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Abstract

Let G be a simple graph of order n and let γgdR(G) be the global double
Roman domination number of G. In this paper, we give some upper bounds
on the global double Roman domination number of G. In particular, we
completely characterize the graph G with γgdR(G) = 2n− 2 and γgdR(G) =
2n− 3. Our results answer a question posed by Shao et al. (2019).
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1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The open

neighborhood of a vertex v in G is the set N(v) = NG(v) = {u ∈ V (G) : uv ∈
E(G)} and its closed neighborhood is the set N [v] = NG[v] = N(v) ∪ {v}. The
degree of a vertex v in G is d(v) = dG(v) = |N(v)|. The minimum degree
and maximum degree among all vertices of G are denoted by δ = δ(G) and
∆ = ∆(G), respectively. The distance d(u, v) between two vertices u and v of a
connected graph G is the length of a shortest (u, v)-path in G. The maximum
distance among all pairs of vertices in G is the diameter of G, which is denoted by
diam(G). A diametral path of G is a geodesic whose length equals the diameter
of G. The girth g(G) of G is the length of a shortest cycle in G.

As usual, let Pn, Cn and Kn denote the path, the cycle and the complete
graph of order n, respectively, and let Kp, q denote the complete bipartite graph
with two partite sets having p and q vertices. The complement of a graph G is
the graph G, where V (G) = V (G) and uv ∈ E(G) if and only if uv /∈ E(G). A
complete subgraph of a graph G is called a clique of G. The clique number of a
graph G, denoted by ω(G), is the maximum order among the complete subgraphs
of G. A subset S of vertices of G is an independent set if no two vertices of S are
adjacent in G. We denote the graph obtained from G by deleting one edge by
G− e. For a subset X of vertices of G, the subgraph induced by X is denoted by
G[X]. The union of graphs G1 and G2, denoted by G1 ∪ G2, is the graph with
vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). If G is a disjoint union
of k copies of a graph H, then we write G = kH.

A double Roman dominating function (abbreviated DRDF) on a graph G is
a function f : V (G) → {0, 1, 2, 3} having the property that if f(v) = 0, then the
vertex v must be adjacent to at least two vertices assigned 2 or one vertex assigned
3 under f , whereas if f(v) = 1, then the vertex v must be adjacent to at least one
vertex assigned 2 or 3. The weight of a DRDF f is the sum ω(f) =

∑

v∈V (G) f(v).
The double Roman domination of graphs was introduced by Beeler et al. [5], and
has been studied by several authors [1, 2, 6, 10, 11, 15, 16].

Global domination in graphs was introduced by Sampathkumar [13]. A sub-
set S of vertices of a graph G is a global dominating set of G if S is a dominating
set of both G and G. The global domination number of G is the minimum car-
dinality of a global dominating set. The concept of global domination in graphs,
with its many variations, is now well studied in, e.g., [3, 4, 7, 9, 12].

As a natural extension, the concept of global double Roman dominating
function on a graph was introduced by Shao et al. [14] and further studied by
Hao and Chen [8]. A DRDF f : V (G) → {0, 1, 2, 3} on G is called a global

double Roman dominating function (GDRDF) on G if f is also a DRDF on
the complement G of G. The global double Roman domination number of G,
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denoted by γgdR(G), is the minimum weight of a GDRDF on G. Shao et al.

[14] characterized the connected graph G of order n with γgdR(G) = 2n and
γgdR(G) = 2n− 1.

Theorem 1 [14]. Let G be a connected graph of order n ≥ 3. Then

(i) γgdR(G) = 2n if and only if G = Kn;

(ii) γgdR(G) = 2n− 1 if and only if G = Kn − e.

Shao et al. [14] further posed the problem of characterizing the graph G of
order n with γgdR(G) = 2n− 2.

In this paper, we first establish some upper bounds on the global double
Roman domination number of a graph and then we resolve the aforementioned
problem by giving a complete characterization of the graph G with γgdR(G) =
2n− 2 and γgdR(G) = 2n− 3.

In particular, we will prove the following result.

Theorem 2. For any graph G of order n,

(i) γgdR(G) = 2n−2 if and only if G or G belongs to {P4, C4, C5,K1,3,K
−−

4 , P4∪
K1, 2K2 ∪ (n− 4)K1, G1},

(ii) γgdR(G) = 2n− 3 if and only if G or G belongs to {K−−

n , 3K2 ∪ (n− 6)K1,
C3 ∪ (n− 3)K1, C4 ∪K1, P4 ∪ (n− 4)K1, G2},

where K−−

n denotes the graph obtained from Kn by deleting any two adjacent edges

and, G1 and G2 are the graphs depicted in Figure 1(a) and (b), respectively.

Unless otherwise mentioned, we would hereafter require that n ≥ 5 for the
graphs 2K2 ∪ (n− 4)K1, K

−−

n and C3 ∪ (n− 3)K1, and that n ≥ 6 for the graphs
3K2 ∪ (n− 6)K1 and P4 ∪ (n− 4)K1.

(a) G1 (b) G2

Figure 1. The graphs G1 and G2.

The proof of Theorem 2 will be given in Section 3.

2. Upper Bounds

In this section we present some upper bounds for global double Roman domina-
tion number of graphs in terms of diameter, girth and clique number. We start
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with an upper bound on γgdR(G) of a connected graph G with diam(G) ≥ 4.

