THE GENERALIZED 3-CONNECTIVITY AND 4-CONNECTIVITY OF CROSSED CUBE

Heqin Liu and Dongqin Cheng
Department of Mathematics
College of Information Science and Technology / College of Cyberspace Security
Jinan University
Guangzhou 510632, China
e-mail: dqcheng168@jnu.edu.cn (Dongqin Cheng)

Abstract

The generalized connectivity, an extension of connectivity, provides a new reference for measuring the fault tolerance of networks. For any connected graph G, let $S \subseteq V(G)$ and $2 \leq|S| \leq V(G) ; \kappa_{G}(S)$ refers to the maximum number of internally disjoint trees in G connecting S. The generalized k-connectivity of $G, \kappa_{k}(G)$, is defined as the minimum value of $\kappa_{G}(S)$ over all $S \subseteq V(G)$ with $|S|=k$. The n-dimensional crossed cube $C Q_{n}$, as a hypercube-like network, is considered as an attractive alternative to hypercube network because of its many good properties. In this paper, we study the generalized 3 -connectivity and the generalized 4 -connectivity of $C Q_{n}$ and obtain $\kappa_{3}\left(C Q_{n}\right)=\kappa_{4}\left(C Q_{n}\right)=n-1$, where $n \geq 2$.

Keywords: crossed cube, internally disjoint trees, generalized k-connectivity, fault tolerance.
2020 Mathematics Subject Classification: 68R10.

1. InTRODUCTION

A graph $G=(V(G), E(G))$ is often used to simulate an interconnection network, and in the process of simulation, vertex set and edge set of G refer to the processor set and the communication link set between the processors, respectively. Connectivity is an important parameter to measure the fault tolerance capability of an interconnection network.

The generalized k-connectivity was proposed by Hager in 1985 [4]. As an extension of connectivity, it is also widely used in the study of internet topology model and become a reference to measure the reliability and fault tolerance of
networks. For $S \subseteq V(G)$ with $2 \leq|S| \leq V(G), \kappa_{G}(S)$ refers to the maximum number r of internally disjoint trees T_{1}, \ldots, T_{r} in G connecting S where $V\left(T_{i}\right) \cap$ $V\left(T_{j}\right)=S$ and $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ for any $1 \leq i \neq j \leq r[4]$. The generalized k-connectivity of $G, \kappa_{k}(G)$, is defined as the minimum value of $\kappa_{G}(S)$ over all $S \subseteq V(G)$ and $|S|=k[4]$. For a graph G, its connectivity $\kappa(G)$ is the smallest number of vertices in a vertex set F that makes $G-V(F)$ disconnected or trivial. Then, the equivalent definition of connectivity is given by Whitney, i.e., $\kappa(G)=$ $\min \left\{\kappa_{G}(S)|S \subseteq V(G),|S|=2\}[14]\right.$.

Since concepts of generalized connectivity were put forward, more and more research results have been published, such as the generalized 3 -connectivity of some graphs, including Cartesian product graphs [3], graph products [7], Cayley graphs on symmetric groups generated by trees and cycles [9], star graphs S_{n} and bubble-sort graphs B_{n} [10], the Mycielskian of a graph [11], alternating group graphs and (n, k)-star graph [15], regular graphs with some special properties [17] and so on; the generalized 4 -connectivity of some graphs, including hypercubes [12], exchanged hypercubes [16], hierarchical cubic networks [18] and so on. In this paper, we study the generalized 3 -connectivity and the generalized 4 -connectivity of n-dimensional crossed cube and obtain that $\kappa_{3}\left(C Q_{n}\right)=\kappa_{4}\left(C Q_{n}\right)=n-1$, where $n \geq 2$.

This paper is divided into five sections. The first two sections are Introduction and Preliminaries, in the third section we introduce $C Q_{n}$, and in the fourth section we prove our main result. In the last section, it is Conclusion.

2. Preliminaries

Let $V(G)$ and $E(G)$ be the vertex set and edge set of a graph G. If $x y \in E(G)$ and $x \neq y$, then we say x is a neighbor of y, or x is adjacent to y, and vice versa. The neighborhood of vertex x (vertex set X, respectively) in G is a set which contains all its neighbors in G except itself, that is, $N_{G}(x)=\{y \mid x y \in E(G)$, $x \neq y\}\left(N_{G}(X)=\bigcup_{x \in X} N_{G}(x)-X\right.$, respectively $)$.

For any edge $x y \in E(G)$, we say this edge is incident with vertices x and y. The degree $d_{G}(x)$ of x is the number of edges which are incident with it in G, and we use $\delta(G)=\min \left\{d_{G}(x) \mid x \in V(G)\right\}$ to denote the minimum degree of G. In this paper, we use $P_{x y}$ or (x, y)-path to denote the path that begins and ends with x and y, respectively. For any two (x, y)-paths $P_{x y}$ and $Q_{x y}$, if $V\left(P_{x y}\right) \cap V\left(Q_{x y}\right)=\{x, y\}$, then we say they are internally disjoint. For $X \subseteq V(G)$ and $Y \subseteq(V(G) \backslash X),(X, Y)$-paths refer to a family of paths which are internally disjoint and all begin with the vertices of X and end with the vertices of Y. A k-fan refers to a family of (x, Y)-paths which begin with x and end with different vertices of Y, where $|Y|=k$.

3. Definitions of $C Q_{n}$ and Related Results

For any two-bit binary strings $x=x_{1} x_{0}$ and $y=y_{1} y_{0}$, if $(x, y) \in\{(00,00),(10,10)$, $(11,01),(01,11)\}$, then we say they are pair-related, that is $x \sim y[2]$.
Definition [2]. $C Q_{1}$ is an edge with vertices 0 and $1 . C Q_{2}$ is a 4 -cycle $\langle 10,00,01$, $11,10\rangle$. For $n \geq 3$, the structure of n-dimensional crossed cube $C Q_{n}$ is recursive with two copies of $C Q_{n-1}, C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$, whose vertex sets are $V\left(C Q_{n-1}^{0}\right)=\left\{0 u_{n-2} \cdots u_{1} u_{0} \mid u_{i} \in\{0,1\}, 0 \leq i \leq n-2\right\}$ and $V\left(C Q_{n-1}^{1}\right)=$ $\left\{1 v_{n-2} \cdots v_{1} v_{0} \mid v_{i} \in\{0,1\}, 0 \leq i \leq n-2\right\}$, respectively. For convenience, let $C Q_{n}=C Q_{n-1}^{0} \otimes C Q_{n-1}^{1}$. Moreover, for the vertices $u=0 u_{n-2} \cdots u_{1} u_{0}$ and $v=1 v_{n-2} \cdots v_{1} v_{0}$, if $u_{2 i+1} u_{2 i} \sim v_{2 i+1} v_{2 i}$ for $0 \leq i<\left\lfloor\frac{n-1}{2}\right\rfloor$ and $u_{n-2}=v_{n-2}$ when n is even, then they are adjacent to each other. $\left(C Q_{3}\right.$ and $C Q_{4}$ are shown in Figure 1.)

For any $u=u_{n-1} \cdots u_{1} u_{0} \in V\left(C Q_{n}\right)$, its i-dimensional $(0 \leq i \leq n-1)$ neighbor $u^{i}=v_{n-1} \cdots v_{1} v_{0}$ is defined as follows: (1) $u_{n-1} \cdots u_{i+1}=v_{n-1} \cdots v_{i+1}$, (2) $u_{i} \neq v_{i}$, (3) if i is odd, then $u_{i-1}=v_{i-1}$, and (4) $u_{2 j+1} u_{2 j} \sim v_{2 j+1} v_{2 j}$, $0 \leq j<\left\lfloor\frac{i}{2}\right\rfloor$.

By Definition, we obtain that $C Q_{n}$ is n-regular and $C Q_{n}=C Q_{n-1}^{0} \otimes C Q_{n-1}^{1}$ $=\left(C Q_{n-2}^{00} \otimes C Q_{n-2}^{01}\right) \otimes\left(C Q_{n-2}^{10} \otimes C Q_{n-2}^{11}\right)=\cdots=\left(C Q_{1}^{00 \cdots 00} \otimes C Q_{1}^{00 \cdots 01}\right) \otimes$ $\cdots \otimes\left(C Q_{1}^{11 \cdots 10} \otimes C Q_{1}^{11 \cdots 11}\right)$ where $C Q_{n-1}^{0}=C Q_{n-2}^{00} \otimes C Q_{n-2}^{01}, C Q_{n-1}^{1}=C Q_{n-2}^{10}$ $\otimes C Q_{n-2}^{11}$ and $C Q_{1}^{00 \cdots 00}, C Q_{1}^{00 \cdots 01}, C Q_{1}^{11 \cdots 10}, C Q_{1}^{1 \cdots 11}$ are isomorphic to edges. For any $u=u_{n-1} \cdots u_{1} u_{0}, u \in C Q_{j}^{u_{n-1} \cdots u_{j+1} u_{j}}$, its j-dimensional ($1 \leq j \leq n-1$) neighbor u^{j} is in $C Q_{j}^{u_{n-1} \cdots u_{j+1} \overline{u_{j}}}$ and 0-dimensional neighbor u^{0} is in $C Q_{1}^{u_{n-1} \cdots u_{1}}$.

