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Abstract

An incidence of a graph G is a pair (v, e) where v is a vertex of G and
e is an edge of G incident with v. Two incidences (v, e) and (w, f) of G
are adjacent whenever (i) v = w, or (ii) e = f , or (iii) vw = e or f . An
incidence p-colouring of G is a mapping from the set of incidences of G to
the set of colours {1, . . . , p} such that every two adjacent incidences receive
distinct colours. Incidence colouring has been introduced by Brualdi and
Quinn Massey in 1993 and, since then, studied by several authors.

In this paper, we introduce and study the strong version of incidence
colouring, where incidences adjacent to the same incidence must also get
distinct colours. We determine the exact value of — or upper bounds on —
the strong incidence chromatic number of several classes of graphs, namely
cycles, wheel graphs, trees, ladder graphs, square grids and subclasses of
Halin graphs.
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1. Introduction

All graphs considered in this paper are simple and loopless undirected graphs.
We denote by V (G) and E(G) the set of vertices and the set of edges of a graph
G, respectively, by ∆(G) the maximum degree of G, by N(v) the set of ver-
tices adjacent to the vertex v and by distG(u, v) (respectively, distG(uv, wx)) the
distance between vertices u and v (respectively, edges uv and wx) in G.

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e is
an edge of G incident with v. Two incidences (v, e) and (w, f) of G are adjacent
whenever (i) v = w, or (ii) e = f , or (iii) vw = e or f .

An incidence p-colouring of G is a mapping from the set of incidences of G
to the set of colours {1, . . . , p} such that every two adjacent incidences receive
distinct colours. The smallest p for which G admits an incidence p-colouring is
the incidence chromatic number of G, denoted by χi(G). Incidence colourings
were first introduced and studied by Brualdi and Quinn Massey [2]. Incidence
colourings of various graph families have attracted much interest in recent years,
see for instance [3, 4, 6, 7, 10, 11, 12].

A strong edge p-colouring of G is a mapping from the set of edges of G to the
set of colours {1, . . . , p} such that any two edges meeting at a common vertex, or
being adjacent to the same edge of G, are assigned different colours. The smallest
p for which G admits a strong edge p-colouring is the strong chromatic index of
G, denoted by χ′

s(G).

The strong version of incidence colouring is defined in a similar way. A strong
incidence p-colouring of a graph G is a mapping from the set of incidences of G
to a finite set of colours {1, . . . , p} such that any two incidences that are adjacent
or adjacent to the same incidence receive distinct colours. The smallest p for
which G admits a strong incidence p-colouring is the strong incidence chromatic
number, denoted by χs

i (G).

Our paper is organised as follows. We first give some preliminary results in
Section 2. We then study the strong incidence chromatic number of simple graph
classes (stars, complete graphs, cycles, wheel graphs and trees) in Section 3, of
ladder graphs in Section 4, of square grids in Section 5 and of subclasses of Halin
graphs in Section 6. We finally propose some directions for future research in
Section 7.

2. Preliminary Results

We list in this section some basic results on the strong incidence chromatic number
of various graph classes.

The square G2 of a graph G is the graph defined by V (G2) = V (G) and
uv ∈ E(G2) if and only if distG(u, v) ≤ 2. A colouring of G2 is called a 2-distance
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colouring of G and the 2-distance chromatic number of G is denoted by χ2(G).
For any graph G, the incidence graph of G, denoted by IG, introduced in

[1], is the graph whose vertices are the incidences of G, two incidences being
joined by an edge whenever they are adjacent. Clearly, every incidence colouring
of G is nothing but a proper vertex colouring of IG, and every strong incidence
colouring of G is nothing but a 2-distance colouring of IG, so χi(G) = χ(IG) and
χs
i (G) = χ2(IG). Moreover, since every strong incidence colouring is an incidence

colouring, we have χi(G) ≤ χs
i (G) for every graph G.

For every vertex v in a graph G, we denote by A−(v) the set of incidences of
the form (v, vu), and by A+(v) the set of incidences of the form (u, uv) (see Figure
1). The incidences in A−(v) and A+(v) are sometimes called strong, respectively,
weak. We thus have |A−(v)| = |A+(v)| = deg(v) for every vertex v. Every edge
uv of G has two incidences (u, uv) and (v, vu). We will say that two incidences
are strongly adjacent if they are either adjacent or adjacent to the same incidence.
The following observation will be useful.

Observation 1. For every incidence (v, vu) in a graph G with maximum degree
∆, the set of incidences that are strongly adjacent to (v, vu) is

⋃

w∈N(v)\u

A+(w) ∪
⋃

w∈N(v)

A−(w) ∪
⋃

w∈N(u)\v

A−(w),

whose cardinality is at most 3∆2 − 2∆.

Indeed, the cardinality of the set of incidences that are strongly adjacent to
(v, vu) (see Figure 2) is

∑

w∈N(v)\u

deg(w) +
∑

w∈N(v)

deg(w) +
∑

w∈N(u)\v

deg(w) ≤ 2∆(∆− 1) + ∆2.

Therefore, any partial strong incidence colouring with this number of colours
can be extended to the entire graph.

For a given graph G, we let

σ(G) = max
uv∈E(G)

{

2 degG(v) + degG(u)− 1
}

.

For every edge uv in E(G), the incidences of the set A−(v)∪A+(v)∪A−(u), of
cardinality 2 degG(v)+degG(u)− 1, are pairwise strongly adjacent, which means
that they must be assigned distinct colours. Therefore, we have the following
inequalities.

Proposition 2. For every graph G with maximum degree ∆, σ(G) ≤ χs
i (G) ≤

3∆2 − 2∆ + 1.
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Figure 1. Incidences adjacent to the incidence (v, vu).
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Incidences in A+(w), w ∈ N(v) \ u : ⋆

Incidences in A−(w), w ∈ N(v) : ◦

Incidences in A−(w), w ∈ N(u) \ v : ⋄

Figure 2. Incidences strongly adjacent to the incidence (v, vu).

In the following proposition we give an upper bound on the strong incidence
chromatic number of a graph G as a function of its strong chromatic index.

Proposition 3. For every graph G, χs
i (G) ≤ 2χ′

s(G).

Proof. Let λ be a strong edge p-colouring of G. From λ, a strong incidence
2p-colouring λ′ is obtained using the set of 2p colours {1, 1′, . . . , p, p′} as follows:
for every edge uv ∈ E(G), if λ(uv) = k, k ∈ {1, . . . , p}, then λ′(u, uv) = k and
λ′(v, vu) = k′. Indeed, if λ′(u, uv) = λ′(w,wx) for two incidences (u, uv) and
(w,wx) of G, then λ(uv) = λ(wx), which implies distG(uv, wx) ≥ 3, and thus
distIG((u, uv), (w,wx)) ≥ 3.

