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Abstract

The detour order of a graph G, denoted by τ(G), is the order of a longest
path inG. If a and b are positive integers and the vertex set ofG can be parti-
tioned into two subsets A and B such that τ(〈A〉) ≤ a and τ(〈B〉) ≤ b, we say
that (A,B) is an (a, b)-partition of G. If equality holds in both instances, we
call (A,B) an exact (a, b)-partition. The Path Partition Conjecture (PPC)
asserts that if G is any graph and a, b any pair of positive integers such
that τ(G) = a + b, then G has an (a, b)-partition. The Strong PPC asserts
that under the same circumstances G has an exact (a, b)-partition. While
a substantial body of work in support of the PPC has been developed over
the past three decades, no results on the Strong PPC have yet appeared in
the literature. In this paper we prove that the Strong PPC holds for a ≤ 8.
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1. Introduction

The number of vertices in a graph G is called the order of G and denoted by
n(G). A longest path in a graph G is called a detour of G. The detour order

of G, denoted by τ(G), is the order of a detour in G. If X is a subset of the
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vertex set V (G) of G, then 〈X〉G denotes the subgraph of G induced by X. If
the context is clear, we omit the subscript G. Throughout the paper, a and b
will denote positive integers.

If the vertex set V (G) of a graph G can be partitioned into two sets A and
B such that

τ(〈A〉) ≤ a and τ(〈B〉) ≤ b,

we say that (A,B) is an (a, b)-partition of G.
If (A,B) is an (a, b)-partition of G such that

τ(〈A〉) = a and τ(〈B〉) = b,

we call (A,B) an exact (a, b)-partition of G.
If G is the complete graph Ka+b, then every (a, b)-partition of G is obviously

exact. There are also noncomplete graphs of order a+ b that have the property
that every (a, b)-partition is exact, as shown in [9]. On the other extreme, if G is
a bipartite graph, then the partite sets of G provide a (1, 1)-partition, which is
an (a, b)-partition for all (a, b), but that partition is not exact if b > 1.

The following long-standing conjecture, which became known as the Path

Partition Conjecture (PPC ), first appeared in the literature in 1983, in a paper
by Laborde, Payan and Xuong [11].

Conjecture 1.1 (PPC). If G is any graph and (a, b) is any pair of positive

integers such that τ(G) = a+ b, then G has an (a, b)-partition.

For a survey of results supporting the PPC, the reader is referred to [7].
In this paper we consider the following stronger conjecture, which we shall

call the Strong PPC.

Conjecture 1.2 (Strong PPC). If G is any graph and (a, b) is any pair of positive

integers such that τ(G) = a+ b, then G has an exact (a, b)-partition.

Conjecture 1.2 has not yet been considered in the literature, but Bondy has
stated the digraph analogue of the Strong PPC as Conjecture 4.45 in [2]. Bondy
mistakenly attributed that conjecture to Laborde, Payan and Xuong. (Although
[11] deals mainly with digraphs, Laborde et al. stated the PPC for undirected

graphs only and they did not require exact partitions.)
A number of conjectures which appeared to be slightly stronger than the

PPC have been disproved, the most well-known of these being the Path Kernel
Conjecture (PKC) of Broere, Hajnal and Mihók [3]. If K is a set of vertices in a
connected graph G such that τ(〈K〉) ≤ a and every vertex in G−K is adjacent
to an end-vertex of a Pa (a path with a vertices) in K, then K is called a Pa+1-

kernel of G. The PKC asserted that every connected graph has a Pa+1-kernel
for every positive integer a. Aldred and Thomassen [1] disproved the PKC by
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constructing a connected graph with detour order 364 that has no P364-kernel.
Later, Katrenič and Semanǐsin [10] constructed a smaller counter-example to the
PKC (a connected graph with no P155-kernel) and they also showed that for
each integer r ≥ 0 there exists a connected graph G having no Pτ(G)−r-kernel.
However, they pointed out that in each of their examples τ(G)− r is still bigger
than τ(G)/2, so the following conjecture has not been disproved.

Conjecture 1.3 (Revised PKC). If G is a connected graph with detour order τ ,
then G has a Pa+1-kernel for every positive integer a ≤ τ/2.

Observation 1.4. Suppose τ(G) = a + b and G has a Pa+1-kernel A. Then, if

B = V (G)−A,

τ(A) = a and τ(B) ≤ b.

We note that if every component of a disconnected graph G has an (a, b)-
partition, then so does G. Thus the revised PKC appears stronger than the PPC
and weaker than the Strong PPC.

Results from [5, 12, 13, 14] imply the following result.

Theorem 1.5. Every connected graph has a Pa+1-kernel for every positive integer

a ≤ 8.

Theorem 1.5 implies that the PPC holds for a ≤ 8. The PPC has been shown
to hold for several well-known classes of graphs, such as weakly pancyclic graphs,
claw-free graphs, co-graphs and graphs with detour deficiency (the difference
between the order and detour order) at most 3, as proved in [4, 6, 7] and [8],
respectively. However, the partitioning techniques that were used to prove those
results have turned out to be unsuitable for producing exact partitions. Even
settling the Strong PPC for bipartite graphs seems to be a challenging problem.

In this paper we develop a recursive procedure for finding exact (a, b)-parti-
tions of a graph G with τ(G) = a+ b if a ≤ 8, thus proving the Strong PPC for
a ≤ 8. This provides an alternative procedure for proving the PPC for a ≤ 8
which is perhaps a bit simpler than the procedure used to prove Theorem 1.5.

2. Preliminaries

By a k-path in a graph G we mean a subgraph of G (not necessarily induced)
that is isomorphic to Pk, the path on k vertices.

If T is a k-path labelled t1t2 · · · tk in a graph G, we denote the same path

with the reversed labelling, tktk−1 · · · t1, by
←−
T . Thus the ith vertex of T is the

(k + 1− i)th vertex of
←−
T . If titj ∈ E(G) with |j − i| > 1, we call titj an external

edge of T .
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We use the notation i ∼ j to indicate that the ith vertex of a given path T
in a graph G is adjacent (in G) to its jth vertex. If |j − i| > 1, we call i ∼ j an
external adjacency of T .

If L is a path in a graph G, then we call a set I of vertices on L an independent

set of L if I does not contain two consecutive vertices on L. Note that an
independent set of L need not be an independent set in G. By the neighbours of

I on L, denoted NL(I), we mean the immediate predecessors and successors of
the vertices in I on L. (This may differ from the set NG(I)∩V (L).) The following
observation concerning independent vertices on a path will be used frequently.

Observation 2.1. Suppose I is a set of independent vertices on a path L. Then

|I| ≤ |NL(I)|+ 1 and if equality holds, then n(L) = 2|I| − 1.

The notation and implications of the next lemma, illustrated in Figure 1, will
be used frequently throughout the paper.

Lemma 2.2. Let G be a graph with τ(G) = a + b and let (A,B) be a partition

of V (G) such that τ(〈A〉) = a. Suppose B contains a (b + 1)-path X labelled

x1 · · ·xb+1 such that

τ(〈{x1} ∪A〉) > a and τ(〈{xb+1} ∪A〉) > a.

(1) Then 〈A〉 contains two vertex disjoint paths R,S and two vertex disjoint paths

P,Q such that Rx1S and Pxb+1Q are (a+ 1)-paths.

(2) Let

P = v1 · · · vp, Q = vp+1 · · · va, R = w1 · · ·wr, S = wr+1 · · ·wa

and assume that P has the maximum number of vertices among the four paths

P,Q,R, S. Then both R and S intersect P .

(3) Let wl = vi be the last vertex of R on P and let R′ be the wlwr-subpath of

R. Also, let wf = vj be the first vertex of S on P and let S′ be the wr+1wf -

subpath of S. We assume, without loss of generality, that i < j. Then each

of the following hold.

(a) wr, wr+1 6∈ {v1, vp, vp+1, va}.

(b) If wr 6∈ V (P ) ∪ V (Q), then wr has no neighbour in the set {v1, v2, vp−1,
vp, vp+1, vp+2, va−1, va}. The same is true for wr+1.

(c) Let q = n(Q) = a− p. Then n(R′) ≤ q and n(S′) ≤ q.

(d) If wl = v1, then R′ contains an interior vertex of Q. Similarly, if wf =
vp, then S′ contains and interior vertex of Q.