$C Q_{3}$

Figure 1. $C Q_{3}$ and $C Q_{4}$.
Lemma 1 [6]. $\kappa\left(C Q_{n}\right)=n$, where $n \geq 1$.
Lemma 2 [5]. In $C Q_{n}(n \geq 2)$, the length of the cycle is at least 4.
Lemma 3 [13]. For any $u \in V\left(C Q_{n}\right), u^{i, i+1}$ is the common neighborhood of u^{i} and u^{i+1} in $C Q_{n}$, where $0 \leq i \leq n-2$.

Lemma 4 [8]. If there is an edge $u v \in E(G)$ and $d_{G}(u)=d_{G}(v)=\delta(G)$, then $\kappa_{k}(G) \leq \delta(G)-1$ for $3 \leq k \leq|V(G)|$.

Lemma 5 [1]. For a k-connected graph G, let $u \in V(G)$ and $Y \subseteq(V(G) \backslash u)$ with $|Y| \geq k$. Then there exists a k-fan in G which starts with u and ends with distinct vertices of Y.

Lemma 6 [1]. For a k-connected graph $G,\{u, v\} \subseteq V(G)$ and $u \neq v$, there exists a set of k internally disjoint paths in G to connect u and v.

Lemma 7 [1]. For a k-connected graph $G, X \subseteq V(G)$ with $|X| \geq k$ and $Y \subseteq$ $(V(G) \backslash X)$ with $|Y| \geq k$, there exists a set of k pairwise disjoint (X, Y)-paths in G.

Lemma 8 [12]. For an r-regular graph G, if $\kappa_{k}(G)=r-1$ for $k \geq 4$, then $\kappa_{k-1}(G)=r-1$.

Lemma 9. For any $u v \in E\left(C Q_{n-1}^{i}\right)$, if $u \in V\left(C Q_{n-2}^{i 0}\right)$ and $v \in V\left(C Q_{n-2}^{i 1}\right)$, then $(n-1)$-dimensional neighbors of them must satisfy that one is in $C Q_{n-2}^{(1-i) 0}$, the other is in $C Q_{n-2}^{(1-i) 1}$ and be $(n-2)$-dimensional neighborhoods of each other, where $i \in\{0,1\}$.

Proof. Without loss of generality, let $u v \in E\left(C Q_{n-1}^{0}\right), u=00 u_{n-3} \cdots u_{1} u_{0} \in$ $V\left(C Q_{n-2}^{00}\right), v=u^{n-2}=01 v_{n-3} \cdots v_{1} v_{0} \in V\left(C Q_{n-2}^{01}\right)$, and ($n-1$)-dimensional neighbors of them are $u^{n-1}=1 u_{n-2}^{\prime} u_{n-3}^{\prime} \cdots u_{1}^{\prime} u_{0}^{\prime}$ and $v^{n-1}=1 v_{n-2}^{\prime} v_{n-3}^{\prime} \cdots v_{1}^{\prime} v_{0}^{\prime}$, respectively.

If n is even, then $n-1$ is odd, by Definition, $u_{n-2}^{\prime}=0$ and $v_{n-2}^{\prime}=1$, that is, $u^{n-1}=10 u_{n-3}^{\prime} \cdots u_{1}^{\prime} u_{0}^{\prime} \in V\left(C Q_{n-2}^{10}\right)$ and $v^{n-1}=11 v_{n-3}^{\prime} \cdots v_{1}^{\prime} v_{0}^{\prime} \in V\left(C Q_{n-2}^{11}\right)$.

If n is odd, then $n-2$ is odd, by $v=u^{n-2}$ and Definition, we obtain $u_{n-3}=$ v_{n-3}. Two cases will be discussed.

Combining Definition and the fact that $n-1$ is even, $0 u_{n-3} \sim u_{n-2}^{\prime} u_{n-3}^{\prime}$ and $1 v_{n-3} \sim v_{n-2}^{\prime} v_{n-3}^{\prime}$.

Case 1. $u_{n-3}=v_{n-3}=0$. We have $0 u_{n-3}=00 \sim 00=u_{n-2}^{\prime} u_{n-3}^{\prime}$ and $1 v_{n-3}=10 \sim 10=v_{n-2}^{\prime} v_{n-3}^{\prime}$, that is, $u^{n-1}=100 u_{n-4}^{\prime} \cdots u_{1}^{\prime} u_{0}^{\prime} \in V\left(C Q_{n-2}^{10}\right)$ and $v^{n-1}=110 v_{n-4}^{\prime} \cdots v_{1}^{\prime} v_{0}^{\prime} \in V\left(C Q_{n-2}^{11}\right)$.

Case 2. $u_{n-3}=v_{n-3}=1$. We have $0 u_{n-3}=01 \sim 11=u_{n-2}^{\prime} u_{n-3}^{\prime}$ and $1 v_{n-3}=11 \sim 01=v_{n-2}^{\prime} v_{n-3}^{\prime}$, that is, $u^{n-1}=111 u_{n-4}^{\prime} \cdots u_{1}^{\prime} u_{0}^{\prime} \in V\left(C Q_{n-2}^{11}\right)$ and $v^{n-1}=101 v_{n-4}^{\prime} \cdots v_{1}^{\prime} v_{0}^{\prime} \in V\left(C Q_{n-2}^{10}\right)$.

Therefore, if $u^{n-1} \in V\left(C Q_{n-2}^{10}\right)$, then $v^{n-1} \in V\left(C Q_{n-2}^{11}\right)$. And by Lemma 3, we know $v^{n-1}=u^{n-2, n-1}$ is the neighbor of u^{n-1}, so they are ($n-2$)-dimensional neighbors of each other.

Lemma 10. For any $\{u, v, w\} \subseteq V\left(C Q_{n-1}^{i}\right)$, we can find a path P_{1} in $C Q_{n-1}^{i}$ from u to $v, n-2$ internally disjoint trees $T_{2}, T_{3}, \ldots, T_{n-1}$ in $\left(C Q_{n-1}^{i} \backslash P_{1}\right) \cup\{u, v\}$ to connect $\{u, v, w\}$, and $\left|V\left(T_{k}\right)\right| \geq 4$ for any $2 \leq k \leq n-1$, where $i \in\{0,1\}$.
Proof. Without loss of generality, let $\{u, v, w\} \subseteq V\left(C Q_{n-1}^{0}\right), u=0 u_{n-2} \cdots u_{1} u_{0}$, $v=0 v_{n-2} \cdots v_{1} v_{0}$ and $w=0 w_{n-2} \cdots w_{1} w_{0}$. We set u_{l} is the first bit (from left to right) that does not satisfy condition $u_{l}=v_{l}=w_{l}(1 \leq l \leq n-2)$, that is, $0 u_{n-2} \cdots u_{l+1}=0 v_{n-2} \cdots v_{l+1}=0 w_{n-2} \cdots w_{l+1}$. Without loss of generality, let $u_{l}=v_{l}=0, w_{l}=1$, then $\{u, v\} \subseteq V\left(C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 0}\right)$ and $\{w\} \subseteq$ $V\left(C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 1}\right)$.

By Lemma 6 and $\kappa\left(C Q_{l}\right)=l$, we can find an internally disjoint (u, v)-path set $\mathcal{P}=\left\{P_{1}, \ldots, P_{l}\right\}$ in $C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 0}$. Moreover, if u is adjacent to v, then let $P_{1}=u v$. Hence, $\left|V\left(P_{j}\right)\right| \geq 3(2 \leq j \leq l)$, and we take any vertex on P_{j} except u and v, and record it as x_{j}. Obviously, $w^{l} \in C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 0}$, and two cases will be discussed.

Case 1. $w^{l} \notin\{u, v\}$. There is a path P in $C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 0}$ between w^{l} and u since $C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 0}$ is connected. Without loss of generality, let the first common vertex of P (here P starts at w^{l}) and \mathcal{P} be t and $t \in V\left(P_{l}\right)$.

Let $X=\left\{x_{j}^{l} \mid 2 \leq j \leq l-1\right\} \cup\left\{u^{l}, v^{l}\right\}$ with $|X|=l$, where x_{j}^{l} s are the l-dimensional neighbors of x_{j} s. By Lemma 5 , we can find l internally disjoint (w, X)-paths Q_{1}, \ldots, Q_{l} in $C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 1}$ where $u^{l} \in Q_{1}, x_{j}^{l} \in Q_{j}$ and $v^{l} \in Q_{l}$. Let $T_{j}=P_{j} \cup x_{j} x_{j}^{l} \cup Q_{j}$ for $2 \leq j \leq l-1, T_{l}=P_{l} \cup P_{w^{l} t} \cup w w^{l}$ where $P_{w^{l} t}$ refers to the part from w^{l} to t on P, and $T_{l+1}=u u^{l} \cup Q_{1} \cup Q_{l} \cup v v^{l}$. (See Figure 2.)