Proposition 3. For any connected graph G of order n with diam(G) ≥ 4,

γgdR(G) ≤

{

2n− diam(G)− 1, if diam(G) ≡ 2 (mod 3),
2n− diam(G), if diam(G) ≡ 0 or 1 (mod 3).

Proof. Let v1v2 · · · vk be a diametral path of G. If diam(G) ≡ 2 (mod 3), then
one can check that the function f defined by f(v3i+2) = 3, f(v3i+1) = f(v3i+3) =
0 for 0 ≤ i ≤ k−3

3 and f(x) = 2 for each x ∈ V (G)\{v1, v2, . . . , vk}, is a GDRDF
on G and hence

γgdR(G) ≤ ω(f) = 2(n− diam(G)− 1) + diam(G) + 1 = 2n− diam(G)− 1.

If diam(G) ≡ 0 (mod 3), then the function f defined by f(vk) = 2, f(v3i+2) =
3, f(v3i+1) = f(v3i+3) = 0 for 0 ≤ i ≤ k−4

3 and f(x) = 2 for each x ∈
V (G)\{v1, v2, . . . , vk}, is a GDRDF on G and hence

γgdR(G) ≤ ω(f) = 2(n− diam(G)− 1) + diam(G) + 2 = 2n− diam(G).

If diam(G) ≡ 1 (mod 3), then the function f defined by f(vk) = 3, f(vk−1) = 0,
f(v3i+2) = 3, f(v3i+1) = f(v3i+3) = 0 for 0 ≤ i ≤ k−5

3 and f(x) = 2 for each
x ∈ V (G)\{v1, v2, . . . , vk}, is a GDRDF on G and as above we have γgdR(G) ≤
2n− diam(G). This completes the proof.

Proposition 4. Let G be a connected graph of order n with diam(G) ≥ 3 and

ω(G) ≥ 3. Then

γgdR(G) ≤ 2n− ω(G) + 1.

Furthermore, if G has a clique H of size ω(G) such that each vertex of H but

possibly one has at least two non-neighbors in V (G) \ V (H), then

γgdR(G) ≤ 2n− 2ω(G) + 3.

Proof. Let H be a clique of G with size ω(G) and let V (H) = {v1, v2, . . . , vω(G)}.
Define the function f on V (G) by f(x) = 1 for each x ∈ V (H)\{v1} and f(x) = 2
for each x ∈ (V (G)\V (H))∪{v1}. Since each vertex in V (H)\{v1} is adjacent to
v1 in G, we have that f is a DRDF on G. On the other hand, since diam(G) ≥ 3,
we have that each vertex in V (H)\{v1} is adjacent to some vertex of V (G)\V (H)
in G and hence f is a DRDF on G. Thus f is a GDRDF on G. As a result,

γgdR(G) ≤ ω(f) = 2(n− ω(G)) + ω(G) + 1 = 2n− ω(G) + 1.

Now, assume that each vertex of H but possibly v1 has two non-neighbors
in V (G) \ V (H). Define the function f on V (G) by f(v1) = 3, f(x) = 0 for each
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x ∈ V (H)\{v1} and f(x) = 2 for each x ∈ V (G) \ V (H). Since each vertex in
V (H) \ {v1} is adjacent to v1 in G, f is a DRDF on G. On the other hand, since
each vertex in V (H) \ {v1} is adjacent to at least two vertices in V (G) \V (H) in
G, f is a DRDF on G. Thus f is a GDRDF on G and hence

γgdR(G) ≤ ω(f) = 2(n− ω(G)) + 3 = 2n− 2ω(G) + 3,

as desired.

Proposition 5. Let G be a connected graph of order n with diam(G) = 3. Then

γgdR(G) ≤ 2n− 2.

Furthermore, if there exists a diametral path v1v2v3v4 such that d(v1) ≥ 2 or

d(v4) ≥ 2, then
γgdR(G) ≤ 2n− 4.

Proof. Let v1v2v3v4 be a diametral path ofG. It is easy to verify that the function
f defined by f(v1) = f(v4) = 3, f(v2) = f(v3) = 0 and f(x) = 2 otherwise, is a
GDRDF on G and hence γgdR(G) ≤ ω(f) = 2(n− 4) + 6 = 2n− 2.

Suppose that d(v1) ≥ 2 (the case when d(v4) ≥ 2 is similar). Let w ∈
N(v1)\{v2}. Then the function f defined by f(v1) = f(v4) = 3, f(v2) = f(v3) =
f(w) = 0 and f(x) = 2 otherwise, is a GDRDF on G and hence γgdR(G) ≤
ω(f) = 2(n− 5) + 6 = 2n− 4.

Proposition 6. Let G be a connected graph of order n with diam(G) = 2. Then

γgdR(G) ≤ n+ δ(G) + 1.

Furthermore, if δ(G) ≤ n− 4, then

γgdR(G) ≤ 2n− 4.

