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Abstract

The detour order of a graph G, denoted by 7(G), is the order of a longest
pathin G. If @ and b are positive integers and the vertex set of G can be parti-
tioned into two subsets A and B such that 7({A)) < a and 7((B)) < b, we say
that (A, B) is an (a, b)-partition of G. If equality holds in both instances, we
call (4, B) an ezact (a,b)-partition. The Path Partition Conjecture (PPC)
asserts that if G is any graph and a,b any pair of positive integers such
that 7(G) = a + b, then G has an (a, b)-partition. The Strong PPC asserts
that under the same circumstances G has an exact (a,b)-partition. While
a substantial body of work in support of the PPC has been developed over
the past three decades, no results on the Strong PPC have yet appeared in
the literature. In this paper we prove that the Strong PPC holds for a < 8.
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1. INTRODUCTION

The number of vertices in a graph G is called the order of G and denoted by
n(G). A longest path in a graph G is called a detour of G. The detour order
of G, denoted by 7(G), is the order of a detour in G. If X is a subset of the
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vertex set V(G) of G, then (X)g denotes the subgraph of G induced by X. If
the context is clear, we omit the subscript G. Throughout the paper, a and b
will denote positive integers.
If the vertex set V(G) of a graph G can be partitioned into two sets A and
B such that
r({4)) < a and 7((B)) < b,

we say that (A, B) is an (a, b)-partition of G.
If (A, B) is an (a, b)-partition of G such that

7({(4)) = a and 7((B)) = b,

we call (A, B) an ezact (a,b)-partition of G.

If G is the complete graph K, then every (a,b)-partition of G is obviously
exact. There are also noncomplete graphs of order a + b that have the property
that every (a, b)-partition is exact, as shown in [9]. On the other extreme, if G is
a bipartite graph, then the partite sets of G provide a (1,1)-partition, which is
an (a,b)-partition for all (a,b), but that partition is not exact if b > 1.

The following long-standing conjecture, which became known as the Path
Partition Conjecture (PPC'), first appeared in the literature in 1983, in a paper
by Laborde, Payan and Xuong [11].

Conjecture 1.1 (PPC). If G is any graph and (a,b) is any pair of positive
integers such that 7(G) = a + b, then G has an (a,b)-partition.

For a survey of results supporting the PPC, the reader is referred to [7].
In this paper we consider the following stronger conjecture, which we shall
call the Strong PPC.

Conjecture 1.2 (Strong PPC). If G is any graph and (a,b) is any pair of positive
integers such that 7(G) = a + b, then G has an exact (a,b)-partition.

Conjecture 1.2 has not yet been considered in the literature, but Bondy has
stated the digraph analogue of the Strong PPC as Conjecture 4.45 in [2]. Bondy
mistakenly attributed that conjecture to Laborde, Payan and Xuong. (Although
[11] deals mainly with digraphs, Laborde et al. stated the PPC for undirected
graphs only and they did not require exact partitions.)

A number of conjectures which appeared to be slightly stronger than the
PPC have been disproved, the most well-known of these being the Path Kernel
Conjecture (PKC) of Broere, Hajnal and Mihék [3]. If K is a set of vertices in a
connected graph G such that 7((K)) < a and every vertex in G — K is adjacent
to an end-vertex of a P, (a path with a vertices) in K, then K is called a P,4-
kernel of G. The PKC asserted that every connected graph has a P, 1-kernel
for every positive integer a. Aldred and Thomassen [1] disproved the PKC by
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constructing a connected graph with detour order 364 that has no Psgs-kernel.
Later, Katreni¢ and Semanisin [10] constructed a smaller counter-example to the
PKC (a connected graph with no Pjs5-kernel) and they also showed that for
each integer r > 0 there exists a connected graph G having no P (g)_,-kernel.
However, they pointed out that in each of their examples 7(G) — r is still bigger
than 7(G)/2, so the following conjecture has not been disproved.

Conjecture 1.3 (Revised PKC). If G is a connected graph with detour order T,
then G has a Pyi1-kernel for every positive integer a < 7/2.

Observation 1.4. Suppose 7(G) = a + b and G has a P,y1-kernel A. Then, if
B=V(G)-A4,
7(A) =a and 7(B) < b.

We note that if every component of a disconnected graph G has an (a,b)-
partition, then so does GG. Thus the revised PKC appears stronger than the PPC
and weaker than the Strong PPC.

Results from [5, 12, 13, 14] imply the following result.

Theorem 1.5. Fvery connected graph has a P,y 1-kernel for every positive integer
a <8.

Theorem 1.5 implies that the PPC holds for a < 8. The PPC has been shown
to hold for several well-known classes of graphs, such as weakly pancyclic graphs,
claw-free graphs, co-graphs and graphs with detour deficiency (the difference
between the order and detour order) at most 3, as proved in [4, 6, 7] and [8],
respectively. However, the partitioning techniques that were used to prove those
results have turned out to be unsuitable for producing ezract partitions. Even
settling the Strong PPC for bipartite graphs seems to be a challenging problem.

In this paper we develop a recursive procedure for finding exact (a,b)-parti-
tions of a graph G with 7(G) = a + b if a < 8, thus proving the Strong PPC for
a < 8. This provides an alternative procedure for proving the PPC for a < 8
which is perhaps a bit simpler than the procedure used to prove Theorem 1.5.

2. PRELIMINARIES

By a k-path in a graph G we mean a subgraph of G (not necessarily induced)
that is isomorphic to P, the path on k vertices.

If T is a k-path labelled t1ts-- -t in a graph G, we denote the same path
with the reversed labelling, t;tg_1---t1, by % Thus the it" vertex of T is the
(k +1— )" vertex of T tit; € E(G) with |j —i| > 1, we call t;t; an external
edge of T
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We use the notation i ~ j to indicate that the i** vertex of a given path T
in a graph G is adjacent (in G) to its j* vertex. If |j —i| > 1, we call i ~ j an
external adjacency of T.

If L is a path in a graph G, then we call a set I of vertices on L an independent
set of L if I does not contain two consecutive vertices on L. Note that an
independent set of L need not be an independent set in G. By the neighbours of
I on L, denoted N (I), we mean the immediate predecessors and successors of
the vertices in I on L. (This may differ from the set Ng(I)NV (L).) The following
observation concerning independent vertices on a path will be used frequently.

Observation 2.1. Suppose I is a set of independent vertices on a path L. Then
|[I| < |NpL(I)|+ 1 and if equality holds, then n(L) = 2|I| — 1.

The notation and implications of the next lemma, illustrated in Figure 1, will
be used frequently throughout the paper.

Lemma 2.2. Let G be a graph with 7(G) = a+ b and let (A, B) be a partition
of V(G) such that 7((A)) = a. Suppose B contains a (b + 1)-path X labelled
21 - Xpy1 Such that

T(({z1} UA)) >a and 7({zp41} U A4)) > a.
(1) Then (A) contains two vertex disjoint paths R, S and two vertex disjoint paths

P,Q such that Rx1S and Pxzy11Q are (a + 1)-paths.
(2) Let

P=vi-vp, Q=vpp1- Vg, R=wi - wp, S=wpp1-wg

and assume that P has the mazimum number of vertices among the four paths
P,Q,R,S. Then both R and S intersect P.

