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Abstract

A set S of vertices in a graph G is an outer connected dominating set of G
if every vertex in V \S is adjacent to a vertex in S and the subgraph induced
by V \S is connected. The outer connected domination number ofG, denoted
by γ̃c(G), is the minimum cardinality of an outer connected dominating set
of G. Zhuang [Domination and outer connected domination in maximal
outerplanar graphs, Graphs Combin. 37 (2021) 2679–2696] recently proved
that γ̃c(G) ≤

⌊

n+k
4

⌋

for any maximal outerplanar graph G of order n ≥ 3
with k vertices of degree 2 and posed a conjecture which states that G is a
striped maximal outerplanar graph with γ̃c(G) =

⌊

n+2

4

⌋

if and only if G ∈ A,
where A consists of six special families of striped outerplanar graphs. We
disprove the conjecture. Moreover, we show that the conjecture become
valid under some additional property to the striped maximal outerplanar
graphs. In addition, we extend the above theorem of Zhuang to all maximal
K2,3-minor free graphs without K4 and all K4-minor free graphs.

Keywords: maximal outerplanar graphs, outer connected domination, striped
maximal outerplanar graphs.
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1. Introduction

All graphs considered in this paper are finite and simple. For notation and
terminology, we will typically follow [4]. Specifically, for a graph G = (V,E),
|V | and |E| are called the order and the size of G, respectively. A neighbor of a
vertex v in the graph G is a vertex adjacent to v. The open neighborhood of v,
denoted by NG(v), is the set of all neighbors of v. The closed neighborhood of v
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is NG[v] = {v} ∪NG(v). A fan Fn is a graph of order n+ 1 obtained by adding
a vertex v to Pn with v adjacent to each vertex of Pn. For a set S of vertices in
G, the subgraph of G induced by S is denoted by G[S].

A graph G is outerplanar if it has an embedding in the plane such that all
vertices belong to the boundary of its outer face. An outerplanar graph G is
maximal if G + uv is not outerplanar for any two non-adjacent vertices u and v
of G. An inner face of a maximal outerplane graph G is an internal triangle if
it is not adjacent to outer face. A maximal outerplane graph without internal
triangles is called striped. A minor of a graph G is a graph which can be obtained
from G by deleting vertices and deleting or contracting edges. Given a graph H,
a graph G is H-minor free if no minor of G is isomorphic to H. An H-minor
free graph G is maximal if G + uv is not an H-minor free graph for any two
non-adjacent vertices u and v of G. It is well known that a simple graph G is
outerplanar if and only if G is both K4-minor free and K2,3-minor free (see [4]).

For a graph G, a set S ⊆ V (G) is called a dominating set of G if each vertex
v ∈ V (G)\S has a neighbor in S. The domination number of G, denoted by γ(G),
is the minimum cardinality of a dominating set. Furthermore, a dominating set
S is an outer connected dominating set of G if the induced subgraph G[V \ S] is
connected. The outer connected domination number of G, denoted by γ̃c(G), is
the minimum cardinality of an outer connected dominating set.

The concept of outer connected domination was introduced by Cyman [7].
More details and information can be found in [1, 2, 11, 13, 15]. Various types
of domination of maximal outerplanar graphs were widely studied in literature,
such as secure domination [3], partial domination [5], domination [6, 12, 14],
total domination [8, 9], semipaired domination [10] and connected domination
[18]. Very recently, Zhuang [17] proved the following theorem.

Theorem 1 [17]. If G is a maximal outerplanar graph of order n ≥ 3, and k is

the number of vertices of degree 2 in G, then γ̃c(G) ≤
⌊

n+k
4

⌋

.

Theorem 2 [17]. If G is a striped maximal outerplanar graph of order n ≥ 3,
then γ̃c(G) ≤

⌊

n+2
4

⌋

.

Let A is a set of well-defined striped maximal outerplanar graphs, which will
defined in Section 3. Zhuang proposed the following conjecture.

Conjecture 3 [17]. Let G be a striped maximal outerplanar graph. Then γ̃c(G) =
⌊

n+2
4

⌋

if and only if G ∈ A.

In this paper, we disprove Conjecture 3. Based on some structural properties
of K2,3-minor free graphs and K4-minor free graphs, we extend Theorem 1 as
follows.
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Theorem 4. Assume that G is a maximal K2,3-minor free graph without K4 or

a maximal K4-minor free graph of order n ≥ 3. If k is the number of vertices of

degree 2 in G, then γ̃c(G) ≤
⌊

n+k
4

⌋

.