Case 2. $w^{l} \in\{u, v\}$. Suppose $w^{l}=u$. Let $X=\left\{x_{j}^{l} \mid 2 \leq j \leq l\right\} \cup\left\{v^{l}\right\}$ with $|X|=l$. By Lemma 5, we can find l internally disjoint (w, X)-paths Q_{1}, \ldots, Q_{l} in $C Q_{l}^{0 u_{n-2} \cdots u_{l+1} 1}$ where $v^{l} \in Q_{1}, x_{j}^{l} \in Q_{j}$. Let $T_{j}=P_{j} \cup x_{j} x_{j}^{l} \cup Q_{j}$ for $2 \leq j \leq l$ and $T_{l+1}=u w \cup Q_{1} \cup v v^{l}$. (See Figure 3.)

From the recursive structure of $C Q_{k}(l+1 \leq k \leq n-2), C Q_{k}^{0 u_{n-2} \cdots u_{k+1} u_{k}}=$ $C Q_{k-1}^{0 u_{n-2} \cdots u_{k} u_{k-1}} \otimes C Q_{k-1}^{0 u_{n-2} \cdots u_{k} \overline{u_{k-1}}}$, then $\{u, v, w\} \subseteq C Q_{k}^{0 u_{n-2} \cdots u_{k+1} u_{k}}$ and their k-dimensional neighbors u^{k}, v^{k}, w^{k} must be in $C Q_{k}^{0 u_{n-2} \cdots u_{k+1} \overline{u_{k}}} . C Q_{k}^{0 u_{n-2} \cdots u_{k+1} \overline{u_{k}}}$ is k-connected, so there is a tree $T_{k+1}^{\prime \prime}$ in $C Q_{k}^{0 u_{n-2} \cdots u_{k+1} \overline{u_{k}}}$ connecting them. Let $T_{k+1}=T_{k+1}^{\prime \prime} \cup u u^{k} \cup v v^{k} \cup w w^{k}$, where $l+1 \leq k \leq n-2$. (See Figures 2, 3.)

Clearly, $\left|V\left(T_{k}\right)\right| \geq 4$ for any $2 \leq k \leq n-1$. Hence, the lemma holds.

4. The Generalized 4-Connectivity of Crossed Cube

Lemma 11. For any $S \subseteq V\left(C Q_{n}\right)$ with $|S|=4$ and $n \geq 3$, if $\left|S \cap V\left(C Q_{n-1}^{i}\right)\right|=3$ and $\left|S \cap V\left(C Q_{n-1}^{1-i}\right)\right|=1$, then we can find $n-1$ internally disjoint trees in $C Q_{n}$ to connect S, where $i \in\{0,1\}$.

Figure 2. $w^{l} \notin\{u, v\}$.

Figure 3. $w^{l}=u$.

Proof. Let $S=\{x, y, z, w\}$ and $S \cap V\left(C Q_{n-1}^{i}\right)=S^{i}(i \in\{0,1\})$. Without loss of generality, let $\left|S^{0}\right|=|\{x, y, z\}|=3$ and $\left|S^{1}\right|=|\{w\}|=1$, then $\left\{x^{n-1}\right.$, $\left.y^{n-1}, z^{n-1}\right\} \subseteq V\left(C Q_{n-1}^{1}\right)$ and $w^{n-1} \in V\left(C Q_{n-1}^{0}\right)$.

By Lemma 10, we can find a path P_{1} in $C Q_{n-1}^{0}$ from x to y, an internally disjoint tree set $\mathcal{T}=\left\{T_{2}, T_{3}, \ldots, T_{n-1}\right\}$ in $\left(C Q_{n-1}^{0} \backslash P_{1}\right) \cup\{x, y\}$ connecting S^{0} and $\left|V\left(T_{j}\right)\right| \geq 4$ for any $T_{j}(2 \leq j \leq n-1)$. We take any vertex in $V\left(T_{j}\right) \backslash\{x, y, z\}$, and record it as o_{j}. Two cases will be considered.

Case 1. $w^{n-1} \notin\{x, y, z\}$. There is a path Q in $C Q_{n-1}^{0}$ between w^{n-1} and x since $C Q_{n-1}^{0}$ is connected. Let u be the first common vertex between $P_{1} \cup \mathcal{T}$ and path Q, and here Q starts at w^{n-1}, then $u \in V\left(P_{1}\right)$ or $u \in V(\mathcal{T})$ (without loss of generality, let $u \in V\left(P_{1}\right)$ or $\left.u \in V\left(T_{n-1}\right)\right)$.

Let $X=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-2\right\} \cup\left\{y^{n-1}, z^{n-1}\right\}$ where o_{j}^{n-1} is the $(n-1)$ dimensional neighbor of o_{j} and $o_{j}^{n-1} \in C Q_{n-1}^{1}$. By Lemma 5 , we can find $n-1$ internally disjoint (w, X)-paths R_{1}, \ldots, R_{n-1} in $C Q_{n-1}^{1}$ where $z^{n-1} \in R_{1}, o_{j}^{n-1} \in$ $R_{j}(2 \leq j \leq n-2)$, and $y^{n-1} \in R_{n-1}$.

If $u \in V\left(P_{1}\right)$, we let $T_{1}^{\prime}=P_{1} \cup Q_{w^{n-1} u} \cup w w^{n-1} \cup R_{1} \cup z z^{n-1}$ where $Q_{w^{n-1} u}$ refers to the part from w^{n-1} to u on $Q, T_{j}^{\prime}=T_{j} \cup o_{j} o_{j}^{n-1} \cup R_{j}(2 \leq j \leq n-2)$, and $T_{n-1}^{\prime}=T_{n-1} \cup y y^{n-1} \cup R_{n-1}$.

If $u \in V\left(T_{n-1}\right)$, we let $T_{1}^{\prime}=P_{1} \cup y y^{n-1} \cup R_{n-1} \cup R_{1} \cup z z^{n-1}, T_{j}^{\prime}=T_{j} \cup$ $o_{j} o_{j}^{n-1} \cup R_{j}(2 \leq j \leq n-2)$, and $T_{n-1}^{\prime}=T_{n-1} \cup Q_{w^{n-1} u} \cup w w^{n-1}$.

Case 2. $w^{n-1} \in\{x, y, z\}$. Suppose $w^{n-1}=x$, and $X=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-1\right\}$ $\cup\left\{z^{n-1}\right\}$ where o_{j}^{n-1} is the ($n-1$)-dimensional neighbor of o_{j} and $o_{j}^{n-1} \in C Q_{n-1}^{1}$. By Lemma 5 , we can find $n-1$ internally disjoint (w, X)-paths R_{1}, \ldots, R_{n-1} in $C Q_{n-1}^{1}$ where $z^{n-1} \in R_{1}, o_{j}^{n-1} \in R_{j}(2 \leq j \leq n-1)$.

Let $T_{1}^{\prime}=P_{1} \cup x w \cup R_{1} \cup z z^{n-1}, T_{j}^{\prime}=T_{j} \cup o_{j} o_{j}^{n-1} \cup R_{j}(2 \leq j \leq n-1)$.
Hence, the lemma holds.
Lemma 12. For any $S \subseteq V\left(C Q_{n}\right)$ with $|S|=4$ and $n \geq 3$, if $\left|S \cap V\left(C Q_{n-2}^{00}\right)\right|=2$ and $\left|S \cap V\left(C Q_{n-2}^{10}\right)\right|=2$, then we can find $n-1$ internally disjoint trees in $C Q_{n}$ to connect S.

Proof. For any $S=\{x, y, z, w\} \subseteq V\left(C Q_{n}\right)$, suppose $\{x, y\} \subseteq V\left(C Q_{n-2}^{00}\right)$ and $\{z, w\} \subseteq V\left(C Q_{n-2}^{10}\right)$.

Combining $\kappa\left(C Q_{n-2}^{00}\right)=\kappa\left(C Q_{n-2}^{10}\right)=n-2$ and Lemma 6, we can find two internally disjoint path sets, $\mathcal{P}=\left\{P_{1}, \ldots, P_{n-2}\right\}$ in $C Q_{n-2}^{00}$ with x and y as ends, and $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{n-2}\right\}$ in $C Q_{n-2}^{10}$ with z and w as ends. Moreover, if x is adjacent to y, then let $P_{1}=x y$; if z is adjacent to w, then let $Q_{1}=z w$.

We take vertex $u_{1} \in V\left(P_{1}\right) \backslash\{x\}$ for $P_{1} \neq x y$ and $u_{1}=x$ for $P_{1}=x y$ and vertex $u_{j} \in V\left(P_{j}\right) \backslash\{x, y\}$ for $2 \leq j \leq n-2$, then $u_{j}^{n-2} \in V\left(C Q_{n-2}^{01}\right)$ for $1 \leq j \leq n-2$. We take vertex $v_{1} \in V\left(Q_{1}\right)$ and vertex $v_{j} \in V\left(Q_{j}\right) \backslash\{z, w\}$ for
$2 \leq j \leq n-2$, if $v_{j}^{n-1} \in V\left(C Q_{n-2}^{01}\right)$ for $1 \leq j \leq n-2$, then let $o_{j}=v_{j}$ and $T_{j}=Q_{j} \cup o_{j} o_{j}^{n-1}$; if $v_{j}^{n-1} \in V\left(C Q_{n-2}^{00}\right)$ for $1 \leq j \leq n-2$, by $v_{j}^{n-2} \in V\left(C Q_{n-2}^{11}\right)$ and Lemma $9, v_{j}^{n-2, n-1} \in V\left(C Q_{n-2}^{01}\right)$, let $o_{j}=v_{j}^{n-2}$ and $T_{j}=Q_{j} \cup v_{j} o_{j} \cup o_{j} o_{j}^{n-1}$.