(3) Let w; = v; be the last vertex of R on P and let R’ be the wyw,-subpath of
R. Also, let wy = vj be the first vertex of S on P and let S" be the wy1wy-
subpath of S. We assume, without loss of generality, that i < j. Then each
of the following hold.

(a) wr,wri1 & {U17Up7vp+1ava}-

(b) If w, & V(P)UV(Q), then w, has no neighbour in the set {vi,va, vp_1,
Up, Upt1; Up+2, Va—1,Va}- The same is true for wyyq.

(¢) Let g=n(Q) =a—p. Thenn(R') < q and n(S") <q.

(d) If wy = v1, then R’ contains an interior vertex of Q. Similarly, if wy =
vp, then S” contains and interior vertez of Q.

(e) If w; = vq, then either w; = w,, or R contains an interior vertex of
Q. Similarly, if wy = vp—1, then either w41 = wy, or S contains an
interior vertex of Q.
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(f) If w, = vp—2 and wy41 = vp—1, then v, € V(R) UV (S) and v, has at
least two neighbours in V(R) UV (S) — {w,, wy41}.

(g) Suppose Y is a wywyi1-path or a vyvpi1-path in (A) with at least three
vertices. Then at least one internal vertex of Y has a neighbour in A —

V(Y).

Proof. (1) The existence of the four paths P, Q, R, S follows from the fact that
neither z; nor x4 is adjacent to an end-vertex of an a-path in (A).

(2) Since n(R)+n(S) = n(P)+n(Q) = a, our assumption on P implies that
each of R and S has at least as many vertices as (). Thus, if R does not intersect
P, then RX<]3 is a path in G with more than a + b vertices, and if S does not
intersect P, then P?S is a path in G with more than a4 b vertices. This proves
that both R and S intersect P.

(3) (a) If either w, or w,4; is an end-vertex of either P or (), there is an
(a + b+ 1)-path in G with vertex set V(P) U X UV(Q).

(b) Suppose w, ¢ (V(P)UV(Q)). If vy € N(w,), then ?wTXQ is an
(a + b+ 2)-path in G. If vy € N(w,), then vyvp_1 -+ vow, XQ is an (a + b+ 1)-
path in G. The proofs of the remaining cases are similar.

(c) Since the path vy - - - v;—1 R’ Xvpvp_1 - - - vi11 has p+n(R') + b vertices but
7(G) =p+ g+, it follows that n(R') < ¢q. The proof of the second part of this
item is similar.

(d) Suppose w; = v; and R’ does not contain an interior vertex of ). Then
there is a path in G containing all (a + b+ 1) vertices in V(P)U V(X)U V(Q).
This contradiction proves the first part of (d). The proof of the second part is
similar.

(e) Suppose w; = vy and R’ does not contain an interior vertex of Q. Then
wy € V(Q), since it follows from (a) that w, is not an end-vertex of (). Thus, if
wy # wy, there is a path in G containing all a + b+ 1 vertices in (V(P) — {v1}) U
{w,} UV(Q). This proves the first part of (e). The proof of the second part is
similar.

(f) In this case, if v, € V(R) U V(S), then RXv,S is an (a + b+ 1)-path
in G. Thus v, € V(R)UV(S). If v, = wy, then SXR is an (a+b+1)-
path in G. If v, = w,_1, then w; - -w,—; Xw,S is an (a + b + 1)-path in G.
Hence vy, & {w1,w,—1}. Thus, if v, € V(R), then v, has both a predecessor and
successor on the path R in the set V(R) — {vp—2}. A similar argument shows
that if v, € V(5), then v, has at least two neighbours in V(S) — {v,_1}.

(g) Suppose Y is a w,w,41-path in (A) such that no internal vertex of Y has
a neighbour in A —V(Y). Let Y =Y — {w,, wy41}.

If neither R nor S intersects Y’, then RY’S is a path of order at least a + 1
in (A).



696 J.P. bDE WET, J.E. DUNBAR, M. FRICK AND O.R. OELLERMANN

If R, but not S, intersects Y’, then by our assumption, V(R) C V(Y) —
{wy41}. But then ?er’S is a path of order greater than a + b+ 1 in G.

If both R and S intersect Y’, then by our assumption, V(R)UV(S) C V(Y).
Since V(R) NV (S) = 0, it follows that n(Y) > n(R) + n(S) = a. But then Y X
is a path of order at least a + b+ 1.

These contradictions prove that at least one internal vertex of Y has a neigh-
bour in A — V(Y). The proof when Y is a v,v,11-path is similar. |

The situation of Lemma 2.2 is illustrated in Figure 1, with thick lines indicat-
ing paths and thin lines indicating edges. But note that w; may be w, and w,1
may be wy. Furthermore, R and S may intersect P and @ in several vertices.

Figure 1. An illustration of paths P, @, R, S and X in Lemma 2.2.

3. PROOF OF THE STRONG PPC FOR a <6

The following lemma will be used to prove the Strong PPC for the cases where
a<6.

Lemma 3.1. Let G be a graph with 7(G) = a + b, a < 6, and let (A, B) be a
partition of V(G) such that 7((A)) < a. Suppose x1---xpr1 is a path of order
b+1in B. Then

T((AU{x1})) <a or T((AU{xps1}) < a.

Proof. Using Lemma 2.2, the proof for a € {1,2,3,4,5} is straightforward and
is left to the reader.

Now suppose a = 6 and assume, to the contrary, that there is a (b + 1)-
path X in G — A such that if x is either of the two end-vertices of X, then
7((A)) > 6. Then, with respect to an appropriate labelling 1 ---xp41 of the
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path X, we can define four paths P,Q, R,S as in Lemma 2.2(1), such that P
has maximum order among these paths, and the paths Rx1.S and Pxp1Q) are
7-paths in G. Let L = Rz1S. In the notation of Lemma 2.2(2), L is the 7-
path wy -+ - wyx1wyp41 - - - we. By Lemma 2.2(2), both R and S intersect P. As in
Lemma 2.2(3), we let w; = v; be the last vertex of R on P, and wy = v; be the
first vertex of S on P (as illustrated in Figure 1). We assume that i < p. Let
q=n(Q)=6—-p.

Suppose p = 5. Then g = 1. It therefore follows from Lemma 2.2(3c) that
wy =wyand wyy =wypand 1 <i < j <5 Ifi=2let [ =V(L)—{x1,v2,v3,v4}.
Then |I]| > 3. Since x1 - - Xp41v5v4v302x7 is & (5 + b)-cycle and 7(G) = 6 + b, it
follows that I is an independent set and N, (1) C {vz,v4}. Thus, by Observation
2.1, |I| < 3, a contradiction. Thus we may assume that i = 3 and j = 4. But then,
since G has no (7 + b)-path, v4 is the only neighbour of vs in (A), contradicting
Lemma 2.2(3f).

