Discussiones Mathematicae
Graph Theory 44 (2024) 717-726
https://doi.org/10.7151 /dmgt.2464

A NOTE ON MINIMUM DEGREE, BIPARTITE HOLES,
AND HAMILTONIAN PROPERTIES*

QIANNAN ZHOU®, HAJO BROERSMA®!, LiGONG WANG, YONG Lu®

@School of Mathematics and Statistics
Jiangsu Normal University
Xuzhou, Jiangsu 221116, People’s Republic of China

b Faculty of EEMCS, University of Twente
P.O. Boz 217, 7500 AE Enschede, The Netherlands

¢School of Mathematics and Statistics
Northwestern Polytechnical University
Xi’an, Shaanzi 710072, People’s Republic of China

e-mail: gnzhoumath@163.com
h.j.broersma@utwente.nl
lgwangmath@163.com
luyong@jsnu.edu.cn

Abstract

We adopt the recently introduced concept of the bipartite-hole-number
due to McDiarmid and Yolov, and extend their result on Hamiltonicity to
other Hamiltonian properties of graphs with a large minimum degree in
terms of this concept. An (s,t)-bipartite-hole in a graph G consists of two
disjoint sets of vertices S and T with |S| = s and |T'| = ¢ such that E(S,T) =
(. The bipartite-hole-number &(G) is the maximum integer r such that
G contains an (s,t)-bipartite-hole for every pair of nonnegative integers s
and t with s +¢ = r. Our main results are that a graph G is traceable
if 6(G) > a(G) — 1, and Hamilton-connected if §(G) > a(G) + 1, both
improving the analogues of Dirac’s Theorem for traceable and Hamilton-
connected graphs.
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1. INTRODUCTION

Our motivation for the presented results is a recent generalization of a classic
result of Dirac [3] on Hamiltonicity (Theorem 1 below) due to McDiarmid and
Yolov [8] (Theorem 2 below). We answer the natural question whether similar
extensions can be established for analogues of Dirac’s Theorem for traceability
and Hamilton-connectivity. Throughout this note, we use Bondy and Murty [1]
for terminology and notation not defined here and only consider finite simple
graphs.

For a graph G, we use V(G) and E(G) to denote the vertex set and the
edge set of G, respectively. For v € V(G), we use Ng(v) to denote the set of
neighbors of v in G, and we let d(v) = dg(v) = |Ng(v)| denote the degree of v
in G. Moreover, we use Ng[v] = Ng(v) U{v}. If the graph G is clear from the
context, we will usually drop the subscript G. Let 6(G) denote the minimum
degree of (the vertices of) G. An independent set of G is a set of vertices no
two of which are adjacent. The cardinality of a maximum independent set in
G is called the independence number of G, and denoted by a(G). A spanning
subgraph of a graph G is a subgraph obtained by edge deletions only. If H is a
spanning subgraph of G, we use G — H to denote the graph with vertex set V(QG)
and edge set E(G) \ E(H). For two disjoint nonempty subsets S and 1" of V(G),
E[S,T] denotes the set of edges with one end in S and one end in T'. The disjoint
union of G and H, denoted by G + H, is the graph with vertex set V(G)UV (H)
and edge set E(G)UE(H). The join of G and H, denoted by GV H, is the graph
obtained from the disjoint union of G and H by adding edges joining every vertex
of G to every vertex of H. The complement G of G is the graph with vertex set
V(@) and the property that uv € E(G) if and only if uv ¢ E(G).

A connected graph G is said to be k-connected if it has more than k ver-
tices and remains connected whenever fewer than k vertices are removed. The
connectivity x(G) of G is the maximum value of k for which G is k-connected.

If C is a cycle in G, we let 8 denote the cycle C' with a clockwise or an-
ticlockwise orientation. For u,v € V(C) with a fixed chosen orientation for C,
we let 8[u, v] denote the consecutive vertices on C from u to v in the direction
specified by C'. The same vertices, in reverse order, are given by <5[1}, u]. Both

[u, v] and <5[1}, u] are considered as paths and as vertex sets in the sequel. Note
that we do not exclude the possibility that u = v; in this case both B[U, v] and
g[v, u] reduce to one vertex.

