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Abstract

The generalized connectivity, an extension of connectivity, provides a
new reference for measuring the fault tolerance of networks. For any con-
nected graph G, let S ⊆ V (G) and 2 ≤ |S| ≤ V (G); κG(S) refers to the
maximum number of internally disjoint trees in G connecting S. The gener-
alized k-connectivity of G, κk(G), is defined as the minimum value of κG(S)
over all S ⊆ V (G) with |S| = k. The n-dimensional crossed cube CQn,
as a hypercube-like network, is considered as an attractive alternative to
hypercube network because of its many good properties. In this paper, we
study the generalized 3-connectivity and the generalized 4-connectivity of
CQn and obtain κ3(CQn) = κ4(CQn) = n− 1, where n ≥ 2.

Keywords: crossed cube, internally disjoint trees, generalized k-connectivity,
fault tolerance.
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1. Introduction

A graph G = (V (G), E(G)) is often used to simulate an interconnection network,
and in the process of simulation, vertex set and edge set of G refer to the pro-
cessor set and the communication link set between the processors, respectively.
Connectivity is an important parameter to measure the fault tolerance capability
of an interconnection network.

The generalized k-connectivity was proposed by Hager in 1985 [4]. As an
extension of connectivity, it is also widely used in the study of internet topology
model and become a reference to measure the reliability and fault tolerance of
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networks. For S ⊆ V (G) with 2 ≤ |S| ≤ V (G), κG(S) refers to the maximum
number r of internally disjoint trees T1, . . . , Tr in G connecting S where V (Ti) ∩
V (Tj) = S and E(Ti) ∩ E(Tj) = ∅ for any 1 ≤ i 6= j ≤ r [4]. The generalized
k-connectivity of G, κk(G), is defined as the minimum value of κG(S) over all
S ⊆ V (G) and |S| = k [4]. For a graph G, its connectivity κ(G) is the smallest
number of vertices in a vertex set F that makes G−V (F ) disconnected or trivial.
Then, the equivalent definition of connectivity is given by Whitney, i.e., κ(G) =
min{κG(S) | S ⊆ V (G), |S| = 2} [14].

Since concepts of generalized connectivity were put forward, more and more
research results have been published, such as the generalized 3-connectivity of
some graphs, including Cartesian product graphs [3], graph products [7], Cayley
graphs on symmetric groups generated by trees and cycles [9], star graphs Sn
and bubble-sort graphs Bn [10], the Mycielskian of a graph [11], alternating group
graphs and (n, k)-star graph [15], regular graphs with some special properties [17]
and so on; the generalized 4-connectivity of some graphs, including hypercubes
[12], exchanged hypercubes [16], hierarchical cubic networks [18] and so on. In this
paper, we study the generalized 3-connectivity and the generalized 4-connectivity
of n-dimensional crossed cube and obtain that κ3(CQn) = κ4(CQn) = n − 1,
where n ≥ 2.

This paper is divided into five sections. The first two sections are Introduction
and Preliminaries, in the third section we introduce CQn, and in the fourth
section we prove our main result. In the last section, it is Conclusion.

2. Preliminaries

Let V (G) and E(G) be the vertex set and edge set of a graph G. If xy ∈ E(G)
and x 6= y, then we say x is a neighbor of y, or x is adjacent to y, and vice versa.
The neighborhood of vertex x (vertex set X, respectively) in G is a set which
contains all its neighbors in G except itself, that is, NG(x) = {y | xy ∈ E(G),
x 6= y} (NG(X) =

⋃
x∈X NG(x)−X, respectively).

For any edge xy ∈ E(G), we say this edge is incident with vertices x and
y. The degree dG(x) of x is the number of edges which are incident with it in
G, and we use δ(G) = min{dG(x) | x ∈ V (G)} to denote the minimum degree
of G. In this paper, we use Pxy or (x, y)-path to denote the path that begins
and ends with x and y, respectively. For any two (x, y)-paths Pxy and Qxy, if
V (Pxy)∩V (Qxy) = {x, y}, then we say they are internally disjoint. For X ⊆ V (G)
and Y ⊆ (V (G)\X), (X,Y )-paths refer to a family of paths which are internally
disjoint and all begin with the vertices of X and end with the vertices of Y . A
k-fan refers to a family of (x, Y )-paths which begin with x and end with different
vertices of Y , where |Y | = k.
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3. Definitions of CQn and Related Results

For any two-bit binary strings x = x1x0 and y = y1y0, if (x, y) ∈ {(00, 00), (10, 10),
(11, 01), (01, 11)}, then we say they are pair-related, that is x ∼ y [2].

Definition [2]. CQ1 is an edge with vertices 0 and 1. CQ2 is a 4-cycle 〈10, 00, 01,
11, 10〉. For n ≥ 3, the structure of n-dimensional crossed cube CQn is re-
cursive with two copies of CQn−1, CQ

0
n−1 and CQ1

n−1, whose vertex sets are
V (CQ0

n−1) = {0un−2 · · ·u1u0 | ui ∈ {0, 1}, 0 ≤ i ≤ n − 2} and V (CQ1
n−1) =

{1vn−2 · · · v1v0 | vi ∈ {0, 1}, 0 ≤ i ≤ n − 2}, respectively. For convenience, let
CQn = CQ0

n−1
⊗
CQ1

n−1. Moreover, for the vertices u = 0un−2 · · ·u1u0 and
v = 1vn−2 · · · v1v0, if u2i+1u2i ∼ v2i+1v2i for 0 ≤ i <

⌊
n−1
2

⌋
and un−2 = vn−2

when n is even, then they are adjacent to each other. (CQ3 and CQ4 are shown
in Figure 1.)

For any u = un−1 · · ·u1u0 ∈ V (CQn), its i-dimensional (0 ≤ i ≤ n − 1)
neighbor ui = vn−1 · · · v1v0 is defined as follows: (1) un−1 · · ·ui+1 = vn−1 · · · vi+1,
(2) ui 6= vi, (3) if i is odd, then ui−1 = vi−1, and (4) u2j+1u2j ∼ v2j+1v2j ,
0 ≤ j <

⌊
i
2

⌋
.

By Definition, we obtain that CQn is n-regular and CQn = CQ0
n−1

⊗
CQ1

n−1
=
(
CQ00

n−2
⊗
CQ01

n−2
)⊗(

CQ10
n−2

⊗
CQ11

n−2
)

= · · · =
(
CQ00···00

1

⊗
CQ00···01

1

)⊗
· · ·
⊗(

CQ11···10
1

⊗
CQ11···11

1

)
where CQ0

n−1=CQ00
n−2

⊗
CQ01

n−2, CQ
1
n−1=CQ10

n−2⊗
CQ11

n−2 and CQ00···00
1 , CQ00···01

1 , CQ11···10
1 , CQ11···11

1 are isomorphic to edges.

