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Abstract

The generalized connectivity, an extension of connectivity, provides a
new reference for measuring the fault tolerance of networks. For any con-
nected graph G, let S C V(G) and 2 < |S| < V(G); kg (9) refers to the
maximum number of internally disjoint trees in G connecting S. The gener-
alized k-connectivity of G, ki (G), is defined as the minimum value of kg (S)
over all S C V(G) with |S| = k. The n-dimensional crossed cube CQ,,
as a hypercube-like network, is considered as an attractive alternative to
hypercube network because of its many good properties. In this paper, we
study the generalized 3-connectivity and the generalized 4-connectivity of
CQ, and obtain k3(CQ,) = k4(CQy) =n — 1, where n > 2.

Keywords: crossed cube, internally disjoint trees, generalized k-connectivity,
fault tolerance.
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1. INTRODUCTION

A graph G = (V(G), E(G)) is often used to simulate an interconnection network,
and in the process of simulation, vertex set and edge set of G refer to the pro-
cessor set and the communication link set between the processors, respectively.
Connectivity is an important parameter to measure the fault tolerance capability
of an interconnection network.

The generalized k-connectivity was proposed by Hager in 1985 [4]. As an
extension of connectivity, it is also widely used in the study of internet topology
model and become a reference to measure the reliability and fault tolerance of
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networks. For S C V(G) with 2 < |S| < V(G), kg (S) refers to the maximum
number r of internally disjoint trees 77, ...,T, in G connecting S where V(7;) N
V(Tj) = S and E(T;) N E(T;) = 0 for any 1 < i # j < r [4]. The generalized
k-connectivity of G, ki(G), is defined as the minimum value of kg(S) over all
S C V(G) and |S| = k [4]. For a graph G, its connectivity x(G) is the smallest
number of vertices in a vertex set F' that makes G —V (F') disconnected or trivial.
Then, the equivalent definition of connectivity is given by Whitney, i.e., k(G) =
min{kg(S) | S CV(G),|S| = 2} [14].

Since concepts of generalized connectivity were put forward, more and more
research results have been published, such as the generalized 3-connectivity of
some graphs, including Cartesian product graphs [3], graph products [7], Cayley
graphs on symmetric groups generated by trees and cycles [9], star graphs S,
and bubble-sort graphs B,, [10], the Mycielskian of a graph [11], alternating group
graphs and (n, k)-star graph [15], regular graphs with some special properties [17]
and so on; the generalized 4-connectivity of some graphs, including hypercubes
[12], exchanged hypercubes [16], hierarchical cubic networks [18] and so on. In this
paper, we study the generalized 3-connectivity and the generalized 4-connectivity
of n-dimensional crossed cube and obtain that k3(CQ,) = ki1(CQn) = n — 1,
where n > 2.

This paper is divided into five sections. The first two sections are Introduction
and Preliminaries, in the third section we introduce C'Q,,, and in the fourth
section we prove our main result. In the last section, it is Conclusion.

2. PRELIMINARIES

Let V(G) and E(G) be the vertex set and edge set of a graph G. If zy € E(G)
and x # y, then we say x is a neighbor of y, or x is adjacent to y, and vice versa.
The neighborhood of vertex x (vertex set X, respectively) in G is a set which
contains all its neighbors in G except itself, that is, Ng(z) = {y | zy € E(G),
r #y} (Na(X) = U,ex Na(z) — X, respectively).

For any edge xy € FE(G), we say this edge is incident with vertices = and
y. The degree dg(z) of x is the number of edges which are incident with it in
G, and we use 0(G) = min{dg(z) | x € V(G)} to denote the minimum degree
of G. In this paper, we use Py, or (z,y)-path to denote the path that begins
and ends with 2 and y, respectively. For any two (z,y)-paths Py, and Qgy, if
V(Ppy) NV (Quy) = {z,y}, then we say they are internally disjoint. For X C V(G)
and Y C (V(G)\X), (X,Y)-paths refer to a family of paths which are internally
disjoint and all begin with the vertices of X and end with the vertices of Y. A
k-fan refers to a family of (x,Y')-paths which begin with x and end with different
vertices of Y, where |Y| = k.
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3. DEFINITIONS OF CQ,, AND RELATED RESULTS

For any two-bit binary strings x = x120 and y = y1yo, if (z,y) € {(00,00), (10, 10),
(11,01),(01,11)}, then we say they are pair-related, that is  ~ y [2].

Definition [2]. CQ; is an edge with vertices 0 and 1. CQ2 is a 4-cycle (10,00, 01,
11,10). For n > 3, the structure of n-dimensional crossed cube CQ, is re-
cursive with two copies of CQ,_1, C’Q%_l and CQ}_;, whose vertex sets are
V(CQ% 1) = {Oup—2---uiug | u; € {0,1},0 < i < n—2} and V(CQL ;) =
{lvp—o---v1vg | v; € {0,1}, 0 < i < n — 2}, respectively. For convenience, let
CQn = CQ°_,®CQL_,. Moreover, for the vertices u = Oup_o---ujug and
v = 1Un,2 -+ - V10, if U2i4+1U25 ™~ V2i4+1V2; for 0 S 1< LHT_IJ and Up—2 = Un—2
when n is even, then they are adjacent to each other. (CQs and C'Q4 are shown
in Figure 1.)

For any w = up—1---ujug € V(CQy), its i-dimensional (0 < i < n — 1)
neighbor u’ = v,,_1 - - - v1vg is defined as follows: (1) Up_1 - Uit1 = V1 - - Vit1,
(2) U; 7& Vi, (3) if 4 is Odd, then Uj—1 = Vij—1, and (4) U2j+1U2j ~ UQjJ,.lUQj,
0<i< |3

By Definition, we obtain that CQ,, is n-regular and CQ,, = CQ° ; Q CQL _,
= (CQUL®CQIL) ® (CQIL®CAIL,) = -+ = (CAP @ CQP) @
@ (CRIMY® Q) where CQ)_1 =CQpY, Q@ CQLL,, CQp_1 =CQY,
KRC ,111_2 and QY0 Q001 CcQI10 CQit 1! are isomorphic to edges.