A cycle passing through all the vertices of a graph is called a Hamilton cycle.
Similarly, a path passing through all the vertices of a graph is called a Hamilton
path. A graph G is said to be Hamiltonian if G has a Hamilton cycle, traceable
if G has a Hamilton path, and Hamilton-connected if every two vertices of G are
connected by a Hamilton path.
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Already back in 1952, Dirac [3] gave the following minimum degree condition
for a graph to be Hamiltonian.

Theorem 1 [3]. A graph G with n > 3 vertices is Hamiltonian if 6(G) > n/2.

There exist many generalizations of Dirac’s Theorem. In this note we refrain
from providing more details. For more information on some of these generaliza-
tions, we refer the reader to [2,4-7,9,10].

Motivated by Dirac’s Theorem, in a paper of 2017 McDiarmid and Yolov [8]
introduced a new graph parameter which they named the bipartite-hole-number.

Definition [8]. An (s,t)-bipartite-hole in a graph G consists of two disjoint sets
of vertices S and T with |S| = s and |T'| = t such that E(S,T) = (). The bipartite-
hole-number a(G) is the least integer r that can be written as r = s+t—1 for some
positive integers s and t such that G does not contain an (s, ¢)-bipartite-hole.

As stated in [8], an equivalent definition of &(G) is the maximum integer r
such that G contains an (s, t)-bipartite-hole for every pair of nonnegative integers
sand t with s+t =r.

In [8], the authors presented the following tight sufficient condition for Hamil-
tonicity in terms of the minimum degree and the bipartite hole number, improving
Theorem 1.

Theorem 2 [8]. A graph G with at least three vertices is Hamiltonian if 6(G) >
a(G).

As noted in [8], it is easy to check that a graph G with 6(G) > n/2 has no
(1, L%J)—bipartite—hole, so for such a graph §(G) > n/2 > a(G). Motivated by
this result, it is natural to consider possible counterparts of this result for other
Hamiltonian properties.

In [8], the authors also presented the following result.

Theorem 3 [8]. Let r > 0 be an integer and let G be a graph with at least three
vertices such that 6(G) > (r+1)a(G) + 3r. Then G contains r + 1 edge-disjoint
Hamilton cycles.

The rest of this note is organized as follows. In Section 2, we will present
our results, including the natural counterparts of Theorem 2 for traceable graphs
and for Hamilton-connected graphs. In Section 3, we will present the proofs of
our results.

2. MAIN RESULTS

We start with the following counterpart of Theorem 2 for traceable graphs.
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Theorem 4. A graph G on at least three vertices is traceable if 6(G) > a(G) —1.

It is easy to come up with examples showing that the result is sharp. Con-
sider, e.g., the nontraceable graph G' = K, 19, for which clearly §(G) = r and
a(G) = r+2. Our next result is a counterpart of Theorem 3, providing a sufficient
condition for the existence of many edge-disjoint Hamilton paths.

Theorem 5. Let v > 0 be an integer, and let G be a graph on at least three
vertices with 6(G) > (r + 1)a(G) + 3r — 1. Then G contains r + 1 edge-disjoint
Hamilton paths, which have 2(r + 1) distinct end vertices.

We believe that the above result is only sharp for » = 0, but we were not able
to relax the condition either, and leave it as an open problem. Next, we present
the analogue of Theorem 4 for Hamilton-connected graphs.

Theorem 6. A graph G on at least three vertices is Hamilton-connected if §(G) >
a(G) + 1.

This result is also sharp, in the sense that there exist non-Hamilton-connected
graphs G with §(G) = a(G) = r for any positive integer . An obvious example is
the graph G = K, ,, satisfying §(G) = a(G) = r. An analogue of Dirac’s Theorem
for Hamilton-connected graphs states that a graph G of order n is Hamilton-
connected if §(G) > L. It is not difficult to show that Theorem 6 improves
this result. For a graph satisfying §(G) > ”T‘H, it is easy to check that there is
no (1, |%;1])-bipartite-hole. Hence, for such a graph 6(G) > 2 > a(G) + 1.

The following generalization of Dirac’s Theorem for Hamilton-connected
graphs is due to Chvatal and Erdos.