Case 1. $\left\{x^{n-1}, y^{n-1}\right\} \subseteq V\left(C Q_{n-2}^{10}\right)$ and $\left\{z^{n-1}, w^{n-1}\right\} \subseteq V\left(C Q_{n-2}^{00}\right)$. If $\left\{x^{n-1}, y^{n-1}\right\} \neq\{z, w\}$, suppose $x^{n-1} \notin\{z, w\}$ and $z \notin\left\{x^{n-1}, y^{n-1}\right\}$, that is, $z^{n-1} \notin\{x, y\}$. (See Figure 4.) There is a path P in $C Q_{n-2}^{00}$ between z^{n-1} and x since $C Q_{n-2}^{00}$ is connected. Suppose u is the first common vertex between \mathcal{P} and path P, and here P starts at z^{n-1}, that is, $u \in \mathcal{P}$. Let $u \in P_{n-2}$ and $P^{\prime}=P_{z^{n-1} u}$ refers to the part from z^{n-1} to u on P. Similarly, there is a path Q in $C Q_{n-2}^{10}$ between x^{n-1} and z since $C Q_{n-2}^{10}$ is connected. Suppose v is the first common vertex between \mathcal{Q} and path Q, and here Q starts at x^{n-1}, that is, $v \in \mathcal{Q}$. Let $v \in Q_{n-2}$ and $Q^{\prime}=Q_{x^{n-1} v}$ refers to the part from x^{n-1} to v on Q. (If $\left\{x^{n-1}, y^{n-1}\right\}=\{z, w\}$, suppose $x^{n-1}=w, y^{n-1}=z, P^{\prime}=y z$ and $Q^{\prime}=x w$.)

Let $X=\left\{u_{j}^{n-2} \mid 2 \leq j \leq n-3\right\}$ with $|X|=n-4, Y=\left\{o_{j} \mid 2 \leq\right.$ $j \leq n-3\}$ and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{11}\right),\left|Y^{\prime}\right| \leq n-4$ and $C Q_{n-2}^{11} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{11}\right)=n-2$. So there is a tree T in $C Q_{n-2}^{11} \backslash Y^{\prime}$ connecting $\left\{x^{n-2, n-1}, y^{n-2, n-1}, z^{n-2}, w^{n-2}\right\}$.

Figure 4. $x^{n-1} \notin\{z, w\}$ and $z \notin\left\{x^{n-1}, y^{n-1}\right\}$.
Note that since $\left\{x^{n-1}, z, w\right\} \cap Y=\emptyset$, by Lemma 9 and definition of neighborhood, $\left\{x^{n-2, n-1}, z^{n-2}, w^{n-2}\right\} \cap Y^{\prime}=\emptyset$. And then we will prove that there is always Y^{\prime} that makes $y^{n-2, n-1} \notin Y^{\prime}$. Assume $y^{n-2, n-1} \in Y^{\prime}$, without loss of generality, let $y^{n-2, n-1}=o_{2}$, then $y^{n-1}=v_{2}$. If $Q_{1}=z w$, by Lemma $2,\left|V\left(P_{j}\right)\right| \geq 4$ for all $2 \leq j \leq n-3$, we can retake vertex v_{2} in $V\left(Q_{2}\right) \backslash\left\{z, w, y^{n-1}\right\}$ such that

Figure 5. $x^{n-1} \in V\left(C Q_{n-2}^{10}\right), z^{n-1} \in V\left(C Q_{n-2}^{00}\right)$ and $x^{n-1}=z$.
$y^{n-2, n-1} \notin Y^{\prime}$. If $Q_{1} \neq z w$, then $\left|V\left(P_{j}\right)\right| \geq 3$ for all $1 \leq j \leq n-3$, we can mark the original Q_{2} as Q_{1} and the original Q_{1} as Q_{2} such that $y^{n-2, n-1} \notin Y^{\prime}$.

Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-3\right\}$ with $\left|Y^{\prime \prime}\right|=n-4$. By Lemma 7, we can find $n-4$ pairwise disjoint $\left(X, Y^{\prime \prime}\right)$-paths R_{2}, \ldots, R_{n-3} in $C Q_{n-2}^{01} \backslash\left\{x^{n-2}, y^{n-2}\right\}$ where $\left\{u_{j}^{n-2}, o_{j}^{n-1}\right\} \subseteq V\left(R_{j}\right)$. If $u_{s}^{n-2}=o_{t}^{n-1}$ and $2 \leq s \neq t \leq n-3$, the original Q_{s} is denoted as Q_{t} and the original Q_{t} is denoted as Q_{s}, we have $R_{s}=u_{s}^{n-2}$. (The following similar situations are handled in this way and will not be repeated one by one.)

Let $T_{1}^{\prime}=P_{1} \cup x x^{n-1} \cup Q^{\prime} \cup Q_{n-2}, T_{j}^{\prime}=P_{j} \cup u_{j} u_{j}^{n-2} \cup R_{j} \cup T_{j}(2 \leq j \leq n-3)$, $T_{n-2}^{\prime}=P_{n-2} \cup P^{\prime} \cup z z^{n-1} \cup Q_{1}$, and $T_{n-1}^{\prime}=x x^{n-2} \cup x^{n-2} x^{n-2, n-1} \cup y y^{n-2} \cup$ $y^{n-2} y^{n-2, n-1} \cup z z^{n-2} \cup w w^{n-2} \cup T$. (See Figure 4.)

Case 2. $\left\{x^{n-1}, y^{n-1}\right\} \subseteq V\left(C Q_{n-2}^{10}\right)$ and $\left|\left\{z^{n-1}, w^{n-1}\right\} \cap V\left(C Q_{n-2}^{00}\right)\right|=1$, or $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right|=1$ and $\left\{z^{n-1}, w^{n-1}\right\} \subseteq V\left(C Q_{n-2}^{00}\right)$.

Without loss of generality, let $\left\{x^{n-1}, y^{n-1}\right\} \subset V\left(C Q_{n-2}^{10}\right)$ and $\mid\left\{z^{n-1}, w^{n-1}\right\}$ $\cap V\left(C Q_{n-2}^{00}\right)\left|=\left|\left\{z^{n-1}\right\}\right|=1\right.$.

If $z^{n-1} \notin\{x, y\}$, then $x^{n-1} \notin\{z, w\}$. The proof is completely similar to Case 1.

If $z^{n-1} \in\{x, y\}$, suppose $z^{n-1}=y$. The proof is similar to Case 1 except that $P^{\prime}=y z$ and $T_{n-2}^{\prime}=P_{n-2} \cup P^{\prime} \cup Q_{1}$.

Case 3. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right|=1$ and $\left|\left\{z^{n-1}, w^{n-1}\right\} \cap V\left(C Q_{n-2}^{00}\right)\right|=$ 1. Without loss of generality, let $x^{n-1} \in V\left(C Q_{n-2}^{10}\right)$ and $z^{n-1} \in V\left(C Q_{n-2}^{00}\right)$, then $y^{n-1} \in V\left(C Q_{n-2}^{11}\right)$ and $w^{n-1} \in V\left(C Q_{n-2}^{01}\right)$. Two cases will be considered.

Case 3.1. $x^{n-1} \neq z$. The proof is similar to Case 1 except that there is a tree T in $C Q_{n-2}^{11} \backslash Y^{\prime}$ connecting $\left\{x^{n-2, n-1}, y^{n-1}, z^{n-2}, w^{n-2}\right\}$ and $T_{n-1}^{\prime}=x x^{n-2} \cup$ $x^{n-2} x^{n-2, n-1} \cup y y^{n-1} \cup w w^{n-2} \cup z z^{n-2} \cup T$.

Case 3.2. $x^{n-1}=z$. Suppose $X=\left\{u_{j}^{n-2} \mid 2 \leq j \leq n-2\right\}$ with $|X|=n-3$, $Y=\left\{o_{j} \mid 2 \leq j \leq n-2\right\}$ and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{11}\right)$, then $\left|Y^{\prime}\right| \leq n-3$ and $C Q_{n-2}^{11} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{11}\right)=n-2$. So there is a tree T in $C Q_{n-2}^{11} \backslash Y^{\prime}$ connecting $\left\{x^{n-2, n-1}, y^{n-1}, z^{n-2}, w^{n-2}\right\}$.

Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-2\right\}$ with $\left|Y^{\prime \prime}\right|=n-3$. By Lemma 7, we can find $n-3$ pairwise disjoint $\left(X, Y^{\prime \prime}\right)$-paths R_{2}, \ldots, R_{n-2} in $C Q_{n-2}^{01} \backslash\left\{x^{n-2}\right\}$ where $\left\{u_{j}^{n-2}, o_{j}^{n-1}\right\} \subseteq V\left(R_{j}\right)$.

Let $T_{1}^{\prime}=P_{1} \cup x z \cup Q_{1}, T_{j}^{\prime}=P_{j} \cup u_{j} u_{j}^{n-2} \cup R_{j} \cup T_{j}(2 \leq j \leq n-2)$, $T_{n-1}^{\prime}=x x^{n-2} \cup x^{n-2} x^{n-2, n-1} \cup y y^{n-1} \cup w w^{n-2} \cup z z^{n-2} \cup T$. (See Figure 5.)