(e) If wl = v2, then either wl = wr, or R′ contains an interior vertex of

Q. Similarly, if wf = vp−1, then either wr+1 = wf , or S′ contains an

interior vertex of Q.
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(f) If wr = vp−2 and wr+1 = vp−1, then vp ∈ V (R) ∪ V (S) and vp has at

least two neighbours in V (R) ∪ V (S)− {wr, wr+1}.

(g) Suppose Y is a wrwr+1-path or a vpvp+1-path in 〈A〉 with at least three

vertices. Then at least one internal vertex of Y has a neighbour in A −
V (Y ).

Proof. (1) The existence of the four paths P,Q,R, S follows from the fact that
neither x1 nor xb+1 is adjacent to an end-vertex of an a-path in 〈A〉.

(2) Since n(R)+n(S) = n(P )+n(Q) = a, our assumption on P implies that
each of R and S has at least as many vertices as Q. Thus, if R does not intersect

P , then RX
←−
P is a path in G with more than a + b vertices, and if S does not

intersect P , then P
←−
XS is a path in G with more than a+ b vertices. This proves

that both R and S intersect P .

(3) (a) If either wr or wr+1 is an end-vertex of either P or Q, there is an
(a+ b+ 1)-path in G with vertex set V (P ) ∪X ∪ V (Q).

(b) Suppose wr 6∈ (V (P ) ∪ V (Q)). If v1 ∈ N(wr), then
←−
P wrXQ is an

(a + b + 2)-path in G. If v2 ∈ N(wr), then vpvp−1 · · · v2wrXQ is an (a + b + 1)-
path in G. The proofs of the remaining cases are similar.

(c) Since the path v1 · · · vi−1R
′Xvpvp−1 · · · vi+1 has p+n(R′)+ b vertices but

τ(G) = p+ q + b, it follows that n(R′) ≤ q. The proof of the second part of this
item is similar.

(d) Suppose wl = v1 and R′ does not contain an interior vertex of Q. Then
there is a path in G containing all (a + b + 1) vertices in V (P ) ∪ V (X) ∪ V (Q).
This contradiction proves the first part of (d). The proof of the second part is
similar.

(e) Suppose wl = v2 and R′ does not contain an interior vertex of Q. Then
wr 6∈ V (Q), since it follows from (a) that wr is not an end-vertex of Q. Thus, if
wr 6= wl, there is a path in G containing all a+ b+1 vertices in (V (P )−{v1})∪
{wr} ∪ V (Q). This proves the first part of (e). The proof of the second part is
similar.

(f) In this case, if vp 6∈ V (R) ∪ V (S), then RXvpS is an (a + b + 1)-path

in G. Thus vp ∈ V (R) ∪ V (S). If vp = w1, then
←−
S XR is an (a + b + 1)-

path in G. If vp = wr−1, then w1 · · ·wr−1
←−
XwrS is an (a + b + 1)-path in G.

Hence vp 6∈ {w1, wr−1}. Thus, if vp ∈ V (R), then vp has both a predecessor and
successor on the path R in the set V (R) − {vp−2}. A similar argument shows
that if vp ∈ V (S), then vp has at least two neighbours in V (S)− {vp−1}.

(g) Suppose Y is a wrwr+1-path in 〈A〉 such that no internal vertex of Y has
a neighbour in A− V (Y ). Let Y ′ = Y − {wr, wr+1}.

If neither R nor S intersects Y ′, then RY ′S is a path of order at least a+ 1
in 〈A〉.
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If R, but not S, intersects Y ′, then by our assumption, V (R) ⊆ V (Y ) −

{wr+1}. But then
←−
XwrY

′S is a path of order greater than a+ b+ 1 in G.
If both R and S intersect Y ′, then by our assumption, V (R)∪V (S) ⊆ V (Y ).

Since V (R) ∩ V (S) = ∅, it follows that n(Y ) ≥ n(R) + n(S) = a. But then Y X
is a path of order at least a+ b+ 1.

These contradictions prove that at least one internal vertex of Y has a neigh-
bour in A− V (Y ). The proof when Y is a vpvp+1-path is similar.

The situation of Lemma 2.2 is illustrated in Figure 1, with thick lines indicat-
ing paths and thin lines indicating edges. But note that wl may be wr and wr+1

may be wf . Furthermore, R and S may intersect P and Q in several vertices.

v1 wl = vi wf = vj vp vp+1 va

x1 xb+1

w1 wa

wr wr+1

A

B

Figure 1. An illustration of paths P,Q,R, S and X in Lemma 2.2.

3. Proof of the Strong PPC for a ≤ 6

The following lemma will be used to prove the Strong PPC for the cases where
a ≤ 6.

Lemma 3.1. Let G be a graph with τ(G) = a + b, a ≤ 6, and let (A,B) be a

partition of V (G) such that τ(〈A〉) ≤ a. Suppose x1 · · ·xb+1 is a path of order

b+ 1 in B. Then

τ(〈A ∪ {x1}〉) ≤ a or τ(〈A ∪ {xb+1}) ≤ a.

Proof. Using Lemma 2.2, the proof for a ∈ {1, 2, 3, 4, 5} is straightforward and
is left to the reader.

Now suppose a = 6 and assume, to the contrary, that there is a (b + 1)-
path X in G − A such that if x is either of the two end-vertices of X, then
τ(〈A〉) > 6. Then, with respect to an appropriate labelling x1 · · ·xb+1 of the
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path X, we can define four paths P,Q,R, S as in Lemma 2.2(1), such that P
has maximum order among these paths, and the paths Rx1S and Pxb+1Q are
7-paths in G. Let L = Rx1S. In the notation of Lemma 2.2(2), L is the 7-
path w1 · · ·wrx1wr+1 · · ·w6. By Lemma 2.2(2), both R and S intersect P . As in
Lemma 2.2(3), we let wl = vi be the last vertex of R on P , and wf = vj be the
first vertex of S on P (as illustrated in Figure 1). We assume that i < p. Let
q = n(Q) = 6− p.

Suppose p = 5. Then q = 1. It therefore follows from Lemma 2.2(3c) that
wr = wl and wr+1 = wf and 1 < i < j < 5. If i = 2, let I = V (L)−{x1, v2, v3, v4}.
Then |I| ≥ 3. Since x1 · · ·xb+1v5v4v3v2x1 is a (5 + b)-cycle and τ(G) = 6 + b, it
follows that I is an independent set and NL(I) ⊂ {v2, v4}. Thus, by Observation
2.1, |I| < 3, a contradiction. Thus we may assume that i = 3 and j = 4. But then,
since G has no (7 + b)-path, v4 is the only neighbour of v5 in 〈A〉, contradicting
Lemma 2.2(3f).

Suppose p = 4. Then q = 2, and hence Q has no internal vertex. It therefore
follows from Lemma 2.2(3d–e) that w3 = v2 and wr+1 = v3. But the fact that
G has no (b + 7)-path implies that v3 is the only neighbour of v4 in A, thus
contradicting Lemma 2.2(3f).

Suppose p = 3. Then Q = v4v5v6. Since Q has only one interior vertex, it
follows from Lemma 2.2(3d) and the fact that τ(G) = 7 + b, that we either have
R′ = v1v5 and S′ = v2, or R′ = v2 and S′ = v5v3. The first case is equivalent
to the case where p = 5, i = 2, j = 4, with P being the 5-path v6v5v1v2v3 and
Q = v4. In the second case, the only neighbours of v3 in A are v2 and v5, and

hence S = v5v3. But then, since n(R) + n(S) = 6, it follows that RX
←−
S is a

(7 + b)-path in G.

We now prove the Strong PPC for a ≤ 6.

Theorem 3.2. Let G be a graph with τ(G) = a+ b, a ≤ 6. Then G has an exact

(a, b)-partition.