Theorem 7 [2]. A graph G with at least three vertices is Hamilton-connected if
k(G) > a(G) + 1.

Figure 1. Graph G.

We observe that the condition of Theorem 6 is very similar to that of Theo-
rem 7. But comparing these two theorems, neither condition implies the other.
We first show an example of a graph G meeting the condition of Theorem 6 but
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not of Theorem 7. Let G be the graph on vertex set V(G) = V(A)UV(B)UV(C),
where A = Ky, B = Kj,, C = K;, { < k, and all these subgraphs are mu-
tually vertex-disjoint. Let the edge set of G be defined as E(G) = E(A) U
E(C)u{ab| a € V(A),b e V(B)}U{bc|be V(B),c e V(C)}. Obviously,
we have k(G) = k = a(G), and if we take £ > 3 and k > ¢ + 3, we get
0(G) =0—1+k >min{2/+1,k+1} +1 = a(G) + 1. In the other direc-
tion, the graph G that is depicted in Figure 1 satisfies k(G) = 3, a(G) = 2 but
I(G) =a(G) =3.

In the next section, we will present the details of our proofs of the above
theorems.

3. THE PROOFS

Our proof of Theorem 4 is an easy consequence of Theorem 2 and the following
observation.

Lemma 8 (Exercise 18.1.6 on Page 474 of [1]). Let G be a graph on at least two
vertices. Then G is traceable if and only if GV K1 is Hamiltonian.

Proof of Theorem 4. Suppose H = GV K with vertex set V(H) = V(G)U{v}
and edge set E(H) = E(G)U{vx | x € V(G)}. By the definition of the bipartite-
hole-number, we know that &(H) = &(G). Then §(H) = 6(G)+1 > a(G)—1+1 =
a(G) = a(H). Using Theorem 2, we obtain that H is Hamiltonian. Then by
Lemma 8, G is traceable. ]

Our proof of Theorem 5 is also based on Lemma 8, and makes use of Theo-
rem 3.

Proof of Theorem 5. Let H = G V K be defined as above. Similarly as in
the above proof, we get §(H) > (r+ 1)a(G) +3r—1+1 = (r+ 1)a(H) + 3r.
By Theorem 3, H has r + 1 edge-disjoint Hamilton cycles. Using Lemma 8, we
conclude that G has r + 1 edge-disjoint Hamilton paths, and that these paths
have 2(r 4+ 1) distinct end vertices. |

At the end of this note, we present our proof of Theorem 6.

Proof of Theorem 6. If a(G) = 1, then G is complete, and so G is Hamilton-
connected. Hence we may suppose that a(G) > 2 and G is not Hamilton-
connected. Then there exist two vertices v and v such that there is no Hamilton
path connecting them. By Theorem 2, we know G is Hamiltonian. Let C' be
a Hamilton cycle in G, and let |V(C)| = n. Label the vertices in V(C) with
[n] ={1,2,...,n} in order according to the clockwise direction, where u = n and
v =k for some k ¢ {1,n — 1,n}. For a set S C V(C), denote by ST the set of
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immediate successors #* on C of elements z in S, and denote by S~ the set of
immediate predecessors .

Let 1 < s <t besuch that &(G)+1 = s+t and G has no (s, t)-bipartite-hole.
Since a(G) > 2, we have 1 < s < @ < a@(G), and hence

IN()N{1,2}))| =1 < s <8(G) -2 < [N(1)N(2,n)] = d(1) — 2.

Therefore we can choose ¢ € (1,n) such that [N (1) N (1,¢]| = s. We choose the
smallest ¢ with this property and note that this choice implies 14 € E(G).

We know that 1 is not adjacent to k + 1 since there is no Hamilton path from
n to k. Hence, we have ¢ € (1,k] or £ € (k+ 1,n). Next, we consider these two
cases.

Case 1. £ € (1,k]. We describe five situations (referring to Figure 2) in which
there is a Hamilton path connecting n and k, denoted as an (n, k)-H-path in the
remainder of the proof.

k+1 k
(@)

k+1 k k+1 k
(d) (e)

Figure 2. Situations (a)—(e).