Figure 1. A maximal K2,3-minor free graph.

The example illustrated in Figure 1 shows that the condition of K4-free in
Theorem 4 is necessary. One can see that it is maximal K2,3-minor free and
contains a subgraph isomorphic to K4, but γ̃c(G) >

⌊

n+k
4

⌋

.

Since
⌊

n+k
4

⌋

<
⌊

n
3

⌋

when k ≤ n
3 , Theorem 4 improves the following result

due to Zhuang for the case when k ≤ n
3 .

Theorem 5 [17]. If G is a maximal K4-minor free graph of order n ≥ 3, then
γ̃c(G) ≤

⌊

n
3

⌋

.

Corollary 6. If G is a maximal K4-minor free graph of order n ≥ 3 with k
vertices of degree 2, then

γ̃c(G) ≤

{

⌊

n+k
4

⌋

if k ≤ n
3 ,

⌊

n
3

⌋

otherwise.

In Section 3, we will show that for a striped maximal outerplanar graph
G /∈ G, γ̃c(G) =

⌊

n+2
4

⌋

if and only if G ∈ A, where G is defined later.

2. Maximal K2,3-Minor Free and K4-Minor Free Graphs

We say that a graph G is k-colored if the vertices of G are colored by at most k-
colors such that each vertex has a different color from any of its adjacent vertices.
A C4-multicoloring of a graph G is a 4-coloring of G that assigns four distinct
colors to the vertices of every cycle of length 4. A 2-tree is defined recursively as
follows. A single edge is a 2-tree. Any graph obtained from a 2-tree by adding a
new vertex and making it adjacent to the end vertices of an existing edge is also
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a 2-tree. It is well known that the maximal K4-minor free graphs are exactly the
2-trees.

Now, we will give some results on maximal K4-minor free graph and maximal
K2,3-minor free graph which are useful in what follows.

Lemma 7 [16]. Let G be a connected graph. Then G is a maximal K2,3-minor

free graph if and only if the following holds.

(1) Each block of G is either a K4 or is a maximal outerplanar graph not iso-

morphic to K4 − e.

(2) If two blocks share a common vertex, then at least one of them is a K4.

Lemma 8 [16]. Every maximal K2,3-minor free G admits a C4-multicoloring.

Lemma 9 [16]. Let G be a maximal K2,3-minor free with δ(G) ≥ 2. If R ⊆ V (G)
contains all vertices of some given color, then R dominates all vertices of V (G),
except possibly those of degree 2.

Let c be a k-coloring of vertices of a graph G. For a set S ⊆ V (G), c(S) =
{c(v) : v ∈ S} denotes the colors which appear on the vertices in S under c.

Lemma 10 [16]. A maximal K4-minor free graph G with order n ≥ 4 admits a

C4-multicoloring such that
∣

∣c(NG(v))
∣

∣ = 3 for any vertex v with dG(v) ≥ 3.

Lemma 11 [16]. Assume that G is a maximal K4-minor free graph with a C4-

multicoloring c satisfying the property as described in the previous Lemma 10. If

R ⊆ V (G) contains all vertices of some given color, then R dominates all vertices

of V (G), except possibly those of degree 2.

Next, we are ready to give the proof of Theorem 4.

Proof. Let G be a maximal K2,3-minor free and K4-free graph or a maximal
K4-minor free graph satisfying the assumption of Theorem 4. It is clear that
every maximal K4-minor free graph of order at least 3 has minimum degree 2.
By Lemma 7, one can see that δ(G) ≥ 2 if G is a maximal K2,3-minor free and
K4-free graph of order at least 3. Thus, δ(G) ≥ 2. Let S = {v1, v2, . . . , vk}
be the set of vertices of G having degree 2 and ui be one of the two vertices
adjacent to vi for each i ∈ {1, 2, . . . , k}. We prepare a set of additional vertices
S′ = {v′1, v

′
2, . . . , v

′
k} and construct a graph G′ with V (G′) = V (G) ∪ S′ and

E(G′) = E(G) ∪ {v′1v1, v
′
2v2, . . . , v

′
kvk} ∪ {v′1u1, v

′
2u2, . . . , v

′
kuk}.