3. Simple Graph Classes

In this section, we determine the strong incidence chromatic number of stars,
complete graphs, cycles, trees and wheel graphs.

We denote by Sn, n ≥ 1, the star of order n+1; by Kn, n ≥ 1, the complete
graph of order n and byKm,n, m ≥ n ≥ 2, the complete bipartite graph with parts
of size m and n. In [2], Brualdi and Massey showed that χi(Sn) = n+1, χi(Kn) =
n and χi(Km,n) = m + 2, for all m ≥ n ≥ 2. Since all incidences of any graph
in these classes of graphs are pairwise strongly adjacent, we have the following
proposition.
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Proposition 4. 1. For every n ≥ 1, χs
i (Sn) = 2n.

2. For every n ≥ 2, χs
i (Kn) = n(n− 1).

3. For every m ≥ n ≥ 2, χs
i (Km,n) = 2nm.

Let Cn, n ≥ 3, denote the cycle of order n. Since C3 = K3, the result holds
by Proposition 4 for n = 3. Suppose now n ≥ 4 and observe that ICn

= C2
2n.

Therefore, a strong incidence colouring of the cycle Cn is a 2-distance colouring
of C2

2n that is nothing but a proper colouring of (C2
2n)

2 = C4
2n. We thus have the

following result.

Proposition 5. For every integer n ≥ 3, χs
i (Cn) = χ(C4

2n).

By setting a = 4, the following theorem gives the value of χ(C4
2n).

Theorem 6 (Prowse and Woodall [8]). Let n and a be positive integers such that
n ≥ 2a and n = q(a+1)+r, with q > 0 and 0 ≤ r ≤ a. Then χ(Ca

n) = a+1+⌈r/q⌉.

Using Proposition 5 and Theorem 6, we can infer the value of the strong
incidence chromatic number of any cycle.

Theorem 7. Let n be a positive integer such that n ≥ 3 and 2n = 5q + r, with
q > 0 and 0 ≤ r ≤ 4. Then χs

i (Cn) = 5 + ⌈r/q⌉.

We now determine the value of χs
i (Wn), where Wn, n ≥ 3, is the wheel graph

of order n + 1, obtained from Cn by adding a universal vertex. It is easy to
observe that χi(Wn) = n + 1 for every n ≥ 3. Indeed, since the square of Wn

is the complete graph Kn+1 and thanks to the relation between the incidence
colouring of G and the coloring of the square of G [12], we get

n+ 1 = ∆(Wn) + 1 ≤ χi(Wn) ≤ χ(W 2
n) = χ(Kn+1) = n+ 1.

Using Proposition 4 and Theorem 7, we can determine the strong incidence chro-
matic number of wheel graphs.

Theorem 8. Let n be a positive integer such that n ≥ 3 and 2n = 5q + r, with
q > 0 and 0 ≤ r ≤ 4. Then χs

i (Wn) = 5 + 2n+ ⌈r/q⌉.

Proof. Let T denote the spanning subgraph of Wn isomorphic to Sn. Since every
incidence in T is strongly adjacent to every incidence not in T , we get χs

i (Wn) =
χs
i (Cn) + χs

i (Sn) and the result follows from Proposition 4 and Theorem 7.

We finally determine the strong incidence chromatic number of trees.

Theorem 9. If G is a tree then χs
i (G) = maxuv∈E(G){2 degG(v)+degG(u)−1} =

σ(G).
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Proof. By Proposition 2, we have χs
i (G) ≥ σ(G). The other direction is proved

by induction on |V (G)|. If G is a star, then σ(G) = 2n and the result follows
from Proposition 4. We can thus assume that G is not a star, so |V (G)| ≥ 4. Let
u be a vertex of G of degree p + 1 ≥ 2 having only one neighbour, denoted by
u′, which is not a leaf, and let A = {v1, . . . , vp} be the set of p leaves that are
neighbours of u. Let λ be a strong incidence colouring of G \ A. Now, observe
that each incidence of the form (u, uvi), 1 ≤ i ≤ p, has at most

2 degG\A(u
′) = 2 degG(u

′) ≤ σ(G)− degG(u) + 1

strongly adjacent incidences in G \ A, and each incidence of the form (vi, viu),
1 ≤ i ≤ p, has at most

degG\A(u
′) + 1 = degG(u

′) + 1 ≤ σ(G)− 2 degG(u) + 2

strongly adjacent incidences in G \A, so λ can be extended to a strong incidence
colouring of G, starting by colouring the incidences of the form (u, uvi), 1 ≤ i ≤ p,
and then, the incidences of the form (vi, viu), 1 ≤ i ≤ p. This concludes the
proof.

4. Ladder Graphs

The ladder graph, denoted by Lh, is obtained from two paths of order h, h ≥ 1,
Ph = v1 · · · vh and P ′

h = v′1 · · · v
′
h by adding the edges viv

′
i, 1 ≤ i ≤ h. In the

following theorem, we give the value of χs
i (Lh).

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

Figure 3. The graph L.

Theorem 10. For every integer h ≥ 3, χs
i (Lh) = 10.

Proof. Note that when h ≥ 3, Lh contains a subgraph isomorphic to the graph
L (see Figure 3) which contains 10 pairwise strongly adjacent incidences (marked
with a star), implying χs

i (Lh) ≥ 10 for every h ≥ 3. To complete the proof, it
suffices to give a strong incidence 10-colouring λ of Lh. Such a colouring can be
obtained as follows (see Figure 4 for the case h = 5).

1. We sequentially colour the incidences of the path Ph using the pattern 123456.

2. We sequentially colour the incidences of the path P ′
h using the pattern 456123.
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3. For every i, 1 ≤ i ≤ h, we set

• λ(v′i, v
′
ivi) = 7 and λ(vi, viv

′
i) = 8, if i is odd,

• λ(v′i, v
′
ivi) = 9 and λ(vi, viv

′
i) = 10) if i is even.

1 2 3 4 5 6 1 2

7

8

9

10

9

10

7 7

8 8

4 5 536 1 2 4

Figure 4. A strong incidence 10-colouring of L5.

The so-obtained colouring is clearly a strong incidence colouring of Lh. This
concludes the proof.

5. Square Grids

The square grid Gm,n is the graph defined by the set of vertices V (Gm,n) =
{vi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the set of edges E(Gm,n) = {(vi,j , vi′,j′) | |i−
i′| + |j − j′| = 1}. We denote by Pi the path vi,1 · · · vi,n and by P ′

j the path
v1,j · · · vm,j . In the following theorem, we give the value of χs

i (Gm,n).