Proof. Let u be a vertex of G with minimum degree δ(G). Since diam(G) = 2,
we have that every vertex of V (G)\N [u] has a neighbor in N(u) in G, and that
every vertex of V (G)\N [u] is adjacent to u in G. Thus the function f defined by
f(x) = 2 for each x ∈ N [u] and f(x) = 1 otherwise, is a GDRDF on G implying
that γgdR(G) ≤ ω(f) = (n− δ(G)− 1) + 2δ(G) + 2 = n+ δ(G) + 1.

If δ(G) ≤ n− 5, then it follows that γgdR(G) ≤ n+ δ(G) + 1 ≤ 2n− 4. So in
the following we may assume that δ(G) = n − 4. Let N(u) = {u1, u2, . . . , un−4}
and X = V (G) \ N [u] = {v1, v2, v3}. Since diam(G) = 2, N(vi) ∩ N(u) 6= ∅ for
each vi ∈ X. We consider four cases.

Case 1. n ≥ 8. Note that δ(G) = n−4 ≥ 4. One can verify that the function
g1 defined by g1(u) = 3, g1(x) = 2 for each x ∈ N(u) and g1(x) = 0 otherwise, is
a GDRDF on G implying that γgdR(G) ≤ ω(g1) = 2δ(G) + 3 = 2n− 5.
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Case 2. n = 7. Note that δ(G) = n − 4 = 3. If each vi ∈ X has at
least two neighbors in N(u), then the function g1 defined above is a GDRDF
on G implying that γgdR(G) ≤ ω(g1) = 2δ(G) + 3 = 2n − 5. As shown earlier,
N(vi) ∩ {u1, u2, u3} 6= ∅ for each vi ∈ X. So in the following we may assume
that some vertex, say v1, in X has exactly one neighbor, say u1, in N(u). Since
δ(G) = 3, we obtain v1v2, v1v3 ∈ E(G), and hence the function g2 defined by
g2(u) = g2(v1) = 3, g2(u1) = 2 and g2(x) = 0 otherwise, is a GDRDF on G
implying that γgdR(G) ≤ ω(g2) = 8 < 2n− 4.

Case 3. n = 6. Note that δ(G) = n − 4 = 2. If each vi ∈ X is adjacent to
both of u1 and u2, then the function g1 defined above is a GDRDF on G implying
that γgdR(G) ≤ ω(g1) = 7 < 2n − 4. As shown earlier, N(vi) ∩ {u1, u2} 6= ∅ for
each vi ∈ X. Hence we may assume that there exists some vertex, say v1, in X
such that N(v1) ∩ {u1, u2} = {u1}. Moreover, since δ(G) = 2, we may assume
that v1v2 ∈ E(G).

If v1v3 ∈ E(G), then the function g2 defined above is a GDRDF onG implying
that γgdR(G) ≤ ω(g2) = 8 = 2n − 4. If v1v3 /∈ E(G) and v2v3 /∈ E(G), then
N(v3) = {u1, u2} since δ(G) = 2, and so the function g3 defined by g3(u) =
g3(v1) = 0 and g3(x) = 2 otherwise, is a GDRDF on G implying that γgdR(G) ≤
ω(g3) = 8 = 2n − 4. So in the following we may assume that v1v3 /∈ E(G) and
v2v3 ∈ E(G).

Note that N(v2) ∩ {u1, u2} 6= ∅. If N(v2) ∩ {u1, u2} = {u1} (the case when
N(v2) ∩ {u1, u2} = {u2} is similar), then the function g4 defined by g4(u) =
g4(v2) = 3, g4(u1) = 2 and g4(x) = 0 otherwise, is a GDRDF on G implying that
γgdR(G) ≤ ω(g4) = 8 = 2n−4. We next consider the case when {u1, u2} ⊆ N(v2).

Note that N(v3) ∩ {u1, u2} 6= ∅. If u1 ∈ N(v3), then the function g5 defined
by g5(u) = g5(u1) = 3, g5(u2) = 2 and g5(x) = 0 otherwise, is a GDRDF on G
implying that γgdR(G) ≤ ω(g5) = 8 = 2n − 4. If u1 /∈ N(v3) and u2 ∈ N(v3),
then the function g6 defined by g6(v1) = g6(v3) = 0 and g6(x) = 2 otherwise, is a
GDRDF on G implying that γgdR(G) ≤ ω(g6) = 8 = 2n− 4.

Case 4. n = 5. Note that δ(G) = n − 4 = 1. The function g7 defined by
g7(u) = g7(u1) = 3 and g7(x) = 0 otherwise, is a GDRDF on G implying that
γgdR(G) ≤ ω(g7) = 6 = 2n− 4.

This completes the proof.

Proposition 7. For any connected graph G of order n with g(G) ≥ 6,

γgdR(G) ≤

{

2n− g(G), if g(G) ≡ 0, 2, 3, 4 (mod 6),
2n− g(G) + 1, if g(G) ≡ 1 or 5 (mod 6).

Proof. Let C = v1v2 · · · vg(G)v1 be a cycle of G. If g(G) ≡ 0, 3 (mod 6), then the

function f defined by f(v3i+2) = 3, f(v3i+1) = f(v3i+3) = 0 for 0 ≤ i ≤ g(G)−3
3
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and f(x) = 2 for each x ∈ V (G)\V (C), is a GDRDF on G and hence γgdR(G) ≤
ω(f) = 2(n− g(G)) + g(G) = 2n− g(G).