It is clear that G′ is a maximal K2,3-minor free and K4-free graph if G
is a maximal K2,3-minor free and K4-free graph, and G′ a maximal K4-minor
free graph if G is maximal K4-minor free graph. So, by Lemmas 8 and 10,
G′ has a C4-multicoloring c. Let Vt denote the set of vertices assigned color
t, where t ∈ {1, 2, 3, 4}. Choosing one suitable color class, say V1, such that
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|V1| ≤
⌊

|G′|
4

⌋

=
⌊

n+k
4

⌋

. Note that every vertex of S has degree 3 in G′. By

Lemmas 9 and 11, V1 dominates all vertices of G.

By Lemma 7, we known that if G′ is a maximal K2,3-minor free and K4-free
graph, then G′ is a maximal outerplanar graph. Note that a maximal outerplanar
graph is 2-tree. It is well known that the maximal K4-minor free graphs are
exactly the 2-trees. Thus, G′ is a 2-tree. Let Gi = Gi−1 − vi for i = 1, 2, . . . , n+
k − 3, where vi is a vertex of degree 2 in Gi−1 and G0 = G′. It is clear that
Gn−k+3 is a K3.

Let X = V2 ∪ V3 ∪ V4. Next, we show that the subgraph G′[X] is connected.
Equivalently, we only need to show that if G′[V (Gi) ∩ X] is connected, then
G′[V (Gi−1) ∩X] is also connected. Suppose that G′[V (Gi) ∩X] is connected. If
c(vi) = 1, then G′[V (Gi) ∩ X] = G′[V (Gi−1) ∩ X]. Otherwise, c(vi) ∈ {2, 3, 4}.
Clearly, at most one neighbor of vi is colored by 1 in Gi−1. It follows that
G′[V (Gi−1) ∩X] is connected. Therefore, G′[X] is connected.

Finally, let V1∩S′ = {v′i1 , v
′
i2
, . . . , v′ik} and V ′

1 = (V1−S′)∪{vi1 , vi2 , . . . , vik}.
We can see that V1 dominated V (G) and so does V ′

1 . Thus, V ′
1 is an outer

connected dominating set of G satisfying |V ′
1 | = |V1| ≤

⌊

n+k
4

⌋

.

3. Striped Maximal Outerplanar Graphs

Lemma 12 [12]. Let G be a striped maximal outerplanar graph of order n > 4.
Then for any vertex v ∈ V (G) of degree 2, the degrees of two neighbors of v are

3 and l (l ≥ 4), respectively.

By Lemma 12, for a striped maximal outerplanar graph G of order n ≥ 6 and
a vertex u ∈ V (G) adjacent to a 2-degree vertex and a 3-degree vertex, we define
a graph Gu and the DELETED VERTEX SEQUENCE (v1, v2, . . .) as follows.

Procedure CREATE GRAPH (G, u);

input: a graph G and a vertex u ∈ V (G).

begin

i := 1;S := ∅;
T := {w : w ∈ N [u], dG−S(w) = 2};
while (t 6= ∅)
begin

select a vertex v ∈ T ;

S := S ∪ {v}; vi := v; i := i+ 1;

T := {w : w ∈ N [u], dG−S(w) = 2};
end

Gu := G− S;

end.
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Figure 2. The case of Gu with n− p vertices.

Figure 3. The case of Gu with n− p− 1 vertices.

In fact, Gu is a subgraph of G obtained by repeatedly removing vertices of
degree 2 in N [u] from G, and vi is the ith removal of the procedure CREATE
GRAPH. See Figures 2 and 3. Let d(u) = p. If n = p+1, then G is a p-fan, Gu is
isomorphic to K2 and γ̃c(G) = 1. If n ≥ p+2, by Lemma 12, it can be seen that
u = vp−1 and the DELETED VERTEX SEQUENCE is (v1, v2, . . . , vp−1(= u), vp)
or (v1, v2, . . . , vp−1(= u), vp, vp+1). Thus Gu has n − p or n − p − 1 vertices.
Furthermore, if n = p + 2 or p + 3, then Gu is isomorphic to K2. If n ≥ p + 4,
then Gu is still a striped maximal outerplanar graph.

Next, we define a family G of striped maximal outerplanar graphs G with the
following properties.

(1) dG(v) ≥ 7 for each vertex v adjacent to a 2-degree vertex.

(2) Gv has n − p vertices and vp−2vp+1 ∈ E(G), as illustrated in Figure
2(b), where Gv is the graph arising from CREATE GRAPH corresponding to the
vertex v.