Proof. We begin by considering any (a+ b)-path in G. Then we put the first a
vertices of that path in A and the remaining vertices of G in B. If τ(〈B〉) = b,
then (A,B) is an exact (a, b)-partition. If not, then let x1 · · ·xb+1 be a (b+1)-path
in 〈B〉. By Lemma 3.1, we have τ(〈{x1}∪A〉) = a or τ(〈{xb+1}∪A〉) = a. If the
former, we move x1 to A; otherwise, we move xb+1 to A. The result is that the
detour order of 〈A〉 remains a, while that of 〈B〉 remains at least b and there is
at least one less (b+ 1)-path in 〈B〉. If now τ(〈B〉) = b, we are done. Otherwise,
we repeat the procedure with another (b+1)-path in 〈B〉 until we have destroyed
all the (b+ 1)-paths in 〈B〉. Then we have an (a, b)-partition of G.
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4. Proof of the Strong PPC for a = 7

Lemma 3.1 does not extend to a = 7. Figure 2 shows two “problematic configu-
rations” that can occur in a graph G with detour order 7 + b. In each of those,
τ(〈A〉) = 7 and there exists a (b+ 1)-path x1 · · ·xb+1 in G−A such that

τ(〈A ∪ {x1}〉) > 7 and τ(〈A ∪ {xb+1}) > 7.

t1 t2 t3 t4 t5 t6 t7

x1 xb+1

A

B

(1)

t1 t2 t3 t4 t5 t6 t7

x1 xb+1

(2)

I

Figure 2. The problematic configurations for a = 7.

We now prove that Figure 2 represents the only two problematic configura-
tions for a = 7.

Lemma 4.1. Let G be a graph with τ(G) = 7+ b and let (A,B) be a partition of

V (G) such that τ(〈A〉) = 7. Suppose X is a (b+ 1)-path in 〈B〉 such that if x is

either of the two end-vertices of X, then τ(〈A ∪ {x}〉 ≥ 8. Then, with respect to

an appropriate labelling x1 · · ·xb+1 of the path X, there are four paths P,Q,R, S
in 〈A〉 such that P has maximum order among these four paths, and Rx1S and

Pxb+1Q are 8-paths in G. Now let H be the component of 〈A〉 containing the

path P . Then τ(H) = 7 and if T is any 7-path in H, then T may be labelled

t1 · · · t7 such that one of the following holds.

(1) NA(x1) = {t2, t3} and NA(xb+1) = {t5, t6}

(2) NA(x1) = {t3, t4} and NA(xb+1) = I ∪ {t6}, where I is a nonempty indepen-

dent set of vertices in 〈A〉.

Proof. By Lemma 2.2(2), both R and S intersect P . We let

P = v1 · · · vp, Q = vp+1 · · · v7, R = w1 · · ·wr, S = wr+1 · · ·w7.

As in Lemma 2.2(3), we let wl = vi and wf = vj be, respectively, the last vertex
of R on P and the first vertex of S on P (as illustrated in Figure 1) and we let
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R′ and S′ be, respectively, the wlwr-subpath of R and the wr+1wf -subpath of S.
We assume i < j.

Let C be the cycle R′Xvpvp−1 · · · vi and let L be the 8-path Rx1S, i.e.,

L = w1 · · ·wrx1wr+1 · · ·w7

and let
Z = {z1, . . . , zm} = V (R) ∪ V (S)− {vi, . . . , vp}.

Then (V (R) ∪ V (S)) ⊆ {vi, vi+1, . . . , vp} ∪ Z, which implies that |Z| ≥ 6− p+ i.
We need to consider thirteen possibilities for the triple (i, j, p). We shall

show that if (i, j, p) = (2, 3, 5) we have (1) of the statement of the lemma, and
if (i, j, p) = (3, 4, 6) we have (2). In each of the other cases we shall obtain a
contradiction.

Let q = 7 − p. It follows from Lemma 2.2(3d) that if q ≤ 2, then i 6= 1 and
j 6= p. Thus 1 < i < j < p in each of Cases 1–9.

Cases 1–3. (i, j, p) ∈ {(2, 3, 6), (2, 4, 6), (2, 5, 6)}. In all three these cases
|Z| ≥ 2 and, since q = 1, it follows from Lemma 2.2(3c) that wr = v2 and
wr+1 = vj . Since the cycle C has b + 6 vertices and τ(G) = b + 7, it follows
that Z is an independent set. Moreover, neither v3 nor v6 has a neighbour in
Z, and at most one of v4 and v5 has a neighbour in Z. Hence |NL(Z)| ≤ 2, so
by Observation 2.1, |Z| ≤ 3 and if |Z| = 3, then n(L) ≤ 5, contradicting that
n(L) = 8. Thus |Z| = 2 and V (L) = {v2, v3, v4, v5, v6, z1, z2, x1}. We may assume
that z1 ∈ N(v2) and z2 is a neighbour of either v4 or v5.

Now suppose v6 ∈ N(v3). Then, if z2 ∈ N(v4) it follows that z2v4v5v6v3v2Xv7
is an (8 + b)-path on G unless z2 = v7. But if z2 = v7, then Xz2v4v5v6v3v2v1 is
an (8 + b)-path in G. On the other hand, if z2 ∈ N(v5), then z1v2Xv6v3v4v5z2
is an (8 + b)-path in G. Hence v6 6∈ N(v3), so {v3, v6, z1, z2} is an independent
set on the path L. But the only possible neighbours of this set in L are v2, v4, v5,
so it follows from Observation 2.1 that n(L) ≤ 7. This contradiction shows that
these three cases do not occur.

Cases 4–5. (i, j, p) ∈ {(3, 4, 6), (3, 5, 6)}. In both cases, since q = 1, it follows
from Lemma 2.2(3c) that wr = v3 and wr+1 = vj . Also, |Z| ≥ 3 and n(C) = b+5,
so any subpath of L in 〈Z〉 has at most two vertices.

First, suppose v4 has a neighbour z1 in Z. If z1 6∈ {v1, v2}, then v1v2v3Xv6
v5v4z1 is an (8+ b)-path in G, and if z1 = v1, then v6v5v4v1v2v3Xv7 is an (8+ b)-
path in G. Thus z1 = v2. But then neither v3 nor v5 nor v6 has a neighbour in
Z, since otherwise there would be an (8+ b)-path in G. But then n(L) ≤ 7. This
contradiction proves that v4 has no neighbour in Z.

If j = 5, then since G has no (8 + b)-path, v6 6∈ N(v4), so in this case
N(v4) = {v3, v5}. Since v3v4v5 is a wrwr+1-path in 〈A〉, this contradicts Lemma
2.2(3g).
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Thus j = 4. In this case v3 and v6 are the only vertices on C that have
neighbours in Z. Since no path in Z with more than two vertices has an end-
vertex adjacent to v3, there is a vertex z ∈ Z that is adjacent to v6. Thus v1 · · · v6z
is a 7-path in H, and NA(x1) = {v3, v4} and NA(xb+1) = {v6} ∪ I, where I is
an independent set of vertices in A containing v7. Since neither v4 nor v5 has
a neighbour in Z, any 7-path in H may be labelled t1 · · · t7 such that t3t4t5t6 is
the path v3v4v5v6. Thus we have (2) of the statement of the lemma, as shown in
Figure 2.

Case 6. (i, j, p) = (4, 5, 6). By Lemma 2.2(3f), v6 has at least two neighbours
in Z. But the fact that τ(G) = b+7 implies that v2 is the only possible neighbour
of v6 in Z. Hence this case does not occur.

Cases 7–8. (i, j, p) ∈ {(2, 3, 5), (2, 4, 5)}. In these cases |Z| ≥ 3. Since
n(C) = b+5, it follows that 〈Z〉 does not contain a subpath of L with more than
2 vertices. Also, since q = 2, the path Q has no internal vertices.

It follows from Lemma 2.2(3e) that wr = v2 and if j = 4, then wr+1 = v4.
Suppose j = 3 and wr+1 6= v3. Then v3 = wr+2 and neither v4 nor v5 has a
neighbour in Z ∪ {v2}. Moreover, neither v2 nor v3 is adjacent to an end-vertex
of a P2 in Z. But then n(R) ≤ 2 and n(S) ≤ 4, which implies that n(L) ≤ 6.
This contradiction proves that wr+1 ∈ {v3, v4}.

Now suppose v5v6 6∈ E(H). Then v5 has no neighbour in Z. Thus, if Z is an
independent set and I = (Z ∪ {v5}) ∩ V (L), then I is an independent set on L.
But NL(I) ⊆ {v2, v3, v4}. Thus it follows from Observation 2.1 that |I| ≤ 4 and
if |I| = 4, then n(L) ≤ 7. Hence |I| = 3. But V (L) ⊆ (I ∪ {x1, v2, v3, v4}), which
implies that then n(L) ≤ 7. Thus Z is not an independent set of L.