For any u = u, 1 - uyug, u € CQ;" ™ its j-dimensional (1 <j <n —1)

neighbor v’ is in CQ;" HHY and 0-dimensional neighbor w is in CQY" 7.

00 100

010
111

011 101
COs

Figure 1. CQ3 and CQy.
Lemma 1 [6]. x(CQ,) =n, where n > 1.
Lemma 2 [5]. In CQ,, (n > 2), the length of the cycle is at least 4.

Lemma 3 [13]. For any u € V(CQy,), u™*! is the common neighborhood of u’
and u'tt in CQ,,, where 0 < i <n — 2.
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Lemma 4 [8]. If there is an edge uwv € E(G) and dg(u) = dg(v) = 0(G), then
kk(G) <4(GQ) =1 for 3 <k < |V(G)|.

Lemma 5 [1]. For a k-connected graph G, let w € V(G) and Y C (V(G)\u)
with |Y| > k. Then there exists a k-fan in G which starts with v and ends with
distinct vertices of Y.

Lemma 6 [1]. For a k-connected graph G, {u,v} C V(G) and u # v, there exists
a set of k internally disjoint paths in G to connect u and v.

Lemma 7 [1]. For a k-connected graph G, X C V(G) with |X| > k and Y C
(V(G)\X) with |Y| > k, there exists a set of k pairwise disjoint (X,Y)-paths
in G.

Lemma 8 [12]. For an r-regular graph G, if kp(G) = r — 1 for k > 4, then
kk—1(G) =1 — 1.

Lemma 9. For any wv € E(CQ._,), ifu € V(CQY_,) and v € V(CQL_,),

then (n — 1)-dimensional neighbors of them must satisfy that one is in CQS:QZ')O,

the other is in CQS__;)I and be (n — 2)-dimensional neighborhoods of each other,
where i € {0,1}.
Proof. Without loss of generality, let uv € E (C’Qg_l), u = 00up—3---ujug €
V(CQY,), v=u""?=0lv,_3---vivg € V(CQY,), and (n — 1)-dimensional
neighbors of them are u"~! = 1u/,_yu! 5+ wjufy and vt = 1), 0!, 4 v}v},
respectively.

If n is even, then n —1 is odd, by Definition, u/,_, = 0 and v],_, = 1, that is,
u"t =10u),_g---uful € V(CQLE,) and vt = 110),_5---vjv € V(CQLL,).

If n is odd, then n — 2 is odd, by v = ©"~2 and Definition, we obtain u,_3 =
vn—3. Two cases will be discussed.

Combining Definition and the fact that n — 1 is even, Ou,—3 ~ u),_5u, 4 and
lvp—3 ~ V), _oU)_5.

Case 1. up—3 = vy—3 = 0. We have Ou,—3 = 00 ~ 00 = u,_oul 5 and
lvp—3 =10 ~ 10 = v),_,v],_5, that is, u"~* = 100u],_, - --vjuf € V(CQy,) and

n—3> n—2

"t =1100],_4 -+ vjvy € V(CQ;L,).

Case 2. up—3 = vy,—3 = 1. We have Ou,—3 = 01 ~ 11 = u],_oul,_5 and
lv,_3 =11 ~ 01 = v}, _,v!,_s, that is, u"~! = 111u),_,---ujuy € V(CQ;L,) and
"l = 1010, _, - vfv) € V(CQY,).

Therefore, if u”~! € V(CQ}IO_Q), then v 1 € V(CQ}}_Z). And by Lemma 3,
we know v 1 = 4”271 is the neighbor of u"~!, so they are (n —2)-dimensional
neighbors of each other. [
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Lemma 10. For any {u,v,w} C V(CQ;_l), we can find a path Py in CQ¢_,
from u to v, n—2 internally disjoint trees Ty, Ts, ..., Ty—1 in (CQ% _,\P)U{u,v}
to connect {u,v,w}, and |V (T})| > 4 for any 2 < k <n —1, where i € {0,1}.

Proof. Without loss of generality, let {u, v, w} C V(CQ%_l), u = 0Up_o- - Ui,
v = 0vp_g---v199 and w = Owp_o - - - wiwy. We set u; is the first bit (from left
to right) that does not satisfy condition u; = vy = w; (1 <1 < n — 2), that
is, Oup—2---ur1 = Ovp_g - -1 = Owp—g---wip1. Without loss of general-
ity, let w; = v; = 0, w; = 1, then {u,v} C V(CQ?u”_Qmul“O) and {w} C
S )

By Lemma 6 and x(CQ;) = [, we can find an internally disjoint (u,v)-path
set P={Py,...,P}in CQ?U"’Q'“W“O. Moreover, if u is adjacent to v, then let
Py = uv. Hence, |[V(P;)| >3 (2 < j <), and we take any vertex on P; except
u and v, and record it as z;. Obviously, w! € CQ?u"_Qmu’“O, and two cases will
be discussed.

Case 1. w' ¢ {u,v}. There is a path P in CQZOU"_Q'"W“O between w! and u
since CQ?U”_Q'"W“O is connected. Without loss of generality, let the first common
vertex of P (here P starts at w') and P be t and t € V(P)).

Let X = {:1:2 |2 < j <1—1}u{u v} with | X| = I, where xés are the
l-dimensional neighbors of x;s. By Lemma 5, we can find [ internally disjoint
(w, X)-paths Q1,...,Q; in C’C‘??u"*?mu“rl1 where u! € Qq, $§ € Qj and v € Q.
Let T; = P; U J:jxé- uQ, for2<j<l-1,T = PUP,, Uww! where P, refers
to the part from w! to t on P, and Tj4; = uu! U Q; U Q; Uvv'. (See Figure 2.)