Theorem 11. For every integers m and n, m ≥ n ≥ 2, χs
i (Gm,n) = 12.

Proof. Note that when m ≥ n ≥ 2, Gm,n contains a subgraph isomorphic to the
graph R (see Figure 5) which contains 12 pairwise strongly adjacent incidences
(marked with a star), implying χs

i (Gm,n) ≥ 12 for every m ≥ n ≥ 2. To complete
the proof, it suffices to give a strong incidence 12-colouring of Gm,n as follows.

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

Figure 5. The graph R.



670 B. Benmedjdoub and É. Sopena
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Figure 6. A strong incidence 12-colouring of G5,5.

1. For every i, 1 ≤ i ≤ m, we sequentially colour the incidences of the path
Pi using the pattern 1.2.3.4.5.6 if i is odd, and the pattern 4.5.6.1.2.3 otherwise.

2. For every j, 1 ≤ j ≤ n, we sequentially colour the incidences of the path
Pj using the pattern 7.8.9.10.11.12 if j is odd, and the pattern 10.11.12.7.8.9 if i
is even.

The so-obtained colouring is clearly a strong incidence colouring of Gm,n. This
concludes the proof.

6. Subclasses of Halin Graphs

Recall first that a Halin graph H is a planar graph obtained from a tree of order
at least 4 with no vertex of degree 2, by adding a cycle connecting all its leaves
[5]. We call this cycle the outer cycle of H. The subgraph T obtained by deleting
all the edges of the outer cycle of H is thus a tree, called the internal tree of H.

In this section, we determine the exact value of — or upper bounds on —
the strong incidence chromatic number of every Halin graph whose internal tree
is either a comb or a double star.

6.1. Halin graphs whose internal tree is a comb

A tree is called a (3, 1)-tree if the degree of each non-leaf vertex is 3. A caterpillar
is a tree T such that, after deleting all its leaves, the remaining graph is a simple
path called the spine of T . A comb is a caterpillar which is also a (3,1)-tree. It
is easy to see that every Halin graph whose internal tree is a comb is a cubic



Strong Incidence Colouring of Graphs 671

Halin graph. In particular, if the spine has one vertex then this is the complete
graph K4.

For every integer h ≥ 1, we construct a Halin graph Hh of order 2h+2 whose
internal tree Th is a comb, using the construction given in [9]. Let Ph = v1v2 · · · vh
be the spine of Th. We denote by ℓ1 and ℓ′1 (respectively, ℓh and ℓ′h) the two leaves
of v1 (respectively, vh), by ℓi the unique leaf of vi, 2 ≤ i ≤ h− 1, and by Ch the
outer cycle of Hh.

ℓ′
1

v1 v2 v3 vh−2 vh−1 vh
ℓ′
h

ℓ1 ℓ2 ℓ3 ℓh−2 ℓh−1 ℓh

Figure 7. The graph Nh.

Let Hc
h be the set of all Halin graphs whose internal tree is a comb of order

2h + 2. A Halin graph Hh such that Ch = ℓ′1ℓ1ℓ2 · · · ℓhℓ
′
hℓ

′
1 is called a necklace.

We denote by Nh the (unique) necklace of order 2h+ 2 (see Figure 7). Observe
that Hc

h = {Nh} for every h, 1 ≤ h ≤ 3.
It is easy to see that all incidences of N1 are pairwise strongly adjacent.

Therefore, χs
i (N1) ≥ 12. For N2, the incidences of the set

A−(v1) ∪A+(v1) ∪A−(v2) ∪ {(ℓ′1, ℓ
′
1ℓ

′
2), (ℓ

′
2, ℓ

′
2ℓ

′
1), (ℓ1, ℓ1ℓ2), (ℓ2, ℓ2ℓ1)},

of cardinality 12, are pairwise strongly adjacent. Hence, we have χs
i (N2) ≥ 12.

Also, the cardinality of the set of the incidences of N3 is 24. Therefore, if we
colour the incidences of N3 with 11 colours, then at least two colours must be
repeated at least three times or at least one colour must be repeated at least four
times. It is tedious but not difficult to check that this is not possible. Hence,
χs
i (N3) ≥ 12. Strong incidence 12-colourings of Nh, 1 ≤ h ≤ 3, are given in

Figure 8.
Suppose now h ≥ 4. In [9], Shiu, Lam and Tam proved the following theorem.

Theorem 12 (Shiu, Lam and Tam [9]). If H ∈ Hc
h, h ≥ 4, then 6 ≤ χ′

s(H) ≤ 8.

By Proposition 3 and Theorem 12, we get χs
i (H) ≤ 16, for every graph

H ∈ Hc
h, h ≥ 4. We prove that if H is not a necklace then this bound can be

decreased to 14.

Theorem 13. If H ∈ Hc
h \ {Nh}, h ≥ 4, then 11 ≤ χs

i (H) ≤ 14.
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Figure 8. Strong incidence 12-colourings of N1, N2 and N3.

Proof. Let H ∈ Hc
h\{Nh}. By exchanging if necessary the leaves ℓ1 and ℓ′1, or ℓh

and ℓ′h, we can assume that H has either the form depicted in Figure 9(a) or the
form depicted in Figure 9(b), where the edges viℓi, 3 ≤ i ≤ h− 2, may be either
upward or downward. In both cases, H contains a subgraph isomorphic to the
graph F (see Figure 10) which contains 11 pairwise strongly adjacent incidences
(marked with a star), implying χs

i (H) ≥ 11.
We now construct a strong incidence 14-colouring λ of H assuming that H

has either the form depicted in Figure 9(a) or the form depicted in Figure 9(b).
Observe that in both cases the incidence (v2, v2ℓ2) (respectively, (vh−1, vh−1lh−1))
is not strongly adjacent with the incidence (ℓ′1, ℓ

′
1ℓ1) (respectively, (ℓ′h, ℓ

′
hℓh)).

Such a colouring can be obtained as follows (see Figure 11).
• We colour the incidences of the (ℓ′1 − ℓ′h)-path (which contains the path Ph)
sequentially, from (ℓ′1, ℓ

′
1v1) to (ℓ′h, ℓ

′
hvh) using the pattern 12345.

• For every integer i, 1 ≤ i ≤ h, we set λ(vi, viℓi) = 6 if i is odd and λ(vi, viℓi) = 7
otherwise.

• We colour circularly the incidences of the form (ℓi, ℓivi), 1 ≤ i ≤ h according to
their order in the outer cycle Ch by alternating the colours 8 and 9.