We may therefore assume that z1z2 ∈ E(L) and either z1z2v2 or v4z1z2 is
a subpath of L. In either case, neither v3 nor v5 has a neighbour in Z. Thus,
if j = 4, then L is either the path z1z2v2x1v4z3 or the path z3v2x1v4z1z2, con-
tradicting that n(L) = 8. Hence j = 3. But then either z1z2v2v3Xv5v4z3 or
z3v2v3Xv5v4z1z2 is a (b+ 8)-path in H.

Thus we have proved that v5v6 ∈ E(H). Now, if j = 4, then v1v2v3v4Xv5v6v7
is an (8 + b)-path in H. Thus j = 3.

We conclude that v1 · · · v7 is a 7-path in H and NA(x1) = {v2, v3} and
NA(xb+1) = {v5, v6}. Since τ(G) = 7+b, neither v3 nor v4 nor v5 has a neighbour
in Z. Thus, if T is any 7-path in H, then T may be labelled t1 · · · t7 such that
t2t3t4t5t6 is the path v2v3v4v5v6. So in this case we have (1) of the statement of
the lemma, as shown in Figure 2.

Case 9. (i, j, p) = (3, 4, 5). Since q = 2, it follows from Lemma 2.2(3c) that
n(R′) ≤ 2, and hence either R′ = wrv3, or wr = v3. In either case, it follows from
Lemma 2.2(3e) that v4 = wr+1.
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Suppose wr 6∈ V (P ). Then v4 is the only neighbour of v5 in A, and hence
v5 6∈ V (R). Thus, if v5 6∈ V (S), then RXv5S is a (9 + b)-path in G. But if

v5 ∈ V (S), then S = v4v5, and then RX
←−
S is an (8 + b)-path in G.

Thus we have shown that wr = v3 and wr+1 = v4. But then, by Lemma
2.2(3f), v5 has two distinct neighbours z1, z2 ∈ V (L) − {v3, v4}. We note that
z1, z2 6∈ {v6, v7}. Thus, if z1z2 ∈ E(L), then z1z2v5v4v3Xv6v7 is an (8 + b)-
path. This contradiction implies that {z1, z2} is an independent set on L. But
NL({z1, z2}) = {v5}. This case does therefore not occur.

Cases 10–11. (i, j, p) ∈ {(1, 2, 4), (1, 3, 4)}. Since wl = v1, it follows from
Lemma 2.2(3d) that R′ contains an interior vertex of Q = v5v6v7. Thus, since G
has no (8 + b)-path, R′ = v1v6. These cases are equivalent to Cases 4–5, with P
being the 7-path v7v6v1v2v3v4 and Q = v5.

Cases 12–13. (i, j, p) ∈ {(2, 3, 4), (2, 4, 4)}. First, suppose wr 6= v2. Then
it follows from Lemma 2.2(3e) that R′ contains the interior vertex v6 of Q and
j = 3. Since G has no (8+ b)-path, R′ is either the path v2v6 or the path v2v5v6.
In either case, the only possible neighbours of v4 in A are v3 and v6. Since
v3 ∈ V (S), this implies that v4 6∈ V (R). If v4 ∈ V (S), then S = v3v4. But then

RX
←−
S is an (8 + b)-path in G. Thus v4 6∈ V (R) ∪ V (S). But then RXv4S is a

(9 + b)-path in G.

Thus wr = v2. Now suppose j = 3. If wr+1 6= wf = v3, then it follows from
Lemma 2.2(3e) that S′ contains an interior vertex of Q, and hence S′ = v6v3.
SinceNA(v4) ⊆ {v3, v6}, it follows that v4 6∈ V (R). If v4 ∈ V (S), then S = v6v3v4.

But then RX
←−
S is an (8+b)-path in G. Thus v4 6∈ V (R)∪V (S). But then RXv4S

is an (9 + b)-path in G. Thus wr+1 = v3. But v6 is the only possible neighbour
of v4 in A− {v2, v3}, contradicting Lemma 2.2(3e).

Thus j = 4. Then it follows from Lemma 2.2(3d) that S′ = v6v4. Now

NA(v3) = {v2, v4}. Thus, if v3 ∈ V (R), then R = v2v3 and then RX
←−
S is an

(8 + b)-path. Similarly, if v3 ∈ V (S), then RX
←−
S is an (8 + b)-path. These

contradictions show that v3 6∈ V (R) ∪ V (S). But then Rv3S is an 8-path in 〈A〉.

Case 14. (i, j, p) = (3, 4, 4). It follows from Lemma 2.2(3d) that wr+1 = v6
and S′ = v6v4. Since NA(v4) = {v3, v6}, it follows that S = v6v4. But then

RX
←−
S is an (8 + b)-path in G.

We conclude that the configurations (1) and (2) in Figure 2 represent all
the problematic configurations for a = 7. In either case the component H of
〈A〉, as described in Lemma 4.1, may contain vertices and/or edges not shown
on those sketches. However, certain edges are forbidden, due to our assumption
that τ(G) = a+ b. We observe the following concerning the structure of H.
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Observation 4.2.

(a) If Configuration (1) occurs, the only allowable external edges of the path T
are t2t6 and t3t5, and no vertex in {t3, t4, t5} has a neighbour in A− V (T ).

(b) If Configuration (2) occurs, the only allowable external edges of the path T
are t1t3 and t4t6, and no vertex in {t4, t5} has a neighbour in A− V (T ).

(c) If either (1) or (2) occurs, every 8-path in 〈V (H) ∪ {x1}〉 has an initial or

terminal vertex in the set Y = NH(t6)− {t1, t2, t3, t4, t5}.

(d) If either (1) or (2) occurs, x1 has exactly two neighbours on T and none in

A− V (T ).

In view of Observation 4.2, we say a 7-path in 〈A〉 is (1)-eligible if it has no
external adjacencies other than 2 ∼ 6 and 3 ∼ 5, and (2)-eligible if it has no
external adjacencies other than 1 ∼ 3 and 4 ∼ 6. A 7-path in 〈A〉 that is either
(1)-eligible or (2)-eligible is simply called an eligible 7-path.

Observation 4.3. Lemma 4.1 implies that if there is a 7-path T in 〈A〉 such that

neither T nor
←−
T is an eligible 7-path, then the component of 〈A〉 containing T has

no eligible 7-path and is therefore not a candidate for a problematic configuration.

We now prove the Strong PPC for a = 7.

Theorem 4.4. Let G be a graph with detour order 7 + b. Then G has an exact

(7, b)-partition.

Proof. We begin by choosing a path of order 7+ b in G. We let A consist of the
first seven vertices of this path and we let B = V (G)−A.

We now describe a recursive procedure for moving vertices back and forth
between A and B until we have an exact (7, b)-partition of G.

Step 1. If τ(〈B〉) = b, then (A,B) is an exact (7, b)-partition of G, so then we
stop. If τ(〈B〉) > b, we let X = x1 · · ·xb+1 be a (b+ 1)-path in 〈B〉 and proceed
to Step 2.

Step 2. If τ(〈A ∪ {xi}〉) = 7 for i = 1 or b + 1, we move x1 to A if i = 1;
otherwise, we move xb+1 to A. Then we return to Step 1.

Step 3. If τ(〈A ∪ {x1〉) ≥ 8 and τ(〈A ∪ {xb+1〉) ≥ 8, then we define the paths
P,Q,R, S as in Lemma 2.2. (If necessary, we reverse the labelling of X so that
we can choose P to have maximum order among the four paths.) Now let H
be the component of 〈A〉 that contains P and let T be any 7-path in H. Then
by Lemma 4.1, T may be labelled t1 · · · t7 such that we have either of the two
configurations in Figure 3. In either case, we let Y = NH(t6)− {t1, t2, t3, t4, t5}.
Then we move x1 to A and return all the vertices in Y to B. Then we return to
Step 1.
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First, we note that after having executed Step 2, τ(〈A〉) obviously remains 7, and
it follows from Observation 4.2(c) and (d) that the same is true for Step 3.

Next, we note that throughout our recursive procedure, a b-path is retained
in 〈B〉, and each time Step 2 is executed, the result is that 〈B〉 has fewer (b+1)-
paths than previously. If Step 3 is executed, at least one (b + 1)-path in 〈B〉 is
destroyed, but the vertices that are returned to B may then be internal vertices
of other (b + 1)-paths in 〈B〉, in which case there may even be more (b + 1)-
paths in B than previously. However, we shall show that this will not prevent
our recursive procedure from terminating, since (roughly speaking) Step 3 can
be applied at most twice with respect to a given component of 〈A〉.