Case 4. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right| \geq 1$ and $\left|\left\{z^{n-1}, w^{n-1}\right\} \cap V\left(C Q_{n-2}^{00}\right)\right|=$ 0 , or $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right|=0$ and $\left|\left\{z^{n-1}, w^{n-1}\right\} \cap V\left(C Q_{n-2}^{00}\right)\right| \geq 1$.

Without loss of generality, suppose $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right|=0$ and $z^{n-1} \in V\left(C Q_{n-2}^{00}\right)$. (See Figure 6.) There is a path P in $C Q_{n-2}^{00}$ between z^{n-1} and x since $C Q_{n-2}^{00}$ is connected. Suppose u is the first common vertex between \mathcal{P} and path P, and here P starts at z^{n-1}, that is, $u \in \mathcal{P}$. Let $u \in P_{n-2}$, $X=\left\{u_{j}^{n-2} \mid 1 \leq j \leq n-3\right\}, Y=\left\{o_{j} \mid 1 \leq j \leq n-3\right\}$ and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{11}\right)$, $\left|Y^{\prime}\right| \leq n-3$ and $C Q_{n-2}^{11} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{11}\right)=n-2$. So there is a tree T in $C Q_{n-2}^{11} \backslash Y^{\prime}$ connecting $\left\{x^{n-1}, y^{n-1}, z^{n-2}, w^{n-2}\right\}$.

Figure 6. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right|=0$ and $\left|\left\{z^{n-1}, w^{n-1}\right\} \cap V\left(C Q_{n-2}^{00}\right)\right| \geq 1$.

Figure 7. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right|=\left|\left\{z^{n-1}, w^{n-1}\right\} \cap V\left(C Q_{n-2}^{00}\right)\right|=0$.
Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 1 \leq j \leq n-3\right\}$, by Lemma 7, we can find $n-3$ pairwise disjoint $\left(X, Y^{\prime \prime}\right)$-paths R_{1}, \ldots, R_{n-3} in $C Q_{n-2}^{01}$ where $\left\{u_{j}^{n-2}, o_{j}^{n-1}\right\} \subseteq V\left(R_{j}\right)$.

Let $T_{j}^{\prime}=P_{j} \cup u_{j} u_{j}^{n-2} \cup R_{j} \cup T_{j}(1 \leq j \leq n-3), T_{n-2}^{\prime}=P_{n-2} \cup P_{z^{n-1} u} \cup$ $z z^{n-1} \cup Q_{n-2}$, and $T_{n-1}^{\prime}=x x^{n-1} \cup y y^{n-1} \cup z z^{n-2} \cup w w^{n-2} \cup T$. (See Figure 6.)

Case 5. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap V\left(C Q_{n-2}^{10}\right)\right|=\left|\left\{z^{n-1}, w^{n-1}\right\} \cap V\left(C Q_{n-2}^{00}\right)\right|=0$. It is easy to see that $\left\{x^{n-1}, y^{n-1}\right\} \in V\left(C Q_{n-2}^{11}\right)$ and $\left\{z^{n-1}, w^{n-1}\right\} \in V\left(C Q_{n-2}^{01}\right)$. (See Figure 7.) Suppose $X=\left\{u_{j}^{n-2} \mid 1 \leq j \leq n-2\right\}, Y=\left\{o_{j} \mid 2 \leq j \leq\right.$ $n-2\}$ and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{11}\right)$, then $\left|Y^{\prime}\right| \leq n-3$ and $C Q_{n-2}^{11} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{11}\right)=n-2$. So there is a tree T in $C Q_{n-2}^{11} \backslash Y^{\prime}$ connecting $\left\{x^{n-1}, y^{n-1}, z^{n-2}, w^{n-2}\right\}$.

Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 1 \leq j \leq n-2\right\}$ where $o_{1}^{n-1}=w^{n-1}$. By Lemma 7, we can find $n-2$ pairwise disjoint $\left(X, Y^{\prime \prime}\right)$-paths R_{1}, \ldots, R_{n-2} in $C Q_{n-2}^{01}$ where $\left\{u_{j}^{n-2}, o_{j}^{n-1}\right\} \subseteq V\left(R_{j}\right)$.

Let $T_{j}^{\prime}=P_{j} \cup u_{j} u_{j}^{n-2} \cup R_{j} \cup T_{j}(1 \leq j \leq n-2)$, and $T_{n-1}^{\prime}=x x^{n-1} \cup y y^{n-1} \cup$ $z z^{n-2} \cup w w^{n-2} \cup T$. (See Figure 7.)

Hence, the lemma holds.
Lemma 13. For any $S \subseteq V\left(C Q_{n}\right)$ and $|S|=4$ and $n \geq 3$, if $\left|S \cap V\left(C Q_{n-2}^{00}\right)\right|=$ $2,\left|S \cap V\left(C Q_{n-2}^{10}\right)\right|=1$ and $\left|S \cap V\left(C Q_{n-2}^{11}\right)\right|=1$, then we can find $n-1$ internally disjoint trees in $C Q_{n}$ to connect S.
Proof. For any $S=\{x, y, z, w\} \subseteq V\left(C Q_{n}\right)$, suppose $\{x, y\} \subseteq V\left(C Q_{n-2}^{00}\right), z \in$ $V\left(C Q_{n-2}^{10}\right)$ and $w \in V\left(C Q_{n-2}^{11}\right)$.

Combining $\kappa\left(C Q_{n-2}^{00}\right)=n-2$ and Lemma 6 , we can find an internally disjoint path set $\mathcal{P}=\left\{P_{1}, \ldots, P_{n-2}\right\}$ in $C Q_{n-2}^{00}$ with x and y as ends. Assume $P_{1}=x y$ if $x y$ is an edge. And for any $P_{j}(2 \leq j \leq n-2)$, we take any vertex except x and y, record it as u_{j}. If $u_{j}^{n-1} \in V\left(C Q_{n-2}^{10}\right)$, then let $o_{j}=u_{j}$, and $T_{j}=P_{j} \cup o_{j} o_{j}^{n-1}$; if $u_{j}^{n-1} \in V\left(C Q_{n-2}^{11}\right)$, by $u_{j}^{n-2} \in V\left(C Q_{n-2}^{01}\right)$ and Lemma $9, u_{j}^{n-2, n-1} \in V\left(C Q_{n-2}^{10}\right)$, let $o_{j}=u_{j}^{n-2}$ and $T_{j}=P_{j} \cup u_{j} o_{j} \cup o_{j} o_{j}^{n-1}$.

Case 1. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap\{z, w\}\right|=0$. One of y^{n-1} and $y^{n-1, n-2}$ must belong to $V\left(C Q_{n-2}^{10}\right)$ and the other to $V\left(C Q_{n-2}^{11}\right)$, suppose $y^{n-1} \in V\left(C Q_{n-2}^{10}\right)$.

By $z \in V\left(C Q_{n-2}^{10}\right), z^{n-2} \in V\left(C Q_{n-2}^{11}\right)$ and Lemma $9, z^{n-1}$ or $z^{n-2, n-1}$ is in $V\left(C Q_{n-2}^{00}\right)$, let $z^{n-1} \in V\left(C Q_{n-2}^{00}\right)$.

There is a path P in $C Q_{n-2}^{00}$ between z^{n-1} and x since $C Q_{n-2}^{00}$ is connected. Let u be the first common vertex between \mathcal{P} and path P, and here P starts at z^{n-1}, that is, $u \in \mathcal{P}$. Let $u \in P_{n-2}$.

Figure 8. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap\{z, w\}\right|=0: z w \notin E\left(C Q_{n-1}^{1}\right)$.
Case 1.1. $z w \notin E\left(C Q_{n-1}^{1}\right)$. Since $w \in V\left(C Q_{n-2}^{11}\right), w^{n-2} \in V\left(C Q_{n-2}^{10}\right)$, by Lemma 9 , w^{n-1} or $w^{n-2, n-1}$ is in $V\left(C Q_{n-2}^{01}\right)$, suppose $w^{n-1} \in V\left(C Q_{n-2}^{01}\right)$. (See Figure 8.) Let $Y=\left\{o_{j} \mid 2 \leq j \leq n-3\right\}$ and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{01}\right)$, then $\left|Y^{\prime}\right| \leq n-4$ and $C Q_{n-2}^{01} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{01}\right)=n-2$. So there is a tree T in $C Q_{n-2}^{01} \backslash Y^{\prime}$ connecting $\left\{x^{n-2}, y^{n-2}, w^{n-1}\right\}$.

Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-3\right\} \cup\left\{y^{n-1}, w^{n-2}\right\}$ and $Y^{\prime \prime \prime}=\left\{o_{j}^{n-1, n-2} \mid\right.$ $2 \leq j \leq n-3\} \cup\left\{y^{n-1, n-2}, z^{n-2}\right\}$ with $\left|Y^{\prime \prime}\right|=\left|Y^{\prime \prime \prime}\right|=n-2$. By Lemma 5 , we can find $n-2$ internally disjoint $\left(z, Y^{\prime \prime}\right)$-paths Q_{1}, \ldots, Q_{n-2} in $C Q_{n-2}^{10}$
where $y^{n-1} \in Q_{1}, o_{j}^{n-1} \in Q_{j}(2 \leq j \leq n-3), w^{n-2} \in Q_{n-2}$, and $n-2$ internally disjoint ($w, Y^{\prime \prime \prime}$)-paths R_{1}, \ldots, R_{n-2} in $C Q_{n-2}^{11}$ where $y^{n-1, n-2} \in R_{1}$, $o_{j}^{n-1, n-2} \in R_{j}(2 \leq j \leq n-3), z^{n-2} \in R_{n-2}$.

Let $T_{1}^{\prime}=P_{1} \cup y y^{n-1} \cup Q_{1} \cup y^{n-1} y^{n-1, n-2} \cup R_{1}, T_{j}^{\prime}=T_{j} \cup Q_{j} \cup o_{j}^{n-1} o_{j}^{n-1, n-2} \cup R_{j}$ $(2 \leq j \leq n-3), T_{n-2}^{\prime}=P_{n-2} \cup P_{z^{n-1} u} \cup z z^{n-1} \cup z z^{n-2} \cup R_{n-2}$ where $P_{z^{n-1} u}$ refers to the part from z^{n-1} to u on P, and $T_{n-1}^{\prime}=x x^{n-2} \cup y y^{n-2} \cup w w^{n-1} \cup T \cup$ $w w^{n-2} \cup Q_{n-2}$. (See Figure 8.)

Figure 9. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap\{z, w\}\right|=0: z w \in E\left(C Q_{n-1}^{1}\right)$.
Case 1.2. $z w \in E\left(C Q_{n-1}^{1}\right)$. By $z \in V\left(C Q_{n-2}^{10}\right), w=z^{n-2} \in V\left(C Q_{n-2}^{11}\right)$, $z^{n-1} \in V\left(C Q_{n-2}^{00}\right)$ and Lemma $9, w^{n-1} \in V\left(C Q_{n-2}^{01}\right)$. (See Figure 9.)

Let $Y=\left\{o_{j} \mid 2 \leq j \leq n-3\right\}$ and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{01}\right)$, then $\left|Y^{\prime}\right| \leq n-4$ and $C Q_{n-2}^{01} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{01}\right)=n-2$. So there is a tree T in $C Q_{n-2}^{01} \backslash Y^{\prime}$ connecting $\left\{x^{n-2}, y^{n-2}, w^{n-1}\right\}$.

Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-3\right\} \cup\left\{x^{n-1}, y^{n-1}\right\}$ and $Y^{\prime \prime \prime}=\left\{o_{j}^{n-1, n-2} \mid 2 \leq\right.$ $j \leq n-3\} \cup\left\{x^{n-1, n-2}\right\}$ with $\left|Y^{\prime \prime}\right|=n-2$ and $\left|Y^{\prime \prime \prime}\right|=n-3$. Since $\kappa\left(C Q_{n-2}^{10}\right)=$ $\kappa\left(C Q_{n-2}^{11}\right)=n-2$, by Lemma 5 , we can find $n-2$ internally disjoint $\left(z, Y^{\prime \prime}\right)$ paths Q_{1}, \ldots, Q_{n-2} in $C Q_{n-2}^{10}$ where $x^{n-1} \in Q_{1}, o_{j}^{n-1} \in Q_{j}(2 \leq j \leq n-3)$, $y^{n-1} \in Q_{n-2}$, and $n-3$ internally disjoint ($w, Y^{\prime \prime \prime}$)-paths R_{1}, \ldots, R_{n-3} in $C Q_{n-2}^{11}$ where $x^{n-1, n-2} \in R_{1}, o_{j}^{n-1, n-2} \in R_{j}(2 \leq j \leq n-3)$.

Let $T_{1}^{\prime}=P_{1} \cup x x^{n-1} \cup Q_{1} \cup x^{n-1} x^{n-1, n-2} \cup R_{1}, T_{j}^{\prime}=T_{j} \cup Q_{j} \cup o_{j}^{n-1} o_{j}^{n-1, n-2} \cup R_{j}$ $(2 \leq j \leq n-3), T_{n-2}^{\prime}=P_{n-2} \cup P_{z^{n-1} u} \cup z z^{n-1} \cup z w$ where $P_{z^{n-1} u}$ refers to the
part from z^{n-1} to u on P, and $T_{n-1}^{\prime}=x x^{n-2} \cup y y^{n-2} \cup w w^{n-1} \cup T \cup y y^{n-1} \cup Q_{n-2}$. (See Figure 9.)

Case 2. $\left|\left\{x^{n-1}, y^{n-1}\right\} \cap\{z, w\}\right| \geq 1$. Suppose $x^{n-1}=z$, then $y^{n-1}=w$ or $y^{n-1} \neq w$.

Case 2.1. $z w \notin E\left(C Q_{n-1}^{1}\right)$. By $w \in V\left(C Q_{n-2}^{11}\right), w^{n-2} \in V\left(C Q_{n-2}^{10}\right)$ and Lemma 9, we know w^{n-1} or $w^{n-2, n-1}$ is in $V\left(C Q_{n-2}^{01}\right)$, suppose $w^{n-1} \in$ $V\left(C Q_{n-2}^{01}\right)$. Let $Y=\left\{o_{j} \mid 2 \leq j \leq n-2\right\}$ and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{01}\right)$, then $\left|Y^{\prime}\right| \leq n-3$ and $C Q_{n-2}^{01} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{01}\right)=n-2$. So there is a tree T in $C Q_{n-2}^{01} \backslash Y^{\prime}$ connecting $\left\{x^{n-2}, y^{n-2}, w^{n-1}\right\}$.

Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-2\right\} \cup\left\{w^{n-2}\right\}$ and $Y^{\prime \prime \prime}=\left\{o_{j}^{n-1, n-2} \mid 2 \leq j \leq\right.$ $n-2\} \cup\left\{z^{n-2}\right\}$ with $\left|Y^{\prime \prime}\right|=\left|Y^{\prime \prime \prime}\right|=n-2$. By Lemma 5 , we can find $n-2$ internally disjoint $\left(z, Y^{\prime \prime}\right)$-paths Q_{1}, \ldots, Q_{n-2} in $C Q_{n-2}^{10}$ where $w^{n-2} \in Q_{1}, o_{j}^{n-1} \in Q_{j}$ ($2 \leq j \leq n-2$), and $n-2$ internally disjoint ($w, Y^{\prime \prime \prime}$)-paths R_{1}, \ldots, R_{n-2} in $C Q_{n-2}^{11}$ where $z^{n-2} \in R_{1}, o_{j}^{n-1, n-2} \in R_{j}(2 \leq j \leq n-2)$.

Let $T_{1}^{\prime}=P_{1} \cup x z \cup z z^{n-2} \cup R_{1}, T_{j}^{\prime}=T_{j} \cup Q_{j} \cup o_{j}^{n-1} o_{j}^{n-1, n-2} \cup R_{j}(2 \leq j \leq n-2)$, and $T_{n-1}^{\prime}=x x^{n-2} \cup y y^{n-2} \cup w w^{n-1} \cup T \cup w w^{n-2} \cup Q_{1}$. (See Figure 10.)

Figure 10. $x^{n-1}=z: z w \notin E\left(C Q_{n-1}^{1}\right)$.
Case 2.2. $z w \in E\left(C Q_{n-1}^{1}\right)$. By $z \in V\left(C Q_{n-2}^{10}\right), z^{n-2}=w \in V\left(C Q_{n-2}^{11}\right)$, $x=z^{n-1} \in V\left(C Q_{n-2}^{00}\right)$ and Lemma 9, then $w^{n-1}=z^{n-2, n-1} \in V\left(C Q_{n-2}^{01}\right)$ and $y^{n-1} \neq w$. One of y^{n-1} and $y^{n-1, n-2}$ must belong to $V\left(C Q_{n-2}^{10}\right)$ and the other to $V\left(C Q_{n-2}^{11}\right)$, suppose $y^{n-1} \in V\left(C Q_{n-2}^{10}\right)$. Let $Y=\left\{o_{j} \mid 2 \leq j \leq n-2\right\}$

Figure 11. $x^{n-1}=z: z w \in E\left(C Q_{n-1}^{1}\right)$.
and $Y^{\prime}=Y \cap V\left(C Q_{n-2}^{01}\right)$, then $\left|Y^{\prime}\right| \leq n-3$ and $C Q_{n-2}^{01} \backslash Y^{\prime}$ is connected since $\kappa\left(C Q_{n-2}^{01}\right)=n-2$. So there is a path P in $C Q_{n-2}^{01} \backslash Y^{\prime}$ connecting $\left\{y^{n-2}, w^{n-1}\right\}$.

