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Abstract

Let n and k be two integers and G a graph with n = 5k vertices. Wang
proved that if δ(G) ≥ 3k, then G contains k vertex disjoint cycles of length
5. In 2018, Chiba and Yamashita asked whether the degree condition can be
replaced by degree sum condition. In this paper, we give a positive answer
to this question.
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1. Introduction

Let G be a graph. We denote by V (G) and E(G) the vertex set and edge set of
G, respectively, and call |V (G)| the order of G. An edge joining two vertices x
and y is denoted by xy. A class of subgraphs of G is vertex disjoint, or simply
disjoint, if no two subgraphs in the class have a common vertex. The length of a
cycle C (or a path P ) is the number of edges on C (or P ). For X ⊆ V (G), the
neighbour set of X, denoted by NG(X) or N(X) with no confusion, is the set of
the vertices not in X but adjacent to at least one vertex in X. In particular, if
X consists of a single vertex x, then we call |NG({x})| the degree of x and denote
it by dG(x). We use δ(G) to denote the minimum degree of vertices in G. Define

σ2(G) = min{d(x) + d(y) : x, y ∈ V (G), x 6= y, xy /∈ E(G)}.

The degree condition for the existence of cycle(s) with specified length(s) is
one of the most elementary concerns in graph theory. A classic result should be
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the one given by Dirac [4] in 1952, which says that every graph with n vertices
and minimum degree at least n/2 has a Hamilton cycle. Since then, this result
has been generalized to various forms in terms of degree condition or degree sum
condition. Corrádi and Hajnal [2] considered the maximum number of disjoint
cycles in a graph and proved that if a graph G has at least 3k vertices and
minimum degree at least 2k, then G contains k disjoint cycles. In particular,
when G has exactly 3k vertices, then G contains k disjoint triangles. Erdős and
Faudree [6] conjectured that if G has 4k vertices and minimum degree δ(G) ≥ 2k,
then G contains k vertex disjoint cycles of length 4. This conjecture was later
confirmed by Wang [7]. In general, El-Zahar posed the following conjecture.

Conjecture 1 (El-Zahar, [5]). Let G be a graph of order n = n1 + n2 + · · ·+ nk
with ni ≥ 3 for each i ∈ {1, 2, . . . , k}. If δ(G) ≥

⌈

n1

2

⌉

+
⌈

n2

2

⌉

+ · · ·+
⌈

nk

2

⌉

, then G
has k disjoint cycles of length n1, n2, . . . , nk, where, for a real number r, ⌈r⌉ is

the least integer not less than r.

In the same paper, El-Zahar also proved that the above conjecture is true
for k = 2. In [1], Abbasi confirmed the conjecture for sufficiently large graphs by
using the regularity lemma. Wang [8] proved the conjecture for the case when
n = 5k and ni = 5 (1 ≤ i ≤ k) as follows.

Theorem 2 (Wang, [8]). Let k be a positive integer and G a graph of order

n = 5k. If δ(G) ≥ (n+k)/2, then G contains k vertex disjoint cycles of length 5.

In 2018, Chiba and Yamashita [3] posed the following question.

Question (Chiba and Yamashita, [3]). Let k be a positive integer and G a graph
of order n = 5k. Is it true that if σ2(G) ≥ n+k, then G contains k vertex disjoint
cycles of length 5?

In this paper, we give a positive answer to this question.

Theorem 3. Let k be a positive integer and G a graph of order n = 5k. If

σ2(G) ≥ n+ k, then G contains k vertex disjoint cycles of length 5.

2. Preliminaries

For X,Y ⊆ V (G), we denote by N(X) |Y the neighbour set of X restricted
on Y , i.e., N(X) |Y = N(X) ∩ Y . For simplicity, if X consists of a single
vertex x, we simply write N({x}) |Y as N(x) |Y , and if H is a subgraph of
G, then we simply write N(X) |V (H) as N(X) |H. A chord of a cycle C is
an edge not on C that joins two vertices of C, and the number of chords of
C is denoted by τ(C). Further, for x ∈ V (C), we use τ(x,C) to denote the
number of chords of C that are incident with x. For a graph H, we say that



Degree Sum Condition for Vertex-Disjoint 5-Cycles 557

G contains H if G has a subgraph isomorphic to H and denote by G ⊇ H.
For two graphs G and G′, we denote by G ⊎ G′ the vertex disjoint union of
G and G′. For simplicity, we write the vertex disjoint union of k copies of a
graph H as kH. For two disjoint vertex subsets, or subgraphs, A and B of G,
we define E(A,B) to be the set of all the edges of G between A and B and
denote e(A,B) = |E(A,B)|. For a vertex subset X of G, we denote by [X]
the subgraph of G induced by X. Further, for subgraphs G1, G2, . . . , Gt of G,
we write [V (G1) ∪ V (G2) ∪ · · · ∪ V (Gt)] = [G1, G2, . . . , Gt]. For t + 1 disjoint
subgraphs H,L1, . . . , Lt of G, we call {H,L1, . . . , Lt} a family of G if Li

∼= C5

for all i ∈ {1, 2, . . . , t}. In particular, we call a family {H,L1, . . . , Lt} optimal if
∑t

i=1 τ(L
′
i) ≤

∑t
i=1 τ(Li) for any family {H ′, L′

1, . . . , L
′
t} of [H,L1, . . . , Lt] with

H ′ ∼= H and L′
i
∼= C5 for all i ∈ {1, 2, . . . , t}.