Suppose that at some stage in our recursive procedure we have encountered
the configuration (1) or (2) with respect to a path t1 · · · t7 in a component H
of 〈A〉 and a path x1 · · ·xb+1 in 〈B〉 and have consequently executed Step 3, as
illustrated in Figure 3. By Observation 4.2(d), the execution of Step 3 does not
affect any component of 〈A〉 other than H. We now check whether the resulting
component H ′ = 〈(V (H) ∪ {x1}) − Y 〉 is a candidate for another problematic
configuration.

Suppose first that Step 3 was applied to H due to an occurrence of (1). Then
H ′ contains the 7-path

T (1) = t1t2x1t3t4t5t6 (which has 2 ∼ 4)

and its reverse
←−−
T (1) = t6t5t4t3x1t2t1 (which has 4 ∼ 6),

as illustrated in Figure 3. Now T (1) is not an eligible 7-path, since 2 ∼ 4 is
forbidden in both (1) and (2). Since 4 ∼ 6 is allowed in (2) but forbidden in (1),

the 7-path
←−−
T (1) is (2)-eligible but not (1)-eligible. Thus, at some stage during our

recursive procedure, there may be another (b+1)-path in 〈B〉 which, together with

the 7-path
←−−
T (1), results in the configuration (2). If this is the case, we perform

Step 3 again, and then the resulting component H ′′ contains a 7-path T (1,2) which
has both 3 ∼ 5 and 5 ∼ 7, as illustrated in Figure 4. Since 5 ∼ 7 is forbidden in

both (1) and (2), T (1,2) is a non-eligible 7-path. The reverse,
←−−−
T (1,2), has 1 ∼ 3

and 3 ∼ 5, and is therefore also non-eligible, since 1 ∼ 3 is forbidden in (1), and
3 ∼ 5 is forbidden in (2)). Thus, by Observation 4.3, there is no eligible 7-path
in H ′′, and hence H ′′ is not a problematic component. Subsequent executions of
Step 2 may add vertices to H ′′ but will not remove any vertices from H ′′. Thus,
for the remainder of the recursive procedure, the components of 〈A〉 derived from

H ′′ will retain the non-eligible 7-paths T (1,2) and
←−−−
T (1,2) and will therefore remain

non-problematic, by Observation 4.3.
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T (2)

←−
T (2)

Figure 3. Applying Step 3 if (1) or (2) occurs.

Next, suppose Step 3 was applied to H due to an occurrence of (2). Then
H ′ contains the 7-paths

T (2) = t1t2t3x1t4t5t6 and
←−−
T (2) = t6t5t4x1t3t2t1, which both have 3 ∼ 5,

as illustrated in Figure 3. Then T (2) as well as
←−−
T (2) is (1)-eligible but not (2)-

eligible. Now, if (1) occurs with respect to a 7-path with 3 ∼ 5, then after Step 3
is performed again, the resulting component H ′′ contains a path T (2,1) that has

2 ∼ 4 as well as 4 ∼ 6 (as illustrated in Figure 4). Then
←−−−
T (2,1) also has 2 ∼ 4 and

4 ∼ 6. Thus both T (2,1) and
←−−−
T (2,1) are non-eligible. Hence, by Observation 4.3,
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H ′′ has no eligible path and is therefore non-problematic, and executing Step 2
cannot not transform it into a problematic component.

We conclude that problematic components will eventually cease to occur.
Thereafter the number of (b+ 1)-paths will decrease with each step until τ〈(B)〉
= b.

1 2 3 4 5 6 7
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6

3

5

4

4

5

3

6

2

7

1

←−
T (1)

T (1,2)

←−
T (1,2)

Applying Step 3 if (2) occurs

with
←−
T (1).

1 2 3 4 5 6 7

1

7

2

6

3

5

4

4

5

3

6

2

7

1

T (2)

T (2,1)

←−
T (2,1)

Applying Step 3 if (1) occurs
with T (2).

Figure 4. Applying Step 3 a second time if (1) or (2) occurs.

5. Proof of the Strong PPC for a = 8

Let G be graph with τ(G) = 8 + b and let A be a subset of V (G) such that
τ(〈A〉) = 8. If G−A contains a (b+ 1)-path X = x1 · · ·xb+1 such that

τ(〈{x1} ∪A〉) > 8 and τ(〈{xb+1} ∪A〉) > 8,

we say that we have a problematic configuration for a = 8.

In order to prove the Strong PPC for a = 8 we shall employ a recursive pro-
cedure similar to that used for a = 7, although we now have more problematic
configurations to address. We have seen that in each problematic configuration
for a = 7, as shown in Figure 2, the neighbours of x1 lie on a 7-path in 〈A〉. The
analogue of this result does not hold for a = 8. We shall show that there are
two types of problematic configurations for a = 8: those where no neighbour of
x1 lies on an 8-path in 〈A〉 (henceforth called a Type I problematic configura-
tion) and those where every neighbour of x1 lies on an 8-path in 〈A〉 (henceforth
called a Type II problematic configuration). Fortunately, as we shall see in the
proof of Theorem 5.4, our recursive procedure will convert the Type I problem-
atic configurations to Type II problematic configurations or to non-problematic
configurations. It is therefore unnecessary for us to determine all the Type I
problematic configurations. (Figure 5 shows a few, but there may be others.)
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v1 v2 v3 v4 v5 v6 v7 v8

x1 x2 xb xb+1

A

B
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v1 v2 v3 v4 v5 v6 v7 v8

x1 x2 xb xb+1

z2

z1

v1 v2 v3 v4 v5 v6 v7 v8

x1 x2 xbxb+1

A

B

z

Figure 5. A few Type I problematic configurations.

Our next lemma implies that every problematic configuration for a = 8 is
either Type I or Type II, and that the four cases in Figures 6 and 7 represent all
the Type II problematic configurations.

Lemma 5.1. Let G be a graph with τ(G) = 8 + b and let A,B be a partition of

V (G) such that τ(〈A〉) = 8. Suppose X is a (b+ 1)-path in 〈B〉 such that if x is

either of the two end-vertices of X, then τ(〈A∪ {x}〉) ≥ 9. Then, with respect to

an appropriate labelling x1 · · ·xb+1 of X, there are four paths P,Q,R, S in 〈A〉
such that P has maximum order among these four paths, and Rx1S and Pxb+1Q
are 9-paths in G. Let H be the component of 〈A〉 containing the path P . Now

suppose τ(H) = 8 and let T be any 8-path in H. Then T may be labelled t1 · · · t8
such that at least one of the following holds.

(1) N(x1) ⊇ {t2, t3} and N(xb+1) ⊇ {t6, t7}.

(2) N(x1) ⊇ {t3, t4} and N(xb+1) ⊇ {t6, t7}.

(3) N(x1) ⊇ {t3, t4} and N(xb+1) ⊇ {t7, z}, for some z ∈ A− V (T ).

(4) N(x1) ⊇ {t4, t5} and N(xb+1) ⊇ {t7, z}, for some z ∈ A− V (T ).

(5) N(x1) ⊇ {t2, t3} and N(xb+1) ⊇ {t5, t6}.

Proof. By Lemma 2.2(2), both R and S intersect the path P . We let L denote
the 9-path Rx1S. In the notation of Lemma 2.2(2) and (3) (with a = 8), L is the
path w1 · · ·wrx1wr+1 · · ·w8, and wl = vi and wf = vj are, respectively, the last
vertex of R on P and the first vertex of S on P (see Figure 1). We assume that
i < j. Let q = 8− p.
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t1 t2 t3 t4 t5 t6 t7 t8

x1 x2 xb xb+1

A

B

(1)

H

Forbidden adjacencies Forbidden pairs

1 ∼ i, i = 3, . . . , 8
2 ∼ 5
2 ∼ 6
3 ∼ 7
4 ∼ 7
i ∼ 8, i = 1, . . . , 6

2 ∼ 4 and 3 ∼ 5
2 ∼ 4 and 5 ∼ 7
3 ∼ 6 and 5 ∼ 7
4 ∼ 6 and 5 ∼ 7

t1 t2 t3 t4 t5 t6 t7 t8

x1 x2 xb xb+1

A

B

(2)

H

1 ∼ i, i = 4, . . . , 8
2 ∼ 5
2 ∼ 6
3 ∼ 5
3 ∼ 6
4 ∼ 7
5 ∼ 7
i ∼ 8, i = 1, . . . , 6

Figure 6. Type II problematic configurations (1) and (2).