Let $Y^{\prime \prime}=\left\{o_{j}^{n-1} \mid 2 \leq j \leq n-2\right\} \cup\left\{y^{n-1}\right\}$ and $Y^{\prime \prime \prime}=\left\{o_{j}^{n-1, n-2} \mid 2 \leq j \leq\right.$ $n-2\} \cup\left\{y^{n-1, n-2}\right\}$ with $\left|Y^{\prime \prime}\right|=\left|Y^{\prime \prime \prime}\right|=n-2$. By Lemma 5 , we can find $n-2$ internally disjoint $\left(z, Y^{\prime \prime}\right)$-paths Q_{1}, \ldots, Q_{n-2} in $C Q_{n-2}^{10}$ where $y^{n-1} \in Q_{1}, o_{j}^{n-1} \in$ $Q_{j}(2 \leq j \leq n-2)$, and $n-2$ internally disjoint $\left(w, Y^{\prime \prime \prime}\right)$-paths R_{1}, \ldots, R_{n-2} in $C Q_{n-2}^{11}$ where $y^{n-1, n-2} \in R_{1}, o_{j}^{n-1, n-2} \in R_{j}(2 \leq j \leq n-2)$.

Let $T_{1}^{\prime}=P_{1} \cup y y^{n-1} \cup Q_{1} \cup y^{n-1} y^{n-1, n-2} \cup R_{1}, T_{j}^{\prime}=T_{j} \cup Q_{j} \cup o_{j}^{n-1} o_{j}^{n-1, n-2} \cup R_{j}$ $(2 \leq j \leq n-2), T_{n-1}^{\prime}=y y^{n-2} \cup P \cup w w^{n-1} \cup z w \cup x z$. (See Figure 11.)

Hence, the lemma holds.

Lemma 14. For any $S \subseteq V\left(C Q_{n}\right)$ with $|S|=4$ and $n \geq 3$, if $\left|S \cap V\left(C Q_{n-2}^{00}\right)\right|=$ $\left|S \cap V\left(C Q_{n-2}^{01}\right)\right|=\left|S \cap V\left(C Q_{n-2}^{10}\right)\right|=\left|S \cap V\left(C Q_{n-2}^{11}\right)\right|=1$, then we can find $n-1$ internally disjoint trees in $C Q_{n}$ to connect S.

Proof. For any $S=\{x, y, z, w\} \subseteq V\left(C Q_{n}\right)$, suppose $x \in V\left(C Q_{n-2}^{00}\right), y \in$ $V\left(C Q_{n-2}^{01}\right), z \in V\left(C Q_{n-2}^{10}\right)$ and $w \in V\left(C Q_{n-2}^{11}\right)$.

By $\kappa\left(C Q_{n-1}^{0}\right)=n-1$ and Lemma 6 , we can find an internally disjoint path set $\mathcal{P}=\left\{P_{1}, \ldots, P_{n-1}\right\}$ in $C Q_{n-1}^{0}$ with x and y as ends (if x is adjacent to y, then let $\left.P_{1}=x y\right)$. And for any P_{j}, there is an edge $u_{j} v_{j} \in E\left(P_{j}\right)$ such that $u_{j} \in V\left(C Q_{n-2}^{00}\right)$ and $v_{j} \in V\left(C Q_{n-2}^{01}\right)$ since $x \in V\left(C Q_{n-2}^{00}\right), y \in V\left(C Q_{n-2}^{01}\right)$, where $1 \leq j \leq n-1$. (If $P_{1}=x y$, let $u_{1}=x$ and $v_{1}=y$.) By Lemma
$9, u_{j}^{n-1} \in V\left(C Q_{n-2}^{10}\right)$ or $v_{j}^{n-1} \in V\left(C Q_{n-2}^{10}\right)$. Without loss of generality, let $u_{j}^{n-1} \in V\left(C Q_{n-2}^{10}\right)$ and $T_{j}=P_{j} \cup u_{j} u_{j}^{n-1}$ where $1 \leq j \leq n-1$.

Case 1. $z^{n-1} \notin\{x, y\}$. There is a path P in $C Q_{n-1}^{0}$ between z^{n-1} and x since $C Q_{n-1}^{0}$ is connected. Let u be the first common vertex between \mathcal{P} and path P, and here P starts at z^{n-1}, that is, $u \in \mathcal{P}$, suppose $u \in P_{n-1}$. Let $Y=\left\{u_{j}^{n-1} \mid 1 \leq j \leq n-2\right\}$ with $|Y|=n-2$. By Lemma 5 , we can find $n-2$ internally disjoint (z, Y)-paths Q_{1}, \ldots, Q_{n-2} in $C Q_{n-2}^{10}$ where $u_{j}^{n-1} \in Q_{j}$ $(1 \leq j \leq n-2)$. Two subcases will be discussed.

Figure 12. $z^{n-1} \notin\{x, y\}: w^{n-2} \neq z$.
Case 1.1. $w^{n-2} \neq z$. There is a path Q in $C Q_{n-2}^{10}$ between w^{n-2} and z since $C Q_{n-2}^{10}$ is connected. Let v be the first common vertex between $Q_{1} \cup \cdots \cup Q_{n-2}$ and path Q, and here Q starts at w^{n-2}, that is, $v \in Q_{1} \cup \cdots \cup Q_{n-2}$, suppose $v \in Q_{n-2}$. Let $Y^{\prime}=\left\{u_{j}^{n-1, n-2} \mid 1 \leq j \leq n-3\right\} \cup\left\{z^{n-2}\right\}$ with $\left|Y^{\prime}\right|=n-2$, by Lemma 5 , we can find $n-2$ internally disjoint (w, Y^{\prime})-paths R_{1}, \ldots, R_{n-2} in $C Q_{n-2}^{11}$ where $u_{j}^{n-1, n-2} \in R_{j}(1 \leq j \leq n-3)$ and $z^{n-2} \in R_{n-2}$.

Let $T_{j}^{\prime}=T_{j} \cup Q_{j} \cup u_{j}^{n-1} u_{j}^{n-1, n-2} \cup R_{j}(1 \leq j \leq n-3), T_{n-2}^{\prime}=T_{n-2} \cup Q_{n-2} \cup$ $Q_{w^{n-2} v} \cup w w^{n-2}$, and $T_{n-1}^{\prime}=P_{n-1} \cup P_{z^{n-1} u} \cup z z^{n-1} \cup z z^{n-2} \cup R_{n-2}$ where $Q_{w^{n-2} v}$ refers to the part from w^{n-2} to v on $Q, P_{z^{n-1} u}$ refers to the part from z^{n-1} to u on P. (See Figure 12.)

Case 1.2. $w^{n-2}=z$. Let $Y^{\prime}=\left\{u_{j}^{n-1, n-2} \mid 1 \leq j \leq n-2\right\}$ with $\left|Y^{\prime}\right|=n-2$. By Lemma 5 , we can find $n-2$ internally disjoint (w, Y^{\prime})-paths R_{1}, \ldots, R_{n-2} in $C Q_{n-2}^{11}$ where $u_{j}^{n-1, n-2} \in R_{j}(1 \leq j \leq n-2)$.

Figure 13. $z^{n-1} \notin\{x, y\}: w^{n-2}=z$.
Let $T_{j}^{\prime}=T_{j} \cup Q_{j} \cup u_{j}^{n-1} u_{j}^{n-1, n-2} \cup R_{j}(1 \leq j \leq n-2)$, and $T_{n-1}^{\prime}=P_{n-1} \cup$ $P_{z^{n-1} u} \cup z z^{n-1} \cup z w$. (See Figure 13.)

Figure 14. $z^{n-1} \in\{x, y\}: w^{n-2} \neq z$.
Case 2. $z^{n-1} \in\{x, y\}$. Let $x=z^{n-1}$ and $Y=\left\{u_{j}^{n-1} \mid 2 \leq j \leq n-1\right\}$ with $|Y|=n-2$. By Lemma 5 , we can find $n-2$ internally disjoint (z, Y)-paths Q_{2}, \ldots, Q_{n-1} in $C Q_{n-2}^{10}$ where $u_{j}^{n-1} \in Q_{j}(2 \leq j \leq n-1)$.

Figure 15. $z^{n-1} \in\{x, y\}: w^{n-2}=z$.

Case 2.1. $w^{n-2} \neq z$. There is a path Q in $C Q_{n-2}^{10}$ between w^{n-2} and z since $C Q_{n-2}^{10}$ is connected. Let v be the first common vertex between $Q_{2} \cup \cdots \cup Q_{n-1}$ and path Q, and here Q starts at w^{n-2}, that is, $v \in Q_{2} \cup \cdots \cup Q_{n-1}$, suppose $v \in Q_{n-1}$. Let $Y^{\prime}=\left\{u_{j}^{n-1, n-2} \mid 2 \leq j \leq n-2\right\} \cup\left\{z^{n-2}\right\}$ with $\left|Y^{\prime}\right|=n-2$, by Lemma 5 , we can find $n-2$ internally disjoint $\left(w, Y^{\prime}\right)$-paths R_{2}, \ldots, R_{n-1} in $C Q_{n-2}^{11}$ where $u_{j}^{n-1, n-2} \in R_{j}(2 \leq j \leq n-2)$ and $z^{n-2} \in R_{n-1}$.

Let $T_{1}^{\prime}=P_{1} \cup x z \cup z z^{n-2} \cup R_{n-1}, T_{j}^{\prime}=T_{j} \cup Q_{j} \cup u_{j}^{n-1} u_{j}^{n-1, n-2} \cup R_{j}(2 \leq j \leq$ $n-2$), and $T_{n-1}^{\prime}=T_{n-1} \cup Q_{n-1} \cup Q_{w^{n-2} v} \cup w w^{n-2}$ where $Q_{w^{n-2} v}$ refers to the part from w^{n-2} to v on Q. (See Figure 14.)

