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Abstract

Given a graph G, a k-labelling ℓ of G is an assignment ℓ : E(G) →
{1, . . . , k} of labels from {1, . . . , k} to the edges. We say that ℓ is s-proper,
m-proper or p-proper, if no two adjacent vertices of G are incident to the
same sum, multiset or product, respectively, of labels.

Proper labellings are part of the field of distinguishing labellings, and
have been receiving quite some attention over the last decades, in partic-
ular in the context of the well-known 1-2-3 Conjecture. In recent years,
quite some progress was made towards the main questions of the field, with,
notably, the analogues of the 1-2-3 Conjecture for m-proper and p-proper
labellings being solved. This followed mainly from a better global under-
standing of these types of labellings.

In this note, we focus on a question raised by Paramaguru and Sam-
pathkumar, who asked whether graphs with m-proper 2-labellings always
admit s-proper 2-labellings. A negative answer to this question was re-
cently given by Luiz, who provided infinite families of counterexamples. We
give a more general result, showing that recognising graphs with m-proper
2-labellings but no s-proper 2-labellings is an NP-hard problem. We also
prove a similar result for m-proper 2-labellings and p-proper 2-labellings,
and raise a few directions for further work on the topic.

Keywords: proper labelling, sum of labels, multiset of labels, product of
labels.
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1. Introduction

Let G be a graph. By a labelling ℓ of G, we mean an assignment of labels

(numbers) from a given set to the edges of G. For a set S of labels, ℓ is called an S-

labelling if it assigns labels from S, while, if S = {1, . . . , k} for some k ≥ 1, then we
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call ℓ a k-labelling. In so-called distinguishing labellings, we are interested in
designing labellings that permit to distinguish certain pairs of vertices accordingly
to some function inferred by the assigned labels. As attested by the survey [12]
by Gallian, this general definition is very flexible, and it gave birth, throughout
the years, to a tremendous number of such distinguishing labelling notions.

In this work, we are interested in a subset of distinguishing labellings, called
proper labellings. In proper labellings, the pairs of vertices that are required
to be distinguished are the pairs of adjacent vertices. Regarding the distiguishing
function, there are again many possibilities. We are here interested in three such
functions, being the sums, multisets and products of labels incident to the vertices.
Formally, let us consider a graph G, together with a labelling ℓ. For any vertex v

of G, we denote by σ(v) the sum of labels assigned by ℓ to the edges incident to
v. Similarly, we denote by µ(v) and ρ(v) the multiset and product, respectively,
of these incident labels. Now, we say that ℓ is s-proper if no two adjacent vertices
u and v of G are incident to the same sum of labels, i.e., if σ(u) 6= σ(v) for every
edge uv ∈ E(G). Similarly, we say that ℓ is m-proper and p-proper if every two
adjacent vertices are distinguished through the functions µ and ρ, respectively.

In proper labellings, the goal is generally to design labellings that are not only
proper, but also k-labellings for k as small as possible. This leads to the definition
of three parameters, denoted χS(G), χM(G) and χP(G) for a given graph G,
which denote the smallest k ≥ 1 such that s-proper, m-proper and p-proper,
respectively, k-labellings of G exist. It is worth pointing out now that these three
parameters are not defined for all graphs G, as it can easily be observed that K2,
the complete graph on 2 vertices, admits no proper labellings at all. However,
greedy arguments can be employed to show that this is the only pathological
connected graph. Consequently, the parameters χS, χM and χP are more precisely
studied in the context of nice graphs, which are those graphs which do not have
K2 as a connected component.

The notion of s-proper labellings emerged in the literature as a local version
of the irregularity strength of graphs, which was initially introduced, back in 1988,
by Chartrand et al. [9]. Since then, s-proper labellings have been studied for their
own interest, and they have actually been attracting a lot of attention due to the
intriguing 1-2-3 Conjecture.

1-2-3 Conjecture (Karoński,  Luczak, Thomason [15]). If G is a nice graph,

then χS(G) ≤ 3.

For details on the 1-2-3 Conjecture, we refer the interested reader to [19].
Let us just mention, for now, that this conjecture has been proven to be quite
challenging. To date, the best result towards the conjecture is that χS(G) ≤ 5 for
every nice graph G (see [14]). The conjecture was proven to hold for 3-colourable
graphs [15], and simple graph classes such as complete graphs [8], for which,
already, all of the labels 1, 2, 3 are required.
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The general hardness behind the 1-2-3 Conjecture is one of the main reasons
that led people to consider m-proper labellings instead, as it can be observed
that an s-proper labelling is always m-proper. This observation led the authors
of [1] to consider a multiset version of the 1-2-3 Conjecture (asking, naturally,
whether χM(G) ≤ 3 for every nice graph G). Right away, this presumption that
distinguishing vertices via multisets is easier than distinguishing via sums was
proven correct, as the authors showed that χM(G) ≤ 4 for all nice graphs G.
More recently, this was definitely confirmed, with Vučković proving, in [22], the
multiset version of the 1-2-3 Conjecture.