Case 2. w' € {u,v}. Suppose w' = u. Let X = {xé | 2 <j<i}u{v'} with
|X| = 1. By Lemma 5, we can find [ internally disjoint (w, X)-paths Q1,...,Q;
in CQ?u”_Qmul“l where v € Q1 :cé €Qj. Let T} = P; U arjajz» UQjfor2<j<lI
and T4 1 = vw U Q1 Uwvv!. (See Figure 3.)

From the recursive structure of CQy (I+1 <k <n—2), C’qu"’”'“k““k =
QYR @ CQp T then {u, v, w} C CQY U and their

. : . . O -+ Uk 4 1T Oy o+t 1T
k-dimensional neighbors u¥, v*, w* must be in CQ, "> 0@, ">

o k
is k-connected, so there is a tree T}/, | in Cqun_Qmuk’“uk connecting them. Let
Tei1 = Tlg+1 Uuu® Uvo? Uwwk, where I +1 < k < n — 2. (See Figures 2, 3.)
Clearly, |V (Ty)| > 4 for any 2 < k < n — 1. Hence, the lemma holds. ]

4. THE GENERALIZED 4-CONNECTIVITY OF CROSSED CUBE

Lemma 11. For any S C V(CQy,) with |S| =4 andn > 3, if SNV (CQ%_,)| =3
and |SN V(C’Q%L:"l)\ =1, then we can find n — 1 internally disjoint trees in CQy,
to connect S, where i € {0,1}.
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Figure 2. w' ¢ {u,v}.
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Figure 3. w! = u.
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Proof. Let S = {z,y,z,w} and SN V(CQ;_l) = S (i € {0,1}). Without
loss of generality, let [S°| = |{z,y,2}| = 3 and |S'| = |[{w}| = 1, then {z",
y" L z”fl} C V(CQ}l_l) and w" ! € V(CQg_l).

By Lemma 10, we can find a path P; in CQY_, from x to y, an internally
disjoint tree set T = {13, T3,...,T,—1} in (CQY_\P1) U {z,y} connecting S°
and |V (T;)| > 4 for any T; (2 < j < n—1). We take any vertex in V(7;)\{z, vy, 2},
and record it as 0;. Two cases will be considered.

Case 1. w"! ¢ {z,y,2}. There is a path Q in CQ%_; between w" ! and z
since CQY_, is connected. Let u be the first common vertex between P; U7 and
path @, and here Q starts at w™ !, then u € V(P;) or u € V(T) (without loss
of generality, let u € V(P;) or u € V(T),—1)).

Let X = {o;-‘_l |2 <j<n-2}Uu{y" ! 2"} where 0;-‘_1 is the (n — 1)-
dimensional neighbor of o; and 0?_1 € CQL_,. By Lemma 5, we can find n — 1
internally disjoint (w, X)-paths Ry,..., R,_1 in CQL_| where 2"~! € Ry, 0;-‘71 €
R;(2<j<n-2),and y" ' € Ry_1.

If u e V(Pp), welet T) = P UQun-1, Uww™ U Ry U221 where Qun-1,
refers to the part from w™ ! to u on Q, T]’- =T;U 0]-0?_1 UR; (2<j<n-—-2),
and T/ | =T, 1Uyy" LUR, 1.

Ifue V(T,1), welet T/ = PLUyy" " UR, 1 UR Uz, T) = Tj U
ojogh1 URj (2<j<n—2),and T/, | = Tp—1 U Qun-1, Jww" L.

Case2. w" ' € {x,y,2}. Suppose w" ! = x,and X = {0?_1 |12<5< n—l}
U {z"!} where 0?71 is the (n—1)-dimensional neighbor of 0; and 07]7”71 ceoqQl .
By Lemma 5, we can find n — 1 internally disjoint (w, X)-paths Ri,..., R,_1 in
CQL_; where 2"~ ! € Ry, 0?71 €ER; (2<j<n-1).

Let T{ = PLUzwU Ry U 22" 1, T) = Tj U oo} ' UR; (2<j <n-—1).

Hence, the lemma holds. [ |

Lemma 12. For any S C V(CQy) with|S| =4 andn > 3, if |SNV (CQY,)| =2
and ‘SOV(CQ}ZO_Q)‘ = 2, then we can find n— 1 internally disjoint trees in CQy,
to connect S.

Proof. For any S = {z,y,z,w} C V(CQ,), suppose {z,y} C V(CQQLO_Q) and
{va} g V(CQ'}LO*2)

Combining k(CQY ,) = k(CQL,) = n — 2 and Lemma 6, we can find two
internally disjoint path sets, P = {P, ..., Py,_2} in CQY , with z and y as ends,
and @ = {Q1,...,Qn—2} in CQL, with 2 and w as ends. Moreover, if x is
adjacent to y, then let P = xy; if z is adjacent to w, then let Q1 = zw.

We take vertex uy € V(P)\{z} for P, # zy and w3 = z for P = zy
and vertex u; € V(Pj)\{z,y} for 2 < j < n — 2, then u}l_Q € V(CQ,) for
1 <j <n—2. We take vertex v; € V(Q1) and vertex v; € V(Q;)\{z,w} for
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2<j<n-—2if v;?_l € V(Cle_Q) for 1 < j < n — 2, then let 0; = v; and
T; =Q; U ojo;.lfl; if vjr-“l eVv(CQY,) for 1 <j<n-2 by 0?72 eVv(CcQ:L,)
and Lemma 9, U;L_Q’n_l € V(CQ%{Q), let 0j = v;?_Q and T; = Q; Uvjo; Uojogl_l.