If g(G) ≡ 2, 4 (mod 6), then the function f defined by f(v2i) = 2, f(v2i−1) =

0 for 1 ≤ i ≤ g(G)
2 and f(x) = 2 for each x ∈ V (G)\V (C), is a GDRDF on G and

as above we have γgdR(G) ≤ 2n− g(G).
If g(G) ≡ 1 (mod 6), then the function f defined by f(vg(G)) = 2, f(v3i+2) =

3, f(v3i+1) = f(v3i+3) = 0 for 0 ≤ i ≤ g(G)−4
3 and f(x) = 2 for each x ∈

V (G)\V (C), is a GDRDF on G and as above we have γgdR(G) ≤ 2n− g(G) + 1.
If g(G) ≡ 5 (mod 6), then the function f defined by f(vg(G)) = 3, f(vg(G)−1) =

0, f(v3i+2) = 3, f(v3i+1) = f(v3i+3) = 0 for 0 ≤ i ≤ g(G)−5
3 and f(x) = 2 for

each x ∈ V (G)\V (C), is a GDRDF on G and as above we obtain γgdR(G) ≤
2n− g(G) + 1.

This completes the proof.

Proposition 8. For any connected graph G of order n ≥ 6 with g(G) = 5,

γgdR(G) ≤ 2n− 4.

Proof. Let C = v1v2v3v4v5v1 be a cycle of G. Since G is a connected graph of
order n ≥ 6, we may assume that v1 has a neighbor w ∈ V (G) \ V (C). One can
check that the function f defined by f(v3) = f(v5) = 0 and f(x) = 2 for each
x ∈ V (G) \ {v3, v5}, is a GDRDF on G and so γgdR(G) ≤ 2n− 4, as desired.

3. Proof of Theorem 2

For any connected graph G, Proposition 3 indicates that to prove Theorem 2 it
suffices to consider those graphs G with diam(G) ≤ 3. For the case of diam(G) =
3, we have the following result.

Lemma 9. Let G be a graph of order n ≥ 4 with diam(G) = 3. Then

(i) γgdR(G) = 2n− 2 if and only if G ∈ {P4, G1};

(ii) γgdR(G) = 2n− 3 if and only if G = G2.

Proof. If n = 4, then G = P4 and the result is trivial. So in the following we
may assume that n ≥ 5. Suppose now that γgdR(G) ∈ {2n − 2, 2n − 3}. Let
P = v0v1v2v3 be a diametral path of G. By Proposition 5, we may assume that
d(v0) = d(v3) = 1. We proceed with some claims.

Claim 1. d(v1) = d(v2) = 3.

Proof. Since d(v0) = d(v3) = 1 and n ≥ 5 by our earlier assumption, we have
d(v1) ≥ 3 or d(v2) ≥ 3. Suppose first that d(v1) = 2 and d(v2) ≥ 3 (the case
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d(v1) ≥ 3 and d(v2) = 2 is similar). Then the function f defined by f(v1) =
f(v2) = 3 and f(x) = 0 otherwise, is a GDRDF on G and hence γgdR(G) ≤
ω(f) = 6 ≤ 2n− 4, which is a contradiction. Suppose second that d(v1) ≥ 4 (the
case d(v2) ≥ 4 is similar). Note that d(v3) = 1. Then the function f defined by
f(x) = 0 for each x ∈ N(v1)\{v2}, f(v1) = f(v3) = 3 and f(x) = 2 otherwise, is a
GDRDF on G and hence γgdR(G) ≤ ω(f) = 2(n−|N(v1)\{v2}|−2)+6 ≤ 2n−4,
which is a contradiction. Consequently, we have d(v1) = d(v2) = 3. Thus Claim
1 holds. �

Claim 2. v1 and v2 have a unique common neighbor, say v4.

Proof. Suppose that u1 ∈ N(v1)\{v0, v2} and u2 ∈ N(v2)\{v1, v3} are two
distinct vertices. Note that d(v1) = d(v2) = 3 by Claim 1. Then the function f
defined by f(u1) = f(u2) = f(v0) = f(v3) = 0, f(v1) = f(v2) = 3 and f(x) = 2
otherwise, is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n − 6, which is a
contradiction. Therefore, by Claim 1, we have N(v1)\{v0, v2} = N(v2)\{v1, v3},
implying that Claim 2 holds. �

Claim 3. γgdR(G) = 2n− 2 if and only if G = G1.

Proof. Suppose that γgdR(G) = 2n − 2. Now let n ≥ 6. By Claims 1 and 2
and our earlier assumption, there must exist v5 ∈ V (G)\{v0, v1, v2, v3, v4} that
is a neighbor of v4. Then the function f defined by f(v0) = f(v3) = f(v5) = 1
and f(x) = 2 otherwise, is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n− 3,
which is a contradiction. Thus n = 5. Now, by combining Claims 1 and 2 and
our earlier assumption, we have G = G1. On the other hand, if G = G1, then it
is easy to verify that γgdR(G) = 2n− 2. Thus Claim 3 holds. �

Claim 4. γgdR(G) = 2n− 3 if and only if G = G2.