In parallel with these results, a product version of the 1-2-3 Conjecture,
stating that χP(G) ≤ 3 for every nice graph G, was introduced by Skowronek-
Kaziów in [20]. An interesting fact is that, due to 2 and 3 being coprime, m-proper
3-labellings and p-proper 3-labellings are actually not so distant objects (see [5]
for more details), which sort of gave the impression that the product version of
the 1-2-3 Conjecture might be of intermediate difficulty, between the sum and
multiset versions, yet closer to the latter one. Again, this was confirmed recently
in [6], by Bensmail, Hocquard, Lajou and Sopena proving the product version of
the 1-2-3 Conjecture in full.

We have thus reached a point of time where quite some progress towards
the 1-2-3 Conjecture has been recently made, through the upper bound, 5, being
very close to what is conjectured exactly, and two related conjectures, which for
quite some time seemed of close hardness, being proved. What made this recent
progress possible, is definitely a better understanding over the inherent behaviour
of s-proper, m-proper and p-proper 3-labellings, which on themselves, gave birth
to interesting side investigations (see [3] and the references there for examples).
As a matter of fact, even if the 1-2-3 Conjecture turned out to be proven soon,
there would still remain lots of interesting questions to answer towards fully
understanding proper labellings.

One of these questions, which is precisely the one we investigate throughout
this note, is about the real difference between s-proper, m-proper and p-proper
labellings. As partly mentioned earlier, s-properness and p-properness both imply
m-properness, that is χM(G) ≤ min{χS(G), χP(G)} for every nice graph G. This
led, in particular, to the following question:

Question 1 (Paramaguru, Sampathkumar [18]). Does every nice graph G verify

χM(G) = χS(G)?

Note that χS(G) = 1 for a graph G if and only if G is locally irregular, i.e.,
does not have adjacent vertices with the same degree [2], in which context also
χM(G) = 1. Now, since the multiset version of the 1-2-3 Conjecture holds [22],
we have χM(G) ≤ 3 for every nice graph G. So the natural question to ask in
order to advance towards answering Question 1, is whether there exist graphs G
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such that 2 ≤ χM(G) < χS(G). Now, if we assume that the 1-2-3 Conjecture
holds as well, then this question reduces to the following.

Question 2. Are there graphs G with χM(G) = 2 < 3 = χS(G)?

Infinitely many graphs having the properties described in Question 2 have
actually been exhibited recently by Luiz in [16]. For instance, any split graph
obtained from a complete graph on at least six vertices by attaching a pendant
degree-1 vertex to any vertex has the desired properties. This leads to the ques-
tion of whether all graphs with the properties described in Question 2 are always
that easy to describe. In this work, we focus on that very question, and prove
that determining whether χS(G) = 3 for a given graph G with χM(G) = 2 is
NP-hard. Thus, recognising graphs G with χM(G) = 2 < 3 = χS(G) cannot be
done in polynomial time, unless P=NP. We also prove that such a result holds
for m-proper and p-proper labellings.

This note is organised as follows. We start, in Section 2, by recalling a few
facts on s-proper, m-proper and p-proper labellings. In Section 3, we give a
first general result on m-proper and p-proper labellings, from which we provide a
first insight into our proof arguments. From these, we then give our main result
in Section 4, from which we deduce that many more diverse graphs with the
properties described in Question 2 exist. We conclude in Section 5 with a few
more remarks and questions related to our investigations.

2. General Tools and Previous Results

We start by recalling a few facts on proper labellings, which were already observed
in previous works (such as [8]). We begin with the following, which is evident.

Observation 3. Let G be a nice graph, and ℓ be a k-labelling of G. If uv ∈ E(G)
is an edge with d(u) = 1 (and d(v) > 1 since G is nice), then σ(u) 6= σ(v).

Another obvious observation, is the fact that p-proper labellings cannot as-
sign label 0. This is because if we have ℓ(uv) = 0 for an edge uv of a graph G

by a labelling ℓ, then ρ(u) = ρ(v) = 0. Due to this property, whenever deal-
ing with p-proper S-labellings throughout this note (in particular in upcoming
Observation 5 and Corollary 6), we implicitly assume that 0 6∈ S.

Observation 4. p-proper labellings cannot assign label 0.