Suppose p = 4. Then ¢ = 2, and hence @ has no internal vertex. It therefore
follows from Lemma 2.2(3d—e) that wg = vy and w,4+; = v3. But the fact that
G has no (b + 7)-path implies that vs is the only neighbour of vy in A, thus
contradicting Lemma 2.2(3f).

Suppose p = 3. Then () = vqvsvg. Since ) has only one interior vertex, it
follows from Lemma 2.2(3d) and the fact that 7(G) = 7 + b, that we either have
R = vivs and S' = v9, or R’ = v9 and S’ = wvsv3. The first case is equivalent
to the case where p = 5,7 = 2,j = 4, with P being the 5-path vgvsvivovs and
@ = v4. In the second case, the only neighbours of vg in A are vy and v, and
hence S = wvsvs. But then, since n(R) + n(S) = 6, it follows that RX'S is a
(74 b)-path in G. |

We now prove the Strong PPC for a < 6.

Theorem 3.2. Let G be a graph with 7(G) = a+b, a < 6. Then G has an exact
(a,b)-partition.

Proof. We begin by considering any (a + b)-path in G. Then we put the first a
vertices of that path in A and the remaining vertices of G in B. If 7((B)) = b,
then (A, B) is an exact (a, b)-partition. If not, then let a7 - - - 211 be a (b+1)-path
in (B). By Lemma 3.1, we have 7({({z1} UA)) = a or 7({({zp41} U A)) = a. If the
former, we move x; to A; otherwise, we move x,1 to A. The result is that the
detour order of (A) remains a, while that of (B) remains at least b and there is
at least one less (b+ 1)-path in (B). If now 7((B)) = b, we are done. Otherwise,
we repeat the procedure with another (b+ 1)-path in (B) until we have destroyed
all the (b+ 1)-paths in (B). Then we have an (a,b)-partition of G. |
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4. PROOF OF THE STRONG PPC FOR a =7

Lemma 3.1 does not extend to a = 7. Figure 2 shows two “problematic configu-
rations” that can occur in a graph G with detour order 7 + b. In each of those,
7((A)) = 7 and there exists a (b+ 1)-path x; --- 341 in G — A such that

T((AU{x1})) > 7and 7((AU{zps1}) > 7.

x1 Tp+1 r1 Tp+1

Figure 2. The problematic configurations for a = 7.

We now prove that Figure 2 represents the only two problematic configura-
tions for a = 7.

Lemma 4.1. Let G be a graph with 7(G) = 7+ b and let (A, B) be a partition of
V(G) such that 7((A)) = 7. Suppose X is a (b+ 1)-path in (B) such that if x is
either of the two end-vertices of X, then T((AU {x}) > 8. Then, with respect to
an appropriate labelling x1 - - - xpy1 of the path X, there are four paths P,Q, R, S
in (A) such that P has mazimum order among these four paths, and Rx1S and
Pxy1Q are 8-paths in G. Now let H be the component of (A) containing the
path P. Then 7(H) = 7 and if T is any T-path in H, then T may be labelled
t1---t7 such that one of the following holds.

(1) Na(z1) = {ta,t3} and Na(wpi1) = {t5, %6}

(2) Na(x1) = {ts,ta} and Na(xpi1) = LU {ts}, where I is a nonempty indepen-
dent set of vertices in (A).

Proof. By Lemma 2.2(2), both R and S intersect P. We let
P=v-vp, Q=vpy1---v7, R=wi-wp, S=wpq1--wr.

As in Lemma 2.2(3), we let w; = v; and wy = v; be, respectively, the last vertex
of R on P and the first vertex of S on P (as illustrated in Figure 1) and we let
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R" and S’ be, respectively, the wjw,-subpath of R and the w,4jw-subpath of S.
We assume ¢ < j.
Let C be the cycle R' Xv,v,_1---v; and let L be the 8-path Rz1S, i.e.,

L=w- wxiwpyr---wy

and let
Z={z1,...,z2m} =V(R)UV(S) — {vs,...,vp}.

Then (V(R) UV (S)) C {vi, vit1,...,vp} UZ, which implies that |Z| > 6 —p + 1.
We need to consider thirteen possibilities for the triple (7,j,p). We shall
show that if (i,7,p) = (2,3,5) we have (1) of the statement of the lemma, and
if (i,7,p) = (3,4,6) we have (2). In each of the other cases we shall obtain a
contradiction.
Let ¢ = 7 — p. It follows from Lemma 2.2(3d) that if ¢ < 2, then i # 1 and
j#p. Thus 1 < ¢ < j < p in each of Cases 1-9.

Cases 1-3. (i,7,p) € {(2,3,6),(2,4,6),(2,5,6)}. In all three these cases
|Z] > 2 and, since ¢ = 1, it follows from Lemma 2.2(3c) that w, = vy and
wy41 = v;. Since the cycle C' has b + 6 vertices and 7(G) = b+ 7, it follows
that Z is an independent set. Moreover, neither vs nor vg has a neighbour in
Z, and at most one of v4 and vs has a neighbour in Z. Hence |Np(Z)| < 2, so
by Observation 2.1, |Z| < 3 and if |Z| = 3, then n(L) < 5, contradicting that
n(L) = 8. Thus |Z| = 2 and V(L) = {va, v3, v4, 5, s, 21, 22, 1 }. We may assume
that z; € N(v2) and z3 is a neighbour of either vy or vs.

Now suppose vg € N(v3). Then, if 29 € N(vy4) it follows that zevsvsvgv3v9 X7
is an (8 + b)-path on G unless zo = v7. But if 20 = vy, then Xzovqvsv6v30v901 is
an (8 4+ b)-path in G. On the other hand, if zo € N(vs), then z1ve Xvguzvgvs29
is an (8 + b)-path in G. Hence vg & N(v3), so {vs,vg, 21,22} is an independent
set on the path L. But the only possible neighbours of this set in L are wvo, v4, vs,
so it follows from Observation 2.1 that n(L) < 7. This contradiction shows that
these three cases do not occur.

Cases 4-5. (i,4,p) € {(3,4,6),(3,5,6)}. In both cases, since ¢ = 1, it follows
from Lemma 2.2(3c) that w, = v3 and w,4+1 = v;. Also, |Z| > 3 and n(C) = b+5,
so any subpath of L in (Z) has at most two vertices.

First, suppose v4 has a neighbour z; in Z. If 21 & {v1,v2}, then vivevz Xvg
vsv421 is an (8 +b)-path in G, and if z; = vy, then vgvsv4v1V2v3 X V7 is an (8 +b)-
path in G. Thus z; = ve. But then neither vs nor vs nor vg has a neighbour in
Z, since otherwise there would be an (8 4+ b)-path in G. But then n(L) < 7. This
contradiction proves that v4 has no neighbour in Z.

