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Abstract

A well-known theorem of Vizing separates graphs into two classes: those
which admit proper ∆-edge-colourings, known as class one graphs; and those
which do not, known as class two graphs. Class two graphs do admit proper
(∆ + 1)-edge-colourings. In the context of snarks (class two cubic graphs),
there has recently been much focus on parameters which are said to measure
how far the snark is from being 3-edge-colourable, and there are thus many
well-known lemmas and results which are widely used in the study of snarks.
These parameters, or so-called measurements of uncolourability, have thus
far evaded consideration in the general case of k-regular class two graphs for
k > 3. Two such measures are the resistance and vertex resistance of a graph.
For a graph G, the (vertex) resistance of G, denoted as (rv(G)) r(G), is
defined as the minimum number of (vertices) edges which need to be removed
from G in order to render it class one. In this paper, we generalise some of
the well-known lemmas and results to the k-regular case. For the main result
of this paper, we generalise the known fact that r(G) = rv(G) if G is a snark
by proving the following bounds for k-regular G: rv(G) ≤ r(G) ≤ ⌊k

2
⌋rv(G).

Moreover, we show that both bounds are best possible for any even k.
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1. Introduction

As is well-known, the edge chromatic number of a graph is either ∆ or ∆+1 where
∆ is the maximum degree of the graph in question, by Vizing’s theorem [16,17].
Such graphs are referred to as cubic class one and cubic class two graphs, respec-
tively. Cubic class two graphs are more commonly known as snarks. Snarks have
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long been of particular interest in graph theory, for many reasons. Contemporary
efforts to understand the complexity of snarks consists largely of the consideration
of parameters which measure how far the snarks are from being uncolourable, or
so-called “measurements of uncolourability”. See for instance [1,6,8,10,11,13–15],
as well as more recently [2, 3, 9]. To our best knowledge, these parameters have
not been studied in the general class two case. We believe that the study of
these parameters in the general case will provide insights into the structure of
class two graphs in general (as it has in snarks), as well as further illuminate the
uniqueness of snarks themselves.

A semi-graph G is a pair G = (V,E) which consists of a set of vertices
V = V (G) and a set E = E(G) where E is a multiset of 2-element and singleton
subsets of V . In E(G), the 2-element sets are called edges (as expected) while
the 1-element sets are called semi-edges. Note that if E contains no 1-element
subsets, then G is simply a graph. We denote the edge {u, v} as uv and the
semi-edge {u} as (u). Furthermore, we define the join between two semi-edges
(u) and (v) as the removal of semi-edges (u) and (v), and the addition of the
edge uv. A semi-edge (u) and a vertex v may also join to form an edge uv,
with semi-edge (u) being removed. The degree of a vertex v in a semi-graph G

is defined as the combined total number of edges and semi-edges incident with
v. Essentially, semi-edges behave like edges except that they are associated with
one vertex instead of two, with each vertex having at most one semi-edge. For
our purposes in this paper, we only consider graphs and semi-graphs which are
simple. That is, they contain no loops or parallel edges.

Let G be a semi-graph. A k-edge-colouring, f , of G is a mapping from the set
of edges and semi-edges of G to a set of k colours. That is, f : E −→ {1, . . . , k}. f
is a proper k-edge-colouring of G if no two adjacent elements in E are mapped to
the same colour. By Vizing’s theorem, if G is a graph and f is a proper colouring,
then the smallest possible value of k is ∆ or ∆ + 1, where ∆ is the maximum
degree of any vertex in G. If the smallest possible value of k is ∆, then we say
that G is class one, or ∆-edge-colourable. Otherwise we say that G is class two,
or (∆ + 1)-edge-colourable. Vizing’s theorem is easily seen to be applicable to
semi-graphs as well. Given a k-edge-colouring f , we call the set f−1(i) a colour
class, for each i ∈ {1, . . . , k}. A vertex v is conflicting with regard to f if more
than one of the edges incident to v are mapped to the same colour. A colour
c is missing at v with regard to f if there exists no edge incident to v which is
assigned c by f , otherwise it is present at v with regard to f .

Let G be a k-regular semi-graph. Some so-called measurements of uncoloura-
bility of cubic graphs which are of interest in this paper are the following. The
resistance of G, denoted as r(G), defined as the min{|f−1(i)| : f is a proper
(k + 1)-edge-colouring of G}. That is, the minimum number of edges that can
be removed from a graph such that the resulting graph is k-edge-colourable. The
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vertex resistance of G, denoted as rv(G), defined as the minimum number of
conflicting vertices in a k-edge-colouring of G. That is, the minimum number
of vertices that can be removed from a graph such that the resulting graph is
k-edge-colourable.