The next result is another elementary one of the field. Yet, it has several
interesting consequences. Particularly, it gives contexts in which s-proper, m-
proper and p-proper 2-labellings stand as equivalent objects.
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Observation 5. Let G be a nice graph, and ℓ be an {a, b}-labelling of G for any

two distinct real numbers a, b. For σ(u) 6= σ(v) to hold for some uv ∈ E(G)
with d(u) = d(v), the number of edges labelled a incident to u must be different

from the number of edges labelled a incident to v (and similarly for the numbers

of edges incident to u and v labelled b). Consequently, if σ(u) 6= σ(v), then also

both µ(u) 6= µ(v) and ρ(u) 6= ρ(v).

Proof. If we denote by nx(u) and nx(v) the number of edges incident to u and
v, respectively, assigned some label x by ℓ, then the facts that d(u) = d(v) and
na(u) = na(v) imply that also nb(u) = nb(v), and from that we deduce that
σ(u) = σ(v), µ(u) = µ(v) and ρ(u) = ρ(v) (assuming 0 6∈ {a, b} in this last case,
recall Observation 4). From these observations, we deduce that if uv is an edge of
G with d(u) = d(v), then, so that σ(u) 6= σ(v) by an {a, b}-labelling of G, it must
be that na(u) 6= na(v) and thus that nb(u) 6= nb(v). Under those assumptions,
note that we also have µ(u) 6= µ(v) and ρ(u) 6= ρ(v), as claimed.

Corollary 6. In regular graphs, finding an s-proper, m-proper or p-proper {a, b}-
labelling for some distinct real numbers a, b, is equivalent to finding an s-proper,

m-proper or p-proper {a′, b′}-labelling for any distinct a′, b′.

In the next sections, the main results we prove relate to the following decision
problems.

S-proper 2-Labelling
Input: A graph G.
Question: Do we have χS(G) ≤ 2, i.e., does G admit s-proper 2-labellings?

P-proper 2-Labelling
Input: A graph G.
Question: Do we have χP(G) ≤ 2, i.e., does G admit p-proper 2-labellings?

Note that these problems are clearly in NP. They were also showed to be NP-hard
in general, first by Dudek and Wajc in [11] for general graphs. Later on, Ahadi,
Dehghan and Sadeghi proved in [10] that these problems remain NP-hard when
restricted to cubic graphs. From Corollary 6, this implies the following.

Theorem 7 (Ahadi, Dehghan, Sadeghi [10]). For any two distinct a, b, deciding

whether a (cubic) graph admits an s-proper, m-proper or p-proper {a, b}-labelling
is NP-hard.

3. Multisets Versus Products

The main result to be established in this section, relies on the following simple
fact, already established e.g. in [17].
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Observation 8. Let G be a nice graph with a vertex v, and let H be obtained

from G by attaching a pendant path (v, a, b, c, d) of length 4 at v. If ℓ is a p-proper

2-labelling of H, then the restriction of ℓ to G is also p-proper. Conversely, any

p-proper 2-labelling of G can be extended to one of H.

Proof. Assume ℓ is a p-proper 2-labelling of H. So that ρ(c) 6= ρ(d), note that
we must have ℓ(bc) = 2. From this, so that ρ(a) 6= ρ(b), we must have ℓ(va) = 1,
meaning that ℓ(va) does not contribute to ρ(v). We thus deduce that, for ℓ to be
p-proper in H, the restriction of ℓ to the edges of G must also be p-proper in G.

Regarding the last part of the statement, consider a p-proper 2-labelling ℓ

of G. We extend this labelling to a p-proper 2-labelling of H, by first setting
ℓ(va) = 1 and ℓ(bc) = 2, and then setting either ℓ(ab) = 1 and ℓ(cd) = 2 (if
ρ(v) 6= 1) or ℓ(ab) = 2 and ℓ(cd) = 1 (otherwise). It can be checked that this
raises no conflict in both cases.

We now prove that P-proper 2-Labelling is NP-hard even when restricted
to graphs G with χM(G) = 2. So, assuming that P 6=NP, not only does our result
imply that there exist infinitely many graphs G with χM(G) = 2 < 3 = χP(G),
but also that recognising the graphs G that verify χM(G) = χP(G) = 2 cannot
be done in polynomial time.

Theorem 9. P-proper 2-Labelling is NP-hard for graphs G with χM(G) = 2.

Proof. The proof is by reduction from the P-proper 2-Labelling problem in
cubic graphs, which is NP-hard (recall Theorem 7). Let G be a cubic graph,
an instance of P-proper 2-Labelling. We can assume that G is connected.
We can also assume that G is not K4 (since χP(K4) = 3, see [8]), thus that its
chromatic number is at most 3 by Brooks’ Theorem [7]. In other words, we can
assume we also have a proper vertex-colouring φ : V (G) → {0, 1, 2} of G.