If j = 5, then since G has no (8 + b)-path, vg € N(v4), so in this case
N(vq) = {vs,vs}. Since vsvqvs is a wywy41-path in (A), this contradicts Lemma
2.2(3g).
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Thus 7 = 4. In this case vs and vg are the only vertices on C' that have
neighbours in Z. Since no path in Z with more than two vertices has an end-
vertex adjacent to vs, there is a vertex z € Z that is adjacent to vg. Thus vy - - - vgz
is a 7T-path in H, and N4(z1) = {vs,v4} and Na(zpy1) = {ve} U I, where [ is
an independent set of vertices in A containing vy. Since neither v4 nor vs has
a neighbour in Z, any 7-path in H may be labelled t; - - - t7 such that tst4tsts is
the path vsvqvsve. Thus we have (2) of the statement of the lemma, as shown in
Figure 2.

Case 6. (i,7,p) = (4,5,6). By Lemma 2.2(3f), vg has at least two neighbours
in Z. But the fact that 7(G) = b+ 7 implies that ve is the only possible neighbour
of vg in Z. Hence this case does not occur.

Cases 7-8. (i,7,p) € {(2,3,5),(2,4,5)}. In these cases |Z| > 3. Since
n(C) = b+5, it follows that (Z) does not contain a subpath of L with more than
2 vertices. Also, since ¢ = 2, the path ) has no internal vertices.

It follows from Lemma 2.2(3e) that w, = ve and if j = 4, then w,11 = vy4.
Suppose j = 3 and w,41 # v3. Then v3 = w,42 and neither v4 nor vz has a
neighbour in Z U {vs}. Moreover, neither vy nor v is adjacent to an end-vertex
of a Py in Z. But then n(R) < 2 and n(S) < 4, which implies that n(L) < 6.
This contradiction proves that w,1 € {vs,v4}.

Now suppose vsvg ¢ E(H). Then vz has no neighbour in Z. Thus, if Z is an
independent set and I = (Z U {vs}) N V(L), then I is an independent set on L.
But Np(I) C {va,v3,v4}. Thus it follows from Observation 2.1 that |I| < 4 and
if |[I| = 4, then n(L) < 7. Hence |I| = 3. But V(L) C (I U{x1,v2,v3,v4}), which
implies that then n(L) < 7. Thus Z is not an independent set of L.

We may therefore assume that z129 € E(L) and either zjz9vy or vgz129 is
a subpath of L. In either case, neither vs nor vs has a neighbour in Z. Thus,
if 7 = 4, then L is either the path zj29v9x1v423 or the path zgvexiv42122, con-
tradicting that n(L) = 8. Hence j = 3. But then either zjzovov3Xvsv423 or
230203 X V542122 18 a (b + 8)-path in H.

Thus we have proved that vsvg € E(H). Now, if j = 4, then vjvovgvg X vsvgvr
is an (8 + b)-path in H. Thus j = 3.

We conclude that vy ---v7 is a T-path in H and N4(x1) = {va,v3} and
Na(xp+1) = {vs,v6}. Since 7(G) = 7+b, neither vs nor v4 nor vs has a neighbour
in Z. Thus, if T is any 7-path in H, then T may be labelled t¢; - - - t7 such that
totstytste is the path vevzvsvsve. So in this case we have (1) of the statement of
the lemma, as shown in Figure 2.

Case 9. (i,j,p) = (3,4,5). Since ¢ = 2, it follows from Lemma 2.2(3c) that
n(R’) < 2, and hence either R’ = w,vs3, or w, = v3. In either case, it follows from
Lemma 2.2(3e) that vy = wy41.
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Suppose w, € V(P). Then v, is the only neighbour of vs in A, and hence
vs € V(R). Thus, if vs € V(S), then RXv5S is a (9 + b)-path in G. But if
vs € V(95), then S = vqus, and then RX S is an (8 + b)-path in G.

Thus we have shown that w, = v3 and w,41 = v4. But then, by Lemma
2.2(3f), vs has two distinct neighbours 21,22 € V(L) — {vs,vs}. We note that
21,22 € {ve,vr}. Thus, if 21290 € E(L), then zjzouvsvqvsXuvgvy is an (8 + b)-
path. This contradiction implies that {z1, 22} is an independent set on L. But
Nr({z1,22}) = {vs}. This case does therefore not occur.

Cases 10-11. (i,7,p) € {(1,2,4),(1,3,4)}. Since w; = vy, it follows from
Lemma 2.2(3d) that R’ contains an interior vertex of () = vsvgvz. Thus, since G
has no (8 + b)-path, R’ = vivg. These cases are equivalent to Cases 4-5, with P
being the 7-path vrvgvivovzvy and Q = vs.

Cases 12-13. (i,7,p) € {(2,3,4),(2,4,4)}. First, suppose w, # vy. Then
it follows from Lemma 2.2(3e) that R’ contains the interior vertex vg of @ and
j = 3. Since G has no (8 4+ b)-path, R’ is either the path vyvg or the path vyvsvg.
In either case, the only possible neighbours of vy in A are vs and vg. Since
vy € V(S), this implies that vs & V(R). If vy € V(S), then S = v3vs. But then
RXS is an (8 +b)-path in G. Thus vqy & V(R) UV (S). But then RXv4S is a
(9 + b)-path in G.

Thus w;, = va. Now suppose j = 3. If w,11 # wy = vz, then it follows from
Lemma 2.2(3e) that S’ contains an interior vertex of @, and hence S’ = vgvs.
Since N(v4) C {v3,v6}, it follows that vy € V(R). If vy € V(S), then S = vgvgvy.
But then RX S is an (84b)-path in G. Thus vy € V(R)UV(S). But then RXv,S
is an (9 + b)-path in G. Thus w,4+; = v3. But vg is the only possible neighbour
of vy in A — {vg,v3}, contradicting Lemma 2.2(3e).

Thus j = 4. Then it follows from Lemma 2.2(3d) that S’ = vgvy. Now
Na(vs) = {ve,v4}. Thus, if v3 € V(R), then R = vyvs and then RX'S is an
(8 + b)-path. Similarly, if v3 € V(S), then RX S is an (8 + b)-path. These
contradictions show that vs &€ V(R) U V(S). But then Rv3S is an 8-path in (A).

Case 14. (i,7,p) = (3,4,4). It follows from Lemma 2.2(3d) that w,11 = vg
and(é” = wvgvyg. Since Ny(vg) = {vs,v6}, it follows that S = vgvg. But then
RX S is an (8 + b)-path in G. |

We conclude that the configurations (1) and (2) in Figure 2 represent all
the problematic configurations for a = 7. In either case the component H of
(A), as described in Lemma 4.1, may contain vertices and/or edges not shown
on those sketches. However, certain edges are forbidden, due to our assumption
that 7(G) = a + b. We observe the following concerning the structure of H.
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Observation 4.2.

(a) If Configuration (1) occurs, the only allowable external edges of the path T
are taotg and tsts, and no vertex in {ts,t4,t5} has a neighbour in A —V(T).