Theorem 13. Let G /∈ G be a striped maximal outerplanar graph of order n ≥ 8
and u be a vertex of G that adjacent to a 2-degree vertex and a 3-degree vertex.

Then γ̃c(G) = γ̃c(G
u) + 1.

Proof. It is clear that the result is true for n ≤ d(u) + 3. So, n ≥ d(u) + 4.
Let dG(u) = p and N(u) = {v1, v2, . . . , vp}. Let (v1, v2, . . .) be the DELETED
VERTEX SEQUENCE of the CREATE GRAPH. Let S1 be a minimum outer
connected dominating set of Gu. Suppose that |V (Gu)| = |V (G)| − p and
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vp−2vp+1 ∈ E(G) as shown in Figure 2(b). Since G /∈ G, 4 ≤ dG(u) ≤ 6. Let

S′ =

{

S1 ∪ {u} if vp+1 /∈ S1,
S1 ∪ {v2} if vp+1 ∈ S1.

It is clear that S′ is an outer connected dominating set of G. Therefore,
γ̃c(G) ≤ |S′| = |S1|+ 1 = γ̃c(G

u) + 1.
In what following, we consider the remaining case that |V (Gu)| = |V (G)|− p

and vp−2vp ∈ E(G) as shown in Figure 2(a) or |V (Gu)| = |V (G)|−p−1 as shown
in Figure 3. One can see that S1 ∪ {u} is an outer connected dominating set of
G. Therefore, γ̃c(G) ≤ |S1|+ 1 = γ̃c(G

u) + 1.
Next, we shall show that γ̃c(G

u) ≤ γ̃c(G) − 1. Let S be a minimum outer
connected dominating set of G. Note that S contains at least one vertex of N [v1]
and N [vi] ⊆ N [u] for any i ∈ {1, 2, . . . , l − 2}.

We can distinguish four cases as follows.

Case 1. |V (Gu)| = |V (G)| − p and vp−2vp ∈ E(G) (see Figure 2(a)). The
degree of vp in G− {v1, v2, vp−2, u} is 2 and NG[u] ∪NG[vp] ⊆ NG[u] ∪NG[vp+1].
We consider a set S′ with

S′ =

{

(S \ {v1, v2, . . . , vp−2}) ∪ {u} if vp /∈ S,
(S \ {v1, v2, . . . , vp−2, vp}) ∪ {t1} if vp ∈ S.

Case 2. |V (Gu)| = |V (G)| − p and vp−2vp+1 ∈ E(G) (see Figure 2(b)). Since
G /∈ G and |V (Gu)| = |V (G)| − p, we have 4 ≤ dG(u) ≤ 6 and dG(t1) = 3. We
consider a set S′ with

S′ =







(S \ {v1, v2, . . . , vp−2}) ∪ {u} if {vp, vp+1} * S;
(S \ {v1, v3, . . . , vp−2}) ∪ {v2} if vp+1 ∈ S and vp /∈ S;
(S \ {v1, v2, . . . , vp−2, vp}) ∪ {u, t1} if vp+1 /∈ S and vp ∈ S.

Case 3. |V (Gu)| = |V (G)| − p − 1 and vpt1 ∈ E(G) (see Figure 3(a)). We
consider a set S′ with

S′ =























(S \ {v1, v2, . . . , vp−2}) ∪ {u} if {vp, vp+1} 6⊆ S;
(S \ {v1, v2, . . . , vp−2, vp, vp+1}) ∪ {u, t2} if vp ∈ S and dG(t2) = 3 or

vp+1 ∈ S and dG(t2) = 3;
(S \ {v1, v2, . . . , vp−2, vp, vp+1}) ∪ {u, t1} if vp ∈ S and dG(t2) ≥ 4 or

vp+1 ∈ S and dG(t2) ≥ 4.