We construct a graph H verifying χM(H) = 2, and such that χP(H) = 2 if
and only if χP(G) = 2. For that, we start from G, consider every vertex v ∈ V (G)
in turn, and attach at v exactly φ(v) new disjoint pendant paths of length 4. Note
that the construction of H is clearly achieved in polynomial time.

The fact that χP(G) = 2 if and only if χP(H) = 2 follows mainly from
Observation 8. That is, a p-proper 2-labelling of H directly infers one of G, due
to the fact that the paths of length 4 do not contribute to the products of the
vertices in V (H)∩V (G). Regarding the other direction, a p-proper 2-labelling of
G can be extended to the pendant paths we have added to form H, by repeated
applications of the arguments in the proof of Observation 8. Thus, we have the
desired equivalence.

To see now that we always have χM(H) = 2 (regardless of G), it suffices to
note that, for any two vertices u and v, by any labelling of a graph, we have
µ(u) 6= µ(v) whenever d(u) 6= d(v). Now, for any vertex v ∈ V (H) ∩ V (G),
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note that dH(v) = dG(v) + φ(v). In particular, because φ is a proper {0, 1, 2}-
vertex-colouring of G, for every two adjacent vertices u, v ∈ V (H) ∩ V (G), we
have dH(u) 6= dH(v), for dH(u), dH(v) ∈ {3, 4, 5}, and thus µ(u) 6= µ(v) by any
labelling of H. Similarly, if a vertex v ∈ V (H) ∩ V (G) is incident to a pendant
path (added when constructing H from G), and is thus adjacent to a degree-
2 vertex u, then we have dH(v) ≥ 4 > 2 = dH(u), and again µ(u) 6= µ(v)
by any labelling. Thus, designing an m-proper 2-labelling of H falls down to
2-labelling the pendant paths in an m-proper way. From this, we deduce that
assigning label 1 to all edges of E(H)∩E(G), and, then, for every pendant path
(v, a, b, c, d), where v ∈ V (H) ∩ V (G) (and thus dH(d) = 1), assigning label 2 to
dc and cb and label 1 to ba and av, results in an m-proper 2-labelling of H.

4. Multisets Versus Sums

Before proving our main result, Theorem 12, we first need to introduce a few
gadgets and constructions, and to point out some of their properties.

The gadget D is depicted in Figure 1(a). Throughout this section, we deal
with the vertices and edges of D following the notation given in Figure 1. We
call s and t the two ends of D, while we say that edges sv1 and tv4 are its two
outputs. This gadget D was already used in [10, 13], where it was noticed it has
the following labelling properties.

Theorem 10. D fulfils the following properties.

1. D admits s-proper 2-labellings ℓ where ℓ(sv1) = 1;

2. D admits s-proper 2-labellings ℓ where ℓ(sv1) = 2;

3. If ℓ is any s-proper 2-labelling of D, then

(a) ℓ(sv1) = ℓ(tv4);

(b) σ(v1) = σ(v4) = 4 if ℓ(sv1) = 1, and σ(v1) = σ(v4) = 5 otherwise.

Proof. The vertices of D being of degree 1 and 3 only, it can be observed (through
Observations 3 and 5) that if we have an s-proper 2-labelling of D and reverse all
labels (1’s become 2’s, and vice versa), then what results is an s-proper 2-labelling
of D. From this, we get that if Item 1 holds then Item 2 holds. Similarly, if the
first part of Item 3(b) holds, then the second part holds.

Let ℓ be an s-proper 2-labelling of D. By the previous arguments, we can
assume that ℓ(v2v3) = 1. Assume first that ℓ(v2v1) = ℓ(v2v4) = 1. Then σ(v2) =
3. So that σ(v2) 6= σ(v3), at least one of ℓ(v3v1) and ℓ(v3v4) must be 2. There
are two cases.

• Assume first that ℓ(v3v1) 6= ℓ(v3v4), say ℓ(v3v1) = 1 and ℓ(v3v4) = 2. Thus,
σ(v3) = 4. Now observe that, regardless of ℓ(v1s), we must have σ(v1) ∈
{3, 4} = {σ(v2), σ(v3)}, resulting in a conflict, thus a contradiction.
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s v1

v2

v3

v4 t

(a) The gadget D.

a1 a2b1 b2

(b) The 2-necklace D2.

a1

b1

a2

b2

a3

b3

(c) The 3-necklace D3.

Figure 1. Gadgets used to prove Theorem 12.

• Assume now that ℓ(v3v1) = ℓ(v3v4) = 2. Then σ(v3) = 5. So that σ(v1), σ(v4)
6∈ {3, 5} = {σ(v2), σ(v3)}, note that we must have ℓ(v1s) = ℓ(v4t) = 1, which
indeed yields σ(v1) = σ(v4) = 4, as claimed.