Case 1. {z" 1y 1} C V(C’ = 0,) and {z"" 1w} C V(CQY,). If
{an=L g1} £ {z,w}, suppose 2" ¢ {z,w} and z ¢ {x""! y""1}, that is,
2"~ ¢ {x,y}. (See Figure 4.) There is a path P in CQ% , between 2"~! and
x since CQY , is connected. Suppose u is the first common vertex between P
and path P, and here P starts at 2" ', that is, v € P. Let u € P,_» and
P’ = P,.1, refers to the part from 271 to u on P. Similarly, there is a path
Q in CQL, between 2"~ and 2z since CQ, is connected. Suppose v is the
first common vertex between Q and path Q, and here @ starts at 2"~ !, that is,
ve Q. LetveE @, oand Q = Qun-1, refers to the part from z"~! to v on Q.
(If {z"1,y" 1} = {z,w}, suppose 2" ' = w, y" ! = 2, P' = yz and Q' = zw.)

LetX:{u;?—Z\2§jgn—3}with|X|:n—4 Y:{oj12<
jgn—3}andY/:YﬂV(C L), \Y’\<n—4andCQ L\Y is con-
nected since IQ(CQ 5) =mn—2. So there is a tree T in CQM ,\Y' connecting
{xnf2,n71’ynf2,n P 2 wn 2}

Figure 4. 2”71 ¢ {z,w} and z ¢ {z"~ 1 y"~1}.

Note that since {#" !, z,w} NY = (), by Lemma 9 and definition of neigh-
borhood, {z"~%"! 2""2 w2} N Y’ = (). And then we will prove that there is
always Y’ that makes y"~2"~1 ¢ Y'. Assume y"~2"~! € Y’  without loss of gen-
erality, let "2~ = 0y, then y"~! = vy. If Q1 = 2w, by Lemma 2, |V (P;)| > 4
for all 2 < j < n — 3, we can retake vertex ve in V(Q2)\{z, w,y"~ 1} such that
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00
coy, 0%,

Figure 5. 2" € V(CQIY,), 2" e V(CQY,) and a"! = 2.

n—2

Y2l @ YU If Qr # 2w, then |V(P;)| > 3 for all 1 < j < n — 3, we can mark
the original Q2 as 1 and the original Q; as Qg such that y"~2"~1 ¢ Y’

Let Y = {o?_1 |2 <j<n-3} with [Y”| =n —4. By Lemma 7, we can
find n — 4 pairwise disjoint (X,Y”)-paths Ry, ..., R,—3 in CQ2,\{z" 2, y" 2}
where {u;‘*Q, 0}1*1} CV(Rj). ful™2 =o' and 2 < s # t < n— 3, the original
Qs is denoted as @Q; and the original @Q; is denoted as Qs, we have Ry = u? 2.
(The following similar situations are handled in this way and will not be repeated
one by one.)

Let T) = PLUza" 1UQ UQ,—2, T; = P quu?_QURj UT; (2<j<n-3),
T, o =P, oUP Uz"1UQ, and T, | = za" 2 Uz 2a" 2" LU yy" 2 U
Y2y 2y 22" 2 Uww™ 2 U T, (See Figure 4.)

Case 2. {z"~',y"1} C V(CQY,) and Hz”_ljwn_l} nv(c 2(12)‘ =1,
or [{z" 1 y" 1} NV (CQL,)| =1 and {z" 1w} CV(CQY,).

Without loss of generality, let {x”_l,y”_l} C V(C ,110_2) and Hz"‘l, w”_l}
NV(CQYL,)| ="} =1

If 2771 ¢ {x,y}, then 2" ! ¢ {z,w}. The proof is completely similar to
Case 1.

If 2"t e{x,y}, suppose 2"~ ' =5. The proof is similar to Case 1 except that
P =yzand T 5= P, oUP UQ;.

Case 3. [{z" 1, y" 1} NV (CQL,)| =1and |[{z" 1w} NV (CQY,)| =
1. Without loss of generality, let 2"~ € V(CQL,) and 2"~ € V(CQY,), then
y* e V(CQLL,) and w ! € V(CQYL,). Two cases will be considered.
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Case 3.1. 2"~ ! # 2. The proof is similar to Case 1 except that there is a tree
T in CQLL,\Y' connecting {a"27~1 yn=1 2n=2 =21 and T}, ;| = za" 2 U
g 2gn—2n=ly yy”fl Uww™ 2Uzz"2UT.

Case 3.2. 2" 1 = 2. Suppose X = {u?_2 |2 <j<n-—2} with | X|=n -3,
Y={oj|2<j<n-2tand Y =Y NV(CQL,), then [Y'| < n— 3 and
CQLL ,\Y" is connected since k(CQLL ,) = n—2. So there is a tree T in CQLL ,\ Y’
connecting {x"_l”_l, y" L 22 w”_Q}.

Let Y = {o;?_l |2 <j<n-—2} with [Y”| =n — 3. By Lemma 7, we can
find n — 3 pairwise disjoint (X,Y”)-paths Ry, ..., Ry,_2 in CQ% ,\{z" 2} where
{uj™,0] 7"} CV(R,).

Let T/ = P Uxz U Qyq, TJ’ = Pquju;-‘_QURjUTj (2 <j < n-2),
T =z 22Uz 22 Ly gy L Uww 2 U 22" 2UT. (See Figure 5.)

Case 4. [{z" 1, y" 1} nV(CQL,)| > 1 and [{z" 1w NV (CQY,)| =
0, or |{:L‘”*1,y"*1} N V(C’ 7110_2)‘ =0 and Hz"fl,wnfl} N V(C 20_2)} > 1.

Without loss of generality, suppose [{z"~1,y"'} NV (CQL,)| = 0 and
e V(CQ?LO_Q). (See Figure 6.) There is a path P in CQY , between 2"~1
and z since CQY , is connected. Suppose u is the first common vertex between
P and path P, and here P starts at z"~', that is, u € P. Let u € P,_o,
X={u}?[1<j<n=3}LY={o;|1<j<n—3}and Y =Y NV(CQL,),
Y| <n—3and CQ ,\Y’ is connected since x(CQL! ) =n — 2. So there is a
tree T in CQLL,\Y’ connecting {z"~ 1,y 1, 2" 72 w"2}.

o™, C0,%,

oy, oL

Figure 6. [{z" "1, y" 1} NV (CQL,)| =0 and [{z" 1w 1} NV (CQYL,)| > 1.
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11
coY, CO,.»
Figure 7. [{z" =1, y" 1} NV (CQL,)| = [{z" 1, w" '} NV (CQY )| = 0.