For any u = un−1 · · ·u1u0, u ∈ CQ
un−1···uj+1uj

j , its j-dimensional (1 ≤ j ≤ n− 1)

neighbor uj is in CQ
un−1···uj+1uj

j and 0-dimensional neighbor u0 is in CQ
un−1···u1

1 .

Figure 1. CQ3 and CQ4.

Lemma 1 [6]. κ(CQn) = n, where n ≥ 1.

Lemma 2 [5]. In CQn (n ≥ 2), the length of the cycle is at least 4.

Lemma 3 [13]. For any u ∈ V (CQn), ui,i+1 is the common neighborhood of ui

and ui+1 in CQn, where 0 ≤ i ≤ n− 2.
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Lemma 4 [8]. If there is an edge uv ∈ E(G) and dG(u) = dG(v) = δ(G), then
κk(G) ≤ δ(G)− 1 for 3 ≤ k ≤ |V (G)|.

Lemma 5 [1]. For a k-connected graph G, let u ∈ V (G) and Y ⊆ (V (G)\u)
with |Y | ≥ k. Then there exists a k-fan in G which starts with u and ends with
distinct vertices of Y .

Lemma 6 [1]. For a k-connected graph G, {u, v} ⊆ V (G) and u 6= v, there exists
a set of k internally disjoint paths in G to connect u and v.

Lemma 7 [1]. For a k-connected graph G, X ⊆ V (G) with |X| ≥ k and Y ⊆
(V (G)\X) with |Y | ≥ k, there exists a set of k pairwise disjoint (X,Y )-paths
in G.

Lemma 8 [12]. For an r-regular graph G, if κk(G) = r − 1 for k ≥ 4, then
κk−1(G) = r − 1.

Lemma 9. For any uv ∈ E
(
CQi

n−1
)
, if u ∈ V

(
CQi0

n−2
)

and v ∈ V
(
CQi1

n−2
)
,

then (n− 1)-dimensional neighbors of them must satisfy that one is in CQ
(1−i)0
n−2 ,

the other is in CQ
(1−i)1
n−2 and be (n− 2)-dimensional neighborhoods of each other,

where i ∈ {0, 1}.

Proof. Without loss of generality, let uv ∈ E
(
CQ0

n−1
)
, u = 00un−3 · · ·u1u0 ∈

V
(
CQ00

n−2
)
, v = un−2 = 01vn−3 · · · v1v0 ∈ V

(
CQ01

n−2
)
, and (n − 1)-dimensional

neighbors of them are un−1 = 1u′n−2u
′
n−3 · · ·u′1u′0 and vn−1 = 1v′n−2v

′
n−3 · · · v′1v′0,

respectively.

If n is even, then n− 1 is odd, by Definition, u′n−2 = 0 and v′n−2 = 1, that is,
un−1 = 10u′n−3 · · ·u′1u′0 ∈ V

(
CQ10

n−2
)

and vn−1 = 11v′n−3 · · · v′1v′0 ∈ V
(
CQ11

n−2
)
.

If n is odd, then n− 2 is odd, by v = un−2 and Definition, we obtain un−3 =
vn−3. Two cases will be discussed.

Combining Definition and the fact that n−1 is even, 0un−3 ∼ u′n−2u′n−3 and
1vn−3 ∼ v′n−2v′n−3.

Case 1. un−3 = vn−3 = 0. We have 0un−3 = 00 ∼ 00 = u′n−2u
′
n−3 and

1vn−3 = 10 ∼ 10 = v′n−2v
′
n−3, that is, un−1 = 100u′n−4 · · ·u′1u′0 ∈ V

(
CQ10

n−2
)

and
vn−1 = 110v′n−4 · · · v′1v′0 ∈ V

(
CQ11

n−2
)
.

Case 2. un−3 = vn−3 = 1. We have 0un−3 = 01 ∼ 11 = u′n−2u
′
n−3 and

1vn−3 = 11 ∼ 01 = v′n−2v
′
n−3, that is, un−1 = 111u′n−4 · · ·u′1u′0 ∈ V

(
CQ11

n−2
)

and
vn−1 = 101v′n−4 · · · v′1v′0 ∈ V

(
CQ10

n−2
)
.

Therefore, if un−1 ∈ V
(
CQ10

n−2
)
, then vn−1 ∈ V

(
CQ11

n−2
)
. And by Lemma 3,

we know vn−1 = un−2,n−1 is the neighbor of un−1, so they are (n−2)-dimensional
neighbors of each other.
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Lemma 10. For any {u, v, w} ⊆ V
(
CQi

n−1), we can find a path P1 in CQi
n−1

from u to v, n−2 internally disjoint trees T2, T3, . . . , Tn−1 in (CQi
n−1\P1)∪{u, v}

to connect {u, v, w}, and |V (Tk)| ≥ 4 for any 2 ≤ k ≤ n− 1, where i ∈ {0, 1}.
Proof. Without loss of generality, let {u, v, w} ⊆ V

(
CQ0

n−1), u = 0un−2 · · ·u1u0,
v = 0vn−2 · · · v1v0 and w = 0wn−2 · · ·w1w0. We set ul is the first bit (from left
to right) that does not satisfy condition ul = vl = wl (1 ≤ l ≤ n − 2), that
is, 0un−2 · · ·ul+1 = 0vn−2 · · · vl+1 = 0wn−2 · · ·wl+1. Without loss of general-

ity, let ul = vl = 0, wl = 1, then {u, v} ⊆ V
(
CQ

0un−2···ul+10
l

)
and {w} ⊆

V
(
CQ

0un−2···ul+11
l

)
.

By Lemma 6 and κ(CQl) = l, we can find an internally disjoint (u, v)-path

set P = {P1, . . . , Pl} in CQ
0un−2···ul+10
l . Moreover, if u is adjacent to v, then let

P1 = uv. Hence, |V (Pj)| ≥ 3 (2 ≤ j ≤ l), and we take any vertex on Pj except

u and v, and record it as xj . Obviously, wl ∈ CQ0un−2···ul+10
l , and two cases will

be discussed.

Case 1. wl /∈ {u, v}. There is a path P in CQ
0un−2···ul+10
l between wl and u

since CQ
0un−2···ul+10
l is connected. Without loss of generality, let the first common

vertex of P (here P starts at wl) and P be t and t ∈ V (Pl).
Let X = {xlj | 2 ≤ j ≤ l − 1} ∪ {ul, vl} with |X| = l, where xljs are the

l-dimensional neighbors of xjs. By Lemma 5, we can find l internally disjoint

(w,X)-paths Q1, . . . , Ql in CQ
0un−2···ul+11
l where ul ∈ Q1, x

l
j ∈ Qj and vl ∈ Ql.