If ℓ(v2v1) = ℓ(v2v4) = 2, then, so that σ(v2) 6= σ(v3), either ℓ(v3v1) =
ℓ(v3v4) = 1, in which case we fall into the previous case (up to renaming the
vertices) or ℓ(v3v1) 6= ℓ(v3v4). In that last case, if we have, say, ℓ(v3v1) = 1 and
ℓ(v3v4) = 2, then {σ(v2), σ(v3)} = {4, 5}; note that, again, regardless of ℓ(v1s),
we must have σ(v1) ∈ {4, 5} = {σ(v2), σ(v3)}, thus a conflict.

Lastly, if ℓ(v2v1) 6= ℓ(v2v4), then, so that σ(v2) 6= σ(v3), we must have
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ℓ(v3v1) = ℓ(v3v4). Up to renaming the vertices of D, this is a case we have
covered earlier.

Using copies of the gadget D, we can construct bigger gadgets. For any
k ≥ 1, the k-necklace Dk is obtained in the following way (see Figures 1(b) and
(c) for examples).

• Start from k disjoint copies G0, . . . , Gk−1 of the gadget D. For every i ∈
{0, . . . , k − 1}, we denote by xi and yi the ends of Gi.

• For every i ∈ {0, . . . , k− 1}, identify yi and x(i+1) mod k to connect the Gi’s in
a cyclic fashion. Note that all vertices have degree 3, except for exactly k of
them, which we denote by a1, . . . , ak, which result from the identifications.

• For every i ∈ {1, . . . , k}, attach a pendant vertex bi at ai.

We call the bi’s the ends of Dk, while we call the aibi’s its outputs. Labelling
properties of the gadget D actually infer labelling properties for necklaces; in
particular we have the following.

Theorem 11. For any k ≥ 1, the k-necklace Dk fulfils the following properties.

1. By any s-proper 2-labelling of Dk, all outputs must be assigned the same label;

2. Dk admits s-proper 2-labellings assigning label 1 to the outputs;

3. Dk admits s-proper 2-labellings assigning label 2 to the outputs;

4. If ℓ is any s-proper 2-labelling of Dk, then σ(a1) = · · · = σ(ak) = 3 if

ℓ(a1b1) = 1, and σ(a1) = · · · = σ(ak) = 6 otherwise.

Proof. Dk having vertices of degree 1 and 3 only, by Observations 3 and 5 we
get that, upon reversing labels by s-proper 2-labellings, Item 3 holds as soon as
Items 1 and 2 hold.

Let ℓ be an s-proper 2-labelling of Dk. First off, we claim that, for each
of the k copies G0, . . . , Gk−1 of the gadget D forming Dk, its two outputs must
be assigned the same label by ℓ. In other words, we claim that the 2k outputs
of G0, . . . , Gk−1 must be assigned the same label. Indeed, assume this is wrong.
Recall that, by Item 3(a) of Theorem 10, for any copy of D in Dk, its two outputs
must be assigned the same label by ℓ. Now, by our hypothesis, there must be
a vertex ai in Dk resulting from the identification of two ends from two copies
Gi−1 and Gi of D such that, say, the outputs of Gi−1 are assigned label 1 by ℓ

while the outputs of Gi are assigned label 2. By Item 3(b) of Theorem 10, this
means that ai is adjacent to a vertex v of Gi−1 that has sum 4 by ℓ, and to a
vertex u of Gi that has sum 5. Then, there is a conflict either between ai and v

(if ℓ(aibi) = 1) or between ai and u (if ℓ(aibi) = 2).

Thus, the 2k outputs of the copies of D in Dk must be assigned the same
label by ℓ. Assume this label 1, and focus on any vertex ai resulting from the
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identification of two ends of Gi−1 and Gi, being copies of D. Then the two
neighbours of ai in Gi−1 and Gi, by Item 3(b) of Theorem 10, have sum 4 by ℓ.
So that there is no conflict between ai and these vertices, we must have ℓ(aibi) = 1
so that σ(ai) = 3. Similar arguments show that we must have ℓ(aibi) = 2 in case
the other two edges incident to ai are assigned label 2, in which case σ(ai) = 6.

We are now ready to prove our main result. Again, this result implies that
there exist infinitely many graphs G verifying χM(G) = 2 < 3 = χS(G). Even
worse, recognising such graphs cannot be done in polynomial time, unless P=NP.

Theorem 12. S-proper 2-Labelling is NP-hard for graphs G with χM(G) = 2.

Proof. The proof starts similarly as that of Theorem 9, and is done by a re-
duction from the S-proper 2-Labelling problem in cubic graphs. Let G be a
connected cubic graph given together with a proper vertex-colouring φ : V (G) →
{0, 2, 4}, where G is an instance of S-proper 2-Labelling. We construct, in
polynomial time, a graph H with χM(H) = 2, and such that χS(G) = 2 if and
only if χS(H) = 2.