Proof. Suppose that γgdR(G) = 2n − 3. Let n ≥ 7. By our earlier assumption
and Claims 1 and 2, we have V (G)\{v0, v1, v2, v3, v4} ⊆ N(v4) since diam(G) = 3.
Then the function f defined by f(v0) = f(v2) = 2, f(v3) = f(v4) = 3 and
f(x) = 0 otherwise, is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 10 ≤ 2n−4,
which is a contradiction. This implies that n ∈ {5, 6}. Then by our earlier
assumption and Claims 1, 2 and 3, we have G = G2. On the other hand, if
G = G2, then it is easy to verify that γgdR(G) = 2n− 3. Thus Claim 4 holds. �

The proof is completed.

We next discuss the case of diam(G) = 2. We first consider the graph G with
diam(G) = ω(G) = 2.

Lemma 10. Let G be a graph of order n ≥ 4 with diam(G) = ω(G) = 2. Then

(i) γgdR(G) = 2n− 2 if and only if G ∈ {C4, C5,K1,3};

(ii) γgdR(G) 6= 2n− 3.
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Proof. By Proposition 6 we may assume that δ(G) ≥ n − 3. If δ(G) = n − 1,
then G = Kn, a contradiction to our assumption that diam(G) = 2. Therefore,
δ(G) ∈ {n − 2, n − 3}. Let u be a vertex of G with degree δ(G). Note that G is
triangle-free since ω(G) = 2. We have the following two claims.

Claim 1. If δ(G) = n− 2, or δ(G) = n− 3 and n ∈ {4, 5}, then

(i) γgdR(G) = 2n− 2 if and only if G ∈ {C4, C5,K1,3};

(ii) γgdR(G) 6= 2n− 3.

Proof. Recall that diam(G) = 2 and G is triangle-free. First, suppose that
δ(G) = n−2. If n = 4, then clearly G = C4 and γgdR(G) = 2n−2. If n ≥ 5, then
every vertex of N(u) has degree at most 2, a contradiction to our assumption
that δ(G) = n− 2 ≥ 3.

Second, suppose that δ(G) = n − 3 and n ∈ {4, 5}. If n = 4, then δ(G) =
n − 3 = 1 and hence G = K1,3, implying that γgdR(G) = 2n − 2. Assume next
that n = 5. Clearly δ(G) = n − 3 = 2. Moreover, since G is triangle-free, this
forces ∆(G) ∈ {2, 3}. If ∆(G) = 2, then G = C5 and we have γgdR(G) = 2n− 2.
If ∆(G) = 3, then it is not difficult to check that G = K2,3 and clearly γgdR(G) =
2n− 4. Claim 1 holds. �

Claim 2. If δ(G) = n− 3 and n ≥ 6, then γgdR(G) ≤ 2n− 4.

Proof. Let N(u) = {u1, u2, . . . , un−3} and let V (G) \ N [u] = {v1, v2}. Assume
that v1v2 ∈ E(G). Since diam(G) = 2 and G is triangle-free, we have that each
ui ∈ N(u) is adjacent to exactly one of v1 and v2 and so d(ui) = 2 < n−3 = δ(G),
a contradiction. Therefore, we obtain v1v2 6∈ E(G). Since δ(G) = n− 3 ≥ 3, one
can observe that the function f defined by f(u1) = f(u2) = f(v1) = f(v2) = 1
and f(x) = 2 otherwise, is a GDRDF ofG implying that γgdR(G) ≤ ω(f) = 2n−4.
Thus Claim 2 holds. �

The proof is completed.

For the case when diam(G) = 2 and ω(G) ≥ 3, we need more detailed
analysis. For this purpose, we shall adopt the following notations. For a graph
G with diam(G) = 2, let U1 be a subset of vertices of G that induces a maximum
clique in G, and let U2 = V (G)\U1 and |Ui| = ni for i ∈ {1, 2}.

Lemma 11. Let G be a graph of order n ≥ 4 with diam(G) = 2 and ω(G) ≥ 3
and let U2 induce a clique. Then

(i) γgdR(G) = 2n− 2 if and only if G = K−−

4 , G = P4 ∪K1 or G = 2K2 ∪ (n−
4)K1 (n ≥ 5);

(ii) γgdR(G) = 2n − 3 if and only if G = K−−

n (n ≥ 5), G = C4 ∪ K1, G =
3K2 ∪ (n− 6)K1 (n ≥ 6), or G = P4 ∪ (n− 4)K1 (n ≥ 6).
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Proof. We have the following claims.

Claim 1. If n2 = 1, then

(i) γgdR(G) = 2n− 2 if and only if G = K−−

4 ;

(ii) γgdR(G) = 2n− 3 if and only if G = K−−

n (n ≥ 5).

Proof. The sufficiency is trivial. We proceed to show the necessity. Suppose that
γgdR(G) ∈ {2n−2, 2n−3}. Let U2 = {u}. By Proposition 6, we have δ(G) ≥ n−3
and hence u is not adjacent to at most two vertices of U1. This implies that
G ∈ {Kn − e,K−−

n }. If G = Kn − e, then by Theorem 1(ii), γgdR(G) = 2n− 1, a
contradiction. Therefore, we have G = K−−

n (n ≥ 4). Claim 1 holds. �

Claim 2. If n2 = 2, then

(i) γgdR(G) = 2n−2 if and only if G = P4∪K1 or G = 2K2∪(n−4)K1 (n ≥ 5);

(ii) γgdR(G) = 2n−3 if and only if G = C4∪K1 or G = P4∪ (n−4)K1 (n ≥ 6).