Case 4. |V (Gu)| = |V (G)| − p − 1 and vpt2 ∈ E(G) (see Figure 3(b)). We
consider a set S′ with

S′ =























(S \ {v1, v2, . . . , vp−2}) ∪ {u} if {vp, vp+1} 6⊆ S;
(S \ {v1, v2, . . . , vp−2, vp, vp+1}) ∪ {u, t1} if vp ∈ S and dG(t1) = 3 or

vp+1 ∈ S and dG(t1) = 3;
(S \ {v1, v2, . . . , vp−2, vp, vp+1}) ∪ {u, t2} if vp ∈ S and dG(t1) ≥ 4 or

vp+1 ∈ S and dG(t1) ≥ 4.
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In all cases, it can be easily seen that S′ is a minimum outer connected
dominating set of G and S′ \ {u} ⊆ V (Gu)(S′ \ {v2} ⊆ V (Gu)). It is clear that
S′ \ {u} is a minimum outer connected dominating set of Gu. Thus, γ̃c(G

u) ≤
γ̃c(G)− 1.

Now, we are ready to give the construction of a family graphs A which was
construct by Zhuang in [17]. Each graph in Figures 4 and 5 is called “basic
graph”, and each graph depicted in Figure 6 is called “gadget”. For each of those
graphs, there are some dashed edges whose end vertices marked with letter x
and y, respectively, or x′ and y′, respectively. We call the former “xy-edge”, and
the latter “x′y′-edge”. Each graph of A is recursively constructed from one of
the basic graphs, and some of the gadgets. Next, we introduce an operations as
follows. At first, each of the basic graphs is denoted by G0.

Operation 1. In step i (i ≥ 1), we select an xy-edge of (i− 1)th gadget of Gi−1,
identify one of the x′y′-edge of the ith gadget and the xy-edge we selected to a
single edge such that the vertex x corresponding to the vertex x′, and the vertex
y corresponding the vertex y′, we denote the resulting graph by Gi.

Note that in Operation 1, each Gi is a striped maximal outerplanar graph.
Next, for 1 ≤ i ≤ 6, let Ai be the family of striped maximal outerplanar graph
G defined as follows and let A = (

⋃6
i=1Ai) ∪ {K3}.

Figure 4. Basic graphs (1).

A1 = {G : G is obtained from H3 by a finite sequence of Operation 1,
each corresponding gadget is H ′

3, except t gadgets (0 ≤ t ≤ 3) which belong to
{H ′

4, H
′′
4 , H

′
5}} ∪ {H3}.

A2 = {G : G is obtained from H3 by a finite sequence of Operation 1, each
corresponding gadget is H ′

3, except one gadget which belongs to {H ′
6, H

′
7, H

′
8, H

′
9,

H ′
10, H

′
11}}.
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Figure 5. Basic graphs (2).

A3 = {G : G is obtained from H3 by a finite sequence of Operation 1,
each corresponding gadget is H ′

3, except two gadgets P1 and P2, where P1 ∈
{H ′

4, H
′′
4 , H

′
5} and P2 ∈ {H ′

6, H
′
8, H

′
10}}.

A4 = {G : G is obtained from one of H4 and H5 by a finite sequence of
Operation 1, and each corresponding gadget is H ′

3, except possibly one gadget
which belongs to {H ′

6, H
′
8, H

′
10}, or possibly at most two gadgets which belong to

{H ′
4, H

′′
4 , H

′
5}} ∪ {H4, H5}.

A5 = {G : G is obtained from one of H1, H6, H8, H10, H12 and H14 by a
finite sequence of Operation 1, each corresponding gadget is H ′

3, except possibly
one gadget which belongs to {H ′

4, H
′′
4 , H

′
5}} ∪ {H1, H6, H8, H10, H12, H14}.

A6 = {G : G is obtained from one of H2, H7, H9, H11, H13 and H15 by
a finite sequence of Operation 1, and each corresponding gadget is {H ′

3}} ∪
{H2, H7, H9, H11, H13, H15}.

In Figure 7, we give an example G obtained from basic graph H3 by one
Operation 1, the corresponding gadget is H ′

3. Hence G ∈ A1.

In Figure 8, we give two counterexamples to Conjecture 3. Since for the
graph G of Figure 8(a) with |V (G)| ≡ 0 (mod 4), but G /∈ A1 ∪ A2 ∪ A4 ∪ A5.
However, we can show that if G /∈ G is a striped maximal outerplanar graph,
Conjecture 3 is true.
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Figure 6. Gadgets.

Figure 7. Example of A.

Theorem 14. Let G /∈ G be a striped maximal outerplanar graph. Then, γ̃c(G) =
⌊

n+2
4

⌋

if and only if G ∈ A.