(b) If Configuration (2) occurs, the only allowable external edges of the path T
are tits and tatg, and no vertex in {t4,t5} has a neighbour in A — V(T).

(c) If either (1) or (2) occurs, every 8-path in (V(H) U {z1}) has an initial or
terminal vertezx in the set Y = Ny (tg) — {t1,ta,t3,t4,t5}.

(d) If either (1) or (2) occurs, x1 has exactly two neighbours on T and none in

A—V(T).

In view of Observation 4.2, we say a 7-path in (A) is (1)-eligible if it has no
external adjacencies other than 2 ~ 6 and 3 ~ 5, and (2)-eligible if it has no
external adjacencies other than 1 ~ 3 and 4 ~ 6. A 7-path in (A) that is either
(1)-eligible or (2)-eligible is simply called an eligible 7-path.

Observation 4.3. Lemma 4.1 implies that if there is a T-path T in (A) such that

neither T nor % is an eligible T-path, then the component of (A) containing T has
no eligible 7-path and is therefore not a candidate for a problematic configuration.

We now prove the Strong PPC for a = 7.

Theorem 4.4. Let G be a graph with detour order 7+ b. Then G has an exact
(7,b)-partition.

Proof. We begin by choosing a path of order 7+b in G. We let A consist of the
first seven vertices of this path and we let B = V(G) — A.

We now describe a recursive procedure for moving vertices back and forth
between A and B until we have an exact (7, b)-partition of G.

Step 1. If 7((B)) = b, then (A, B) is an exact (7,b)-partition of G, so then we
stop. If 7((B)) > b, we let X = x1---xp41 be a (b+ 1)-path in (B) and proceed
to Step 2.

Step 2. If 7((AU{z;})) =T fori=1o0r b+ 1, we move 21 to A if i = 1;
otherwise, we move xp41 to A. Then we return to Step 1.

Step 3. If 7((AU{z1)) > 8 and 7({A U {xp+1)) > 8, then we define the paths
P,Q,R,S as in Lemma 2.2. (If necessary, we reverse the labelling of X so that
we can choose P to have maximum order among the four paths.) Now let H
be the component of (A) that contains P and let T be any 7-path in H. Then
by Lemma 4.1, T may be labelled t; - - - t7 such that we have either of the two
configurations in Figure 3. In either case, we let Y = Ny (t¢) — {t1,t2,t3,t4,15}.
Then we move z1 to A and return all the vertices in Y to B. Then we return to
Step 1.
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First, we note that after having executed Step 2, 7({A)) obviously remains 7, and
it follows from Observation 4.2(c) and (d) that the same is true for Step 3.

Next, we note that throughout our recursive procedure, a b-path is retained
in (B), and each time Step 2 is executed, the result is that (B) has fewer (b+ 1)-
paths than previously. If Step 3 is executed, at least one (b + 1)-path in (B) is
destroyed, but the vertices that are returned to B may then be internal vertices
of other (b + 1)-paths in (B), in which case there may even be more (b + 1)-
paths in B than previously. However, we shall show that this will not prevent
our recursive procedure from terminating, since (roughly speaking) Step 3 can
be applied at most twice with respect to a given component of (A).

Suppose that at some stage in our recursive procedure we have encountered
the configuration (1) or (2) with respect to a path ¢;---¢7 in a component H
of (A) and a path z;---xp41 in (B) and have consequently executed Step 3, as
illustrated in Figure 3. By Observation 4.2(d), the execution of Step 3 does not
affect any component of (A) other than H. We now check whether the resulting
component H' = ((V(H) U {x1}) — Y) is a candidate for another problematic
configuration.

Suppose first that Step 3 was applied to H due to an occurrence of (1). Then
H’ contains the 7-path

T(l) = t1tox1tstyalsls (Wthh has 2 ~ 4)

and its reverse
%__

T(l) = tglslatzx1taly (Wthh has 4 ~ 6),

as illustrated in Figure 3. Now T is not an eligible 7-path, since 2 ~ 4 is
forbidden iI(l_l)_Oth (1) and (2). Since 4 ~ 6 is allowed in (2) but forbidden in (1),

the 7-path T is (2)-eligible but not (1)-eligible. Thus, at some stage during our
recursive prgcidure, there may be another (b+1)-path in (B) which, together with

the 7-path T, results in the configuration (2). If this is the case, we perform
Step 3 again, and then the resulting component H” contains a 7-path T(12) which
has both 3 ~ 5 and 5 ~ 7, as illustrated in Figure 4. Since 5 ~<Lsforbidden in
both (1) and (2), T("? is a non-eligible 7-path. The reverse, T(X?), has 1 ~ 3
and 3 ~ 5, and is therefore also non-eligible, since 1 ~ 3 is forbidden in (1), and
3 ~ 5 is forbidden in (2)). Thus, by Observation 4.3, there is no eligible 7-path
in H”, and hence H” is not a problematic component. Subsequent executions of
Step 2 may add vertices to H” but will not remove any vertices from H”. Thus,
for the remainder of the recursive procedure, the components of (A) derived from

H" will retain the non-eligible 7-paths 712 and T(-?) and will therefore remain
non-problematic, by Observation 4.3.
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t1 o x1 t3 ta ts5 e t1 to t3 x1 ta t5 e
T 1 2 3 4 5 6 7 7@ 1 2 3 4 5 6 7
T 7 6 5 4 3 2 1 T@ 7 6 5 4 3 2 1

Figure 3. Applying Step 3 if (1) or (2) occurs.

Next, suppose Step 3 was applied to H due to an occurrence of (2). Then
H’ contains the 7-paths

<_
T(z) = t1t2t3x1t4t5t6 and T(z) = t6t5t4$1t3t2t1, which both have 3 ~ 5,

%
as illustrated in Figure 3. Then T3 as well as T is (1)-eligible but not (2)-
eligible. Now, if (1) occurs with respect to a 7-path with 3 ~ 5, then after Step 3
is performed again, the resulting component H” contains a path 71 that has

2 ~ 4 as well as 4 ~ 6 (as illustrated in Figure 4). Then T2 also has 2 ~ 4 and
4 ~ 6. Thus both T3V and T(1) are non-eligible. Hence, by Observation 4.3,
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H" has no eligible path and is therefore non-problematic, and executing Step 2
cannot not transform it into a problematic component.

We conclude that problematic components will eventually cease to occur.
Thereafter the number of (b+ 1)-paths will decrease with each step until 7((B))

=b. u
?(1)1234567 T2 1 2 3 4 5 6 7
oo o o o o o oo o o o o o
712 1 2 3 4 5 6 7 T2 1 2 3 4 5 6 7
DA S e N g DS e S e S
Ta27 6 5 4 3 2 1 Tenz 6 5 4 3 2 1
Applying Step 3 if (2) occurs Applying Step 3 if (1) occurs

with T (1. with 7.

Figure 4. Applying Step 3 a second time if (1) or (2) occurs.