The construction of H is mainly achieved by using an α-necklace with suf-
ficiently many outputs, connected to the rest of the graph in some fashion to
guarantee that 1) any s-proper 2-labelling must propagate in a very particular
way, and that 2) some adjacent vertices have distinct degrees so that they cannot
be an obstacle to m-properness. We voluntarily avoid specifying the value of α
for now, and just assume it is sufficiently large so that we always have unused
outputs in hands whenever we need some. Let us just mention that α will be a
linear function of |V (G)|.

Before describing the heart of the reduction, let us make some preparations.
We start from A, an α-necklace with α outputs. Recall that by any s-proper
2-labelling, all outputs of A must be assigned the same label, and that this label
can be 1 or 2 (recall Theorem 11). We first modify A, to force this label on
the outputs to be 1. For that, we first need to point out the following easy
observation.

Claim 13. Let u1v1, . . . , ukvk be k ≥ 1 pairwise distinct outputs of A, where the

vi’s are the degree-1 vertices. For every i ∈ {1, . . . , k}, attach a pendant path

(vi, xi, yi) of length 2 at v, resulting in a new graph A′. Then

1. every s-proper 2-labelling of A can be extended to one of A′;

2. if ℓ is any s-proper 2-labelling of A′, then, for every i ∈ {1, . . . , k}

(a) ℓ(uivi) 6= ℓ(xiyi);

(b) σ(xi) = 3 if ℓ(uivi) = 1, and σ(xi) can be anything in {2, 3} otherwise.

Proof. Item 2(a) is necessary, as it is the only reason that guarantees σ(vi) 6=
σ(xi). To see now that Item 1 holds, consider an s-proper 2-labelling ℓ of A, and
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consider extending it to the edges vixi and xiyi of A′, for some i ∈ {1, . . . , k}. If
ℓ(uivi) = 1, then recall that σ(ui) = 3 by Theorem 11. In that case, we must set
ℓ(vixi) = 1 and ℓ(xiyi) = 2, which yields σ(vi) = 2, σ(xi) = 3 and σ(yi) = 2, thus
no conflicts. Now, if ℓ(uivi) = 2, then, by Theorem 11, recall that σ(ui) = 6. In
that case, we can set e.g. ℓ(vixi) = 1 (or ℓ(vixi) = 2) and ℓ(xiyi) = 1, which
yields σ(vi) = 3 (σ(vi) = 4, respectively), σ(xi) = 2 (σ(xi) = 3, respectively) and
σ(yi) = 1, raising no conflicts. From these arguments, ℓ can thus be extended to
A′, and Items 1 and 2(b) hold.

In what is to come, we will need to “extend” some outputs of A as described
in Claim 13. That is, given an output uv of A where v is the degree-1 vertex, by
extending uv we mean attaching a pendant path (v, x, y) of length 2 at v. We
regard the pendant edge xy as another output of the resulting graph, its end being
y. Conversely, uv is no longer regarded as an output of the resulting graph. So,
from A, by extending some outputs we get another graph A′ with α outputs which
can now be of two possible types: an output of A′ either is an extended output,
resulting precisely from an output extension, or is one of the initial outputs of A
that was not extended, which we call regular outputs from now on to avoid any
confusion. Due to Claim 13, the main difference, in brief, between regular and
extended outputs, is that regular outputs should all be assigned the same label
by an s-proper 2-labelling, while all extended outputs must be assigned the other
label.

We are now ready to modify A to force the label of its outputs by any s-proper
2-labelling. For that, we proceed as follows. Take one output e with end u of
A, and two more outputs f1, f2. Start by extending f1, f2, resulting in two new
extended outputs f ′

1, f
′

2. Calling v1 and v2, respectively, their ends, we modify A

by first identifying v1 and v2 to a new vertex v, and adding an edge between u

and v. This results in a new graph A′, in which we no longer regard e, f ′

1, f
′

2 as
outputs, and which thus has α− 3 outputs (all of which are regular). A′ also has
the following properties.

Claim 14. A′ fulfils the following properties.