Proof. The sufficiency is trivial. We proceed to show the necessity. Since
n1 = ω(G) ≥ 3, we have n ≥ 5. Suppose that γgdR(G) ∈ {2n − 2, 2n − 3}. Let
U2 = {u1, u2}. Since δ(G) ≥ n−3, by Proposition 6, and U1 induces a maximum
clique, we must have |U1\N(ui)| ∈ {1, 2} for each i ∈ {1, 2}.

First, suppose that |U1\N(u1)| = |U1\N(u2)| = 1. If U1\N(u1) = U1\N(u2),
then N [u1] induces a clique of order n1 + 1, which contradicts the maximality of
U1. Thus U1\N(u1) 6= U1\N(u2). Let U1\N(u1) = {v1} and U1\N(u2) = {v2},
where v1 6= v2. It is easy to check that {u1, u2, v1, v2} induces 2K2 and U1\{v1, v2}
induces (n− 4)K1 in G. As a result, we have G = 2K2 ∪ (n− 4)K1 (n ≥ 5).

Second, suppose that |U1\N(u1)| = |U1\N(u2)| = 2. Without loss of gen-
erality, assume that U1\N(u1) = {v1, v2} and U1\N(u2) = {v3, v4}. If v1, v2
and v3 are distinct, then the function f defined by f(u2) = f(v1) = f(v2) = 0,
f(u1) = f(v3) = 3 and f(x) = 2 otherwise, is a GDRDF on G and hence
γgdR(G) ≤ ω(f) = 2n−4, a contradiction. Thus v3 ∈ {v1, v2}. Similarly, we have
v4 ∈ {v1, v2}. This implies that U1\N(u1) = U1\N(u2) = {v1, v2}. Then it is
easy to check that {u1, u2, v1, v2} induces C4 and U1\{v1, v2} induces (n− 4)K1

in G. As a result, we have G = C4 ∪ (n − 4)K1. Moreover, if n ≥ 6, then
let C4 = x1x2x3x4x1 and define the function f on V (G) by f(x1) = f(x3) = 0
and f(x) = 2 for the remaining vertices. Clearly, f is a GDRDF on G and so
γgdR(G) ≤ 2n−4, a contradiction. Therefore, we have n = 5 and so G = C4∪K1.

Finally, suppose that one of |U1\N(u1)| and |U1\N(u2)| is equal to one and
the other is equal to two. Without loss of generality, assume that U1\N(u1) =
{v1} and U1\N(u2) = {v2, v3}. If v1, v2 and v3 are distinct, then the function f
defined by f(u1) = f(v2) = f(v3) = 0, f(u2) = f(v1) = 3 and f(x) = 2 otherwise,
is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n − 4, a contradiction. Thus
v1 ∈ {v2, v3} and hence we may assume that U1\N(u1) = {v2} and U1\N(u2) =
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{v2, v3}. It is easy to check that {u1, u2, v2, v3} induces P4 and U1\{v2, v3} induces
(n − 4)K1 in G. As a result, we have G = P4 ∪ (n − 4)K1 (n ≥ 5). Claim 2
holds. �

Claim 3. If n2 ≥ 3, then γgdR(G) ≤ 2n − 3 with equality if and only if G =
3K2 ∪ (n− 6)K1 (n ≥ 6).

Proof. Since n1 = ω(G) ≥ 3, we have n ≥ 6. By Proposition 6, it suffices to
consider the case that δ(G) ≥ n − 3. Let U2 = {u1, u2, . . . , un2

}. Assume first
that there exists some vertex, say u1, in U2 such that |U1\N(u1)| ≥ 2. Let v1
and v2 be two distinct vertices in U1\N(u1). Moreover, since δ(G) ≥ n− 3, u1 is
adjacent to all vertices in U1\{v1, v2} and so {v1, v2} = U1\N(u1). Then there
must exist two vertices u ∈ U2 and v3 ∈ U1\{v1, v2} such that uv3 /∈ E(G) (for
otherwise, V (G)\{v1, v2} induces a clique of order n1 + n2 − 2 ≥ n1 + 1, which
is a contradiction to the maximality of U1). Note that u 6= u1 since {v1, v2} =
U1\N(u1). One can verify that the function f defined by f(u) = f(v1) = f(v2) =
0, f(u1) = f(v3) = 3 and f(x) = 2 otherwise, is a GDRDF on G and hence
γgdR(G) ≤ ω(f) = 2n − 4. So in the following we may assume that for each i ∈
{1, 2, . . . , n2}, |U1\N(ui)| ≤ 1. Moreover, since U1 induces a maximum clique, we
have that for each i ∈ {1, 2, . . . , n2}, |U1\N(ui)| ≥ 1. This forces |U1\N(ui)| = 1
for each i ∈ {1, 2, . . . , n2}.

Suppose now that there exist two vertices, say u1 and u2, in U2 such that
(U1\N(u1)) ∩ (U1\N(u2)) 6= ∅. Without loss of generality, assume that v1 ∈
(U1\N(u1)) ∩ (U1\N(u2)). By our earlier assumption, we have U1\N(u1) =
U1\N(u2) = {v1}. This implies that (U1\{v1})∪{u1, u2} induces a clique of order
n1+1, a contradiction to the maximality of U1. Thus (U1\N(ui))∩(U1\N(uj)) = ∅
for 1 ≤ i < j ≤ n2.