Let Tj = Pj ∪ xjxlj ∪Qj for 2 ≤ j ≤ l− 1, Tl = Pl ∪ Pwlt ∪wwl where Pwlt refers

to the part from wl to t on P , and Tl+1 = uul ∪Q1 ∪Ql ∪ vvl. (See Figure 2.)
Case 2. wl ∈ {u, v}. Suppose wl = u. Let X = {xlj | 2 ≤ j ≤ l} ∪ {vl} with

|X| = l. By Lemma 5, we can find l internally disjoint (w,X)-paths Q1, . . . , Ql

in CQ
0un−2···ul+11
l where vl ∈ Q1, x

l
j ∈ Qj . Let Tj = Pj ∪ xjxlj ∪Qj for 2 ≤ j ≤ l

and Tl+1 = uw ∪Q1 ∪ vvl. (See Figure 3.)

From the recursive structure of CQk (l+ 1 ≤ k ≤ n− 2), CQ
0un−2···uk+1uk

k =

CQ
0un−2···ukuk−1

k−1
⊗
CQ

0un−2···ukuk−1

k−1 , then {u, v, w} ⊆ CQ
0un−2···uk+1uk

k and their

k-dimensional neighbors uk, vk, wk must be in CQ
0un−2···uk+1uk

k . CQ
0un−2···uk+1uk

k

is k-connected, so there is a tree T ′′k+1 in CQ
0un−2···uk+1uk

k connecting them. Let

Tk+1 = T ′′k+1 ∪ uuk ∪ vvk ∪ wwk, where l + 1 ≤ k ≤ n− 2. (See Figures 2, 3.)

Clearly, |V (Tk)| ≥ 4 for any 2 ≤ k ≤ n− 1. Hence, the lemma holds.

4. The Generalized 4-Connectivity of Crossed Cube

Lemma 11. For any S ⊆ V
(
CQn) with |S| = 4 and n ≥ 3, if |S∩V

(
CQi

n−1)| = 3

and |S ∩V
(
CQ1−i

n−1)| = 1, then we can find n− 1 internally disjoint trees in CQn

to connect S, where i ∈ {0, 1}.
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Figure 2. wl /∈ {u, v}.

Figure 3. wl = u.
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Proof. Let S = {x, y, z, w} and S ∩ V
(
CQi

n−1) = Si (i ∈ {0, 1}). Without
loss of generality, let |S0| = |{x, y, z}| = 3 and |S1| = |{w}| = 1, then

{
xn−1,

yn−1, zn−1
}
⊆ V

(
CQ1

n−1
)

and wn−1 ∈ V
(
CQ0

n−1
)
.

By Lemma 10, we can find a path P1 in CQ0
n−1 from x to y, an internally

disjoint tree set T = {T2, T3, . . . , Tn−1} in
(
CQ0

n−1\P1

)
∪ {x, y} connecting S0

and |V (Tj)| ≥ 4 for any Tj (2 ≤ j ≤ n−1). We take any vertex in V (Tj)\{x, y, z},
and record it as oj . Two cases will be considered.

Case 1. wn−1 /∈ {x, y, z}. There is a path Q in CQ0
n−1 between wn−1 and x

since CQ0
n−1 is connected. Let u be the first common vertex between P1 ∪T and

path Q, and here Q starts at wn−1, then u ∈ V (P1) or u ∈ V (T ) (without loss
of generality, let u ∈ V (P1) or u ∈ V (Tn−1)).

Let X =
{
on−1j | 2 ≤ j ≤ n − 2

}
∪ {yn−1, zn−1} where on−1j is the (n − 1)-

dimensional neighbor of oj and on−1j ∈ CQ1
n−1. By Lemma 5, we can find n− 1

internally disjoint (w,X)-paths R1, . . . , Rn−1 in CQ1
n−1 where zn−1 ∈ R1, o

n−1
j ∈

Rj (2 ≤ j ≤ n− 2), and yn−1 ∈ Rn−1.
If u ∈ V (P1), we let T ′1 = P1 ∪Qwn−1u ∪ wwn−1 ∪R1 ∪ zzn−1 where Qwn−1u

refers to the part from wn−1 to u on Q, T ′j = Tj ∪ ojon−1j ∪ Rj (2 ≤ j ≤ n − 2),

and T ′n−1 = Tn−1 ∪ yyn−1 ∪Rn−1.
If u ∈ V (Tn−1), we let T ′1 = P1 ∪ yyn−1 ∪ Rn−1 ∪ R1 ∪ zzn−1, T ′j = Tj ∪

ojo
n−1
j ∪Rj (2 ≤ j ≤ n− 2), and T ′n−1 = Tn−1 ∪Qwn−1u ∪ wwn−1.

Case 2. wn−1 ∈ {x, y, z}. Suppose wn−1 = x, andX =
{
on−1j | 2 ≤ j ≤ n−1

}
∪ {zn−1} where on−1j is the (n−1)-dimensional neighbor of oj and on−1j ∈ CQ1

n−1.
By Lemma 5, we can find n− 1 internally disjoint (w,X)-paths R1, . . . , Rn−1 in
CQ1

n−1 where zn−1 ∈ R1, o
n−1
j ∈ Rj (2 ≤ j ≤ n− 1).

Let T ′1 = P1 ∪ xw ∪R1 ∪ zzn−1, T ′j = Tj ∪ ojon−1j ∪Rj (2 ≤ j ≤ n− 1).
Hence, the lemma holds.

Lemma 12. For any S ⊆ V (CQn) with |S| = 4 and n ≥ 3, if
∣∣S∩V (CQ00

n−2
)∣∣ = 2

and
∣∣S ∩V (CQ10

n−2
)∣∣ = 2, then we can find n−1 internally disjoint trees in CQn

to connect S.

Proof. For any S = {x, y, z, w} ⊆ V (CQn), suppose {x, y} ⊆ V
(
CQ00

n−2
)

and
{z, w} ⊆ V

(
CQ10

n−2
)
.

Combining κ(CQ00
n−2) = κ(CQ10

n−2) = n − 2 and Lemma 6, we can find two
internally disjoint path sets, P = {P1, . . . , Pn−2} in CQ00

n−2 with x and y as ends,
and Q = {Q1, . . . , Qn−2} in CQ10

n−2 with z and w as ends. Moreover, if x is
adjacent to y, then let P1 = xy; if z is adjacent to w, then let Q1 = zw.