• We now colour the incidences of the outer cycle Ch according to the value of h
mod 5.

h = 5k, k ≥ 1 (see Figure 11(a) for the case h = 5). We first exchange
the colours of the two incidences (v2, v2ℓ2) and (v2, v2v1), and the colours of the
two incidences (vh−1, vh−1vh) and (vh−1, vh−1ℓh−1). We then set λ(ℓ′1, ℓ

′
1ℓ1) =

λ(v2, v2ℓ2), λ(ℓ1, ℓ1ℓ
′
1) = λ(v2, v2v3), λ(ℓ

′
h, ℓ

′
hℓh) = λ(vh−1, vh−1ℓh−1) and λ(ℓh,

ℓhℓ
′
h) = λ(vh−1, vh−1vh−2). We finally sequentially colour the uncoloured in-

cidences of Ch, starting from (ℓ1, ℓ1ℓ2), using the pattern 10.11.12.13.14. If
ℓ2ℓ

′
h ∈ E(H) then we set λ(v2, v2ℓ2) = λ(ℓ′1, ℓ

′
1ℓr), r 6= 1. If ℓ′1ℓh−1 ∈ E(H)

then we set λ(vh−1, vh−1ℓh−1) = λ(ℓ′h, ℓ
′
hℓm), m 6= h.

h = 5k + 1, k ≥ 1 (see Figure 11(b) for the case h = 6). We first set
λ(ℓ′1, ℓ

′
1ℓ1) = λ(v2, v2v3). We then sequentially colour the uncoloured incidences

of Ch, starting from (ℓ1, ℓ1ℓ
′
1), using the pattern 10.11.12.13.14.
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ℓ′
1

v1 v2 v3 vh−2 vh−1 vh
ℓ′
h

ℓ1 ℓ2 ℓh−1 ℓh

ℓmℓr

(a)

ℓ′
1

v1 v2 v3

vh−2 vh−1 vh
ℓ′
h

ℓ1 ℓ2 ℓm

ℓh−1 ℓhℓr

(b)

Figure 9. Each graph H ∈ Hc
h \ {Nh} has the form (a) or the form (b).

⋆

⋆

⋆ ⋆

⋆

⋆

⋆
⋆

⋆ ⋆

⋆

Figure 10. The graph F .

h = 5k+2, k ≥ 1 (see Figure 11(c) for the case h = 7). We first exchange the
colours of the two incidences (v2, v2ℓ2) and (v2, v2v1). We then set λ(ℓ′1, ℓ

′
1ℓ1) =

λ(v2, v2ℓ2), λ(ℓ1, ℓ1ℓ
′
1) = λ(v2, v2v3) and λ(ℓ′h, ℓ

′
hℓh) = λ(vh−1, vh−1vh−2). We fi-

nally sequentially colour the uncoloured incidences of Ch, starting from (ℓ1, ℓ1ℓ2),
using the pattern 10.11.12.13.14.

h = 5k+3, k ≥ 1 (see Figure 11(d) for the case h = 8). We sequentially colour
the incidences of Ch, starting from (ℓ′1, ℓ

′
1ℓ1), using the pattern 10.11.12.13.14.

h = 5k + 4, k ≥ 0 (see Figure 11(e) for the case h = 4). We first ex-
change the colours of the two incidences (v2, v2ℓ2) and (v2, v2v1). We then set
λ(ℓ′1, ℓ

′
1ℓ1) = λ(v2, v2ℓ2) and λ(ℓ1, ℓ1ℓ

′
1) = λ(v2, v2v3). We finally sequentially

colour the uncoloured incidences of Ch, starting from (ℓ1, ℓ1ℓ2), using the pattern
10.11.12.13.14.
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Figure 11. Strong incidence 14-colourings of some graphs in Hc
h \ {Nh}, 4 ≤ h ≤ 8.
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In each case, the so-obtained colouring is clearly a strong incidence colouring
of G ∈ Hc

h. This completes the proof.

We now determine the value of the strong incidence chromatic number of
necklaces.

Theorem 14. For every necklace Nh, h ≥ 1, we have

χs
i (Nh) =

{

12 if h = 1, 2, 3, 5,
11 otherwise.

Proof. Similarly as in the proof of Theorem 13, Nh contains a subgraph isomor-
phic to the graph F (see Figure 10), which implies χs

i (Nh) ≥ 11 for every h ≥ 1.
The values of χs

i (Nh), 1 ≤ h ≤ 3, were given in the beginning of the subsection.

If h = 5, the cardinality of the set of the incidences of N5 is 36. Therefore,
if we colour the graph with 11 colours, then at least one color is repeated more
that four times, or at least three colors are repeated four times. We will prove
that at most two colors can be repeated four times, and no color can be repeated
more than four times, which will imply χs

i (N5) ≥ 12.

The set of incidences of N5 can be partitioned into four sets, the set of
incidences marked with a star, the set of incidences marked with a diamond, the
set of incidences marked with a circle and the set of incidences marked with a
cross (see Figure 12(a)). Since, in each of these sets, all incidences are pairwise
strongly adjacent, the colour of any incidence of N5 can be repeated at most
four times. Moreover, any colour repeated four times must be used exactly once
in each of these sets. We now prove that among the colours of the incidences
marked with a star in Figure 12(a), only two colours can be repeated four times.

• The incidence (ℓ′1, ℓ
′
1ℓ

′
5).

The set of the incidences that are not strongly adjacent with this incidence can be
partitioned into the two sets {(v2, v2ℓ2), (v2, v2v3), (ℓ2, ℓ2v2), (ℓ2, ℓ2ℓ3), (v3, v3v2),
(ℓ3, ℓ2ℓ3)} and {(v3, v3ℓ3), (v3, v3v4), (ℓ3, ℓ3v3), (ℓ3, ℓ3ℓ4), (v4, v4v3), (v4, v4ℓ4),
(v4, v4v5), (ℓ4, ℓ4ℓ3), (ℓ4, ℓ4v4), (ℓ4, ℓ4ℓ5)}. Since, in each of these sets, all inci-
dences are pairwise strongly adjacent, the colour of the incidence (ℓ′1, ℓ

′
1ℓ

′
5) can

be repeated only two more times.

• The incidence (ℓ′1, ℓ
′
1v1).