As usual, for i ≥ 3, we denote by Ki, Ci and Pi the complete graph, cycle
and path of order i, respectively. Following the notations in [8], let B,F, F1, F2,
F3, F4, F5,K

+
4 be the graphs as illustrated in Figure 1. Let L be a 5-cycle,

u ∈ V (L) and x ∈ V (G) \ V (L). We write x → (L, u) if [L − u + x] ⊇ C5. In
particular, if x → (L, u) for all u ∈ V (L), then we write x → L. Further, for
{v1, v2} ⊆ V (G), we write x → (L, u; {v1, v2}) if x → (L, u) and u is adjacent to
both v1 and v2.
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Figure 1. The subgraphs B,F, F1, F2, F3, F4, F5,K
+

4 .

To prove the main theorem, we introduce the following lemmas.

Lemma 4 [8]. For a graph G, the following statements hold.

(a) Let B1 and B2 be two disjoint subgraphs of G with B1
∼= B2

∼= B and

R the set of the four vertices of degree 2 in B1. If e(R,B2) ≥ 13, then

[B1, B2] ⊇ 2C5 or [B1, B2] ⊇ B ⊎ C5.

(b) Let D and L be two disjoint subgraphs of G with D ∼= B and L ∼= C5 and x
the unique vertex of degree 4 in D. If e(D − x, L) ≥ 13, then [D,L] ⊇ 2C5.

(c) Let D and L be two disjoint subgraphs of G with D ∼= F2 and L ∼= C5

and R the set of the three vertices of degree 2 in D. If e(R,L) ≥ 10, then
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[D,L] ⊇ F1 ⊎ C5.

(d) Let P and L be two disjoint subgraphs of G with P ∼= P5 and L ∼= C5. If

e(P,L) ≥ 16, [P,L] + 2C5 and {P,L} is optimal, then [P,L] ⊇ F ⊎ C5.

(e) Let R ⊆ V (G) and L be a 5-cycle in G − R. If |R| = 4 and e(R,L) ≥ 13,
then x→ (L, y; {x1, x2}) for some y ∈ V (L), x ∈ R and {x1, x2} ⊆ R \ {x};
or there are vertex labellings R = {x1, x2, x3, x4} and L = y1y2y3y4y5y1 such

that N(x1) |L = N(x2) |L = {y1, y2, y3, y4}, N(x3) |L = {y1, y4, y5} and

N(x4) |L = {y1, y4}.

Throughout the following, when we speak of a subgraph isomorphic to one
of that in Figure 1, we always assume that its vertices are labelled as indicated in
the figure. Further, for two vertex subsets {x1, x2, . . . , xk} and {y1, y2, . . . , yh},
we write e({x1, x2, . . . , xk}, {y1, y2, . . . , yh}) by e(x1x2 · · ·xk, y1y2 · · · yh) for sim-
plicity.

Lemma 5 [8]. For a graph G, the following statements hold.

(a) Let D and L be two disjoint subgraphs of G with D ∼= F and L ∼= C5. If

{D,L} is optimal and e(D,L) ≥ 16, then [D,L] contains one of F1 ⊎ C5,

F2 ⊎ C5, B ⊎ C5 and 2C5; or the cycle L has a labelling L = y1y2y3y4y5y1
satisfying the following property

P1: e(x1, L) = 0, e(x2x4, L) = 10, N(x3) |L = N(x5) |L = {y1, y2, y4},
τ(L) = 4 and y3y5 /∈ E(G).

(b) Let D, L and L′ be three disjoint subgraphs of G with D ∼= F , L ∼= L′ ∼= C5

and L = y1y2y3y4y5y1. If D and L satisfy the property P1 and e(x1x3y3y5,
L′) ≥ 13, then [D,L,L′] contains either F1 ⊎ 2C5 or 3C5.

Lemma 6 [8]. For a graph G, the following statements hold.

(a) Let D and L be two disjoint subgraphs of G with D ∼= F1 and L ∼= C5. If

{D,L} is optimal and e(D,L) ≥ 16, then [D,L] contains one of K+
4 ⊎ C5,

K+
4 ⊎ B, B ⊎ C5 and 2C5; or L has a labelling L = y1y2y3y4y5y1 satisfying

the following property

P2: e(x1, L) = 0, e(y1y2y4, D − x1) = 12, N(y3) |D = N(y5) |D = {x3, x5},
τ(L) = 4 and y3y5 /∈ E.