We take vertex u1 ∈ V (P1)\{x} for P1 6= xy and u1 = x for P1 = xy
and vertex uj ∈ V (Pj)\{x, y} for 2 ≤ j ≤ n − 2, then un−2j ∈ V

(
CQ01

n−2
)

for
1 ≤ j ≤ n − 2. We take vertex v1 ∈ V (Q1) and vertex vj ∈ V (Qj)\{z, w} for



798 H. Liu and D. Cheng

2 ≤ j ≤ n − 2, if vn−1j ∈ V
(
CQ01

n−2
)

for 1 ≤ j ≤ n − 2, then let oj = vj and

Tj = Qj ∪ ojon−1j ; if vn−1j ∈ V
(
CQ00

n−2
)

for 1 ≤ j ≤ n− 2, by vn−2j ∈ V
(
CQ11

n−2
)

and Lemma 9, vn−2,n−1j ∈ V
(
CQ01

n−2
)
, let oj = vn−2j and Tj = Qj ∪ vjoj ∪ ojon−1j .

Case 1. {xn−1, yn−1} ⊆ V
(
CQ10

n−2
)

and {zn−1, wn−1} ⊆ V
(
CQ00

n−2
)
. If

{xn−1, yn−1} 6= {z, w}, suppose xn−1 /∈ {z, w} and z /∈ {xn−1, yn−1}, that is,
zn−1 /∈ {x, y}. (See Figure 4.) There is a path P in CQ00

n−2 between zn−1 and
x since CQ00

n−2 is connected. Suppose u is the first common vertex between P
and path P , and here P starts at zn−1, that is, u ∈ P. Let u ∈ Pn−2 and
P ′ = Pzn−1u refers to the part from zn−1 to u on P . Similarly, there is a path
Q in CQ10

n−2 between xn−1 and z since CQ10
n−2 is connected. Suppose v is the

first common vertex between Q and path Q, and here Q starts at xn−1, that is,
v ∈ Q. Let v ∈ Qn−2 and Q′ = Qxn−1v refers to the part from xn−1 to v on Q.
(If {xn−1, yn−1} = {z, w}, suppose xn−1 = w, yn−1 = z, P ′ = yz and Q′ = xw.)

Let X =
{
un−2j | 2 ≤ j ≤ n − 3

}
with |X| = n − 4, Y =

{
oj | 2 ≤

j ≤ n − 3
}

and Y ′ = Y ∩ V
(
CQ11

n−2
)
, |Y ′| ≤ n − 4 and CQ11

n−2\Y ′ is con-
nected since κ(CQ11

n−2) = n − 2. So there is a tree T in CQ11
n−2\Y ′ connecting{

xn−2,n−1, yn−2,n−1, zn−2, wn−2}.

Figure 4. xn−1 /∈ {z, w} and z /∈ {xn−1, yn−1}.

Note that since {xn−1, z, w} ∩ Y = ∅, by Lemma 9 and definition of neigh-
borhood,

{
xn−2,n−1, zn−2, wn−2} ∩ Y ′ = ∅. And then we will prove that there is

always Y ′ that makes yn−2,n−1 /∈ Y ′. Assume yn−2,n−1 ∈ Y ′, without loss of gen-
erality, let yn−2,n−1 = o2, then yn−1 = v2. If Q1 = zw, by Lemma 2, |V (Pj)| ≥ 4
for all 2 ≤ j ≤ n − 3, we can retake vertex v2 in V (Q2)\{z, w, yn−1} such that
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Figure 5. xn−1 ∈ V
(
CQ10

n−2

)
, zn−1 ∈ V

(
CQ00

n−2

)
and xn−1 = z.

yn−2,n−1 /∈ Y ′. If Q1 6= zw, then |V (Pj)| ≥ 3 for all 1 ≤ j ≤ n− 3, we can mark
the original Q2 as Q1 and the original Q1 as Q2 such that yn−2,n−1 /∈ Y ′.

Let Y ′′ =
{
on−1j | 2 ≤ j ≤ n − 3

}
with |Y ′′| = n − 4. By Lemma 7, we can

find n− 4 pairwise disjoint (X,Y ′′)-paths R2, . . . , Rn−3 in CQ01
n−2\

{
xn−2, yn−2

}
where

{
un−2j , on−1j

}
⊆ V (Rj). If un−2s = on−1t and 2 ≤ s 6= t ≤ n− 3, the original

Qs is denoted as Qt and the original Qt is denoted as Qs, we have Rs = un−2s .
(The following similar situations are handled in this way and will not be repeated
one by one.)

Let T ′1 = P1∪xxn−1∪Q′∪Qn−2, T
′
j = Pj ∪ujun−2j ∪Rj ∪Tj (2 ≤ j ≤ n−3),

T ′n−2 = Pn−2 ∪ P ′ ∪ zzn−1 ∪ Q1, and T ′n−1 = xxn−2 ∪ xn−2xn−2,n−1 ∪ yyn−2 ∪
yn−2yn−2,n−1 ∪ zzn−2 ∪ wwn−2 ∪ T . (See Figure 4.)

Case 2.
{
xn−1, yn−1

}
⊆ V

(
CQ10

n−2
)

and
∣∣{zn−1, wn−1} ∩ V (CQ00

n−2
)∣∣ = 1,

or
∣∣{xn−1, yn−1} ∩ V (CQ10

n−2
)∣∣ = 1 and {zn−1, wn−1} ⊆ V

(
CQ00

n−2
)
.

Without loss of generality, let
{
xn−1, yn−1

}
⊂ V

(
CQ10

n−2
)

and
∣∣{zn−1, wn−1}

∩ V
(
CQ00

n−2
)∣∣ = |{zn−1}| = 1.

If zn−1 /∈ {x, y}, then xn−1 /∈ {z, w}. The proof is completely similar to
Case 1.

If zn−1∈{x, y}, suppose zn−1=y. The proof is similar to Case 1 except that
P ′ = yz and T ′n−2 = Pn−2 ∪ P ′ ∪Q1.

Case 3.
∣∣{xn−1, yn−1}∩V (CQ10

n−2
)∣∣ = 1 and

∣∣{zn−1, wn−1}∩V (CQ00
n−2
)∣∣ =

1. Without loss of generality, let xn−1 ∈ V
(
CQ10

n−2
)

and zn−1 ∈ V
(
CQ00

n−2
)
, then

yn−1 ∈ V
(
CQ11

n−2
)

and wn−1 ∈ V
(
CQ01

n−2
)
. Two cases will be considered.
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Case 3.1. xn−1 6= z. The proof is similar to Case 1 except that there is a tree
T in CQ11

n−2\Y ′ connecting
{
xn−2,n−1, yn−1, zn−2, wn−2} and T ′n−1 = xxn−2 ∪

xn−2xn−2,n−1 ∪ yyn−1 ∪ wwn−2 ∪ zzn−2 ∪ T .