If f is a (k+1)-edge-colouring of a k-regular graph G such that no two adja-
cent edges are assigned the same colour by f except possibly for edges coloured i,
where i is the only colour ∈ {1, . . . , k} such that |f−1(i)| = r(G), then we call f a
minimal colouring. In general, we will use colour sets {1, . . . , k} and {0, 1, . . . , k}
for class one and class two graphs, respectively. We will assume f−1(0) = r(G)
for a minimal colouring f of G. Given an edge-colouring f of G, if f(e) = 0 for
some edge e ∈ G, then we call e a conflicting edge with regard to f . (Note that no
semi-edges need ever be conflicting). That is to say, in a minimal colouring f of
G, there are r(G) conflicting edges and they need not be independent. All other
colour classes form matchings of G. A path which has edges coloured alternately
with colours a and b with regard to f we call an ab-path.

There are many well-known lemmas and propositions which are widely used
in the study of the cubic case. In this paper, we generalise some such lemmas and
propositions to the k-regular case. In particular, we generalise the well-known
and ubiquitously used Parity Lemma. We also prove that resistance can never
equal one, for any k-regular G, just as in the cubic case. In the main result of this
paper, we generalise the known fact that r(G) = rv(G) if G is a snark by proving
the following bounds for k-regular G: rv(G) ≤ r(G) ≤

⌊

k
2

⌋

rv(G). Moreover, we
construct graphs which prove that both bounds are best possible for any even k.

2. Some Useful Lemmas

We begin with our first useful lemma. This lemma can very much be regarded
as a generalisation of Lemma 2.3 in [14], which highlights properties of minimal
colourings in snarks.

Lemma 1. Let G be a k-regular graph and let f be a minimal colouring of G.

Let e = uv be a conflicting edge in G with regard to f . Then there exists distinct

colours a, b ∈ {1, . . . , k} such that a is present at v and missing at u, and b is

present at u and missing at v. Moreover, the ab-path starting at v terminates

at u.

Proof. Since G is k-regular and u is incident to a conflicting edge, there must
be at least one colour in {1, . . . , k} which is missing at u, say a. If u is missing
at v as well, then e could be properly coloured with a, which contradicts that f
is a minimal colouring. Therefore, a is present at v. Similarly, b is present at u
and missing at v.
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Figure 1. An ab-path from v to u.

Consider the ab-path starting at v. If this path terminates at any other
vertex other than u, then we could swap the colours on the edges of the path so
that colour a is now missing at both u and v. e could then be coloured a, which
contradicts that f is minimal. Therefore, the ab-path starting at v terminates at
u (see Figure 1).

The Parity Lemma is probably the most widely used tool in the study of
edge-colourability of cubic graphs. The lemma has been stated in many different
ways in the literature. Here, we present a version in terms of semi-graphs and
semi-edges.

Lemma 2 (The Parity Lemma for cubic graphs). Let G be a cubic semi-graph

with m semi-edges and let f be a proper 3-edge-colouring of G. If mi equals the

number of semi-edges coloured i by f for i = {1, 2, 3}, then

m1 ≡ m2 ≡ m3 ≡ m (mod 2).

The generalisation of the Parity Lemma to the k-regular case is lesser known,
perhaps due to not being as useful since the result is not as strong. The difference
is that in the general case, the total number of semi-edges need not have the same
parity as each mi. Nonetheless, researchers have made some use it, whether
explicitly or implicitly. See Lemma 2.1 in [12] for a version which deals with
regular graphs of odd degree which the authors attribute to [7], and Lemma 3.4
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in [4] for an essentially equivalent result to the one we present here. The version
we present is again in terms of semi-graphs and semi-edges.

Lemma 3 (The Parity Lemma for regular graphs). Let G be a k-regular semi-

graph with m semi-edges and let f be a proper k-edge-colouring of G. If mi equals

the number of semi-edges coloured i by f for i = {1, . . . , k}, then

m1 ≡ m2 ≡ · · · ≡ mk (mod 2).