Proof. The sufficiency is easy to verify. So we prove the necessity only. If n ≤ 7,
then G is K3 or isomorphism to one of the graphs shown in Figure 5. That is,
G ∈ A. Thus n ≥ 8. By Lemma 12, let u be a vertex of G that adjacent to
a 2-degree vertex and a 3-vertex and let d(u) = p and N(u) = {v1, v2, . . . , vp},
where p ≥ 4 and d(v1) = 2. It is clear that n ≥ d(u) + 2. If n ≤ n + 1, then
G ∼= Fp, where p ≤ 4. Which contradicts the fact that n ≥ 8. Suppose that
d(u)+2 ≤ n ≤ d(u)+3 or n ≥ d(u)+4 and Gu = 3. One can see that γ̃c(G) = 2.
Then we have n = 8, 9. It follows that G is isomorphic to one of the ten graphs
in Figure 6.

Thus, we only consider n ≥ d(u) + 4 and |Gu| ≥ 4. Assume that for any
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Figure 8. Counterexamples of Conjecture 3.

striped maximal outerplanar graph of order n < n′, the result holds. It is clear
that

γ̃c(G) =

⌊

n+ 2

4

⌋

=

{

⌊

n
4

⌋

if n ≡ 0, 1 (mod 4),
⌈

n
4

⌉

otherwise.

In what following, we will consider four cases.

Figure 9. (v1, v2, u, v3) is the DELETED VERTEX SEQUENCE of the procedure CRE-
ATE GRAPH.

Case 1. |G| = 4k, where k ≥ 2. Then G is a graph satisfying γ̃c(G) = k. By
Theorem 13, γ̃c(G

u) = γ̃c(G)−1 = k−1. Note that Gu is also a striped maximal

outerplanar graph with |Gu| ≥ 4. If |Gu| = n − d(u), then γ̃c(G
u) ≤

⌊

n−d(u)
4

⌋

when |Gu| ≡ 0, 1 (mod 4) and γ̃c(G
u) ≤

⌈

n−d(u)
4

⌉

when |Gu| ≡ 2, 3 (mod 4).

Similarly, if |Gu| = n − d(u) − 1, then γ̃c(G
u) ≤

⌊

n−d(u)−1
4

⌋

when n ≡ 0, 1

(mod 4) and γ̃c(G
u) ≤

⌈

n−d(u)−1
4

⌉

when n ≡ 2, 3 (mod 4). It is easy to verify

that d(u) = 4, 5, 6 when |Gu| = n−d(u) and d(u) = 4, 5 when |Gu| = n−d(u)−1.
We can distinguish three subcases as follows.

Subcase 1.1. |Gu| = n− d(u) and d(u) = 4. Note that |Gu| ≡ 0 (mod 4). By
the induction hypothesis, Gu ∈ {A1,A2,A4,A5}. More precisely, there are four
possibilities for Gu.

(1) Gu is obtained from H3 by a finite sequence of Operation 1, and following
gadget is H ′

3, except two gadgets which belong to {H ′
4, H

′′
4 , H

′
5}. Without loss

of generality, let v1, v2, u, v3 be the DELETED VERTEX SEQUENCE of the
procedure CREATE GRAPH, we have the situations depicted in Figure 9. We
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can see that E(G) \ E(Gu) = {v1u, v2u, v3u, v4u, v1v2, v2v3, v3v4, v3t} or E(G) \
E(Gu) = {v1u, v2u, v3u, v4u, v1v2, v2v4, v3v4, v3t}, where t is the neighbor of v4
of degree 2 in Gu. One can see that G is obtained from the basic graph Gu by
Operation 1, and the gadget is H ′

3. So G ∈ A1.

(2) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except one gadget which belongs to {H ′
6, H

′
8, H

′
10}.

(3) Gu is obtained from one of H4 and H5 by a finite sequence of Operation
1, and following gadget is H ′

3, except one gadget which belongs to {H ′
4, H

′′
4 , H

′
5}.

(4) Gu is obtained from one of H1, H6, H8, H10, H12 and H14 by a finite
sequence of Operation 1, and each following gadget is H ′

3.

For the three cases (2), (3) and (4), by the similar argument of (1), G is
obtained from Gu by one Operation 1, and the gadget is H ′

3. So, G ∈ {A1,A2,
A4,A5}.

Figure 10. (v1, v2, u, v3, v4) is the DELETED VERTEX SEQUENCE of the procedure
CREATE GRAPH.