Case 3.2. xn−1 = z. Suppose X = {un−2j | 2 ≤ j ≤ n− 2} with |X| = n− 3,

Y = {oj | 2 ≤ j ≤ n − 2} and Y ′ = Y ∩ V
(
CQ11

n−2
)
, then |Y ′| ≤ n − 3 and

CQ11
n−2\Y ′ is connected since κ(CQ11

n−2) = n−2. So there is a tree T in CQ11
n−2\Y ′

connecting
{
xn−2,n−1, yn−1, zn−2, wn−2}.

Let Y ′′ =
{
on−1j | 2 ≤ j ≤ n − 2

}
with |Y ′′| = n − 3. By Lemma 7, we can

find n− 3 pairwise disjoint (X,Y ′′)-paths R2, . . . , Rn−2 in CQ01
n−2\{xn−2} where{

un−2j , on−1j

}
⊆ V (Rj).

Let T ′1 = P1 ∪ xz ∪ Q1, T
′
j = Pj ∪ ujun−2j ∪ Rj ∪ Tj (2 ≤ j ≤ n − 2),

T ′n−1 = xxn−2 ∪ xn−2xn−2,n−1 ∪ yyn−1 ∪ wwn−2 ∪ zzn−2 ∪ T . (See Figure 5.)

Case 4.
∣∣{xn−1, yn−1}∩V (CQ10

n−2
)∣∣ ≥ 1 and

∣∣{zn−1, wn−1}∩V (CQ00
n−2
)∣∣ =

0, or
∣∣{xn−1, yn−1} ∩ V (CQ10

n−2
)∣∣ = 0 and

∣∣{zn−1, wn−1} ∩ V (CQ00
n−2
)∣∣ ≥ 1.

Without loss of generality, suppose
∣∣{xn−1, yn−1} ∩ V (CQ10

n−2
)∣∣ = 0 and

zn−1 ∈ V
(
CQ00

n−2
)
. (See Figure 6.) There is a path P in CQ00

n−2 between zn−1

and x since CQ00
n−2 is connected. Suppose u is the first common vertex between

P and path P , and here P starts at zn−1, that is, u ∈ P. Let u ∈ Pn−2,
X = {un−2j | 1 ≤ j ≤ n− 3}, Y = {oj | 1 ≤ j ≤ n− 3} and Y ′ = Y ∩ V

(
CQ11

n−2
)
,

|Y ′| ≤ n− 3 and CQ11
n−2\Y ′ is connected since κ(CQ11

n−2) = n− 2. So there is a
tree T in CQ11

n−2\Y ′ connecting {xn−1, yn−1, zn−2, wn−2}.

Figure 6. |{xn−1, yn−1} ∩ V
(
CQ10

n−2)| = 0 and |{zn−1, wn−1} ∩ V
(
CQ00

n−2)| ≥ 1.
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Figure 7. |{xn−1, yn−1} ∩ V
(
CQ10

n−2)| = |{zn−1, wn−1} ∩ V
(
CQ00

n−2)| = 0.

Let Y ′′ =
{
on−1j | 1 ≤ j ≤ n − 3

}
, by Lemma 7, we can find n − 3 pairwise

disjoint (X,Y ′′)-paths R1, . . . , Rn−3 in CQ01
n−2 where

{
un−2j , on−1j

}
⊆ V (Rj).

Let T ′j = Pj ∪ ujun−2j ∪ Rj ∪ Tj (1 ≤ j ≤ n − 3), T ′n−2 = Pn−2 ∪ Pzn−1u ∪
zzn−1 ∪Qn−2, and T ′n−1 = xxn−1 ∪ yyn−1 ∪ zzn−2 ∪ wwn−2 ∪ T . (See Figure 6.)

Case 5.
∣∣{xn−1, yn−1} ∩ V (CQ10

n−2
)∣∣ =

∣∣{zn−1, wn−1} ∩ V (CQ00
n−2
)∣∣ = 0. It

is easy to see that
{
xn−1, yn−1

}
∈ V

(
CQ11

n−2
)

and
{
zn−1, wn−1} ∈ V (CQ01

n−2
)
.

(See Figure 7.) Suppose X =
{
un−2j | 1 ≤ j ≤ n − 2

}
, Y =

{
oj | 2 ≤ j ≤

n − 2
}

and Y ′ = Y ∩ V
(
CQ11

n−2
)
, then |Y ′| ≤ n − 3 and CQ11

n−2\Y ′ is con-
nected since κ(CQ11

n−2) = n − 2. So there is a tree T in CQ11
n−2\Y ′ connecting{

xn−1, yn−1, zn−2, wn−2}.
Let Y ′′ =

{
on−1j | 1 ≤ j ≤ n − 2

}
where on−11 = wn−1. By Lemma 7,

we can find n− 2 pairwise disjoint (X,Y ′′)-paths R1, . . . , Rn−2 in CQ01
n−2 where{

un−2j , on−1j

}
⊆ V (Rj).

Let T ′j = Pj ∪ujun−2j ∪Rj ∪Tj (1 ≤ j ≤ n− 2), and T ′n−1 = xxn−1 ∪ yyn−1 ∪
zzn−2 ∪ wwn−2 ∪ T . (See Figure 7.)

Hence, the lemma holds.

Lemma 13. For any S ⊆ V (CQn) and |S| = 4 and n ≥ 3, if
∣∣S ∩V (CQ00

n−2
)∣∣ =

2, |S∩V
(
CQ10

n−2)| = 1 and
∣∣S∩V (CQ11

n−2
)∣∣ = 1, then we can find n−1 internally

disjoint trees in CQn to connect S.

Proof. For any S = {x, y, z, w} ⊆ V (CQn), suppose {x, y} ⊆ V
(
CQ00

n−2
)
, z ∈

V
(
CQ10

n−2
)

and w ∈ V
(
CQ11

n−2
)
.
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Combining κ(CQ00
n−2) = n−2 and Lemma 6, we can find an internally disjoint

path set P = {P1, . . . , Pn−2} in CQ00
n−2 with x and y as ends. Assume P1 = xy if

xy is an edge. And for any Pj (2 ≤ j ≤ n− 2), we take any vertex except x and
y, record it as uj . If un−1j ∈ V

(
CQ10

n−2
)
, then let oj = uj , and Tj = Pj ∪ojon−1j ; if

un−1j ∈ V
(
CQ11

n−2
)
, by un−2j ∈ V

(
CQ01

n−2
)

and Lemma 9, un−2,n−1j ∈ V
(
CQ10

n−2
)
,

let oj = un−2j and Tj = Pj ∪ ujoj ∪ ojon−1j .

Case 1.
∣∣{xn−1, yn−1} ∩ {z, w}∣∣ = 0. One of yn−1 and yn−1,n−2 must belong

to V
(
CQ10

n−2
)

and the other to V
(
CQ11

n−2
)
, suppose yn−1 ∈ V

(
CQ10

n−2
)
.