Proof. The number of vertices in G which are incident to an edge coloured c is
equal to two times the number of edges coloured c plus the number of semi-edges
coloured c. Since every colour is incident to every vertex exactly once, we have
that the order of G is equal to two times the number of edges coloured c plus one
times the number of semi-edges coloured c, for any c ∈ {1, . . . , k}. This of course
has the same parity as the number of semi-edges coloured c. Thus, if mi and mj

have differing parity for some distinct colours i and j, then the order of G is both
odd and even, a contradiction. Therefore, m1 ≡ m2 ≡ · · · ≡ mk (mod 2).

It is well-known that r(G) > 1 if G is a snark. As a corollary to the above
Parity Lemma, we now prove that r(G) > 1 for any k-regular graph, as in the
cubic case.

Corollary 4. Let G be a k-regular class two graph with k ≥ 3. Then r(G) > 1.

Proof. Since G is class two, we have r(G) > 0. Suppose that r(G) = 1. Then
there exists a minimal colouring f of G such that there is exactly one conflicting
edge e = uv. We split uv into two semi-edges and colour both of them properly
with regard to f . Necessarily, f((u)) = a 6= b = f((v)), for some distinct a, b ∈
{1, . . . , k}. Let mi be the number of semi-edges coloured i for each i ∈ {1, . . . , k}.
Then ma and mb are odd, but every other mi is even, contradicting the Parity
Lemma. Therefore, r(G) > 1.

3. Main Result

It is well-known, and perhaps counter-intuitive, that r(G) = rv(G) if G is cubic.
Emphasising the uniqueness of snarks, we prove lower and upper bounds for r(G)
in terms of rv(G) for k-regular G and, furthermore, show that both bounds are
best possible for any even k.

Theorem 5. Let G be a k-regular class two graph. Then rv(G) ≤ r(G) ≤
⌊

k
2

⌋

rv(G).
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Proof. Let f be a minimal colouring of G. For each of the r(G) conflicting edges,
we need to remove at most one incident vertex, to render a k-edge-colourable
graph. Therefore, rv(G) ≤ r(G).

Let f be a k-edge-colouring ofG with rv(G) conflicting vertices. For each con-
flicting vertex with regard to f , we recolour a minimum amount of incident edges
with 0 instead, such that the only conflicting vertices with regard to f involve
adjacent conflicting edges, that is, vertices with more than one edge coloured 0.
For each conflicting edge e, if it is possible to adjust f so that e can be coloured
properly with some colour in {1, . . . , k}, then we adjust f and colour e properly.

Now, let u be a vertex incident to a conflicting edge. Say u is incident to
m conflicting edges in total. Let {uv1, . . . , uvm} be the set of conflicting edges
incident to u. There must then be at least m distinct colours in {1, . . . , k} which
are missing at u. Say these are {a1, . . . , am}. If some aj is missing at some vi,
then we could properly colour the edge uvi with aj instead of 0, which contradicts
our edge-colouring f . Thus we may assume that a1, . . . , am are all present at each
vi. Since each vi is incident to at least one conflicting edge, there must be some
colour in {1, . . . , k} which is missing at each vi. Say bi is missing at vi for each
i. If the a1bi-path starting at vi does not terminate at u, then we could swap
the colours on this path and properly colour uvi with ai. This again contradicts
our edge-colouring f . Thus we may assume that the a1bi-path starting at vi
terminates at u for each i. If bi = bj for some distinct i and j, then both the
a1bi-path starting at vi and the a1bj-path starting at vj must terminate at u.
Otherwise, we could swap the colours on one of these paths, and colour the
corresponding conflicting edge properly instead. Therefore, all bi are distinct. If
bi is also missing at u for some i, then we could colour uvi with bi instead, again
contradicting our edge-colouring f . Thus we may assume that all bi are present
at u (see Figure 2).

We now have that there are m distinct colours present at u, and at least
a further m distinct colours missing at u. Since there are k colours in total, it
follows that m ≤

⌊

k
2

⌋

. Therefore, for each of the rv(G) conflicting vertices with
regard to the initial k-edge-colouring, we can find an edge-colouring with at most
⌊

k
2

⌋

conflicting edges incident to each of the rv(G) vertices, and there exists no
two adjacent edges which are both coloured i for i ∈ {1, . . . , k}. It follows that
r(G) ≤

⌊

k
2

⌋

rv(G).

We now prove that these bounds are best possible for any even k. To prove
that the upper bound is best possible for any even k, we present the case of the
complete graph on k+1 vertices, Kk+1. It turns out that r(Kk+1) =

k
2rv(Kk+1) =

k
2 . To prove that the lower bound is best possible, we construct a k-regular graph
G with r(G) = rv(G) = k.