The set of the incidences that are not strongly adjacent with this incidence can be
partitioned into the two sets {(ℓ2, ℓ2v2), (ℓ2, ℓ2ℓ3), (v3, v3v2), (v3, v3ℓ3), (v3, v3v4),
(ℓ3, ℓ3ℓ2), (ℓ3, ℓ3v3), (ℓ3, ℓ3ℓ4)} and {(v4, v4v3), (v4, v4ℓ4), (v4, v4v5), (ℓ4, ℓ4ℓ3),
(ℓ4, ℓ4v4), (ℓ4, ℓ4ℓ5), (v5, v5v4), (v5, v5ℓ5), (ℓ5, ℓ5ℓ4), (ℓ5, ℓ5v5), }. Since, in each
of these sets, all incidences are pairwise strongly adjacent, the colour of the inci-
dence (ℓ′1, ℓ

′
1v1) can be repeated only two more times.
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Figure 12. The necklace N5 (for the proof of Theorem 14).

• By symmetry, the case of the incidence (ℓ′1, ℓ
′
1ℓ1) is similar to the case of the

incidence (ℓ′1, ℓ
′
1v1).

Based on the above, only the colours of the two incidences (ℓ1, ℓ1ℓ
′
1) and (v1, v1ℓ

′
1)

can be repeated four times. Hence, χs
i (N5) ≥ 12. A strong incidence 12-colouring

of N5 is given in Figure 12(b), so χs
i (N5) = 12.

Finally, if h = 4 or h ≥ 6 then it suffices to construct a strong incidence
11-colouring of Nh. Such a colouring can be obtained as follows (see Figure 13).
We consider two cases, depending on the parity of h.

• h is even.

We first colour the subgraph Sh induced by the set of vertices {v1, . . . , vh, ℓ1,
. . . , ℓh} (which is isomorphic to the ladder graph Lh), as in the proof of Theo-
rem 10.

We then modify the colouring of the subgraph Sh and we complete the colour-
ing of Nh according to the value of hmod 6:

∗ h = 6k, k ≥ 1 (see Figure 13(a) for the case h = 6). We set λ(ℓ1, ℓ1ℓ
′
1) = 6,

λ(ℓ′1, ℓ
′
1ℓ1) = 10, λ(ℓ′1, ℓ

′
1v1) = 9, λ(v1, v1ℓ

′
1) = 11, λ(ℓ′1, ℓ

′
1ℓ

′
h) = 3, λ(ℓ′h, ℓ

′
hℓ

′
1) = 2,

λ(ℓ′h, ℓ
′
hvh) = 7, λ(ℓ′h, ℓ

′
hℓh) = 8, λ(vh, vhℓ

′
h) = 11, λ(ℓh, ℓhℓ

′
h) = 5.

∗ h = 6k+2, k ≥ 1 (see Figure 13(b) for the case h = 8). We set λ(ℓ1, ℓ1ℓ2) = 11,
λ(ℓ1, ℓ1ℓ

′
1) = 6, λ(ℓ′1, ℓ

′
1ℓ1) = 10, λ(ℓ′1, ℓ

′
1v1) = 9, λ(v1, v1ℓ

′
1) = 3, λ(ℓ′1, ℓ

′
1ℓ

′
h) = 1,

λ(ℓ′h, ℓ
′
hℓ

′
1) = 2, λ(ℓ′h, ℓ

′
hvh) = 7, λ(ℓ′h, ℓ

′
hℓh) = 8, λ(vh, vhℓ

′
h) = 6, λ(ℓh, ℓhℓ

′
h) = 3.
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Figure 13. Strong incidence 11-colourings of Nh, 6 ≤ h ≤ 11.
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∗ h = 6k+4, k ≥ 0 (see Figure 13(c) for the case h = 10). We set λ(ℓ2, ℓ2ℓ1) = 11,
λ(ℓ1, ℓ1ℓ

′
1) = 6, λ(ℓ′1, ℓ

′
1ℓ1) = 10, λ(ℓ′1, ℓ

′
1v1) = 9, λ(v1, v1ℓ

′
1) = 3, λ(ℓ′1, ℓ

′
1ℓ

′
h) = 2,

λ(ℓ′h, ℓ
′
hℓ

′
1) = 11, λ(ℓ′h, ℓ

′
hvh) = 7, λ(ℓ′h, ℓ

′
hℓh) = 8, λ(vh, vhℓ

′
h) = 4, λ(ℓh, ℓhℓ

′
h) = 1.

• h is odd.

We first colour the subgraph Sh induced by the vertices {v1, . . . , vh, ℓ1, . . . , ℓh}
(which is isomorphic to the ladder graph Lh), as in the proof of Theorem 10, and
we make the following modifications.

We set λ(vh−4, vh−4ℓh−4) = 11, λ(vh−3, vh−3ℓh−3) = 8, λ(vh−1, vh−1ℓh−1) =
8, λ(ℓh−1, ℓh−1vh−1) = 7, λ(vh, vhℓh) = 10, λ(ℓh, ℓhvh) = 9.

We modify the colouring of the subgraph Sh and we complete the colouring
of Nh according to the value of h mod 6:

∗ h = 6k+1, k ≥ 1 (see Figure 13(d) for the case h = 7). We set λ(ℓ2, ℓ2ℓ1) = 11,
λ(ℓ1, ℓ1ℓ

′
1) = 6, λ(ℓ′1, ℓ

′
1ℓ1) = 10, λ(ℓ′1, ℓ

′
1v1) = 9, λ(v1, v1ℓ

′
1) = 3, λ(ℓ′1, ℓ

′
1ℓ

′
h) = 2,

λ(ℓ′h, ℓ
′
hℓ

′
1) = 11, λ(ℓ′h, ℓ

′
hvh) = 7, λ(ℓ′h, ℓ

′
hℓh) = 8, λ(vh, vhℓ

′
h) = 4, λ(ℓh, ℓhℓ

′
h) = 1,

λ(vh−2, vh−2ℓh−2) = 10, λ(ℓh−2, ℓh−2vh−2) = 11. if h = 7 the we exchange the
colours of the incidences (v3, v3v4) and (v3, v3ℓ3).

∗ h = 6k + 3, k ≥ 1 (see Figure 13(e) for the case h = 9). We set λ(ℓ1, ℓ1ℓ
′
1) =

6, λ(ℓ′1, ℓ
′
1ℓ1) = 10, λ(ℓ′1, ℓ

′
1v1) = 9, λ(v1, v1ℓ

′
1) = 11, λ(ℓ′1, ℓ

′
1ℓ

′
h) = 3, λ(ℓ′h,

ℓ′hℓ
′
1) = 2, λ(ℓ′h, ℓ

′
hvh) = 7, λ(ℓ′h, ℓ

′
hℓh) = 8, λ(vh, vhℓ

′
h) = 11, λ(ℓh, ℓhℓ

′
h) = 5,

λ(vh−2, vh−2ℓh−2) = 10, λ(ℓh−2, ℓh−2vh−2) = 11.