By z ∈ V
(
CQ10

n−2
)
, zn−2 ∈ V

(
CQ11

n−2
)

and Lemma 9, zn−1 or zn−2,n−1 is in
V
(
CQ00

n−2
)
, let zn−1 ∈ V

(
CQ00

n−2
)
.

There is a path P in CQ00
n−2 between zn−1 and x since CQ00

n−2 is connected.
Let u be the first common vertex between P and path P , and here P starts at
zn−1, that is, u ∈ P. Let u ∈ Pn−2.

Figure 8. |{xn−1, yn−1} ∩ {z, w}| = 0: zw /∈ E(CQ1
n−1).

Case 1.1. zw /∈ E
(
CQ1

n−1
)
. Since w ∈ V

(
CQ11

n−2
)
, wn−2 ∈ V

(
CQ10

n−2
)
,

by Lemma 9, wn−1 or wn−2,n−1 is in V
(
CQ01

n−2
)
, suppose wn−1 ∈ V

(
CQ01

n−2
)
.

(See Figure 8.) Let Y =
{
oj | 2 ≤ j ≤ n − 3

}
and Y ′ = Y ∩ V

(
CQ01

n−2
)
, then

|Y ′| ≤ n− 4 and CQ01
n−2\Y ′ is connected since κ(CQ01

n−2) = n− 2. So there is a
tree T in CQ01

n−2\Y ′ connecting
{
xn−2, yn−2, wn−1}.

Let Y ′′ =
{
on−1j | 2 ≤ j ≤ n − 3

}
∪ {yn−1, wn−2} and Y ′′′ =

{
on−1,n−2j |

2 ≤ j ≤ n − 3
}
∪
{
yn−1,n−2, zn−2

}
with |Y ′′| = |Y ′′′| = n − 2. By Lemma

5, we can find n − 2 internally disjoint (z, Y ′′)-paths Q1, . . . , Qn−2 in CQ10
n−2
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where yn−1 ∈ Q1, o
n−1
j ∈ Qj (2 ≤ j ≤ n − 3), wn−2 ∈ Qn−2, and n − 2

internally disjoint (w, Y ′′′)-paths R1, . . . , Rn−2 in CQ11
n−2 where yn−1,n−2 ∈ R1,

on−1,n−2j ∈ Rj (2 ≤ j ≤ n− 3), zn−2 ∈ Rn−2.

Let T ′1 = P1∪yyn−1∪Q1∪yn−1yn−1,n−2∪R1, T
′
j = Tj∪Qj∪on−1j on−1,n−2j ∪Rj

(2 ≤ j ≤ n − 3), T ′n−2 = Pn−2 ∪ Pzn−1u ∪ zzn−1 ∪ zzn−2 ∪ Rn−2 where Pzn−1u

refers to the part from zn−1 to u on P , and T ′n−1 = xxn−2∪ yyn−2∪wwn−1∪T ∪
wwn−2 ∪Qn−2. (See Figure 8.)

Figure 9. |{xn−1, yn−1} ∩ {z, w}| = 0: zw ∈ E(CQ1
n−1).

Case 1.2. zw ∈ E(CQ1
n−1). By z ∈ V

(
CQ10

n−2
)
, w = zn−2 ∈ V

(
CQ11

n−2
)
,

zn−1 ∈ V
(
CQ00

n−2
)

and Lemma 9, wn−1 ∈ V
(
CQ01

n−2
)
. (See Figure 9.)

Let Y =
{
oj | 2 ≤ j ≤ n − 3

}
and Y ′ = Y ∩ V

(
CQ01

n−2
)
, then |Y ′| ≤ n − 4

and CQ01
n−2\Y ′ is connected since κ

(
CQ01

n−2
)

= n − 2. So there is a tree T in
CQ01

n−2\Y ′ connecting
{
xn−2, yn−2, wn−1}.

Let Y ′′ =
{
on−1j | 2 ≤ j ≤ n − 3

}
∪ {xn−1, yn−1} and Y ′′′ =

{
on−1,n−2j | 2 ≤

j ≤ n− 3
}
∪ {xn−1,n−2} with |Y ′′| = n− 2 and |Y ′′′| = n− 3. Since κ(CQ10

n−2) =
κ(CQ11

n−2) = n − 2, by Lemma 5, we can find n − 2 internally disjoint (z, Y ′′)-
paths Q1, . . . , Qn−2 in CQ10

n−2 where xn−1 ∈ Q1, o
n−1
j ∈ Qj (2 ≤ j ≤ n − 3),

yn−1 ∈ Qn−2, and n−3 internally disjoint (w, Y ′′′)-paths R1, . . . , Rn−3 in CQ11
n−2

where xn−1,n−2 ∈ R1, o
n−1,n−2
j ∈ Rj (2 ≤ j ≤ n− 3).

Let T ′1 = P1∪xxn−1∪Q1∪xn−1xn−1,n−2∪R1, T
′
j = Tj∪Qj∪on−1j on−1,n−2j ∪Rj

(2 ≤ j ≤ n − 3), T ′n−2 = Pn−2 ∪ Pzn−1u ∪ zzn−1 ∪ zw where Pzn−1u refers to the
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part from zn−1 to u on P , and T ′n−1 = xxn−2∪yyn−2∪wwn−1∪T ∪yyn−1∪Qn−2.
(See Figure 9.)

Case 2. |{xn−1, yn−1} ∩ {z, w}| ≥ 1. Suppose xn−1 = z, then yn−1 = w or
yn−1 6= w.

Case 2.1. zw /∈ E(CQ1
n−1). By w ∈ V

(
CQ11

n−2
)
, wn−2 ∈ V

(
CQ10

n−2
)

and Lemma 9, we know wn−1 or wn−2,n−1 is in V
(
CQ01

n−2
)
, suppose wn−1 ∈

V
(
CQ01

n−2
)
. Let Y = {oj | 2 ≤ j ≤ n − 2} and Y ′ = Y ∩ V

(
CQ01

n−2
)
, then

|Y ′| ≤ n− 3 and CQ01
n−2\Y ′ is connected since κ(CQ01

n−2) = n− 2. So there is a
tree T in CQ01

n−2\Y ′ connecting {xn−2, yn−2, wn−1}.
Let Y ′′ =

{
on−1j | 2 ≤ j ≤ n − 2

}
∪ {wn−2} and Y ′′′ =

{
on−1,n−2j | 2 ≤ j ≤

n−2
}
∪{zn−2} with |Y ′′| = |Y ′′′| = n−2. By Lemma 5, we can find n−2 internally

disjoint (z, Y ′′)-paths Q1, . . . , Qn−2 in CQ10
n−2 where wn−2 ∈ Q1, o

n−1
j ∈ Qj

(2 ≤ j ≤ n − 2), and n − 2 internally disjoint (w, Y ′′′)-paths R1, . . . , Rn−2 in
CQ11

n−2 where zn−2 ∈ R1, o
n−1,n−2
j ∈ Rj (2 ≤ j ≤ n− 2).