Let Y/ = {o" ' |1<j<n-3) by Lemma 7, we can find n — 3 pairwise
: j , by : D
disjoint (X,Y"”)-paths Ry, ..., R,—3 in CQY , where {u;”_z, o;-‘_l} C V(Rj).
Let T} = PjUuu! >UR;UT; (1 <j<n—3),T, y=PrgUPu1,U
22" P UQp_g, and T | =z 1 Uyy" 1 U2zz" 2 Uww™ 2UT. (See Figure 6.)

Case 5. [{z" 1,y 1} NV (CQL,)| = [{z"" L, w1} nV(CQY,)| =0. It
is easy to see that {z"‘l,y”_l} € V(C’Q}J_Z) and {z”_l,w”_l} € V(Cle_z).
(See Figure 7.) Suppose X = {u?_2 |1 <j<n-2},Y={o|2<j<
n—2}and Y =Y NV(CQL,), then [Y/| < n —3 and CQ;',\Y’ is con-
nected since k(CQLL,) = n — 2. So there is a tree T in CQLL,\Y’ connecting
{xn—l yn—l Zn—? wn—2 )

Let Y = {0’;_1 |1 < j < n—2} where o' = w" . By Lemma 7,
we can find n — 2 pairwise disjoint (X, Y”)-paths Ry, ..., R,_2 in CQ% , where
{U?72,O;}71} C V(Rj).

Let T} = P; quu?_2 UR;UT; (1<j<n-—2),and T/, ; =z 1Uyy" U
22" 2 Uww" 2 UT. (See Figure 7.)

Hence, the lemma holds. [ |

Lemma 13. For any S C V(CQy) and |S| =4 andn >3, if |SNV(CQY.,)| =
2, |SNV(CQY L) =1 and |SﬂV(CQ%L1_2)’ =1, then we can find n—1 internally

disjoint trees in CQy to connect S.

Proof. For any S = {z,y,z,w} C V(CQ,), suppose {z,y} C V(C 20,2), z €
V(CQLY,) and w € V(CQ;L,).
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Combining k(CQY ,) = n—2 and Lemma 6, we can find an internally disjoint
path set P = {Py,...,P,_2} in CQY , with x and y as ends. Assume P, = zy if
xy is an edge. And for any P; (2 < j < n —2), we take any vertex except x and
y, record it as u;. If u?_l € V(CQ}LQQ), then let 0; = u;, and Tj = _PjUOjO?_l; if
u;‘_l e V(CQLL,), by u;.‘_Q € V(CQY,) and Lemma 9, u?_2’n_1 e Vv(CQY,),

let 0 =u n—l

and Tj = Pj Uwujo; U 0j0;

1'172
J

Case 1. H:pn*l,y””} N {z,w}! = 0. One of y" ! and " "2 must belong
to V(CQL,) and the other to V(CQLL,), suppose y"~! € V(CQ.,).

By z € V(CQY,), 2" 2 € V(CQ;L,) and Lemma 9, 2"~ or 2" 2"~ is in
V(CQY.,), let 2! € V(CQY.,).

There is a path P in CQ% , between z"~1 and z since CQY , is connected.
Let u be the first common vertex between P and path P, and here P starts at
2"~ that is, u € P. Let u € P,_o.

11
codl, COun
Figure 8. [{z" 1, y" 1} n{z,w}| = 0: zw ¢ E(CQL_,).

Case 1.1. zw ¢ E(CQ_;). Since w € V(CQ}L,), w2 € V(CQY,),
by Lemma 9, w” ! or w271 is in V(C 21_2), suppose w" ! € V(Cle_Z).
(See Figure 8.) Let Y = {0; |2 < j<n-—3}and Y =Y NV (CQ,), then
Y| <n—4and CQY ,\Y' is connected since x(CQ% ,) = n — 2. So there is a
tree T in CQY ,\Y’ connecting {x"‘Q, y" 2, w”_l}.

Let Y = {0?71 |2 <j<n-3}u{y"hw?}and Y = {0?71’7%2 |
2 <j<n-3pu{yt"2 2} with Y| = [Y"| = n — 2. By Lemma
5, we can find n — 2 internally disjoint (z,Y”)-paths Q1,...,Qn—2 in CQL0,
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where y"~! € Qq, 0?_1 €Q; 2<j<n-3), w2 € Qna and n—2
internally disjoint (w,Y””)-paths Ry, ..., R,—2 in CQLL, where y" 1"2 € Ry,

o P e R (2<j<n—3), 2" € Ry,

Let T/ = PyUyy" tuQUy" 1y bn=2URy, T; = TjUQon;-“lo;hl’nJURj
(2<j<n—=3),T, g="P2UPu1,Uzz""1U2:"2UR,_5 where P,n 1,
refers to the part from 2"~! to u on P, and T | = 2" 2 Uyy" 2Uww tUT U

ww" 2 U Qn_2. (See Figure 8.)

Figure 9. [{z" "1, y" 1} n{z,w}| = 0: 2w € E(CQL_,).

Case 1.2. zw € E(CQL ). By z € V(C’Q}LQQ), w=2""2¢ V(CQ}}Q),
2l ev(CQY,) and Lemma 9, w" ! € V(CQYL,). (See Figure 9.)