∗ h = 6k+5, k ≥ 1 (see Figure 13(f) for the case h = 11). We set λ(ℓ1, ℓ1ℓ2) = 11,
λ(ℓ1, ℓ1ℓ

′
1) = 6, λ(ℓ′1, ℓ

′
1ℓ1) = 10, λ(ℓ′1, ℓ

′
1v1) = 9, λ(v1, v1ℓ

′
1) = 3, λ(ℓ′1, ℓ

′
1ℓ

′
h) = 1,

λ(ℓ′h, ℓ
′
hℓ

′
1) = 2, λ(ℓ′h, ℓ

′
hvh) = 7, λ(ℓ′h, ℓ

′
hℓh) = 8, λ(vh, vhℓ

′
h) = 6, λ(ℓh, ℓhℓ

′
h) = 3,

λ(vh−2, vh−2ℓh−2) = 11, λ(ℓh−2, ℓh−2vh−2) = 10.

In each case, the so-obtained colouring is clearly a strong incidence colouring
of Nh. This completes the proof.

6.2. Halin graphs whose internal tree is a double star

The double star, denoted by Sm,n, m ≥ n ≥ 2, is the graph obtained from the
stars Sm and Sn by adding an edge joining the central vertex v of Sm to the central
vertex u of Sn. The Halin graph HDm,n (see Figure 14) is the Halin graph whose
internal tree is the double star Sm,n and whose outer cycle is u1 · · ·unvm · · · v1u1.
We denote by P the path v1 · · · vm and by P ′ the path u1 · · ·un.

It is easy to see that for every graph HDm,n, m ≥ n ≥ 2, the incidences in
the set

A−(v) ∪A+(v) ∪A−(u) ∪ {(v1, v1u1)},

of cardinality 2 deg(v) + deg(u) = σ(HDm,n) + 1, are pairwise strongly adjacent.
Therefore, we have the following inequality.
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u v

v1
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u1

un

v2u2

Figure 14. The Halin graph HDm,n.

Proposition 15. For every two integers m and n, m ≥ n ≥ 2, χs
i (HDm,n) ≥

2m+ n+ 3 = σ(HDm,n) + 1.

We first define a partial colouring λ of HDm,n, for every m ≥ n ≥ 2, as
follows.

• The incidences (v, vu), (v, vv1), (v, vv2), . . . , (v, vvm) are coloured with the
colours 1, 2, 3, . . . ,m+ 1, respectively.

• The incidences (u, uv), (u, uu1), (u, uu2), . . . , (u, uun) are coloured with the
colours m+ 2,m+ 3,m+ 4, . . . ,m+ n+ 2, respectively.

• The incidences (v1, v1v), (v2, v2v), . . . , (vm, vmv) are coloured with the colours
m+ n+ 3,m+ n+ 4, . . . , 2m+ n+ 2, respectively.

• The incidence (v1, v1u1) is coloured with the colour 2m+ n+ 3.

In the next lemmas, we will extend λ to a colouring of HDm,n, according to
the values of m and n.

Lemma 16. For every integer m ≥ 2,

χs
i (HDm,2) =

{

σ(HDm,2) + 4 if m = 2,
σ(HDm,2) + 3 otherwise.

Proof. It is easy to see that if m = 2 then the incidences of the set

A−(v) ∪A+(v) ∪A−(u) ∪ {(v1, v1u1), (v2, v2u2), (u1, u1v1), (u2, u2v2)},

of cardinality 12, are pairwise strongly adjacent. Therefore, χs
i (HD2,2) ≥ 12.

If m = 3, then each colour of the set {1, 2, 3, 4, 5, 8, 9, 10, 11} of cardinality 9
is forbidden on the incidences of P , due to the partial colouring λ. To colour
the four incidences of the path P , we can use the two colours 6 and 7, and
we have to use two additional colours 12 and 13. Therefore, χs

i (HD3,2) ≥ 13.
A strong incidence 12-colouring of HD2,2 and a strong incidence 13-colouring
of HD3,2 are given in Figure 15. Suppose now m ≥ 4. Observe that each
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colour of the set {1, . . . ,m + 1,m + 2,m + 5, . . . , 2m + 4} of cardinality 2m + 2
is forbidden on the incidences of P , due to the partial colouring λ. Therefore,
χs
i (HDm,2) ≥ 2m+ 7 = σ(HDm,2) + 3. We now give a strong incidence 2m+ 7-

colouring by extending λ to a colouring of HDm,2. To colour the incidences of
the path P , we can use the three colours m+ 3,m+ 4 and 2m+ 5, and we have
to use two additional colours 2m+ 6 and 2m+ 7.
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10
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2 8 11 12
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2 11 9 5

Figure 15. Strong incidence colourings of HD2,2 and HD3,2.

• We will sequentially colour the path P , starting with the incidence (v1, v1v2),
according to the value of m mod 5, as follows.

m = 5k, k ≥ 1 (see Figure 16(a) for the case m = 5). We use the pattern
(2m+ 7)(m+ 4)(m+ 3)(2m+ 6)(2m+ 5).

m = 5k+1, k ≥ 1 (see Figure 16(b) for the case m = 6). We use the pattern
(2m+ 6)(m+ 4)(m+ 3)(2m+ 7)(2m+ 5).

m = 5k+2, k ≥ 1 (see Figure 16(c) for the case m = 7). We use the pattern
(m+ 4)(m+ 3)(2m+ 6)(2m+ 7)(2m+ 5).

m = 5k+3, k ≥ 1 (see Figure 16(d) for the case m = 8). We use the pattern
(2m+ 7)(m+ 4)(m+ 3)(2m+ 6)(2m+ 5).

m = 5k+4, k ≥ 1 (see Figure 16(e) for the case m = 9). We use the pattern
(2m+ 7)(2m+ 6)(m+ 3)(m+ 4)(2m+ 5).

• We then set λ(vm, vmun) = 2m + 5 if m = 5k + 3, and λ(vm, vmun) = 2m + 6
otherwise.

• We finally complete the colouring of HDm,2 by assigning the colours 3, 4, 2m+
4,m + 5, 2m + 3 and m + 6 to the incidences (u1, u1u2), (u2, u2u1), (u1, u1u),
(u2, u2u), (u1, u1v1) and (u2, u2vm), respectively.

In each case, the so-obtained colouring is clearly a strong incidence colouring
of HDm,2. This completes the proof.
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Figure 16. Strong incidence colourings of HDm,2, 5 ≤ m ≤ 9.

Lemma 17. For every integer m ≥ 3,

χs
i (HDm,3) =

{

σ(HDm,3) + 3 if m = 3 or m = 4,
σ(HDm,3) + 2 otherwise.

