 2.
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Conjecture 13. If a strong digraph with n vertices satisfies d(u)+d(v) ≥ 2n−3
for any pair of dominated or dominating nonadjacent vertices {u, v}, then it is

supereulerian.

By Theorems 6 and 7, we propose the following.

Conjecture 14. There exists an integer t with 0 ≤ t ≤ n− 5 so that any strong

digraph with n vertices satisfying the condition Ct, for any pair of dominated

nonadjacent vertices {u, v}, is supereulerian.

Conjecture 15. If a strong digraph with n vertices satisfies d(u)+d(v) ≥ 2n−3
for any pair of dominated nonadjacent vertices {u, v}, then it is supereulerian.
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