Let T ′1 = P1∪xz∪zzn−2∪R1, T
′
j = Tj∪Qj∪on−1j on−1,n−2j ∪Rj (2 ≤ j ≤ n−2),

and T ′n−1 = xxn−2 ∪ yyn−2 ∪ wwn−1 ∪ T ∪ wwn−2 ∪Q1. (See Figure 10.)

Figure 10. xn−1 = z: zw /∈ E(CQ1
n−1).

Case 2.2. zw ∈ E
(
CQ1

n−1
)
. By z ∈ V

(
CQ10

n−2
)
, zn−2 = w ∈ V

(
CQ11

n−2
)
,

x = zn−1 ∈ V
(
CQ00

n−2
)

and Lemma 9, then wn−1 = zn−2,n−1 ∈ V
(
CQ01

n−2
)

and
yn−1 6= w. One of yn−1 and yn−1,n−2 must belong to V

(
CQ10

n−2
)

and the other
to V

(
CQ11

n−2
)
, suppose yn−1 ∈ V

(
CQ10

n−2
)
. Let Y = {oj | 2 ≤ j ≤ n − 2}
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Figure 11. xn−1 = z: zw ∈ E(CQ1
n−1).

and Y ′ = Y ∩ V
(
CQ01

n−2
)
, then |Y ′| ≤ n − 3 and CQ01

n−2\Y ′ is connected since
κ
(
CQ01

n−2
)

= n− 2. So there is a path P in CQ01
n−2\Y ′ connecting {yn−2, wn−1}.

Let Y ′′ =
{
on−1j | 2 ≤ j ≤ n − 2

}
∪ {yn−1} and Y ′′′ =

{
on−1,n−2j | 2 ≤ j ≤

n− 2
}
∪ {yn−1,n−2} with |Y ′′| = |Y ′′′| = n− 2. By Lemma 5, we can find n− 2

internally disjoint (z, Y ′′)-paths Q1, . . . , Qn−2 in CQ10
n−2 where yn−1 ∈ Q1, o

n−1
j ∈

Qj (2 ≤ j ≤ n− 2), and n− 2 internally disjoint (w, Y ′′′)-paths R1, . . . , Rn−2 in

CQ11
n−2 where yn−1,n−2 ∈ R1, o

n−1,n−2
j ∈ Rj (2 ≤ j ≤ n− 2).

Let T ′1 = P1∪yyn−1∪Q1∪yn−1yn−1,n−2∪R1, T
′
j = Tj∪Qj∪on−1j on−1,n−2j ∪Rj

(2 ≤ j ≤ n− 2), T ′n−1 = yyn−2 ∪ P ∪ wwn−1 ∪ zw ∪ xz. (See Figure 11.)

Hence, the lemma holds.

Lemma 14. For any S ⊆ V (CQn) with |S| = 4 and n ≥ 3, if
∣∣S∩V (CQ00

n−2
)∣∣ =∣∣S ∩ V (CQ01

n−2
)∣∣ =

∣∣S ∩ V (CQ10
n−2
)∣∣ =

∣∣S ∩ V (CQ11
n−2
)∣∣ = 1, then we can find

n− 1 internally disjoint trees in CQn to connect S.

Proof. For any S = {x, y, z, w} ⊆ V (CQn), suppose x ∈ V
(
CQ00

n−2
)
, y ∈

V
(
CQ01

n−2
)
, z ∈ V

(
CQ10

n−2
)

and w ∈ V
(
CQ11

n−2
)
.

By κ
(
CQ0

n−1
)

= n− 1 and Lemma 6, we can find an internally disjoint path
set P = {P1, . . . , Pn−1} in CQ0

n−1 with x and y as ends (if x is adjacent to y,
then let P1 = xy). And for any Pj , there is an edge ujvj ∈ E(Pj) such that
uj ∈ V

(
CQ00

n−2
)

and vj ∈ V
(
CQ01

n−2
)

since x ∈ V
(
CQ00

n−2
)
, y ∈ V

(
CQ01

n−2
)
,

where 1 ≤ j ≤ n − 1. (If P1 = xy, let u1 = x and v1 = y.) By Lemma
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9, un−1j ∈ V
(
CQ10

n−2
)

or vn−1j ∈ V
(
CQ10

n−2
)
. Without loss of generality, let

un−1j ∈ V
(
CQ10

n−2
)

and Tj = Pj ∪ ujun−1j where 1 ≤ j ≤ n− 1.

Case 1. zn−1 /∈ {x, y}. There is a path P in CQ0
n−1 between zn−1 and x

since CQ0
n−1 is connected. Let u be the first common vertex between P and

path P , and here P starts at zn−1, that is, u ∈ P, suppose u ∈ Pn−1. Let
Y = {un−1j | 1 ≤ j ≤ n − 2} with |Y | = n − 2. By Lemma 5, we can find

n − 2 internally disjoint (z, Y )-paths Q1, . . . , Qn−2 in CQ10
n−2 where un−1j ∈ Qj

(1 ≤ j ≤ n− 2). Two subcases will be discussed.

Figure 12. zn−1 /∈ {x, y}: wn−2 6= z.

Case 1.1. wn−2 6= z. There is a path Q in CQ10
n−2 between wn−2 and z since

CQ10
n−2 is connected. Let v be the first common vertex between Q1 ∪ · · · ∪Qn−2

and path Q, and here Q starts at wn−2, that is, v ∈ Q1 ∪ · · · ∪ Qn−2, suppose
v ∈ Qn−2. Let Y ′ =

{
un−1,n−2j | 1 ≤ j ≤ n − 3

}
∪ {zn−2} with |Y ′| = n − 2,

by Lemma 5, we can find n− 2 internally disjoint (w, Y ′)-paths R1, . . . , Rn−2 in
CQ11

n−2 where un−1,n−2j ∈ Rj (1 ≤ j ≤ n− 3) and zn−2 ∈ Rn−2.

Let T ′j = Tj ∪Qj ∪un−1j un−1,n−2j ∪Rj (1 ≤ j ≤ n− 3), T ′n−2 = Tn−2∪Qn−2∪
Qwn−2v∪wwn−2, and T ′n−1 = Pn−1∪Pzn−1u∪zzn−1∪zzn−2∪Rn−2 where Qwn−2v

refers to the part from wn−2 to v on Q, Pzn−1u refers to the part from zn−1 to u
on P . (See Figure 12.)