Proof. If m = 3 then we consider two cases.
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• If λ(v3, v3u3) = 12 then each colour of the set {1, 2, 3, 4, 5, 9, 10, 11, 12} is
forbidden on the incidences of the set {(u1, u1u), (u2, u2u), (u3, u3u), (u1, u1v1),
(u3, u3v3)}, because these incidences are strongly adjacent to all the incidences
already coloured. We now consider two subcases.

If we colour the incidences of the set {(u1, u1u), (u2, u2u), (u3, u3u), (u1, u1v1),
(u3, u3v3)} with five distinct colours then we must use two additional colours 13
and 14. Therefore, χs

i (HD3,3) ≥ 14.
If we colour the incidences of the set {(u1, u1u), (u2, u2u), (u3, u3u), (u1, u1v1),

(u3, u3v3)} with at most four colours then we have λ(u1, u1v1) = (u3, u3v3) = 13,
because only incidences (u1, u1v1) and (u3, u3v3) are not strongly adjacent. Thus
each colour of the set {1, 2, 3, 4, 5, 9, 10, 11, 12, 13} of cardinality 10 is forbidden on
the incidences of P , due to the partial colouring λ. To colour the four incidences
of the path P we can use the three colours 6, 7 and 8, and we have to use an
additional colour 14. Therefore, χs

i (HD3,3) ≥ 14.

• If λ(v3, v3u3) = 13 then each colour of the set {1, 2, 3, 4, 5, 9, 10, 11, 12, 13} of
cardinality 10 is forbidden on the incidences of P , due to the partial colouring λ.
To colour the four incidences of the path P we can use the three colours 6, 7 and
8, and we have to use an additional colour 14. Therefore, χs

i (HD3,3) ≥ 14.

If m = 4 then we again consider two cases.

• If λ(v4, v4u3) = 14 then each colour of the set {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14}
of cardinality 11 is forbidden on the incidences of P , due to the partial colouring
λ. To colour the incidences of the path P we can use the three colours 7, 8 and 9,
and we have to use two additional colours 15 and 16. Therefore, χs

i (HD4,3) ≥ 16.

• If λ(v4, v4u3) = 15 then we consider two subcases.

If we colour the incidences of the set {(u1, u1u), (u2, u2u), (u3, u3u), (u1, u1v1),
(u3, u3v4)} without using an additional colour then we have λ(u1, u1v1) = 15
or λ(u1, u1u) = 15, because the incidences (u2, u2u), (u3, u3u) and (u3, u3v4)
are strongly adjacent with (v4, v4u3). In both cases, each colour of the set
{1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 15} of cardinality 11 is forbidden on the incidences of
P , due to the partial colouring λ. To colour the incidences of the path P we can
use the four colours 7, 8, 9 and 14, and we have to use an additional colour 16.
Therefore, χs

i (HD4,3) ≥ 16.

If we colour the incidences of the set {(u1, u1u), (u2, u2u), (u3, u3u), (u1, u1v1),
(u3, u3v4)} using an additional colour then χs

i (HD4,3) ≥ 16.

A strong incidence 14-colouring of HD3,3 and a strong incidence 16-colouring
of HD4,3 are given in Figure 17. Suppose now m ≥ 5. Observe that each
colour of the set {1, . . . ,m + 1,m + 2,m + 6, . . . , 2m + 5} of cardinality 2m + 2
is forbidden on the incidences of P , due to the partial colouring λ. Therefore,
χs
i (HDm,3) ≥ 2m+ 7 = σ(HDm,3) + 2. We now give a strong incidence 2m+ 7-

colouring by extending λ to a colouring of HDm,3. To colour the incidences of
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Figure 17. Strong incidence colourings of HD3,3 and HD4,3.

the path P , we can use the four colours m+ 3,m+ 4,m+ 5 and 2m+ 6, and we
have to use an additional colour 2m+ 7.

• We will sequentially colour the incidences of path P , starting from the incidence
(v1, v1v2), according to the value of m mod 5, as follows.

m = 5k, k ≥ 1 (see Figure 18(a) for the case m = 5). We use the pattern
(m+ 4)(m+ 5)(m+ 3)(2m+ 7)(2m+ 6).

m = 5k+1, k ≥ 1 (see Figure 18(b) for the case m = 6). We use the pattern
(2m+ 7)(m+ 3)(m+ 4)(m+ 5)(2m+ 6).

m = 5k+2, k ≥ 1 (see Figure 18(c) for the case m = 7). We use the pattern
(m+ 4)(m+ 3)(2m+ 7)(m+ 5)(2m+ 6).

m = 5k+3, k ≥ 1 (see Figure 18(d) for the case m = 8). We use the pattern
(2m+ 7)(m+ 5)(m+ 3)(m+ 4)(2m+ 6).

m = 5k+4, k ≥ 1 (see Figure 18(e) for the case m = 9). We use the pattern
(m+ 4)(2m+ 7)(m+ 3)(m+ 5)(2m+ 6).

• We then set λ(vm, vmun) = 2m + 6 if m = 5k + 3, and λ(vm, vmun) = 2m + 7
otherwise.

• We finally complete the colouring of HDm,3 by assigning the colours 5, 4, 3, 2,
2m + 5, 2m + 4,m + 6,m + 8 and m + 7 to the incidences (u1, u1u2), (u2, u2u1),
(u2, u2u3), (u3, u3u2), (u1, u1u), (u2, u2u), (u3, u3u), (u1, u1v1) and (u3, u3vm), re-
spectively.

In each case, the so-obtained colouring is clearly a strong incidence colouring
of HDm,3. This completes the proof.

Lemma 18. For every integer m ≥ 4,

χs
i (HDm,4) =

{

σ(HDm,4) + 1 if m ≡ 3 (mod 5),
σ(HDm,4) + 2 otherwise.
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Figure 18. Strong incidence colourings of HDm,3, 5 ≤ m ≤ 9.

Proof. If m = 4 then we consider two cases.

• If λ(v4, v4u4) = 15 then each colour of the set {1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15}
of cardinality 11 is forbidden on the incidences of P , due to the partial colouring
λ. To colour the four incidences of the path P we can use the four colours 7, 8, 9
and 10, and we have to use an additional colour 16. Therefore, χs

i (HD4,4) ≥ 16.
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• If λ(v4, v4u4) = 16 then χs
i (HD4,4) ≥ 16.

If m = 5 then we again consider two cases.

• If λ(v5, v5u4) = 17 then each colour of the set {1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15,
16, 17} of cardinality 13 is forbidden on the incidences of P , due to the partial
colouring λ. To colour the four incidences of the path P we can use use the four
colours 8, 9, 10 and 11, and we have to use an additional colour 18. Therefore,
χs
i (HD5,4) ≥ 18.