Let U1 = {v1, v2, . . . , vn1
}. By our earlier assumptions, we may assume that

U1\N(ui) = {vi} for each 1 ≤ i ≤ n2. It is easy to check that {ui, vi : 1 ≤ i ≤ n2}
induces n2K2 and U1\{vi : 1 ≤ i ≤ n2} induces (n − 2n2)K1 in G. As a result,
we have G = n2K2 ∪ (n − 2n2)K1. If n2 ≥ 4, then clearly γgdR(G) ≤ 2n − 4. If
n2 = 3, that is, if G = 3K2 ∪ (n− 6)K1 (n ≥ 6), then clearly γgdR(G) = 2n− 3.
Claim 3 holds. �

This completes the proof.

Lemma 12. Let G be a graph of order n ≥ 5 with diam(G) = 2 and ω(G) ≥ 3
and let U2 be an independent set with n2 ≥ 2. Then

(i) γgdR(G) = 2n− 2 if and only if G = P4 ∪K1;

(ii) γgdR(G) = 2n − 3 if and only if G ∈ {C3 ∪ (n − 3)K1 (n ≥ 5), P4 ∪ (n −
4)K1 (n ≥ 6)}.

Proof. Suppose that γgdR(G) ∈ {2n − 2, 2n − 3}. By Proposition 6, we must
have δ(G) ≥ n − 3. Since U2 is independent and U1 induces a maximum clique,
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we must have n2 = 2. Let U2 = {u1, u2}. Since U1 induces a maximum clique,
we have |U1\N(u1)| ≥ 1 and |U1\N(u2)| ≥ 1. On the other hand, it follows from
δ(G) ≥ n− 3 that |U1\N(u1)| = |U1\N(u2)| = 1. Assume that U1\N(u1) = {v1}
and U1\N(u2) = {v2}.

If v2 6= v1, then it is easy to check that {u1, u2, v1, v2} induces P4 and
U1\{v1, v2} induces (n−4)K1 in G, implying that G = P4∪ (n−4)K1 (n ≥ 5). If
v2 = v1, then it is easy to check that {u1, u2, v1} induces C3 and U1\{v1} induces
(n− 3)K1 in G, implying that G = C3 ∪ (n− 3)K1 (n ≥ 5).

The converse is clear, which completes the proof.

Lemma 13. Let G be a graph of order n ≥ 4 with diam(G) = 2 and ω(G) ≥ 3
and let U2 neither induce a clique nor be an independent set. Then

γgdR(G) ≤ 2n− 4.

Proof. According to Proposition 6, we can assume that δ(G) ≥ n− 3. Since U2

neither induces a clique nor is an independent set, we have that n2 ≥ 3. Since
ω(G) ≥ 3 and U1 is a maximum clique of G, we have n1 ≥ 3 and U1\N(u) 6= ∅ for
each u ∈ U2. Moreover, since δ(G) ≥ n− 3, each vertex u in U2 is adjacent to all
vertices in U2\{u} except at most one. It follows that the induced subgraph G[U2]
is connected. Since U2 does not induce a clique, G[U2] contains P3 = u1u2u3 as
an induced subgraph. In particular, u1u3 6∈ E(G). Moreover, since δ(G) ≥ n− 3
and U1 \N(ui) 6= ∅ for each i ∈ {1, 3}, we obtain |U1 \N(ui)| = 1 for i ∈ {1, 3}.
We proceed with some claims.

Claim 1. If N(ui)∩N(u2)∩U1 = ∅ for some i ∈ {1, 3}, then γgdR(G) ≤ 2n− 4.

Proof. Without loss of generality, assume that N(u1)∩N(u2)∩U1 = ∅. As shown
earlier, |U1\N(u1)| = 1. Hence we may assume that U1\N(u1) = {v1}. Moreover,
sinceN(u1)∩N(u2)∩U1 = ∅, we have (U1\{v1})∩N(u2) = N(u1)∩N(u2)∩U1 = ∅.
If v1 /∈ N(u2), then U1∩N(u2) = ∅ and hence d(u2) ≤ n−|U1|−1 = n−n1−1 =
n−ω(G)−1 ≤ n−4 < δ(G), a contradiction. Thus we have v1 ∈ N(u2).Moreover,
since (U1\{v1})∩N(u2) = ∅ as shown earlier, we have U1∩N(u2) = {v1}. One can
verify that the function f defined by f(u1) = f(u2) = 0 and f(x) = 2 otherwise,
is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n− 4. Thus Claim 1 holds. �

Claim 2. If N(u1) ∩N(u2) ∩N(u3) ∩ U1 = ∅, then γgdR(G) ≤ 2n− 4.