1. By any s-proper 2-labellings of A′, all (regular) outputs must be assigned

label 1;

2. A′ admits s-proper 2-labellings.

Proof. We start by proving the first item. Assume Item 1 is wrong, and that
A′ admits s-proper 2-labellings ℓ where all outputs are assigned label 2. By
Theorem 11, following the terminology above, by the construction of A′ from
A, the edge e must be assigned label 2 by ℓ, while f ′

1, f
′

2, being extensions of
f1, f2, must be assigned label 1 (by Claim 13). This implies that we must have
σ(u) = σ(v) regardless of ℓ(uv), a contradiction.
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Assume now that ℓ is an s-proper 2-labelling of A where all outputs are
assigned label 1 (which exists by Theorem 11). We claim it can be extended to
A′, thereby proving the second item of the claim. By Claim 13, ℓ extends from
f1, f2 to f ′

1, f
′

2, and it must be that ℓ(f ′

1) = ℓ(f ′

2) = 2, while the ends of f ′

1, f
′

2

other than v have sum 3. By setting ℓ(uv) = 1, we obtain σ(u) = 2 and σ(v) = 5,
thus raising no conflicts. In particular, recall that the neighbour of u different
from v must have sum 3 by Theorem 11.

At this point, we know that A′ admits s-proper 2-labellings, all of which
must assign label 1 to all of the α − 3 (regular) outputs. We now describe how
to construct H from G and A′. Start from G and A′. Consider then every vertex
v of G in turn, and pick x = φ(v) new regular outputs e1, . . . , ex of A′, as well

as y = 4−φ(v)
2 other new regular outputs f1, . . . , fy. Start by extending each of

f1, . . . , fy, resulting in y extended outputs f ′

1, . . . , f
′

y. Note that x+ y ∈ {2, 3, 4}.
Now, just identify v and each of the x + y ends of e1, . . . , ex, f

′

1, . . . , f
′

y. Once all
vertices v of G have been treated that way, the resulting graph is our H.

Before proceeding with proving the equivalence between G and H, let us
first comment on α, the number of outputs that A must have for the whole
construction to be achieved. For a vertex v ∈ V (H) ∩ V (G) with φ(v) = 0, we
have attached two extended outputs at v (and no regular outputs). If φ(v) = 2,
then we have attached two regular outputs and one extended output at v. Last, if
φ(v) = 4, then we have attached four regular outputs (and no extended outputs).
Thus, the number of attached outputs (regardless of their type) of A′ is at most
4|V (G)|, and remember that three additional outputs were necessary to go from
A to A′. Thus it is sufficient to have α linear in |V (G)|, and the construction of
H from G and A′ is clearly achieved in polynomial time.

We now prove that we have the desired equivalence between G and H.

• Assume first that H admits an s-proper 2-labelling ℓ. Recall that all regular
outputs of A′ must be assigned label 1 by ℓ due to Claim 14, and that all extended
outputs must be assigned label 2 by Claim 13. By how H was constructed, in
particular with respect to φ, note that, for every vertex v ∈ V (H) ∩ V (G), the
edges of E(A′) incident to v have their assigned labels summing up to exactly 4.
In particular, for every edge uv in E(H)∩E(G), we have σ(u) 6= σ(v), and, thus,
σ(u) − 4 6= σ(v) − 4. This implies that the restriction of ℓ to the edges of G is
also s-proper.

• Conversely, assume G admits an s-proper 2-labelling ℓ. We claim that ℓ can be
extended to an s-proper 2-labelling of H. To see this is true, start from ℓ being
a partial labelling of H (following the labelling ℓ of G), and simply extend this ℓ

to the edges of A′ by considering an s-proper 2-labelling of A′ (such a labelling
exists, by Claim 14). Let us denote by ℓ′ the resulting 2-labelling of H. We claim
ℓ′ is s-proper. First off, for every vertex v ∈ V (H) ∩ V (G), as mentioned earlier
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by ℓ′ we have σ(v) = x + 4, where x is the value of σ(v) by ℓ. Since ℓ is s-proper
in G, this implies that, for every uv ∈ E(H) ∩ E(G), by ℓ′ we have σ(u) 6= σ(v).
By how ℓ′ was obtained, also σ(u) 6= σ(v) by ℓ′ for every uv ∈ E(H)∩E(A′) such
that u, v 6∈ V (A′) ∩ V (G). It remains to prove that we also have σ(u) 6= σ(v) by
ℓ′ for every two adjacent vertices u, v with uv ∈ E(H)∩E(A)′, u ∈ V (H)∩V (G)
and v 6∈ V (H)∩V (G). Due to the outputs of A′ attached at u, which, by ℓ′, bring
exactly 4 to σ(u), and dG(u) = 3, note that σ(u) ≥ 7 by ℓ′. On the other hand, v
is either of degree 3 (case of a regular output uv attached at u) or 2 (otherwise,
case of an extended output uv), meaning that σ(v) ≤ 6 by ℓ′. Thus, we always
have σ(u) > σ(v), and ℓ′ is thus s-proper.