• If λ(v5, v5u4) = 18 then χs
i (HD5,4) ≥ 18.
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Figure 19. Strong incidence colourings of HD4,4 and HD5,4.

A strong incidence 16-colouring of HD4,4 and a strong incidence 18-colouring
of HD5,4 are given in Figure 19. Suppose now m ≥ 5. Observe that each colour
of the set {1, . . . ,m+1,m+2,m+7, . . . , 2m+6} of cardinality 2m+2 is forbidden
on the incidences of P and the incidence (vm, vmun), due to the partial colouring
λ. Since the colouring of the path P requires at least five colours, we have
χs
i (HDm,4) ≥ 2m+7 = σ(HDm,4)+1. We now give a strong incidence (2m+7)-

colouring by extending λ to a colouring of HDm,4. Since the incidence (vm, vmun)
is strongly adjacent to all the incidences already coloured except the incidence
(vm, vmun), we have λ(vm, vmun) ≥ 2m + 7 , if λ(vm, vmun) = 2m + 7, then we
can colour the path P with the colours m + 3,m + 4,m + 5,m + 6 and 2m + 7
if and only if m ≡ 3 (mod 5). We will sequentially colour the incidences of the
path P , starting from the incidence (v1, v1v2), as well as the incidence (vm, vmun),
according to the value of m mod 5, as follows.

• m 6= 5k + 3 (see Figure 20(a) for the case m = 7). We use the pattern
(m+ 4)(m+ 3)(m+ 5)(m+ 6)(2m+ 7) for P and we set λ(vm, vmun) = 2m+ 8.

• m = 5k + 3, k ≥ 1 (see Figure 20(b) for the case m = 8). We use the pattern
(m+ 6)(m+ 5)(m+ 4)(m+ 3)(2m+ 7) for P and we set λ(vm, vmun) = 2m+ 7.
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Figure 20. Strong incidence colourings of HD7,4 and HD8,4.

We finally colour the remaining incidences of HDm,4 by assigning the colours
5, 2, 3, 4, 6, 5, 2m + 6, 2m + 5,m + 8,m + 7, 2m + 4 and m + 9 to the incidences
(u1, u1u2), (u2, u2u1), (u2, u2u3), (u3, u3u2), (u3, u3u4), (u4, u4u3), (u1, u1u), (u2,
u2u), (u3, u3u), (u4, u4u), (u1, u1v1) and (u4, u4vm), respectively. In each case,
the so-obtained colouring is clearly a strong incidence colouring of HDm,4. This
completes the proof.

Lemma 19. For every integer m ≥ 5, χs
i (HDm,5) = σ(HDm,5) + 1.

Proof. By Proposition 15, χs
i (HDm,5) ≥ 2m+ 8 = σ(HDm,5) + 1. To complete

the proof, we give a strong incidence (2m + 8)-colouring by extending λ to a
colouring of HDm,5 as follows.

• We first sequentially colour the incidences of the path P , starting from the
incidence (v1, v1v2), according to the value of m mod 5 as follows.

m 6= 5k+3, k ≥ 1 (see Figure 21(a) for the case m = 7). We use the pattern
(m+ 4)(m+ 5)(m+ 6)(m+ 7)(m+ 3).

m = 5k+3, k ≥ 1 (see Figure 21(b) for the case m = 8). We use the pattern
(m+ 4)(m+ 5)(m+ 7)(m+ 6)(m+ 3).

• We then sequentially colour the incidences of the path P ′, starting from the
incidence (u1, u1u2), using the pattern 32456.

• We finally colour the remaining incidences of HDm,5 by assigning the colours
2m + 7,m + 10, 2m + 8,m + 12,m + 8,m + 11,m + 11 and 2m + 8 to the in-
cidences (u1, u1u), (u2, u2u), (u3, u3u), (u4, u4u), (u5, u5u) (u1, u1v1), (u5, u5vm)
and (vm, vmun), respectively.

In each case, the so-obtained colouring is clearly a strong incidence colouring
of HDm,5. This completes the proof.
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Figure 21. Strong incidence colourings of HD7,5 and HD8,5.

Lemma 20. For every two integers m and n, m ≥ n ≥ 6, χs
i (HDm,n) =

σ(HDm,n) + 1.
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Figure 22. Strong incidence colourings of HD7,7 and HD8,7.

Proof. By Proposition 15, χs
i (HDm,n) ≥ 2m + n + 3 = σ(HDm,n) + 1. To

complete the proof, we give a strong incidence (2m+n+3)-colouring by extending
λ to a colouring of HDm,n as follows (see Figure 22).

• We first sequentially colour the incidences of the path P , starting from the
incidence (v1, v1v2), using the pattern (m+ 4)(m+ 5)(m+ 6)(m+ 3)(m+ 7).

• We then sequentially colour the incidences of the path P ′, starting from the
incidence (u1, u1u2), using the pattern 32456.

• We finally set λ(ui, uiu) = 2m + n + 3 − i, for every i, i ∈ {1, 2, 4, . . . , n},
λ(u3, u3u) = 2m+n+3, λ(un, unvm) = λ(u1, u1v1) = 2m+n and λ(vm, vmun) =
2m+ n+ 3.

The so-obtained colouring is clearly a strong incidence colouring of HDm,n.
This completes the proof.
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Putting together Lemmas 16, 17, 18, 19 and 20, we finally get the following
theorem. Recall that σ(HDm,n) = 2m+ n+ 2.

Theorem 21. For every two integers m and n, m ≥ n ≥ 2,

χs
i (HDm,n) =































σ(HDm,n) + 4 if n = 2 and m = 2,
σ(HDm,n) + 3 if n = 2 and m 6= 2,

or (n,m) ∈ {(3, 3), (3, 4)},
σ(HDm,n) + 2 if n = 3 and m 6∈ {3, 4},

or n = 4 and m 6≡ 3 (mod 5),
σ(HDm,n) + 1 otherwise.

7. Discussion

In this paper, we have introduced and studied the strong version of incidence
colouring. We have determined the exact value of — or upper bounds on — the
strong incidence chromatic number of several classes of graphs, namely cycles,
wheel graphs, trees, ladder graphs and some subclasses of Halin graphs. We
leave as open problems the following questions.

1. What is the best possible upper bound on the strong incidence chromatic
number of graphs with bounded maximum degree? In particular, what about
graphs with maximum degree 3?

2. What is the best possible upper bound on the strong incidence chromatic
number of Halin graphs?

3. What is the best possible upper bound on the strong incidence chromatic
number of d-degenerated graphs?
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