Since vp ∈ V (P ) and both R and S intersect P , the vertices wr, wr+1 and vp
are all in H (but vp+1 may be in A−V (H)). We now prove the following claims.

Claim 1. The vertices wr, wr+1 and vp are all in V (T ).

Proof. First, suppose w ∈ {wr, wr+1} and w 6∈ V (T ). Then, since H is con-
nected, there is a vertex tk on the path T such that there is a tkw-path F in
H with all internal vertices (if any) in A − V (T ). Since G has no (b + 9)-path,
k ∈ {3, 4, 5, 6}. We may assume that the path T is labelled such that k is either
3 or 4.

Suppose k = 3. Then t8t7t6t5t4FX is a path of order b + 6 + n(F ), and
hence F = t3w. Thus every neighbour of xb+1 in A lies on the (8 + b)-path
t8t7t6t5t4t3wX. It follows that {vp, vp+1} = {t3, t6}. But then, since τ(G) =
8 + b, no internal vertex of the path Y = t3t4t5t6 has a neighbour in A− V (Y ),
contradicting Lemma 2.2(3g).

Thus k = 4. We need to consider two cases.

(i) vp ∈ V (T ). In this case vp = t4 and vp+1 6∈ V (T ). Moreover, any path in
H from either w or vp+1 to T contains the vertex vp = t4. Thus V (T )∩V (Q) = ∅.

If wr 6∈ V (T ), then, by the definition of vi in Lemma 2.2(3), the viwr-path R′

does not contain vp, and hence the path v1 · · · vp−1 is in A−V (T ). Since p ≥ 4 (by
our assumption on P ), and Pt5t6t7t8 is a path in 〈A〉, it follows that p = 4, and
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t1 t2 t3 t4 t5 t6 t7 t8

x1 x2 xb xb+1

A

B

(3)

H

Forbidden adjacencies Forbidden pairs

1 ∼ i, i = 4, . . . , 8
2 ∼ 4
2 ∼ 5
2 ∼ 6
2 ∼ 7
3 ∼ 6
3 ∼ 7
i ∼ 8, i = 1, . . . , 6

3 ∼ 5 and 4 ∼ 7

t1 t2 t3 t4 t5 t6 t7 t8

x1 x2 xb xb+1

A

B

(4)

H

1 ∼ i, i = 5, . . . , 8
2 ∼ 5
2 ∼ 6
3 ∼ 6
3 ∼ 7
4 ∼ 6
4 ∼ 7
i ∼ 8, i = 1, . . . , 6

3 ∼ 5 and 2 ∼ 7

Figure 7. Type II problematic configurations (3) and (4).

hence q = 4. If wr = vi, the path
←−
Q
←−
Xvi · · · vpt5t6t7t8 has more than 8+b vertices.

Thus wr 6= vi and hence n(R′) ≥ 2. Now, if i = 3, then v1v2R
′Xt4t5t6t7t8 is a

path of order greater than 8 + b. If i < 3, then the path t8t7t6t5t4
←−
XR′vi+1 · · · v3

has order greater than 8 + b.
Thus wr ∈ V (T ). It follows that wr+1 = w 6∈ V (T ) and wr = t6. Thus

t1t2t3t4t5t6XQ is a path of order 7 + b+ q, an hence q = 1 and p = 7. But then

wr+1 6∈ V (P ), and hence P
←−
Xwr+1 is a (9 + b)-path.

(ii) vp 6∈ V (T ). In this case t4 is on every path in 〈A ∪ {x1}〉 from x1 to T ,
as well as on every path in 〈A ∪ {xb+1}〉 from xb+1 to T .

If t4 6∈ N(vp), then any t4vp path has an least three vertices and since τ(G) =

8 + b, it follows that t4wvp is the only t4vp-path in H. Then t8t7t6t5t4wvp
←−
X is

an (8 + b)-path, and hence NA(x1) ⊆ {w, t4, vp}. Since vp is neither wr nor wr+1

by Lemma 2.2(3a), it follows that {wr, wr+1} = {w, t4}. Then t8t7t6t5t4wXvp as
well as t8t7t6t5t4Xvpw are (8 + b)-paths, and hence NA(vp) = {w} and NA(w) =
{vp, t4}. It follows that wr+1 = w = vp−1 and wr = t4 = vp−2. But then Lemma
2.2(3f) is contradicted. Thus t4 ∈ N(vp).

If t4 6∈ N(w), then F = t4vpw, and NA(w) = vp. But then w 6∈ V (P )∪V (Q),
contradicting Lemma 2.2(3b). Thus t4 ∈ N(w).
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Now, if wvp ∈ E(G), then, as in the previous paragraph, t4 is either wr or
wr+1, and hence vp+1 6∈ V (T ). But then t8t7t6t5t4vpwXvp+1 is a (9 + b)-path.
Thus wvp 6∈ E(G), and hence NA(w) = NA(vp) = {t4}. Moreover, q = 1 and

hence p = 7. But then w 6∈ V (P ) and hence P
←−
Xw is a (9 + b)-path.

Thus we have proved that both wr and wr+1 are in V (T ).

Next, suppose vp 6∈ V (T ). Then, since τ(G) = b+8, it follows that wr, wr+1 ∈
{t3, t4, t5, t6}. If wr = t4, then t4 is the first vertex on any path from vp to T .
But then, since wr+1 ∈ {t3, t5, t6} there is a path in G with more than 8 + b
vertices. By symmetry, this proves that neither wr nor wr+1 is in {t4, t5}. Thus
{wr, wr+1} = {t3, t6}. Since τ(G) = 8 + b, this implies that NA(vp) ⊆ {t3, t6},
and hence at least one of t3 and t6 is a neighbour of vp. In either case, neither t4
nor t5 has a neighbour in A− {t3, t4, t5, t6}, contradicting Lemma 2.2(3g). 2

Claim 2. If the vertex tk of T is wr or wr+1, then neither vp nor vp+1 is in

{tk−1, tk, tk+1}.

Proof. This claim follows from Lemma 2.2(3a) and the fact that if a neighbour
of x1 and a neighbour of xb+1 are consecutive vertices of T , then G has a (9+ b)-
path. 2

Claim 3. The vertices wr and wr+1 either both precede or both succeed vp on T .
Also, if vp+1 ∈ V (T ), then the vertex pair wr, wr+1 either precedes or succeeds

the vertex pair vp, vp+1 on T .

Proof. If vp+1 6∈ V (T ), then wr, wr+1 ∈ {t3, t4, t5, t6}. Then it follows from
Claim 2 that vp does not lie between wr and wr+1 on T . This implies that vp
either precedes or succeeds both wr and wr+1 on T .

Now suppose vp+1 ∈ V (T ) and vp or vp+1 lies between wr and wr+1 on
T . Then it follows from Claim 2 that {wr, wr+1} = {t2, t7} and {vp, vp+1} =
{t4, t5}. Since Rx1S is a 9-path in H, it has at least two vertices z1, z2 in the set
I = H − {t2, . . . , t7}. Since G has no (9 + b)-path, I is an independent set and
NL(I) = {t2, t7} = {wr, wr+1}. But then Rx1S is the path z1wrx1wr+1z2, which
has only five vertices. This case can therefore not occur. A similar proof shows
that wr and wr+1 cannot both lie between vp and vp+1 on T . Thus wr and wr+1

either both precede vp and vp+1 or both succeed vp and vp+1 on T . 2

Claim 4. The vertices wr and wr+1 are consecutive vertices on the path T .
Moreover, if vp+1 ∈ V (T ), then vp and vp+1 are also consecutive vertices of T .

Proof. Suppose wr and wr+1 are not consecutive vertices of T . By Claim 3 we
may choose the labelling t1 · · · t8 for T such that neither vp nor vp+1 precedes
either wr or wr+1 on T . Then we only need to consider the following two cases.

(i) {wr, wr+1} = {t2, t4} and {vp, vp+1} = {t6, t7}. In this case, since G has
no (9 + b)-path, NA(t3) = {t2, t4}, contradicting Lemma 2.2(3g).
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(ii) {wr, wr+1} = {t3, t5} and {vp, vp+1} = {t7, z}, where z ∈ A − V (T ). In
this case, since G has no (9 + b)-path, NA(t4) = {t3, t5}, contradicting Lemma
2.2(3g).