We conclude the proof by showing that χM(H) = 2, regardless of G. This
is by the following arguments. For every vertex v ∈ V (H) ∩ V (G), note that we

have dH(v) = dG(v) + φ(v) + 4−φ(v)
2 . Since G is cubic, we thus have dH(v) = 7 if

φ(v) = 4, dH(v) = 6 if φ(v) = 2, and dH(v) = 5 otherwise, i.e., if φ(v) = 0. Since
φ is proper, this means that, for every uv ∈ E(H)∩E(G), we have dH(u) 6= dH(v),
implying that µ(u) 6= µ(v) by any 2-labelling of H. Similarly, for every vertex
v ∈ (V (H) ∩ V (A′)) \ V (G), we have dH(v) ≤ 3, implying that dH(u) 6= dH(v)
for every u ∈ V (H) ∩ V (G), thus µ(u) 6= µ(v) again by any 2-labelling of H.
All these arguments imply that if we just start from an s-proper 2-labelling of
A′ (which exists by Claim 14), and extend it to the whole of H by assigning
arbitrary labels to the edges of E(H) ∩ E(G), then what results is an m-proper
2-labelling of H. Thus, χM(H) = 2.

5. Discussion

Through Theorem 12, we have provided a positive answer to Question 2, thus
a negative answer to Question 1, going beyond the results of Luiz from [16]. A
general way to pursue the investigations on this topic, could be by wondering
about classes of graphs for which Question 1 can be answered (positively or
negatively), and similarly for its counterpart for p-proper labellings.

• In the case of nice trees T , it has been known for long that χS(T ) ≤ 2 always
holds (see [8]), which yields a positive answer to Question 1 for trees. This
is a neat difference with p-proper labellings, as Szabo Lyngsie proved in [17]
that there exist infinitely many trees T with χP(T ) = 3, which, fortunately,
can be recognised in polynomial time. Thus, for trees T , we sometimes have
χM(T ) = 2 < 3 = χP(T ), but such situations can be recognised easily.

• Regarding bipartite graphs, it was proved by Thomassen, Wu and Zhang [21]
that bipartite graphs G with χS(G) = 3 form exactly the class of the so-called
odd multi-cacti, which can be recognised in polynomial time. Looking at the
structure of odd multi-cacti, it is not too complicated to prove that each graph
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G that belongs to this class, also verifies χM(G) = 3 (refer e.g. to [4] for more
insight in the structure of these graphs). In other words, the answer to Ques-
tion 1 is also yes for bipartite graphs. Regarding p-proper labellings, we have
already mentioned earlier that trees form a context in which we sometimes do
not have equality between the parameters χM and χP. Regarding the complexity
of deciding whether this is the case or not for a given bipartite graph, it is still
unclear, as we still do not know whether bipartite graphs G with χP(G) ≤ 2 can
be recognised in polynomial time (see [17] for partial results).

• Regarding graphs with bounded maximum degree, we note that our reduction
in the proof of Theorem 12 builds graphs of maximum degree at most 7. A
question could thus be whether Theorem 12 also holds for graphs with maximum
degree less than 6.

Note that graphs G with maximum degree 2 are paths and cycles, for which
it is not complicated to prove, through Observations 3 and 5, that we always
have χM(G) = χS(G) = 2. We note also that for any ∆ ∈ {3, 4, 5, 6}, we can
construct graphs with maximum degree ∆ that are counterexamples to Question
1. Let us give an example for ∆ = 3, which generalises easily for any ∆ ∈
{4, 5, 6}. Reusing the terminology from the proof of Theorem 12, start from
a 6-necklace D6, with outputs e1, . . . , e6. Now extend e4, e5, e6 to new extended
outputs e′4, e

′

5, e
′

6. Denote by v1, . . . , v6 the ends of e1, e2, e3, e
′

4, e
′

5, e
′

6, respectively.
Now identify v4 and v5 to a new vertex x, and similarly identify v2 and v3 to a
new vertex y, and just add the edges v1x and v6y, to obtain a graph G. It is not
too hard to check that ∆(G) = 3, and that χM(G) = 2 < 3 = χS(G), by similar
arguments as in the proof of Theorem 12. In particular, note that, just as in the
proof with A′, the edge v1x forces all outputs of D6 to be assigned label 1 by
an s-proper 2-labelling of G, while the edge v6y, by similar arguments, forces all
outputs of D6 to be assigned label 2. It follows that χS(G) > 2. On the other
hand, due to the number of outputs of D6 we have identified, note that v1 and
x, and similarly v6 and y, have different degrees and thus cannot be in conflict
when considering multisets.

Regarding the same concerns for p-proper labellings, note that the reduction
in the proof of Theorem 9 provides graphs with maximum degree 5. Thus, a
similar question as above concerns the complexity of the same problem for graphs
with maximum degree 3 or 4, given, again, that some of these graphs G sometimes
verify χM(G) = 2 < 3 = χP(G) (which can be proved reusing the same ideas as
above, but with the labelling ideas from the proof of Theorem 9).
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