Let Y ={0; [2<j<n—-3}and Y =Y NV(CQ,), then |Y'| <n—4
and CQ% ,\Y” is connected since k(CQ%,) = n — 2. So there is a tree T in
CQY ,\Y' connecting {z"~2,y" 2 w1},

Let Y/ = {0/ " [2<j<n—3}ufa"t,y" '} and Y = {0?_1@_2 |2 <
j<n—=3}uU{z" "2} with |[Y”| =n—2 and |Y"'| = n —3. Since (CQL’,) =
k(CQL ) = n — 2, by Lemma 5, we can find n — 2 internally disjoint (z,Y")-
paths Q1,...,Qn—2 in CQL, where 277! € Qy, 0?_1 €Qj (2<j<n-3),
y"~ ! € Qpu_2, and n — 3 internally disjoint (w, Y")-paths Ry,..., R,—3 in CQL!,
where 2"~ 5"72 € Ry, 0?_1’n_2 €ER; (2<j<n-3).

Let T/ = PiUzz" tUQUa" lzn= 12U Ry, T; = EUQJ-UO?_IO?_I’”_2UR]'
(2<j<n=3),T, 5="P,2UP,u1,Uz""1Uzw where P,n1, refers to the
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part from 2" ! touw on P, and T/, | = x2" 2 Uyy" 2 Uww" tUTUyy" 1 UQ,».
(See Figure 9.)

Case 2. [{z" "1y} N {z,w}| > 1. Suppose 2"~ ! = z, then y"~! = w or

yn—l 75 w.

Case 2.1. zw ¢ E(CQ,_,). By w € V(CQL,), w"? € V(CQY,)

and Lemma 9, we know w" ! or w" 2"l is in V(C’ 21_2), suppose w" ! €
V(CQRY,). Let Y ={oj |[2<j<n—-2}and Y =Y NV(CQL,), then

Y| <n—3and CQU,\Y'is connected since K(CQY ,) =n — 2. So there is a
tree T in CQY ,\Y’ connectlng {an=2 yn=2 w1

Let Y = {0?71 |2<j<n-— 2} U{w" 2} and Y" = {0?7“%2 |2<j<
n—2}U{z""?} with |Y"| = [Y"| = n—2. By Lemma5 we can find n—2 internally
disjoint (z,Y")-paths Q1,...,Qn_2 in CQL , where w2 € @1, o 0j~ e Q;
(2 <j <n-—2), and n — 2 internally dlsJomt (w,Y")-paths Ry,...,Rp_2 in
C 112Wherez” 2ec Ry, 0" Ln= 2€R (2<j<n-—2).

Let T{ = PiUzzUz2"~ 2UR1, Tj’ = TjUQjUOEL_IO?_Ln_2URj (2<j<n-2),
and T/ = 22" 2 Uyy" 2 Uww P UT Uww™ 2 U Q. (See Figure 10.)

CQn -2

Figure 10. 2"~ ! = 2: 2w ¢ E(CQL_,).

Case 2.2. zw 6 E(CQ}_,). By z € V(CQY,), 2" 2 =w € V(CQLL,),
z=2z""1eV(CQY,) and Lemma 9, then w" = z""2"~1 € V(CQ ,) and
y" 1 # w. One of y"~! and y"~ /"2 must belong to V(CQ}LOQ) and the other
to V(CQLL,), suppose y* 1 € V(CQ,). Let Y ={o; | 2 < j <n-—2}
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oy, col,

01 11
CQn—Z CQn_2
Figure 11. 2"~ ! = 2: 2w € E(CQL_,).

and Y =Y NV(CQY,), then |Y'| <n—3 and CQ ,\Y" is connected since
&(CQ%l_Q) =n—2. So there is a path P in CQ% ,\Y” connecting {y" 2, w" '}.

Let Y = {0?_1 |2<j<n-2}U{y" !} and Y = {0?_1’”_2 |12<j<
n—2} U{y" b2} with |Y”| = [Y”| = n — 2. By Lemma 5, we can find n — 2
internally disjoint (z, Y”)-paths Q1,...,Qn_2 in CQL , where y"~! € Q1 o?_l €
Q; (2 <j<n-2),and n— 2 internally disjoint (w,Y")-paths Ry, ..., R,—2 in
CQL , where y"~b"=2 ¢ Ry, 02}71"%2 €ER; (2<j<n-2).

Let T = PiUyy" tuQ Uy 1y bn—2U Ry, T; = TjUQjUO?_logl_l’”_QURj
(2<i<n—-2),T, {=yy" 2UPUww"” ! UzwUzz (See Figure 11.)

Hence, the lemma holds. [ |

Lemma 14. For any S C V(CQ,) with |S| =4 andn > 3, if |[SNV(CQY.,)| =
‘Sﬂ v(C 911_2)‘ = ‘Sﬂ v(C 7110_2)‘ = ‘SOV(C 7111_2)’ =1, then we can find
n — 1 internally disjoint trees in CQ, to connect S.

Proof. For any S = {z,y,z,w} C V(CQ,), suppose z € V(CQY,), y €
V(CQYL,), € V(CQY,) and w € V(CQ,L,).

By /@(CQ%_l) =n — 1 and Lemma 6, we can find an internally disjoint path
set P = {P,...,P,_1} in CQY_; with 2 and y as ends (if x is adjacent to y,
then let Pi = zy). And for any Pj, there is an edge ujv; € E(P;) such that
u; € V(CQY,) and v; € V(CQYL,) since z € V(CQY,), y € V(CQIM,),
where 1 < j < n-—-1 (If P, = ay, let 3 = = and v; = y.) By Lemma
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9, u;‘_l € V(CQ}IO_Q) or v;l_l € V(CQ}IO_Q). Without loss of generality, let
up™t € V(CQ,) and Ty = Py Uujup ™" where 1 < j < n— 1.

Case 1. 2"~ ¢ {x,y}. There is a path P in CQ"_; between 2"~ and z
since CQY_; is connected. Let u be the first common vertex between P and
path P, and here P starts at 2"~ !, that is, u € P, suppose v € P,_;. Let
Y = {u?_1 | 1 < j <n-—2}with |[Y| = n—2. By Lemma 5, we can find
n — 2 internally disjoint (z,Y)-paths Q1,...,Qn_2 in CQI°, where u}l*l € Qj
(1 <j <n-—2). Two subcases will be discussed.