5. PROOF OF THE STRONG PPC FOR ¢ =8

Let G be graph with 7(G) = 8 + b and let A be a subset of V(G) such that
T7((A)) = 8. If G — A contains a (b+ 1)-path X = x; --- x4 such that

T(({z1} U A)) > 8 and 7(({zp1} U A)) > 8,

we say that we have a problematic configuration for a = 8.

In order to prove the Strong PPC for a = 8 we shall employ a recursive pro-
cedure similar to that used for a = 7, although we now have more problematic
configurations to address. We have seen that in each problematic configuration
for a = 7, as shown in Figure 2, the neighbours of z; lie on a 7-path in (A). The
analogue of this result does not hold for a = 8. We shall show that there are
two types of problematic configurations for a = 8: those where no neighbour of
x1 lies on an 8-path in (A) (henceforth called a Type I problematic configura-
tion) and those where every neighbour of z; lies on an 8-path in (A) (henceforth
called a Type II problematic configuration). Fortunately, as we shall see in the
proof of Theorem 5.4, our recursive procedure will convert the Type I problem-
atic configurations to Type II problematic configurations or to non-problematic
configurations. It is therefore unnecessary for us to determine all the Type I
problematic configurations. (Figure 5 shows a few, but there may be others.)
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U7 U8 U1 V2 U3 Vg4 U5 Vg

Figure 5. A few Type I problematic configurations.

Our next lemma implies that every problematic configuration for a = 8 is
either Type I or Type II, and that the four cases in Figures 6 and 7 represent all
the Type II problematic configurations.

Lemma 5.1. Let G be a graph with 7(G) = 8 + b and let A, B be a partition of
V(G) such that 7((A)) = 8. Suppose X is a (b+ 1)-path in (B) such that if x is
either of the two end-vertices of X, then T((AU{x})) > 9. Then, with respect to
an appropriate labelling x1 - - - xpr1 of X, there are four paths P,Q, R, S in (A)
such that P has maximum order among these four paths, and Rx1S and Pxy1Q
are 9-paths in G. Let H be the component of (A) containing the path P. Now
suppose T(H) = 8 and let T be any 8-path in H. Then T may be labelled ty - - - tg
such that at least one of the following holds.

(1) N(z1) 2 {t2,t3} and N(zp11) 2 {6, t7}.
(2) N(21) 2 {ts, ta} and N(zps1) 2 {to, 7}
(3) N(x1) 2 {t3,t4} and N(xpr1) 2 {t7,2}, for some z € A —V(T).
(4) N(x1) 2 {ta,t5} and N(xpr1) 2 {t7,2}, for some z € A —V(T).
(5) N(z1) 2 {t2,t3} and N(zp11) 2 {ts,t6}-

Proof. By Lemma 2.2(2), both R and S intersect the path P. We let L denote
the 9-path Rz1S. In the notation of Lemma 2.2(2) and (3) (with a = 8), L is the
path wy - wyz1wr 41 - - - wg, and w; = v; and wy = v; are, respectively, the last
vertex of R on P and the first vertex of S on P (see Figure 1). We assume that
1<j. Let ¢q =8 —p.
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Forbidden adjacencies Forbidden pairs

1~id,0=3,...,8 2~4and 3~5

2~5 2~4and 5~ 7
2~ 6 3~6and5~7
3~7 4~6andb~7
4~7

i~8i=1,...,6

l~i,i=4,...,8
2~5
2~ 6
3~5
3~ 6
4~
5~ 7
i~8i=1,...,6

Figure 6. Type II problematic configurations (1) and (2).

Since v, € V(P) and both R and S intersect P, the vertices w,, wy11 and v,
are all in H (but vp41 may be in A—V(H)). We now prove the following claims.

Claim 1. The vertices wy, wy41 and v, are all in V(T).

Proof. First, suppose w € {wy,w,+1} and w € V(T'). Then, since H is con-
nected, there is a vertex t; on the path T such that there is a tpw-path F' in
H with all internal vertices (if any) in A — V(7). Since G has no (b + 9)-path,
k€ {3,4,5,6}. We may assume that the path 7' is labelled such that k is either
3 or 4.

Suppose k = 3. Then tgtrtstst4FX is a path of order b+ 6 + n(F), and
hence F' = tgw. Thus every neighbour of z,4; in A lies on the (8 + b)-path
tgtrtetstatswX. It follows that {v,,vp41} = {t3,t6}. But then, since 7(G) =
8 + b, no internal vertex of the path Y = tstststs has a neighbour in A — V(Y),
contradicting Lemma 2.2(3g).

Thus £ = 4. We need to consider two cases.

(i) vp, € V(T'). In this case v, = t4 and vpy1 & V(T'). Moreover, any path in
H from either w or vp41 to T contains the vertex v, = t4. Thus V(T)NV(Q) = 0.
If w, € V(T), then, by the definition of v; in Lemma 2.2(3), the v;w,-path R’
does not contain v, and hence the path vy - - - vp,_; isin A—V(T'). Since p > 4 (by
our assumption on P), and Ptststrts is a path in (A), it follows that p = 4, and
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(3) Forbidden adjacencies Forbidden pairs

1~i,i=4,...,8 3~band4~7
2~4

2~5

2~6

2~7

3~6

3~7

i~8i=1,...,6

l~i,i=5,...,8 3~5and2~7
2~5

2~ 6

3~ 6

3~ 7

4~6

4~

T1 22 Tp Thi1 i~8i=1,...,6

Figure 7. Type II problematic configurations (3) and (4).

hence ¢ = 4. If w, = v;, the path ayvz -+ - Uptstetrts has more than 8+ vertices.
Thus w, # v; and hence n(R’) > 2. Now, if i = 3, then vjve R Xtytststrts is a
path of order greater than 8 + b. If ¢ < 3, then the path t8t7t6t5t4§R’vi+1 P
has order greater than 8 + b.

Thus w, € V(T). It follows that w,11 = w ¢ V(T) and w, = tg. Thus
t1totstatste X Q is a path of order 7+ b+ ¢, an hence ¢ = 1 and p = 7. But then
w41 € V(P), and hence P?wrﬂ is a (9 + b)-path.

(ii) vp & V(T). In this case t4 is on every path in (AU {z}) from z; to T,
as well as on every path in (AU {xp41}) from zpq to T

If t4 & N(vp), then any t4v, path has an least three vertices and since 7(G) =
8 4 b, it follows that tjwv), is the only t4v,-path in H. Then t8t7t6t5t4va§ is
an (8 + b)-path, and hence N4(z1) C {w,t4,vp,}. Since vy, is neither w, nor w,4q
by Lemma 2.2(3a), it follows that {w,,w,+1} = {w,t4}. Then tgtrtetstswXv, as
well as tgtrtetsta Xvpyw are (8 + b)-paths, and hence Na(vp) = {w} and Ny(w) =
{vp, ta}. It follows that w,11 = w = vp—1 and w, = t4 = vp_. But then Lemma
2.2(3f) is contradicted. Thus t4 € N(vp).