Theorem 6. Let k be an even integer. Then r(Kk+1) =
k
2rv(Kk+1) =

k
2 .
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a1, . . . , am present, bm missing

Figure 2. A conflicting vertex u with m conflicting edges.

Proof. It is well-known that any complete graph with odd order is class two, and
any complete graph with even order is class one [5]. It follows that the removal of
any one vertex from Kk+1 renders a class one graphs. Therefore, rv(Kk+1) = 1.

Let f be a minimal colouring of Kk+1. Since each non-zero colour class of
f forms a matching, we have that each non-zero colour class has order at most
k
2 . Therefore, the k non-zero colours colour at most k k

2 edges. Since Kk+1 has

size k(k+1)
2 , this implies that there are at least k(k+1)

2 − k k
2 = k

2 conflicting edges.

Therefore, r(Kk+1) ≥
k
2 . By Theorem 5, it follows that r(Kk+1) =

k
2 .

Remark 7. Let k be an even integer. We can deduce from the proofs of Theorem
5 and Theorem 6 that there exists a minimal colouring of Kk+1 with

k
2 conflicting

edges such that all conflicting edges are incident to the same vertex.

Theorem 8. For every even integer k > 3, there exists a k-regular graph Gk

with r(Gk) = rv(Gk) = k.

Proof. We construct the required graph as follows. Consider the graph Kk+1

with k
2 − 1 edges removed, all of which are incident to the same vertex. Denote

this graph as H. By Remark 7 and Theorem 6, H is class two and has r(H) = 1.
H has k

2 − 1 vertices of degree k − 1, and one vertex of degree k
2 + 1. Take k

copies of H to form a disconnected graph Gk with components H1, . . . , Hk, and
colour each component with the same minimal colouring. We now add semi-
edges to each vertex in Gk with degree less than k so that Gk is k-regular.
Note that for some vertices we will have to add k

2 − 1 semi-edges, for others we
will have to add one semi-edge, and the rest already have degree k. Colour all
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semi-edges accordingly by extending the minimal colouring of each component.
Each component will then have its semi-edges coloured the same set of colours.
Given that there are an even number of components, we have an even number of
semi-edges coloured the same for each distinct colour. It is then easy to see that
semi-edges of the same colour can simply be joined, and the colouring maintained,
so that Gk is now connected. Note there may be many possible ways of joining
the semi-edges. The colouring of Gk now has k conflicting edges, one in each
Hi. Clearly, having less than k conflicting edges in a different colouring of Gk

is impossible since we would then have at least one copy of some Hi which is
properly coloured, a contradiction. Therefore, r(Gk) = k. Similarly, having less
than k conflicting vertices in a k-colouring of Gk is impossible since again we
would then have a copy of some Hi which has no conflicting vertex, and is then
properly coloured, a contradiction. Therefore, rv(Gk) = r(Gk) = k (see Figure 3
and 4 for examples).

a1a2

a3

a4

a5

b1b2

b3

b4

b5

c1 c2

c3

c4

c5

d1 d2

d3

d4

d5

Figure 3. An example of G4, as constructed in the proof of Theorem 8 with r(G4) =
rv(G4) = 4.

4. Further Considerations

As mentioned in the introduction, there are quite a few parameters which, in some
way or the other, ‘measure’ how far a snark is from being 3-edge-colourable. Of
these, resistance and vertex resistance are possibly the most natural and intuitive
to consider. Resistance and vertex resistance also have obvious analogous defini-
tions in the k-regular case. Certainly, other parameters might also be worthy of
investigation in the k-regular case. For example, let G be a snark: the oddness of
G which is defined as the minimum number of odd components in a 2-factor of G;
the flow-resistance of G which is defined as the minimum number of zero edges in
a 4-flow of G (it is known that a cubic graph admits a proper 3-edge-colouring if
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Figure 4. An example of G8, as constructed in the proof of Theorem 8 with r(G8) =
rv(G8) = 8.

and only if it admits a nowhere zero flow); and the edge-reducibility of G which
is defined as the minimum number of edge-reductions on G required to render a
3-edge-colourable cubic graph (an edge-reduction is the removal of an edge and
consequent suppression of 2-valent vertices). These parameters, among others
which are not mentioned here, are not necessarily easily defined in the k-regular
case (if even possible), but such an endeavour may lead to further insights into
class two graphs in general.
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