(a) If for some i € (1,¢] we have i € N(1) and i~ € N(k + 1), then 6[77,, k +
1€ [i~,1]Ci, k] is an (n, k)-H-path.

(b) If for some i € (1,¢] and j € (¢, k] we have i € N(1), j € N(k+ 1) and
i~ jt € E(G), then C[n,k+1] Cﬁ, i|C'[1,i7]|C[jT, k] is an (n, k)-H-path. In the
particular case that j =k, then C[n,k + 1]C[i~,1]C[i, k] is an (n, k)-H-path.
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(c) If for some i € (1,¢] and j € (k4 1,n] we have i € N(1), j € N(k+1)
and i~ j~ € E(G), then C’[n,j}a[k + l,j_]g[i_, 1]8[2', k] is an (n, k)-H-path.

(d) If for some i € (¢,k] and j € (1,¢] we have i € N(1), j € N(k+ 1) and
i"j~ € E(G), then C[n,k+1]C[j,i"]C[j~,1]C[i, k] is an (n, k)-H-path.

(e) If for some i € (k + 1,%andj € (1,4] we have i € N(1), j € N(k + 1)
and i~j~ € E(G), then C[n,i|C[1,57]C[i7,k+ 1]C[j, k] is an (n, k)-H-path.

We shall show that at least one of these situations must occur.
Suppose for a contradiction that this is not the case. Then for every ¢ € (1, k]

(
(1) E(NMOLNL) ", (NE+FD)NEEDTUNE+1D) N (k+1,0])7] =0,
since (a), (b) and (c) do not occur; and
(2) E[(INO)NEE) UWNA)N(E+1,n]) ", (Nk+1)n(1,4)"] =0,

since (d) and (e) do not occur.
Then equation (1) implies |(N(k+1)N (¢, k])T U (N(k+ 1) N(k+1,n))7| <t
Since the two sets (N(k + 1) N (¢,k])" and (N(k + 1) N (k + 1,n])~ both
contain the vertex k£ 4+ 1, we have

I(INE+DNGED TN (NE+D)N(E+1,n) | ={k+1} =1
when ¢ < k, and
(NE+D)NEE)TN(NE+D)N(k+1,n)"|=0=0
when ¢ = k. Then

dk+1)=|Nk+1)N (L + |NKk+1)NE]|+ |NE+1)N(k+1,n]
=[Nk +1) 010+ [(N(E+1) 0 (RN + [(N(E+1) N (k+1,n])7]
=INE+Dn L4+ |(NE+D)NEEDTUNKE+1) N (k+1,n]) |
+|(NE+D)NEE)T N (N(E+1) N (k+1,n])7

> 5(G).

Now we have [IN(k+1)Nn (1,4 > §(G)—-t—-1>a(G)+1—-t—-1=s—1,
ie, IN(k+1)n (1,4 > s when ¢ < k, and |[N(k+ 1) N (1, 4] > 6(G) —t >
a(G)+1—t=s,ie, |Nk+1)N(1,4] > s+ 1 when ¢ = k. No matter whether
¢ <k or £ =k, equation (2) implies [(N(1) N (¢,k])"U(NQ)N(kE+1,n])~"| <t.
It is obvious that (N (1) N (¢,k])” and (N(1) N (k+ 1,n])” are disjoint. Hence
(@) <d(1)=INL)N (L, +|ND)NLE]|+IND)N(k+1,n]|

— N AL 4]+ [(N(L) O (& B+ (N () 0 (k1)

= IN() AL+ [N () A (6K U (V) A G+ 1))

<s+t=a(G)+1<46G),
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a contradiction.

Case2. { € (k+1,n). Here, we describe four situations (referring to Figure 3)
in which there is an (n, k)-H-path. Recall that 1/ € E(G).

k+1 k
(n)

Figure 3. Situations (f)—(t).

(f) If for some i € (1,k] and j € (¢,n] we have i € N(1), j € N(k+ 1) and
i~j~ € B(G), then ©ln.7]Clk+ 1, ]%[ 1)C i, k] is an (n, k)-H-path.