If ty ¢ N(w), then F' = tqup,w, and Ng(w) = v,. But then w & V(P)UV(Q),
contradicting Lemma 2.2(3b). Thus t4 € N(w).
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Now, if wv, € E(G), then, as in the previous paragraph, t4 is either w, or
w1, and hence vpy1 & V(T). But then tgtrtetstav,wXovpiq is a (9 + b)-path.
Thus wv, ¢ E(G), and hence Ng(w) = Na(vp) = {ta}. Moreover, ¢ = 1 and
hence p = 7. But then w € V(P) and hence PXw is a (9 + b)-path.

Thus we have proved that both w, and w,4; are in V(7).

Next, suppose v, & V(T'). Then, since 7(G) = b+8, it follows that w,, w,41 €
{t3,ta,t5,t6}. If w, = t4, then t4 is the first vertex on any path from v, to T.
But then, since w,y1 € {t3,t5,%} there is a path in G with more than 8 + b
vertices. By symmetry, this proves that neither w, nor w,; is in {t4,t5}. Thus
{wy,wy41} = {t3,t6}. Since 7(G) = 8 + b, this implies that Na(v,) C {t3,%6},
and hence at least one of t3 and ¢ is a neighbour of v,. In either case, neither t4
nor t5 has a neighbour in A — {t3,t4, t5,ts}, contradicting Lemma 2.2(3g). O

Claim 2. If the vertex ty, of T' is w, or wry1, then neither v, nor vpy1 is in
{th—1, thy ter1}-

Proof. This claim follows from Lemma 2.2(3a) and the fact that if a neighbour
of 21 and a neighbour of x;1 are consecutive vertices of T, then G has a (9+ b)-
path. O

Claim 3. The vertices w, and w,41 either both precede or both succeed v, on T'.
Also, if vpy1 € V(T), then the vertex pair w,,w,41 either precedes or succeeds
the vertex pair vy, vp41 on T'.

Proof. If v,y ¢ V(T), then w,, wy41 € {t3,t4,t5,t6}. Then it follows from
Claim 2 that v, does not lie between w, and w,4; on T. This implies that v,
either precedes or succeeds both w, and w,;1 on T.

Now suppose vp+1 € V(T') and v, or vpq1 lies between w, and w,41 on
T. Then it follows from Claim 2 that {w,, w,41} = {t2,t7} and {vp, vp11} =
{t4,t5}. Since Rx1S is a 9-path in H, it has at least two vertices z1, 22 in the set
I = H — {ta,...,t7}. Since G has no (9 + b)-path, I is an independent set and
Np(I) = {to,t7} = {w,,w,41}. But then Rz1S is the path zjw,xiw, 122, which
has only five vertices. This case can therefore not occur. A similar proof shows
that w, and w,41 cannot both lie between v, and v,41 on T'. Thus w, and w41
either both precede v, and v,41 or both succeed v, and v,11 on T O

Claim 4. The vertices w, and wy4+1 are consecutive vertices on the path T.
Moreover, if v,y € V(T), then v, and vy41 are also consecutive vertices of T.

Proof. Suppose w, and w,+1 are not consecutive vertices of T'. By Claim 3 we
may choose the labelling ¢; ---tg for T" such that neither v, nor v,y; precedes
either w, or wy41 on T. Then we only need to consider the following two cases.

(1) {wy, wpq1} = {t2,ta} and {vp, vpr1} = {t6,t7}. In this case, since G has
no (9 + b)-path, N4(ts) = {te,ts}, contradicting Lemma 2.2(3g).
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(ii) {wr, wrq1} = {t3,t5} and {vp,vp11} = {t7,2}, where z €¢ A - V(T). In
this case, since G has no (9 + b)-path, Na(t4) = {t3,t5}, contradicting Lemma
2.2(3g).

Thus neither of the two cases above can occur, which proves that w, and
wy41 are consecutive vertices on T. If vy, € V(T) and v, and vp4q are not
consecutive vertices of T, then {w,,w,11} = {t2,t3} and {vp,v,11} = {ts5,t7}.
This case is symmetric to case (ii) above and can therefore not occur either. Thus
Claim 4 is proved. O

We now use Claims 1-4 to prove that, if 7" is labelled such that neither v,
nor v,y precedes w, or wy41 on T', then we have one of the cases (1)—(5) in our
lemma statement.

First, suppose {w,, wy4+1} = {t2,t3}. Then vy € V(T') and it follows from
Claims 2 and 4 that {v,,vp41} is either {t5,t6} or {ts,t7}. Thus we have (1) or
(5) occurring.

Next, suppose {wy, wyy1} = {t3,t4}. Then, if v, € v(T), Claim 2 implies
that {vp,vp+1} = {t6, 17}, and thus we have (2) occurring. If v,41 & V(T), then
Claim 2 implies that v, is either ts or t7. If v, = t7, we have (3). Now suppose
vp = t. Then, since G has no (b+9)-path, v, has no neighbour in A, and hence
g = 1. In this case P is a 7-path in H with tg as end-vertex. If t7,tg & V(P),
then Ptrtg is a 9-path, contradicting that 7({A)) = 8. Hence ¢7 or tg is in V(P).
But since 7(G) = b+ 8, there is no path in H — v, from t7 or tg to any vertex
in {t3,t4,15}, and hence t3,t4,t5 ¢ V(P). But then Ptstyts is a 10-path in (A).
This case can therefore not occur.

Finally, suppose {w,, w41} = {ts,t5}. Then Claim 2 implies that v, = t7
and vp41 € V(H) — V(T). So in this case (4) occurs. |

Remark 5.2. We can convert (5) of Lemma 5.1 to (2) by reversing the labelling
of X as well as that of T'. Thus the four cases shown in Figures 6 and 7 represent
all the Type II problematic configurations for a = 8. In each of those four cases,
t7 is in N(2py1) and hence g - - -t7§ is an (8 + b)-path, which implies that x;
has no neighbour in A — V(T'). However, x; may have a neighbour on T that is
not shown in the sketches — we have shown only w, and w,11, since they are
the neighbours of x; that define the specific case.

In each of the four cases in Figures 6 and 7 certain adjacencies between
vertices on the 8-path ¢; ---tg are forbidden, due to the fact that 7(G) = 8 + b.
The forbidden adjacencies are listed in Figures 6 and 7. We say that an 8-path
in (A) is (k)-eligible if it has no adjacencies that are forbidden for (k) in Lemma
5.1. An 8-path in (A) is eligible if it is (k)-eligible for some k € {1, 2, 3,4}.

Observation 5.3. Lemma 5.1 implies that if there is an 8-path T in (A) such
that neither T' nor ? is an eligible 8-path, then the component of (A) containing
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T has no eligible 8 path and is therefore not a candidate for a problematic con-
figuration.

We are now ready to prove the Strong PPC for a = 8.