COy_

Figure 12. 2"~ 1 ¢ {x, y}: w2 # 2.

Case 1.1. w2 # z. There is a path Q in CQLY , between w" 2 and z since
CQ}&Q is connected. Let v be the first common vertex between Q1 U --- U Q,—2
and path @, and here Q starts at w™ 2, that is, v € Q1 U - -+ U Qn_2, suppose
v E Qp_2. Let Y = {fu?_l’"_2 |1 <j<n-3}U{z"?} with |[Y'| =n -2,
by Lemma 5, we can find n — 2 internally disjoint (w,Y”)-paths Ry,..., R,_2 in
CQLL , where u;-l_l’”_Q €ER; (1<j<n-3)and 2" %€ R,_o.

Let T/ = T;UQ;Uul " P UR; (1< j <n—3), T} 5 =Th2UQn_2U
Qur—2,Uww™ 2 and T! | = P, 1UP,n1,U22" 1 U22""2UR,,_2 where Q n-2,
refers to the part from w" 2 to v on Q, P,n-1, refers to the part from 2"~! to u

on P. (See Figure 12.)

Case 1.2. w2 = 2. Let Y/ = {u?_l’n_2 |1<j<n-2}with |[Y/|=n-2.
By Lemma 5, we can find n — 2 internally disjoint (w, Y”)-paths Ry,..., R,_2 in
CQLL, where u?_l’”_2 €ER; (1<j<n-2).
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co?’

n-1

Figure 13. 2"~ ¢ {z,y}: w2 = 2.

Let T/ =T, UQ; Uul ' " PUR; (1<j<n—2),and T, ; = P,_1 U

J
Pn1, U z2" U zw. (See Figure 13.)

Co,,

Figure 14. 2"~ 1 € {z,y}: w2 # 2.

Case 2. 2" ' € {z,y}. Let = 2" L and YV = {u}”_l |2 <j<n-1}
with |Y| = n —2. By Lemma 5, we can find n — 2 internally disjoint (z, Y)-paths

Q2,...,Qn_1 in CQL , where u?_l €Q;(2<j<n—-1).
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coY,

CO,.,

oty

Figure 15. 2"~ ! € {z,y}: w2 = 2.

Case 2.1. w"~2 # z. There is a path Q in CQLY , between w"~2 and z since
CQ}P_Q is connected. Let v be the first common vertex between Qo U -« U Q1
and path @, and here Q starts at w™ 2, that is, v € Q2 U --- U Q,—1, suppose
v E Quor. Let Y = {uf " 2 < j <n—2} U{z"?} with [Y'] = n -2,
by Lemma 5, we can find n — 2 internally disjoint (w,Y”)-paths Ra,..., R, in
CQ}}_Q where u?il’"ﬁ €ER; (2<j<n-—2)and 2" 2 € Ry

Let T{ = Py U2z U 22" 2URy_1, T/ = TjUQ; Uul ' " 2UR; 2< 5 <
n—2),and T ;| = Tp-1U Qn_1UQun-2, Uww" 2 where Q,n2, refers to the

part from w™ 2 to v on Q. (See Figure 14.)

Case 2.2. w2 =2 Let Y/ = {u?_l’n_2 |2<j<n-—1}with |[Y'|=n -2,
by Lemma 5, we can find n — 2 internally disjoint (w,Y”)-paths Ra,..., R, in
C’Q}ll_Q where u?_l’”_2 €ER; (2<j<n-1).

Let ] = PiUzzUzw, T} = T;UQ; Uu?ilu;l*l’nJURj where 2 < j <n-—1.
(See Figure 15.)

Hence, the lemma holds. [ |

Theorem 15. k4(CQp) =n—1 forn > 2.

Proof. By Lemma 4 and the fact that CQ, (n > 2) is n-regular, we have
k1(CQr) < 5(CQy) —1 =n— 1. Next, we only need to prove k4(CQp) >n —1
for n > 2. That is, for any S C V(CQ,,) with |S| = 4, we can find n— 1 internally
disjoint trees in CQy to connect S. Let S = {z,y,z,w} and SNV (CQ:_;) = S
(1 € {0,1}). For n =2, by CQ2 is 2-connected with only four vertices, it is easy
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to know that x4(CQ2) > 1, then k4(CQ2) = 1. For n > 3, three cases will be
considered.

Case 1. |S°| = 4 or |S'| = 4. Without loss of generality, let |S°| = 4, then
{x”_l, yn L gl w”_l} C V(CQ}L%). We will prove it by induction hypothesis
on n. The conclusion holds for n = 2, suppose it also holds while 3 < < n—1. By
CQ% | = CQ,_1 and induction hypothesis, k4(CQ,_1) = n — 2, that is, we can
find n—2 internally disjoint trees 71, ..., T,,—2 in CQY_; connecting S. There is a
tree T in CQ}%l connecting {x”_l, y" L w”_l} since Cerzq is connected.
Let T,—1 = a2 P Uyy™ U zz" L Uww™ L UT, where V(T,—1) N V(T}) =
{z,y,z,w} and E(T,,-1) N E(Tj) =0 for any 1 < j <n—2.

Case 2. |S'| = 3 and |S'™?| = 1, where i = 0 or 1. By Lemma 11, the
theorem is true.

Case 3. [S°] = |S!| = 2. By CQ)), = CQ)L, = CQ,) 5, = CQ,l 5 = CQpos,
we only need to consider three subcases.

Case 3.1. ‘SO N V(CQ%O_ZH = ‘Sl N V(CQ&LO_Q)‘ = 2. By Lemma 12, the
theorem is true.

Case 3.2. [SONV(CQY,)| =2, [NV (CQL,)| = |S* nV(CQLL,)| = 1.
By Lemma 13, the theorem is true.