Case 2.2. $w^{n-2}=z$. Let $Y^{\prime}=\left\{u_{j}^{n-1, n-2} \mid 2 \leq j \leq n-1\right\}$ with $\left|Y^{\prime}\right|=n-2$, by Lemma 5 , we can find $n-2$ internally disjoint $\left(w, Y^{\prime}\right)$-paths R_{2}, \ldots, R_{n-1} in $C Q_{n-2}^{11}$ where $u_{j}^{n-1, n-2} \in R_{j}(2 \leq j \leq n-1)$.

Let $T_{1}^{\prime}=P_{1} \cup x z \cup z w, T_{j}^{\prime}=T_{j} \cup Q_{j} \cup u_{j}^{n-1} u_{j}^{n-1, n-2} \cup R_{j}$ where $2 \leq j \leq n-1$. (See Figure 15.)

Hence, the lemma holds.
Theorem 15. $\kappa_{4}\left(C Q_{n}\right)=n-1$ for $n \geq 2$.
Proof. By Lemma 4 and the fact that $C Q_{n}(n \geq 2)$ is n-regular, we have $\kappa_{4}\left(C Q_{n}\right) \leq \delta\left(C Q_{n}\right)-1=n-1$. Next, we only need to prove $\kappa_{4}\left(C Q_{n}\right) \geq n-1$ for $n \geq 2$. That is, for any $S \subset V\left(C Q_{n}\right)$ with $|S|=4$, we can find $n-1$ internally disjoint trees in $C Q_{n}$ to connect S. Let $S=\{x, y, z, w\}$ and $S \cap V\left(C Q_{n-1}^{i}\right)=S^{i}$ $(i \in\{0,1\})$. For $n=2$, by $C Q_{2}$ is 2 -connected with only four vertices, it is easy
to know that $\kappa_{4}\left(C Q_{2}\right) \geq 1$, then $\kappa_{4}\left(C Q_{2}\right)=1$. For $n \geq 3$, three cases will be considered.

Case 1. $\left|S^{0}\right|=4$ or $\left|S^{1}\right|=4$. Without loss of generality, let $\left|S^{0}\right|=4$, then $\left\{x^{n-1}, y^{n-1}, z^{n-1}, w^{n-1}\right\} \subset V\left(C Q_{n-1}^{1}\right)$. We will prove it by induction hypothesis on n. The conclusion holds for $n=2$, suppose it also holds while $3 \leq l \leq n-1$. By $C Q_{n-1}^{0} \cong C Q_{n-1}$ and induction hypothesis, $\kappa_{4}\left(C Q_{n-1}\right)=n-2$, that is, we can find $n-2$ internally disjoint trees T_{1}, \ldots, T_{n-2} in $C Q_{n-1}^{0}$ connecting S. There is a tree T in $C Q_{n-1}^{1}$ connecting $\left\{x^{n-1}, y^{n-1}, z^{n-1}, w^{n-1}\right\}$ since $C Q_{n-1}^{1}$ is connected. Let $T_{n-1}=x x^{n-1} \cup y y^{n-1} \cup z z^{n-1} \cup w w^{n-1} \cup T$, where $V\left(T_{n-1}\right) \cap V\left(T_{j}\right)=$ $\{x, y, z, w\}$ and $E\left(T_{n-1}\right) \cap E\left(T_{j}\right)=\emptyset$ for any $1 \leq j \leq n-2$.

Case 2. $\left|S^{i}\right|=3$ and $\left|S^{1-i}\right|=1$, where $i=0$ or 1. By Lemma 11, the theorem is true.

Case 3. $\left|S^{0}\right|=\left|S^{1}\right|=2$. By $C Q_{n-2}^{00} \cong C Q_{n-2}^{01} \cong C Q_{n-2}^{10} \cong C Q_{n-2}^{11} \cong C Q_{n-2}$, we only need to consider three subcases.

Case 3.1. $\left|S^{0} \cap V\left(C Q_{n-2}^{00}\right)\right|=\left|S^{1} \cap V\left(C Q_{n-2}^{10}\right)\right|=2$. By Lemma 12, the theorem is true.

Case 3.2. $\left|S^{0} \cap V\left(C Q_{n-2}^{00}\right)\right|=2,\left|S^{1} \cap V\left(C Q_{n-2}^{10}\right)\right|=\left|S^{1} \cap V\left(C Q_{n-2}^{11}\right)\right|=1$. By Lemma 13, the theorem is true.

Case 3.3. $\left|S^{0} \cap V\left(C Q_{n-2}^{00}\right)\right|=\left|S^{0} \cap V\left(C Q_{n-2}^{01}\right)\right|=\left|S^{1} \cap V\left(C Q_{n-2}^{10}\right)\right|=$ $\left|S^{1} \cap V\left(C Q_{n-2}^{11}\right)\right|=1$. By Lemma 14, the theorem is true.

Hence, the theorem holds.
By Lemma 8 and Theorem 15, there is the following theorem.
Theorem 16. $\kappa_{3}\left(C Q_{n}\right)=n-1$ for $n \geq 2$.

5. Conclusion

In this paper, we discuss the generalized 3 -connectivity and the generalized 4 connectivity of n-dimensional crossed cube $C Q_{n}$ and obtain $\kappa_{3}\left(C Q_{n}\right)=\kappa_{4}\left(C Q_{n}\right)$ $=n-1$ for $n \geq 2$. This provides a new reference for measuring the fault tolerance of $C Q_{n}$.

Acknowledgments

The authors thank the anonymous reviewers for their valuable comments which have played a great role in improving the quality of this paper. This article was completed during the period when the second author Dongqin Cheng was visiting Nanyang Technological University with financial support from China Scholarship Council (CSC No. 202006785015).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer Verlag, London, 2008).
[2] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distrib. Syst. 3 (1992) 513-524. https://doi.org/10.1109/71.159036
[3] H. Gao, B. Lv and K. Wang, Two lower bounds for generalized 3-connectivity of Cartesian product graphs, Appl. Math. Comput. 338 (2018) 305-313. https://doi.org/10.1016/j.amc.2018.04.007
[4] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser. B 38 (1985) 179-189. https://doi.org/10.1016/0095-8956(85)90083-8
[5] C.-N. Hung, C.-K. Lin, L.-H. Hsu, E. Cheng and L. Lipták, Strong fault-Hamiltonicity for the crossed cube and its extensions, Parallel Process. Lett. 27 (2017) \#1750005.
https://doi.org/10.1142/S0129626417500050
[6] P.D. Kulasinghe, Connectivity of the crossed cube, Inform. Process. Lett. 61 (1997) 221-226.
https://doi.org/10.1016/S0020-0190(97)00012-4
[7] H. Li, Y. Ma, W. Yang and Y. Wang, The generalized 3-connectivity of graph products, Appl. Math. Comput. 295 (2017) 77-83. https://doi.org/10.1016/j.amc.2016.10.002
[8] S. Li, X. Li and W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete. Math. 310 (2010) 2147-2163.
https://doi.org/10.1016/j.disc.2010.04.011
[9] S. Li, Y. Shi and J. Tu, The generalized 3-connectivity of Cayley graphs on symmetric groups generated by trees and cycles, Graph Combin. 33 (2017) 1195-1209. https://doi.org/10.1007/s00373-017-1837-9
[10] S. Li, J. Tu and C. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput. 274 (2016) 41-46. https://doi.org/10.1016/j.amc.2015.11.016
[11] S. Li, Y. Zhao, F. Li and R. Gu, The generalized 3-connectivity of the Mycielskian of a graph, Appl. Math. Comput. 347 (2019) 882-890. https://doi.org/10.1016/j.amc.2018.11.006
[12] S. Lin and Q. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl. Math. 220 (2017) 60-67.
https://doi.org/10.1016/j.dam.2016.12.003
[13] Z. Pan and D. Cheng, Structure connectivity and substructure connectivity of the crossed cube, Theoret. Comput. Sci. 824-825 (2020) 67-80.
https://doi.org/10.1016/j.tcs.2020.04.014
[14] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.
https://doi.org/10.2307/2371086
[15] S. Zhao and R.-X. Hao, The generalized connectivity of alternating group graphs and (n, k)-star graphs, Discrete. Appl. Math. 251 (2018) 310-321. https://doi.org/10.1016/j.dam.2018.05.059
[16] S. Zhao and R.-X. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput. 347 (2019) 342-353. https://doi.org/10.1016/j.amc.2018.11.023
[17] S. Zhao, R.-X. Hao and J. Wu, The generalized 3-connectivity of some regular networks, J. Parallel Distrib. Comput. 133 (2019) 18-29. https://doi.org/10.1016/j.jpdc.2019.06.006
[18] S.-L. Zhao, R.-X. Hao and J. Wu, The generalized 4-connectivity of hierarchical cubic networks, Discrete. Appl. Math. 289 (2021) 194-206. https://doi.org/10.1016/j.dam.2020.09.026

Received 11 June 2022
Revised 1 September 2022
Accepted 1 September 2022
Available online 19 October 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