Thus neither of the two cases above can occur, which proves that wr and
wr+1 are consecutive vertices on T . If vp+1 ∈ V (T ) and vp and vp+1 are not
consecutive vertices of T , then {wr, wr+1} = {t2, t3} and {vp, vp+1} = {t5, t7}.
This case is symmetric to case (ii) above and can therefore not occur either. Thus
Claim 4 is proved. 2

We now use Claims 1–4 to prove that, if T is labelled such that neither vp
nor vp+1 precedes wr or wr+1 on T , then we have one of the cases (1)–(5) in our
lemma statement.

First, suppose {wr, wr+1} = {t2, t3}. Then vp+1 ∈ V (T ) and it follows from
Claims 2 and 4 that {vp, vp+1} is either {t5, t6} or {t6, t7}. Thus we have (1) or
(5) occurring.

Next, suppose {wr, wr+1} = {t3, t4}. Then, if vp+1 ∈ v(T ), Claim 2 implies
that {vp, vp+1} = {t6, t7}, and thus we have (2) occurring. If vp+1 6∈ V (T ), then
Claim 2 implies that vp is either t6 or t7. If vp = t7, we have (3). Now suppose
vp = t6. Then, since G has no (b+9)-path, vp+1 has no neighbour in A, and hence
q = 1. In this case P is a 7-path in H with t6 as end-vertex. If t7, t8 6∈ V (P ),
then Pt7t8 is a 9-path, contradicting that τ(〈A〉) = 8. Hence t7 or t8 is in V (P ).
But since τ(G) = b + 8, there is no path in H − vp from t7 or t8 to any vertex
in {t3, t4, t5}, and hence t3, t4, t5 6∈ V (P ). But then Pt5t4t3 is a 10-path in 〈A〉.
This case can therefore not occur.

Finally, suppose {wr, wr+1} = {t4, t5}. Then Claim 2 implies that vp = t7
and vp+1 ∈ V (H)− V (T ). So in this case (4) occurs.

Remark 5.2. We can convert (5) of Lemma 5.1 to (2) by reversing the labelling
of X as well as that of T . Thus the four cases shown in Figures 6 and 7 represent
all the Type II problematic configurations for a = 8. In each of those four cases,

t7 is in N(xb+1) and hence t1 · · · t7
←−
X is an (8 + b)-path, which implies that x1

has no neighbour in A− V (T ). However, x1 may have a neighbour on T that is
not shown in the sketches — we have shown only wr and wr+1, since they are
the neighbours of x1 that define the specific case.

In each of the four cases in Figures 6 and 7 certain adjacencies between
vertices on the 8-path t1 · · · t8 are forbidden, due to the fact that τ(G) = 8 + b.
The forbidden adjacencies are listed in Figures 6 and 7. We say that an 8-path
in 〈A〉 is (k)-eligible if it has no adjacencies that are forbidden for (k) in Lemma
5.1. An 8-path in 〈A〉 is eligible if it is (k)-eligible for some k ∈ {1, 2, 3, 4}.

Observation 5.3. Lemma 5.1 implies that if there is an 8-path T in 〈A〉 such

that neither T nor
←−
T is an eligible 8-path, then the component of 〈A〉 containing
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T has no eligible 8 path and is therefore not a candidate for a problematic con-

figuration.

We are now ready to prove the Strong PPC for a = 8.

Theorem 5.4. Let G be a graph with detour order 8 + b. Then G has an exact

(8, b)-partition.

Proof. We begin by choosing a path of order 8+ b in G. We let A consist of the
first eight vertices of this path and we let B = V (G)−A.

We now describe a recursive procedure for moving vertices back and forth
between A and B until we have an exact (8, b)-partition of G.

Step 1. If τ(〈B〉) = b, then (A,B) is an exact (8, b)-partition of G, so then we
stop. If τ(〈B〉) > b, we let X = x1 · · ·xb+1 be a (b+ 1)-path in 〈B〉 and proceed
to Step 2.

Step 2. If τ(〈A ∪ {xi}〉) = 8 for i = 1 or b + 1, then we move x1 to A if i = 1;
otherwise, we move xb+1 to A. Then we return to Step 1.

Step 3. If τ(〈A∪{x1}〉) > 8 and τ(〈A∪{xb+1}〉) > 8, we let the paths P,Q,R, S
be as defined in Lemma 2.2 with a = 8. (If necessary, we reverse the labelling of
the path X so that P may be assumed to be of maximum order among the four
paths.) Now let H be the component of 〈A〉 that contains P .

(a) If τ(H) < 8, we move x1 to A. The result is that 〈V (H)∪{x1}〉 is now a
component of 〈A〉 with detour order 9. Then we move an end-vertex of a 9-path
in 〈V (H) ∪ {x1}〉 to B and, if necessary, repeat the process until the resulting
component of 〈A〉 has detour order 8. Then we return to Step 1.

(b) If τ(H) = 8, let T be any 8-path in H. Then, by Lemma 5.1, we
can choose the labelling t1 · · · t8 for T such that we have one of the five Type
II problematic configurations in Lemma 5.1. If we have (5), we first convert
it to (2) as per Remark 5.2 before proceeding. We may therefore assume that
we have one of the cases (1)–(4) in Figures 6 and 7. In each case we let Y =
NH(t7)−{t1, t2, t3, t4, t5, t6}. Then we move x1 to A and return all vertices in Y
to B. Then we return to Step 1.

We shall prove that after a finite number of steps our procedure will terminate
in an exact (a, b)-partition of G. We first note the following.

After having executed Step 2 or 3(a), we obviously have τ(〈A〉) = a. To
see that this is also true for Step 3(b), we note that in each Type II problematic
configuration, x1 has no neighbour in A−V (T ) and every 9-path in 〈V (H)∪{x1}〉
has an end-vertex in Y . Thus, after having executed Step 3(b), the resulting
component 〈(V (H) ∪ {x1})− Y 〉 has detour order 8.

Throughout our recursive procedure, a b-path is retained in B. After each
execution of Step 2, there is at least one less (b+ 1)-path in 〈B〉, but this is not
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necessarily true for Step 3, since the vertices that were returned to B may be
internal vertices of (b + 1)-paths in 〈B〉. We shall show, however, that this will
not prevent our iteration procedure from terminating.

If Step 3(a) is executed, the relevant component H of 〈A〉 is converted to
a component with detour order 8. Thus Type I problematic configurations will
eventually cease to occur.

Now suppose we have executed Step 3(b) due to an occurrence of one of the
four Type II problematic configurations shown in Figures 6 and 7.

In each case, let ti, ti+1 be the first two neighbours of x1 on the 8-path T in
H, and let T ′ be the 8-path t1 · · · tix1ti+1 · · · t7 in H ′. Then titi+1 is an external

edge of T ′ and ti+1ti is an external edge of
←−
T ′. Thus if (1) occurs, T ′ has 2 ∼ 4

and
←−
T ′ has 5 ∼ 7. If (2) or (3) occurs, T ′ has 3 ∼ 5, and

←−
T ′ has 4 ∼ 6. If (4)

occurs, T has 4 ∼ 6 and T ′ has 3 ∼ 5.
Thus, after having applied Step 3(b) with respect to an eligible 8-path T in

a component H of 〈A〉, each of the 8-paths T ′ and
←−
T ′ in H ′ has at least one of

the following external adjacencies.

1(a) 2 ∼ 4 (allowed only if (1), (2) or (4) occurs),

1(b) 5 ∼ 7 (allowed only if (1), (3) or (4) occurs),

1(c) 3 ∼ 5 (allowed only if (1), (3) or (4) occurs),

1(d) 4 ∼ 6 (allowed only if (1), (2) or (3) occurs).

Now suppose T had the external edge thtk, h < k < 8. Then T ′ has either
h ∼ k or h ∼ (k + 1) or (h + 1) ∼ (k + 1), depending on whether k ≤ i, or
h ≤ i < k, or h > i. We also note that no external edge of T is incident with the
vertex t9. Thus T

′ has at least one more external edge than T had, since adding
x1 added at least one, while removing Y did not destroy any.