Case 1.2. wn−2 = z. Let Y ′ = {un−1,n−2j | 1 ≤ j ≤ n− 2} with |Y ′| = n− 2.
By Lemma 5, we can find n− 2 internally disjoint (w, Y ′)-paths R1, . . . , Rn−2 in
CQ11

n−2 where un−1,n−2j ∈ Rj (1 ≤ j ≤ n− 2).
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Figure 13. zn−1 /∈ {x, y}: wn−2 = z.

Let T ′j = Tj ∪ Qj ∪ un−1j un−1,n−2j ∪ Rj (1 ≤ j ≤ n − 2), and T ′n−1 = Pn−1 ∪
Pzn−1u ∪ zzn−1 ∪ zw. (See Figure 13.)

Figure 14. zn−1 ∈ {x, y}: wn−2 6= z.

Case 2. zn−1 ∈ {x, y}. Let x = zn−1 and Y =
{
un−1j | 2 ≤ j ≤ n − 1

}
with |Y | = n− 2. By Lemma 5, we can find n− 2 internally disjoint (z, Y )-paths
Q2, . . . , Qn−1 in CQ10

n−2 where un−1j ∈ Qj (2 ≤ j ≤ n− 1).
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Figure 15. zn−1 ∈ {x, y}: wn−2 = z.

Case 2.1. wn−2 6= z. There is a path Q in CQ10
n−2 between wn−2 and z since

CQ10
n−2 is connected. Let v be the first common vertex between Q2 ∪ · · · ∪Qn−1

and path Q, and here Q starts at wn−2, that is, v ∈ Q2 ∪ · · · ∪ Qn−1, suppose
v ∈ Qn−1. Let Y ′ =

{
un−1,n−2j | 2 ≤ j ≤ n − 2

}
∪ {zn−2} with |Y ′| = n − 2,

by Lemma 5, we can find n− 2 internally disjoint (w, Y ′)-paths R2, . . . , Rn−1 in
CQ11

n−2 where un−1,n−2j ∈ Rj (2 ≤ j ≤ n− 2) and zn−2 ∈ Rn−1.

Let T ′1 = P1 ∪xz ∪ zzn−2 ∪Rn−1, T
′
j = Tj ∪Qj ∪un−1j un−1,n−2j ∪Rj (2 ≤ j ≤

n − 2), and T ′n−1 = Tn−1 ∪ Qn−1 ∪ Qwn−2v ∪ wwn−2 where Qwn−2v refers to the
part from wn−2 to v on Q. (See Figure 14.)

Case 2.2. wn−2 = z. Let Y ′ = {un−1,n−2j | 2 ≤ j ≤ n− 1} with |Y ′| = n− 2,
by Lemma 5, we can find n− 2 internally disjoint (w, Y ′)-paths R2, . . . , Rn−1 in
CQ11

n−2 where un−1,n−2j ∈ Rj (2 ≤ j ≤ n− 1).

Let T ′1 = P1∪xz∪zw, T ′j = Tj ∪Qj ∪un−1j un−1,n−2j ∪Rj where 2 ≤ j ≤ n−1.
(See Figure 15.)

Hence, the lemma holds.

Theorem 15. κ4(CQn) = n− 1 for n ≥ 2.

Proof. By Lemma 4 and the fact that CQn (n ≥ 2) is n-regular, we have
κ4(CQn) ≤ δ(CQn)− 1 = n− 1. Next, we only need to prove κ4(CQn) ≥ n− 1
for n ≥ 2. That is, for any S ⊂ V (CQn) with |S| = 4, we can find n−1 internally
disjoint trees in CQn to connect S. Let S = {x, y, z, w} and S ∩V

(
CQi

n−1) = Si

(i ∈ {0, 1}). For n = 2, by CQ2 is 2-connected with only four vertices, it is easy
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to know that κ4(CQ2) ≥ 1, then κ4(CQ2) = 1. For n ≥ 3, three cases will be
considered.

Case 1. |S0| = 4 or |S1| = 4. Without loss of generality, let |S0| = 4, then{
xn−1, yn−1, zn−1, wn−1} ⊂ V (CQ1

n−1). We will prove it by induction hypothesis
on n. The conclusion holds for n = 2, suppose it also holds while 3 ≤ l ≤ n−1. By
CQ0

n−1
∼= CQn−1 and induction hypothesis, κ4(CQn−1) = n− 2, that is, we can

find n−2 internally disjoint trees T1, . . . , Tn−2 in CQ0
n−1 connecting S. There is a

tree T in CQ1
n−1 connecting

{
xn−1, yn−1, zn−1, wn−1} since CQ1

n−1 is connected.
Let Tn−1 = xxn−1 ∪ yyn−1 ∪ zzn−1 ∪ wwn−1 ∪ T , where V (Tn−1) ∩ V (Tj) =
{x, y, z, w} and E(Tn−1) ∩ E(Tj) = ∅ for any 1 ≤ j ≤ n− 2.

Case 2. |Si| = 3 and |S1−i| = 1, where i = 0 or 1. By Lemma 11, the
theorem is true.

Case 3. |S0| = |S1| = 2. By CQ00
n−2
∼= CQ01

n−2
∼= CQ10

n−2
∼= CQ11

n−2
∼= CQn−2,

we only need to consider three subcases.

Case 3.1.
∣∣S0 ∩ V

(
CQ00

n−2
)∣∣ =

∣∣S1 ∩ V
(
CQ10

n−2
)∣∣ = 2. By Lemma 12, the

theorem is true.

Case 3.2.
∣∣S0 ∩ V

(
CQ00

n−2
)∣∣ = 2,

∣∣S1 ∩ V
(
CQ10

n−2
)∣∣ =

∣∣S1 ∩ V
(
CQ11

n−2
)∣∣ = 1.

By Lemma 13, the theorem is true.

Case 3.3.
∣∣S0 ∩ V

(
CQ00

n−2
)∣∣ =

∣∣S0 ∩ V
(
CQ01

n−2
)∣∣ =

∣∣S1 ∩ V
(
CQ10

n−2
)∣∣ =∣∣S1 ∩ V

(
CQ11

n−2
)∣∣ = 1. By Lemma 14, the theorem is true.

Hence, the theorem holds.

By Lemma 8 and Theorem 15, there is the following theorem.

Theorem 16. κ3(CQn) = n− 1 for n ≥ 2.

5. Conclusion

In this paper, we discuss the generalized 3-connectivity and the generalized 4-
connectivity of n-dimensional crossed cube CQn and obtain κ3(CQn) = κ4(CQn)
= n−1 for n ≥ 2. This provides a new reference for measuring the fault tolerance
of CQn.
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