(g) If for some i € (k:+1 (] and j € (E n] we have i € N(1), j € N(k+1)
and i~ j~ € E(G), then C[n,]}g[ E+1,1 ] [7- 48[1,1:] is an (n, k)-H-path.

(h) If for some ¢ € [¢,n) and j € [1,k] we have i € N(1), j € N(k+ 1) and
i*j- € B(G), then Tln,i*|C[j~ 1]C[i.k + 1] Cj, K is an (n. k)-Hopath.

(t) If for some i € [¢,n) and j € (k+ 1,/] we have i € N(1), j € N(k+ 1)
and itj~ € E(G), then 8[71,@'*‘]0[]'_,]4: + l]é[j,i]ﬁ[l, k] is an (n, k)-H-path.
We shall show that at least one of these situations must occur. Suppose for a
contradiction that this is not the case. Then for every ¢ € (1, k)

(3) E[(N1) N (@, 4)", (N(k+1)n(¢,n])"] =0,
since (f) and (g) do not occur; and

(4) E(N@)N[6n)" (N(k+1)N[1,4)7] =0,
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since (h) and (t) do not occur.
Then equation (3) implies |[N(k+ 1) N (¢,n]| = |[(N(k+ 1) N (4n])~| < t.
Then

(N (k+1) N [L )| = [(N(k+1) A [L,6)] > 5(G) — [(N(k +1) 1 (6,n])
>6(G)—t>a(l@G)+1—t=s+t—t=s.

Now we have |(N(k+ 1) N [1,¢])"|] > s+ 1. Then equation (4) implies that
IN(1)N[¢,n)| = |(N(1)N[¢,n))t] < t. Therefore

6(G) <d(1) = IN() N (L, 4]+ [NQ) N[, n)] + {n}| - {€}]
<s+t—1=a(G)+1-1<4(G) -1,

a contradiction.
This completes the proof of Theorem 6. [

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, in: Grad. Texts in Math. 244
(Springer, New York, 2008).

[2] V. Chvétal and P. Erd6s, A note on Hamiltonian circuits, Discrete Math. 2 (1972)
111-113.
https://doi.org/10.1016/0012-365X (72)90079-9

[3] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) 2 (1952)
69-81.
https://doi.org/10.1112/plms/s3-2.1.69

[4] G.-H. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser.
B 37 (1984) 221-227.
https://doi.org/10.1016/0095-8956(84)90054-6

[5] R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Schelp, Neighborhood unions and
hamiltonian properties in graphs, J. Combin. Theory Ser. B 47 (1989) 1-9.
https://doi.org/10.1016,/0095-8956(89)90060-9

[6] R. Gould, Advances on the Hamiltonian problem—A survey, Graphs Combin. 19
(2003) 7-52.
https://doi.org/10.1007/s00373-002-0492-x

[7] H. Li, Generalizations of Dirac’s theorem in Hamiltonian graph theory—A survey,
Discrete Math. 313 (2013) 2034-2053.
https://doi.org/10.1016/j.disc.2012.11.025

[8] C. McDiarmid and N. Yolov, Hamilton cycles, minimum degree, and bipartite holes,
J. Graph Theory 86 (2017) 277-285.
https://doi.org/10.1002/jgt.22114


https://doi.org/10.1016/0012-365X\(72\)90079-9
https://doi.org/10.1112/plms/s3-2.1.69
https://doi.org/10.1016/0095-8956\(84\)90054-6
https://doi.org/10.1016/0095-8956\(89\)90060-9
https://doi.org/10.1007/s00373-002-0492-x
https://doi.org/10.1016/j.disc.2012.11.025
https://doi.org/10.1002/jgt.22114

726 Q. Zuou, H. BROERSMA, L. WANG AND Y. LU

[9] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
https://doi.org/10.2307/2308928

[10] R.H. Shi, 2-neighborhoods and hamiltonian conditions, J. Graph Theory 16 (1992)
267-271.
https://doi.org/10.1002/jgt.3190160310

Received 7 May 2021
Revised 8 July 2022
Accepted 8 July 2022
Available online 22 July 2022

This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-
es/by-nc-nd/4.0/


https://doi.org/10.2307/2308928
https://doi.org/10.1002/jgt.3190160310
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tcpdf.org