Subcase 1.2. |Gu| = n−d(u) and d(u) = 5, or |Gu| = n−d(u)−1 and d(u) = 4.
Note that |Gu| ≡ 3 (mod 4). By the induction hypothesis, Gu ∈ {A1,A4}. More
precisely, Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except one gadget which belong to {H ′
4, H

′′
4 , H

′
5} or Gu

is obtained from one of H4 and H5 by a finite sequence of Operation 1, and
each following gadget is H ′

3. In the former case, by the similar argument of
Case 1.1, G is obtained from Gu by Operation 1, and the gadget is H ′

4. In
the latter case, without loss of generality, let v1, v2, u, v3, v4 be the DELETED
VERTEX SEQUENCE of the procedure CREATE GRAPH, we have the sit-
uations depicted in Figure 10. We can see that E(G) \ E(Gu) = {v1u, v2u,
v3u, v4u, v1v2, v2v3, v3v4, v3t1, v4t1v4t2} or E(G) \ E(Gu) = {v1u, v2u, v3u, v4u,
v1v2, v2v4, v3v4, v3t2, v4t1, v4t2}. In either case, G is obtained from Gu by one
Operation 1, and the gadget is one of H ′

5 and H ′′
4 . So G ∈ A1 ∪ A4.

Subcase 1.3. |Gu| = n−d(u) and d(u) = 6, or |Gu| = n−d(u)−1 and d(u) = 5.
It is easy to see that |Gu| ≡ 2 (mod 4). By the induction hypothesis, Gu ∈ A1.
More precisely, Gu is obtained from H3 by a finite sequence of Operation 1, and
each following gadget is H ′

3.
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In the former case, by the similar argument (1) of Case 1.1, it means that G
is obtained from Gu by one Operation 1, and the gadget is H ′

6. So G ∈ A2. In
the latter case, similar to the argument as in Case 1.2, G is obtained from Gu by
one Operation 1, and the gadget is one of H ′

8 and H ′
10. So G ∈ A2.

Case 2. |G| = 4k + 1, where k ≥ 2. Then G is a graph satisfying γ̃c(G) = k.
Similar to the argument as in Case 1, we have d(u) = 4, 5, 6, 7 when |Gu| =
n − d(u) and d(u) = 4, 5, 6 when |Gu| = n − d(u) − 1. We distinguish four
subcases as follows.

Subcase 2.1. |Gu| = n− d(u) and d(u) = 4. Note that |Gu| ≡ 1 (mod 4). By
the induction hypothesis, Gu ∈ {A1,A2,A3,A4,A5,A6}. More precisely, there
are seven possibilities for Gu.

(1) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except three gadgets which belong to {H ′
4, H

′′
4 , H

′
5}.

(2) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except one gadget which belongs to {H ′
7, H

′
9, H

′
11}.

(3) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except two gadgets P1 and P2, where P1 ∈ {H ′
4, H

′′
4 , H

′
5}

and P2 ∈ {H ′
6, H

′
8, H

′
10}.

(4) Gu is obtained from one of H4 and H5 by a finite sequence of Operation
1, and following gadget is H ′

3, except one gadget which belongs to {H ′
6, H

′
8, H

′
10}.

(5) Gu is obtained from one of H4 and H5 by a finite sequence of Operation
1, and following gadget is H ′

3, except two gadgets which belong to {H ′
4, H

′′
4 , H

′
5}.

(6) Gu is obtained from one of H1, H6, H8, H10, H12 and H14 by a finite
sequence of Operation 1, and each following gadget is H ′

3, except one gadget
which belongs to {H ′

4, H
′′
4 , H

′
5}.

(7) Gu is obtained from one of H2, H7, H9, H11, H13 and H15 by a finite
sequence of Operation 1, and each following gadget is H ′

3.

Analogous to the argument as in Case 1, G is obtained from Gu by one
Operation 1, and the gadget is H ′

3. So, G
u ∈ {A1,A2,A3,A4,A5,A6}.

Subcase 2.2. |Gu| = n−d(u) and d(u) = 5, or |Gu| = n−d(u)−1 and d(u) = 4.
Note that |Gu| ≡ 0 (mod 4). By the induction hypothesis, Gu ∈ {A1,A2,A4,A5}.
More precisely, there are four possibilities for Gu.

(1) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except two gadgets which belong to {H ′
4, H

′′
4 , H

′
5}.

(2) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except one gadget which belongs to {H ′
6, H

′
8, H

′
10}.