Proof. If N(ui)∩N(u2)∩U1 = ∅ for some i ∈ {1, 3}, then by Claim 1, γgdR(G) ≤
2n− 4. So in the following we may assume that N(ui)∩N(u2)∩U1 6= ∅ for each
i ∈ {1, 3}. Without loss of generality, assume that v1 ∈ N(u1) ∩N(u2) ∩ U1 and
v2 ∈ N(u3) ∩N(u2) ∩ U1. Since N(u1) ∩N(u2) ∩N(u3) ∩ U1 = ∅, we have that
v1 6= v2, v1 /∈ N(u3) and v2 /∈ N(u1). Moreover, since U1 induces a maximum
clique, u2 is not adjacent to at least one vertex, say v3, in U1. As shown earlier,
|U1 \N(u3)| = 1 and v1 /∈ N(u3). Thus we have v3 ∈ N(u3). Then the function
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f defined by f(u2) = f(u3) = f(v2) = 0, f(u1) = f(v3) = 3 and f(x) = 2
otherwise, is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n − 4. Thus Claim
2 holds. �

By Claim 2, we can assume that v1 ∈ N(u1) ∩ N(u2) ∩ N(u3) ∩ U1 in the
following.

Claim 3. If (U1\N(u1)) ∩ (U1\N(u3)) 6= ∅, then γgdR(G) ≤ 2n− 4.

Proof. Without loss of generality, assume that v2 ∈ (U1\N(u1)) ∩ (U1\N(u3)).
Since |U1 \ N(ui)| = 1 for each i ∈ {1, 3}, we obtain that u1 and u3 must be
adjacent to all vertices in U1\{v2}. Moreover, since U1 induces a maximum
clique, U1\N(u2) 6= ∅. One can check that the function f defined by f(v2) =
3, f(u2) = 1, f(u1) = f(u3) = 0 and f(x) = 2 otherwise, is a GDRDF on G and
hence γgdR(G) ≤ ω(f) = 2n− 4. Claim 3 is true. �

As shown earlier, |U1\N(ui)| = 1 for each i ∈ {1, 3}. Further, by Claim 3,
we may assume that (U1\N(u1)) ∩ (U1\N(u3)) = ∅. Then there must exist two
distinct vertices, say v2 and v3, such that U1\N(u1) = {v2} and U1\N(u3) = {v3}.

Claim 4. If vi ∈ N(u2) for some i ∈ {2, 3}, then γgdR(G) ≤ 2n− 4.

Proof. First, suppose that v2 ∈ N(u2). Since U1 induces a maximum clique,
there exists some vertex, say xi, in U1\{v1, v2} such that xi /∈ N(u2). It is easy to
verify that the function f defined by f(u3) = f(v2) = f(xi) = 0, f(u1) = f(u2) =
3 and f(x) = 2 otherwise, is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n−4.

Second, suppose that v2 /∈ N(u2) and v3 ∈ N(u2). Then the function f
defined by f(u1) = f(v2) = f(v3) = 0, f(u2) = f(u3) = 3 and f(x) = 2
otherwise, is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n − 4. Thus Claim
4 holds. �

u

v vv

u u1

1 32

2 3

Figure 2. The graph G3.

By Claim 4, we may assume that v2 /∈ N(u2) and v3 /∈ N(u2). By our earlier
assumptions, we note that v1 ∈ N(u1) ∩N(u2) ∩N(u3) ∩ U1, U1\N(u1) = {v2}
and U1\N(u3) = {v3}. Thus G contains G3 as an induced subgraph, where G3
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is depicted in Figure 2. Then the function f defined by f(u2) = f(u3) = 0 and
f(x) = 2 otherwise, is a GDRDF on G and hence γgdR(G) ≤ ω(f) = 2n − 4,
which completes the proof.

Now, we are ready to give the proof of Theorem 2.

Proof of Theorem 2. For any connected graph G of order n ≥ 4, by combining
Theorem 1, Proposition 3 and Lemmas 9, 10, 11, 12 and 13, we can conclude
that

• γgdR(G) = 2n − 2 if and only if G ∈ {P4, C4, C5,K1,3,K
−−

4 , G1} or G ∈
{2K2 ∪ (n− 4)K1(n ≥ 5), P4 ∪K1};

• γgdR(G) = 2n − 3 if and only if G ∈ {K−−

n (n ≥ 5), G2} or G ∈ {3K2 ∪ (n −
6)K1(n ≥ 6), C3 ∪ (n− 3)K1(n ≥ 5), C4 ∪K1, P4 ∪ (n− 4)K1(n ≥ 6)}.

Recall that the complement G of a disconnected graph G is connected and
γgdR(G) = γgdR(G). Moreover, note that the complements of P4, C5, G1 and G2

are connected graphs. Therefore, for any disconnected graph G of order n ≥ 4,
we have

• γgdR(G) = 2n − 2 if and only if G ∈ {C4,K1,3,K
−−

4 } or G ∈ {2K2 ∪ (n −
4)K1(n ≥ 5), P4 ∪K1};

• γgdR(G) = 2n − 3 if and only if G = K−−

n (n ≥ 5) or G ∈ {3K2 ∪ (n −
6)K1(n ≥ 6), C3 ∪ (n− 3)K1(n ≥ 5), C4 ∪K1, P4 ∪ (n− 4)K1(n ≥ 6)}.

Note that for any graph G of order n ≤ 3, it is not difficult to check that
γgdR(G) ∈ {2n, 2n− 1}. Now, by combining the above arguments, we can obtain
the desired result. This completes the proof of Theorem 2.
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