Case 3.3. [SONV(CQW,)| = [S°NV(CQU,)| = [S'nV(CQL,)| =
‘Sl nv(c }Ll_Q)’ = 1. By Lemma 14, the theorem is true.

Hence, the theorem holds. [ |

By Lemma 8 and Theorem 15, there is the following theorem.

Theorem 16. x3(CQy) =n—1 forn > 2.

5. CONCLUSION

In this paper, we discuss the generalized 3-connectivity and the generalized 4-
connectivity of n-dimensional crossed cube C'Q,, and obtain k3(CQy) = ka(CQr)
=n—1for n > 2. This provides a new reference for measuring the fault tolerance

of CQy.

Acknowledgments

The authors thank the anonymous reviewers for their valuable comments which
have played a great role in improving the quality of this paper. This article was
completed during the period when the second author Dongqgin Cheng was visiting
Nanyang Technological University with financial support from China Scholarship
Council (CSC No. 202006785015).



810 H. Liu aANnD D. CHENG

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer
Verlag, London, 2008).

[2] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel
Distrib. Syst. 3 (1992) 513-524.
https://doi.org/10.1109/71.159036

[3] H. Gao, B. Lv and K. Wang, Two lower bounds for generalized 3-connectivity of
Cartesian product graphs, Appl. Math. Comput. 338 (2018) 305-313.
https://doi.org/10.1016/j.amc.2018.04.007

[4] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser. B 38 (1985) 179-189.
https:/ /doi.org/10.1016,/0095-8956(85)90083-8

[5] C.-N. Hung, C.-K. Lin, L.-H. Hsu, E. Cheng and L. Liptdk, Strong fault-Hamilton-
icity for the crossed cube and its extensions, Parallel Process. Lett. 27 (2017)
#1750005.
https://doi.org/10.1142/50129626417500050

[6] P.D. Kulasinghe, Connectivity of the crossed cube, Inform. Process. Lett. 61 (1997)
221-226.
https:/ /doi.org/10.1016/S0020-0190(97)00012-4

[7] H. Li, Y. Ma, W. Yang and Y. Wang, The generalized 3-connectivity of graph prod-
ucts, Appl. Math. Comput. 295 (2017) 77-83.
https://doi.org/10.1016/j.amc.2016.10.002

[8] S. Li, X. Li and W. Zhou, Sharp bounds for the generalized connectivity r3(G),
Discrete. Math. 310 (2010) 2147-2163.
https://doi.org/10.1016/j.disc.2010.04.011

[9] S.Li, Y. Shiand J. Tu, The generalized 3-connectivity of Cayley graphs on symmetric
groups generated by trees and cycles, Graph Combin. 33 (2017) 1195-1209.
https://doi.org,/10.1007/s00373-017-1837-9

[10] S. Li, J. Tu and C. Yu, The generalized 3-connectivity of star graphs and bubble-sort
graphs, Appl. Math. Comput. 274 (2016) 41-46.
https://doi.org/10.1016/j.amc.2015.11.016

[11] S. Li, Y. Zhao, F. Li and R. Gu, The generalized 3-connectivity of the Mycielskian
of a graph, Appl. Math. Comput. 347 (2019) 882-890.
https://doi.org/10.1016/j.amc.2018.11.006

[12] S. Lin and Q. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl.
Math. 220 (2017) 60-67.
https://doi.org/10.1016/j.dam.2016.12.003

[13] Z. Pan and D. Cheng, Structure connectivity and substructure connectivity of the
crossed cube, Theoret. Comput. Sci. 824—825 (2020) 67-80.
https://doi.org,/10.1016/j.t¢s.2020.04.014


https://doi.org/10.1109/71.159036
https://doi.org/10.1016/j.amc.2018.04.007
https://doi.org/10.1016/0095-8956(85)90083-8
https://doi.org/10.1142/S0129626417500050
https://doi.org/10.1016/S0020-0190(97)00012-4
https://doi.org/10.1016/j.amc.2016.10.002
https://doi.org/10.1016/j.disc.2010.04.011
https://doi.org/10.1007/s00373-017-1837-9
https://doi.org/10.1016/j.amc.2015.11.016
https://doi.org/10.1016/j.amc.2018.11.006
https://doi.org/10.1016/j.dam.2016.12.003
https://doi.org/10.1016/j.tcs.2020.04.014

THE GENERALIZED 3-CONNECTIVITY AND 4-CONNECTIVITY OF ... 811

[14] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54
(1932) 150-168.
https://doi.org/10.2307/2371086

[15] S. Zhao and R.-X. Hao, The generalized connectivity of alternating group graphs and
(n, k)-star graphs, Discrete. Appl. Math. 251 (2018) 310-321.
https://doi.org/10.1016/j.dam.2018.05.059

[16] S. Zhao and R.-X. Hao, The generalized 4-connectivity of exchanged hypercubes,
Appl. Math. Comput. 347 (2019) 342-353.
https://doi.org/10.1016/j.amc.2018.11.023

[17] S. Zhao, R.-X. Hao and J. Wu, The generalized 3-connectivity of some regular net-
works, J. Parallel Distrib. Comput. 133 (2019) 18-29.
https://doi.org/10.1016/j.jpdc.2019.06.006

[18] S.-L. Zhao, R.-X. Hao and J. Wu, The generalized 4-connectivity of hierarchical
cubic networks, Discrete. Appl. Math. 289 (2021) 194-206.
https://doi.org/10.1016/j.dam.2020.09.026

Received 11 June 2022

Revised 1 September 2022
Accepted 1 September 2022
Available online 19 October 2022

This article is distributed under the terms of the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-
es/by-nc-nd/4.0/


https://doi.org/10.2307/2371086
https://doi.org/10.1016/j.dam.2018.05.059
https://doi.org/10.1016/j.amc.2018.11.023
https://doi.org/10.1016/j.jpdc.2019.06.006
https://doi.org/10.1016/j.dam.2020.09.026
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tcpdf.org