Thus, repeated applications of Step 3(b) will eventually result in a component

H ′ containing an 8-path T ′ such that T ′ as well as
←−
T ′ contain at least one forbidden

edge for each of the configurations (1)–(4). Then, by Observation 5.3, H ′ is
not a problematic component. Also if H ′ is subsequently affected by repeated

applications of Step 2, the paths T ′ and
←−
T ′ will remain as non-eligible 8-paths in

〈A〉, since no vertices are removed from A during the execution of Step 2.
We conclude that after a finite number of steps the problematic configurations

will cease to occur. In fact, the schematic representation in Figure 8 below shows
that a Type II problematic configuration becomes non-problematic after at most
four iterations in accordance with Step 3(b). (In Figure 8, a “×” after a set of
adjacencies indicates that an 8-path with those adjacencies is non-eligible.)

Thereafter, the number of (b+1)-paths in 〈B〉 will decrease with each further
step of our recurrence procedure, until τ(〈B〉) becomes b.
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2 ∼ 41(a)

(1)

2 ∼ 4, 2 ∼ 5 ×

4 ∼ 7, 5 ∼ 7
2(a)

(3)

3 ∼ 5, 5 ∼ 8, 6 ∼ 8

1 ∼ 3, 1 ∼ 4, 4 ∼ 6
3(a)

×

×

2 ∼ 5, 3 ∼ 5

4 ∼ 6, 4 ∼ 7
2(b)

(2)

×

3 ∼ 5, 5 ∼ 7, 5 ∼ 8

1 ∼ 4, 2 ∼ 4, 4 ∼ 6
3(b)

×

×

(3)

2 ∼ 4, 4 ∼ 6

3 ∼ 5, 5 ∼ 7
2(c)

(4)

2 ∼ 4, 2 ∼ 5, 5 ∼ 7

2 ∼ 4, 4 ∼ 7, 5 ∼ 7

×

×

3(c)

(1)

(3)

2 ∼ 5, 3 ∼ 5, 5 ∼ 7

2 ∼ 4, 4 ∼ 6, 4 ∼ 7

×

×

3(d)

(2)

2 ∼ 4, 4 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 5, 5 ∼ 7

×

3(e)

1 ∼ 3, 3 ∼ 6, 4 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 5, 3 ∼ 6, 6 ∼ 8

×

×

4(b)

(1)

1 ∼ 3, 3 ∼ 5, 3 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 6, 4 ∼ 6, 6 ∼ 8

×

×

4(a)

(3)

(4)

3 ∼ 5, 3 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 6, 4 ∼ 6

×

×

3(f)

3 ∼ 6, 4 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 5, 3 ∼ 6

×

×

3(g)

(4)

3 ∼ 51(b)

2 ∼ 4, 4 ∼ 6

3 ∼ 5, 5 ∼ 7
=2(c)2(d)

(1)

(3)

(4)

3 ∼ 5, 3 ∼ 6

3 ∼ 6, 4 ∼ 6
2(e)

2 ∼ 4, 4 ∼ 6, 4 ∼ 7

2 ∼ 5, 3 ∼ 5, 5 ∼ 7
3(h)

×

×

(1)

(1)

2 ∼ 4, 4 ∼ 7, 5 ∼ 7

2 ∼ 4, 2 ∼ 5, 5 ∼ 7

3(i) ×

×

2 ∼ 4, 2 ∼ 5, 6 ∼ 8

1 ∼ 3, 4 ∼ 7, 5 ∼ 7
3(j)

× (3)

2 ∼ 4, 4 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 5, 5 ∼ 7

3(k)
=3(e)

1 ∼ 3, 3 ∼ 5, 5 ∼ 8, 6 ∼ 8

1 ∼ 3, 1 ∼ 4, 4 ∼ 6, 6 ∼ 8

×

×

4(c)

1 ∼ 3, 3 ∼ 5, 6 ∼ 8

1 ∼ 3, 4 ∼ 5, 6 ∼ 8
3(l)

×

×

1 ∼ 3, 4 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 5, 6 ∼ 8
3(m)

×

×

1 ∼ 3, 3 ∼ 5, 5 ∼ 7

2 ∼ 4, 4 ∼ 6, 6 ∼ 8
3(n) =3(e)

1 ∼ 3, 3 ∼ 5, 3 ∼ 6

3 ∼ 6, 4 ∼ 6, 6 ∼ 8
3(o) =3(g)

1 ∼ 3, 3 ∼ 6, 4 ∼ 6

3 ∼ 5, 3 ∼ 6, 6 ∼ 8
3(p)

×

×

3 ∼ 6, 4 ∼ 6

3 ∼ 5, 3 ∼ 6
2(f) =2(e)

4 ∼ 61(c)

2 ∼ 4, 5 ∼ 7

2 ∼ 4, 5 ∼ 7
2(g)

3 ∼ 5, 5 ∼ 7

2 ∼ 4, 4 ∼ 6
2(h) =2(c)

(1)

(2,3)

(1)

(4)

5 ∼ 71(d)

(1)

(3)

(4)

2 ∼ 4, 6 ∼ 8

1 ∼ 3, 5 ∼ 7
2(i)

×

(3)

(4)

2 ∼ 5, 6 ∼ 8

1 ∼ 3, 4 ∼ 6
2(j)

×

(2,3)

4 ∼ 6, 6 ∼ 8

1 ∼ 3, 3 ∼ 5
2(k)

×
(3)

(4)

Figure 8. Repeated applications of Step 3(b)
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6. Concluding Remarks

It should be noted that if the Strong PPC holds for a = k, it does not follow
automatically that it holds for a < k. Nevertheless, we have used basically
the same algorithm to prove the Strong PPC for all a ≤ 8, although with each
increase in the value of a beyond 6, the so-called “problematic configurations”
became more challenging to handle. We showed that for a ≤ 6 there are no
problematic configurations, and for a = 7 each problematic configuration involves
a component of 〈A〉 with detour order 7. For a = 8 there are many problematic
configurations involving components with detour order less than 8, but we side-
stepped the problem of determining all those cases, by adapting our recursive
procedure to transform those components to components with detour order 8.
We could have adopted the same approach for the case a = 7, by proving the
analogue of Lemma 5.1 for a = 7, instead of Lemma 4.1. However, we decided to
retain Lemma 4.1 since it provides insight into the structure of the problem.

As a increases beyond 8, several new complications regarding the associated
problematic configurations enter the picture. A careful analysis of the types of
problematic configurations that may occur if a ≥ 9 might lead to further progress
towards proving the Strong PPC.

Note that it follows from Lemma 2.2 (as illustrated in Figure 1), that a
problematic configuration for a given value of a (irrespective of the magnitude of
a) can only occur in a graph containing more than one cycle. Thus, using our
basic recursive procedure, one can easily prove that the Strong PPC holds for
acyclic graphs, as well as for unicyclic graphs. Perhaps the procedures developed
in this paper could help prove that the Strong PPC holds for other interesting
classes of graphs.

We have not yet attempted to find an asymptotic result for the Strong PPC.
It would certainly be worth considering, but it does not seem as though the
methods used in [8] can be easily adapted for the Strong PPC.
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[3] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs , Discuss.
Math. Graph Theory 17 (1997) 311–313.
https://doi.org/10.7151/dmgt.1058

[4] F. Bullock, J.E. Dunbar and M. Frick, Path partitions and Pn-free sets , Discrete
Math. 489 (2004) 145–155.
https://doi.org/10.1016/j.disc.2004.07.012

[5] J.E. Dunbar and M. Frick, Path kernels and partitions , J. Combin. Math. Combin.
Comput. 31 (1999) 137–149.

[6] J.E. Dunbar and M. Frick, The Path Partition Conjecture is true for claw-free

graphs , Discrete Math. 307 (2007) 1285–1290.
https://doi.org/10.1016/j.disc.2005.11.065

[7] J.E. Dunbar and M. Frick, The Path Partition Conjecture, in: Graph Theory:
Favourite Conjectures and Open Problems, R. Gera, T.W. Haynes and S. Hedet-
niemi (Ed(s)), (Springer, 2018).

[8] M. Frick and I. Schiermeyer, An asymptotic result on the path partition conjecture,
Electron. J. Combin. 12 (2005) #R48.
https://doi.org/10.37236/1945

[9] M. Frick and C. Whitehead, A new approach to the Path Partition Conjecture, Util.
Math. 99 (2006) 195–206.
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