Theorem 5.4. Let G be a graph with detour order 8 +b. Then G has an exact
(8, b)-partition.

Proof. We begin by choosing a path of order 8 +b in G. We let A consist of the
first eight vertices of this path and we let B = V(G) — A.

We now describe a recursive procedure for moving vertices back and forth
between A and B until we have an exact (8, b)-partition of G.

Step 1. If 7((B)) = b, then (A, B) is an exact (8,b)-partition of G, so then we
stop. If 7((B)) > b, we let X = x1---xp41 be a (b+ 1)-path in (B) and proceed
to Step 2.

Step 2. If 7((AU{z;})) =8 for i =1 or b+ 1, then we move x; to A if i = 1;
otherwise, we move x311 to A. Then we return to Step 1.

Step 3. If 7((AU{z1})) > 8 and 7((AU{xp41})) > 8, we let the paths P,Q, R, S
be as defined in Lemma 2.2 with a = 8. (If necessary, we reverse the labelling of
the path X so that P may be assumed to be of maximum order among the four
paths.) Now let H be the component of (A) that contains P.

(a) If 7(H) < 8, we move z1 to A. The result is that (V(H)U{x1}) is now a
component of (A) with detour order 9. Then we move an end-vertex of a 9-path
in (V(H) U {z1}) to B and, if necessary, repeat the process until the resulting
component of (A) has detour order 8. Then we return to Step 1.

(b) If 7(H) = 8, let T be any 8-path in H. Then, by Lemma 5.1, we
can choose the labelling ¢y ---tg for T such that we have one of the five Type
IT problematic configurations in Lemma 5.1. If we have (5), we first convert
it to (2) as per Remark 5.2 before proceeding. We may therefore assume that
we have one of the cases (1)—(4) in Figures 6 and 7. In each case we let Y =
Ny (t7) — {t1,t2,t3,t4,1t5,t6}. Then we move 1 to A and return all vertices in YV
to B. Then we return to Step 1.

We shall prove that after a finite number of steps our procedure will terminate
in an exact (a,b)-partition of G. We first note the following.

After having executed Step 2 or 3(a), we obviously have 7((A)) = a. To
see that this is also true for Step 3(b), we note that in each Type II problematic
configuration, z; has no neighbour in A—V (T") and every 9-path in (V(H)U{x1})
has an end-vertex in Y. Thus, after having executed Step 3(b), the resulting
component ((V(H)U{x1}) —Y) has detour order 8.

Throughout our recursive procedure, a b-path is retained in B. After each
execution of Step 2, there is at least one less (b + 1)-path in (B), but this is not
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necessarily true for Step 3, since the vertices that were returned to B may be
internal vertices of (b + 1)-paths in (B). We shall show, however, that this will
not prevent our iteration procedure from terminating.

If Step 3(a) is executed, the relevant component H of (A) is converted to
a component with detour order 8. Thus Type I problematic configurations will
eventually cease to occur.

Now suppose we have executed Step 3(b) due to an occurrence of one of the
four Type II problematic configurations shown in Figures 6 and 7.

In each case, let t;, ;11 be the first two neighbours of 1 on the 8-path 7" in
H, and let T' be the 8-path ty ---t;x1t;11---t7 in H'. Then t;t;11 is an external
edge of T" and t;11t; is an external edge of T”. Thus if (1) occurs, 77 has 2 ~ 4
and Zt’ has 5 ~ 7. If (2) or (3) occurs, T" has 3 ~ 5, and 1<T’ has 4 ~ 6. If (4)
occurs, T has 4 ~ 6 and 7" has 3 ~ 5.

Thus, after having applied Step 3(b) with respect to an eligible 8-path T in

a component H of (A), each of the 8-paths T and 7" in H’' has at least one of
the following external adjacencies.

1(a) 2 ~ 4 (allowed only if (1), (2) or (4) occurs),
1(b) 5~ 7 (allowed only if (1), (3) or (4) occurs),
1(c) 3 ~5 (allowed only if (1), (3) or (4) occurs),
1(d) 4 ~ 6 (allowed only if (1), (2) or (3) occurs).

Now suppose T had the external edge tpt, h < k < 8 Then T has either
h~Fkorh~(k+1)or (h+1) ~ (k+ 1), depending on whether k& < i, or
h <i <k, or h >i. We also note that no external edge of T is incident with the
vertex tg. Thus 7" has at least one more external edge than 7' had, since adding

x1 added at least one, while removing Y did not destroy any.
Thus, repeated applications of Step 3(b) will eventually result in a component

H' containing an 8-path T such that 7" as well as T contain at least one forbidden
edge for each of the configurations (1)—(4). Then, by Observation 5.3, H' is
not a problematic component. Also if H' is subsequently affected by repeated

applications of Step 2, the paths 7" and 1" will remain as non-eligible 8-paths in
(A), since no vertices are removed from A during the execution of Step 2.

We conclude that after a finite number of steps the problematic configurations
will cease to occur. In fact, the schematic representation in Figure 8 below shows
that a Type II problematic configuration becomes non-problematic after at most
four iterations in accordance with Step 3(b). (In Figure 8, a “x” after a set of
adjacencies indicates that an 8-path with those adjacencies is non-eligible.)

Thereafter, the number of (b+1)-paths in (B) will decrease with each further
step of our recurrence procedure, until 7((B)) becomes b. |
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6. CONCLUDING REMARKS

It should be noted that if the Strong PPC holds for a = k, it does not follow
automatically that it holds for a < k. Nevertheless, we have used basically
the same algorithm to prove the Strong PPC for all ¢ < 8, although with each
increase in the value of a beyond 6, the so-called “problematic configurations”
became more challenging to handle. We showed that for a < 6 there are no
problematic configurations, and for a = 7 each problematic configuration involves
a component of (A) with detour order 7. For a = 8 there are many problematic
configurations involving components with detour order less than 8, but we side-
stepped the problem of determining all those cases, by adapting our recursive
procedure to transform those components to components with detour order 8.
We could have adopted the same approach for the case a = 7, by proving the
analogue of Lemma 5.1 for a = 7, instead of Lemma 4.1. However, we decided to
retain Lemma 4.1 since it provides insight into the structure of the problem.

As a increases beyond 8, several new complications regarding the associated
problematic configurations enter the picture. A careful analysis of the types of
problematic configurations that may occur if a > 9 might lead to further progress
towards proving the Strong PPC.

Note that it follows from Lemma 2.2 (as illustrated in Figure 1), that a
problematic configuration for a given value of a (irrespective of the magnitude of
a) can only occur in a graph containing more than one cycle. Thus, using our
basic recursive procedure, one can easily prove that the Strong PPC holds for
acyclic graphs, as well as for unicyclic graphs. Perhaps the procedures developed
in this paper could help prove that the Strong PPC holds for other interesting
classes of graphs.

We have not yet attempted to find an asymptotic result for the Strong PPC.
It would certainly be worth considering, but it does not seem as though the
methods used in [8] can be easily adapted for the Strong PPC.
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