(3) Gu is obtained from one of H4 and H5 by a finite sequence of Operation
1, and following gadget is H ′

3, except one gadget which belongs to {H ′
4, H

′′
4 , H

′
5}.

(4) Gu is obtained from one of H1, H6, H8, H10, H12 and H14 by a finite
sequence of Operation 1, and each following gadget is H ′

3.
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It is easy to see that G is obtained from Gu by one Operation 1, and the
gadget is one of H ′

4, H
′′
4 and H ′

5. So, G ∈ {A1,A3,A4,A5}.

Subcase 2.3. |Gu| = n−d(u) and d(u) = 6, or |Gu| = n−d(u)−1 and d(u) = 5.
Note that |Gu| ≡ 3 (mod 4). By the induction hypothesis, Gu ∈ {A1,A4}. More
precisely, there are two possibilities for Gu.

(1) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except one gadget which belong to {H ′
4, H

′′
4 , H

′
5}.

(2) Gu is obtained from one of H4 and H5 by a finite sequence of Operation
1, and each following gadget is H ′

3.

In either case, one can see that G is obtained from Gu by one Operation 1,
and the gadget is one of H ′

6, H
′
8 and H ′

10. So, G ∈ {A3,A4}.

Subcase 2.4. |Gu| = n − d(u) and d(u) = 7, or |Gu| = n − d(u) − 1 and
d(u) = 6. Note that |Gu| ≡ 2 (mod 4). By the induction hypothesis, Gu ∈ A1.
More precisely, Gu is obtained from H3 by a finite sequence of Operation 1, and
each following gadget is H ′

3. In the former case, one can see that G is obtained
from Gu by one Operation 1, and following gadget is H ′

7. So G ∈ A2. In the
latter case, G is obtained from Gu by one Operation 1, and following gadget is
one of H ′

9 and H ′
11. So G ∈ A2.

Case 3. |G| = 4k+2, where k ≥ 2. Then G is a graph satisfying γ̃c(G) = k+1.
Similar to the previous discussion, it is easy to verify that d(u) = 4 when |Gu| =
n − d(u). Note that |Gu| ≡ 2 (mod 4). By the induction hypothesis, Gu ∈ A1.
More precisely, Gu is obtained from H3 by a finite sequence of Operation 1, and
each following gadget is H ′

3. Analogous to the argument as in Case 1, it is easy
to see that G is obtained from Gu by one Operation 1, and the gadget is H ′

3. So,
G ∈ A1.

Case 4. |G| = 4k+3, where k ≥ 2. Then G is a graph satisfying γ̃c(G) = k+1.
Similar to the previous discussion, it is easy to verify that d(u) = 4, 5 when
|Gu| = n − d(u) and d(u) = 4 when |Gu| = n − d(u) − 1. We distinguish three
subcases as follows.

Subcase 4.1. |Gu| = n− d(u) and d(u) = 4. Note that |Gu| ≡ 3 (mod 4). By
the induction hypothesis, Gu ∈ {A1,A4}. More precisely, there are 2 possibilities
for Gu.

(1) Gu is obtained from H3 by a finite sequence of Operation 1, and each
following gadget is H ′

3, except one gadget which belong to {H ′
4, H

′′
4 , H

′
5}.

(2) Gu is obtained from one of H4 and H5 by a finite sequence of Operation
1, and each following gadget is H ′

3.

Analogous to the previous argument, G is obtained from Gu by one Operation
1, and the gadget is H ′

3. So, G
u ∈ {A1,A4}.
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Subcase 4.2. |Gu| = n− d(u) and d(u) = 5. Note that |Gu| ≡ 2 (mod 4). By
the induction hypothesis, Gu ∈ A1. More precisely, Gu is obtained from H3 by a
finite sequence of Operation 1, and each following gadget is H ′

3. Thus, it is easy
to see that G is obtained from Gu by one Operation 1, and the gadget is H ′

4. So
G ∈ A1.

Subcase 4.3. |Gu| = n− d(u)− 1 and d(u) = 4. Note that |Gu| ≡ 2 (mod 4).
By the induction hypothesis, Gu ∈ A1. More precisely, Gu is obtained from H3

by a finite sequence of Operation 1, and each following gadget is H ′
3. One can

see that G is obtained from Gu by one Operation 1, and the gadget is one of H ′′
4

and H ′
5. So G ∈ A1.
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