(b) Let D, L and L′ be three disjoint subgraphs of G with D ∼= F1, L ∼= L′ ∼= C5

and L = y1y2y3y4y5y1. If D and L satisfy P2, {D,L,L′} is optimal and

e(x1x4y3y5, L
′) ≥ 13, then [D,L,L′] contains either K+

4 ⊎ 2C5 or 3C5.

Lemma 7. Let D and L be two disjoint subgraphs of G with D ∼= F3 and L ∼= C5.

If e(D − x3, L) ≥ 13, then [D,L] contains either 2C5 or F ⊎ C5 or B ⊎ C5 or

F4 ⊎ C5.
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Proof. Let L = y1y2y3y4y5y1 and R = V (D)\{x3}. Suppose to the contrary
that [D,L] does not contain any of 2C5, F ⊎ C5, B ⊎ C5 and F4 ⊎ C5. Suppose
e(x4x5, L) ≥ 8. Without loss of generality, assume that e(x4, L) ≥ e(x5, L). If
e(x4, L) = 5, then since e(x1x2x5, L) ≥ 8, L has a vertex yj such that xtyj , x5yj ∈
E(G) for some t ∈ {1, 2} and so x4 → (L, yj ; {x5, xt}). Thus [D,L] contains 2C5

or F ⊎ C5, a contradiction. Then e(x4x5, L) = 8 and e(x4, L) = e(x5, L) = 4,
say N(x4) |L = {y1, y2, y3, y4}. If N(x5) |L = {y1, y2, y3, y5} or N(x5) |L =
{y1, y2, y4, y5} or N(x5) |L = {y1, y3, y4, y5} or N(x5) |L = {y2, y3, y4, y5}, then
since e(x1x2, L) ≥ 5, L has a vertex yj such that xr → (L, yj ; {xs, xt}) for some t ∈
{1, 2} and {r, s} = {4, 5}. Hence [D,L] contains 2C5 or F ⊎ C5, a contradiction.
If N(x5) |L = {y1, y2, y3, y4}, then e(x1x2, y2y3) = 0 for otherwise [D,L] contains
2C5 or F ⊎ C5. Hence e(x1x2, y1y4y5) ≥ 5 and so [x1, x2, y1, y4, y5] ⊇ C5 and
[x3, x4, x5, y2, y3] ⊇ C5, again a contradiction. Therefore e(x4x5, L) ≤ 7 and
hence e(x1x2, L) ≥ 6. If e(x1, L) = 1, say x1y1 ∈ E(G), then e(y2y3, x4x5) ≤
1 (otherwise [y1, y4, y5, x1, x2] ⊇ C5 and [x3, x4, x5, y2, y3] contains C5 or F or
B). Similarly, e(y4y5, x4x5) ≤ 1. Hence e(R,L) ≤ 10, a contradiction. Now
suppose e(x1, L) ≥ 4, say N(x1) |L ⊇ {y1, y2, y3, y4}. If x1 → (L, yi) for some
i ∈ {1, 2, 3, 4, 5}, then e(yi, x4x5) = 0 (otherwise [L − yi + x1] ⊇ C5 and [D +
yi − x1] ⊇ F4). This implies that N(x1) |L = {y1, y2, y3, y4}, e(x4x5, y1y4) = 4,
e(x2, L) = 5. Therefore, [y2, y3, x1, x2, x3] ⊇ F and [y1, y4, y5, x4, x5] ⊇ C5, again
a contradiction.

Case 1. e(x1, L) = 2. In this case, e(x2, L) ≥ 4 as e(x1x2, L) ≥ 6. First
suppose that N(x1) |L = {yi, yi+1} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L =
{y1, y2}, where and herein after, the subscript of a vertex yi on C5 means in i
modulo 5 if i > 5. If x2y4 ∈ E(G), then y1y5y4x2x1y1 ∼= y2y3y4x2x1y2 ∼= C5.
Hence, e(y1y5, x4x5) ≤ 1 and e(y2y3, x4x5) ≤ 1, for otherwise, [y2, y3, x3, x4, x5]
and [y1, y5, x3, x4, x5] would contain C5 or F or B. This means that e(R,L) ≤
11, a contradiction. We now assume x2y4 /∈ E(G) and, hence N(x2) |L =
{y1, y2, y3, y5}. We claim that e(y3y4, x4x5) ≤ 1. If not, then [y1, y2, y5, x1, x2] ⊇
C5, [y3, y4, x3, x4, x5] contains C5 or F or B, a contradiction. Similarly, e(y4y5,
x4x5) ≤ 1. Hence e(R,L) ≤ 12, a contradiction. Next, suppose that N(x1) |L =
{yi, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y3}. As x1 → (L, y2),
e(y2, x4x5) = 0. Recall that e(x2, L) ≥ 4. We have [y1, y2, y3, x1, x2] ⊇ C5.
Therefore, e(y4y5, x4x5) ≤ 1, for otherwise [y4, y5, x3, x4, x5] would contain C5 or
F or B. It follows that e(R,L) ≤ 12, again a contradiction.

Case 2. e(x1, L) = 3. First suppose that N(x1) |L = {yi, yi+1, yi+2} for some
i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y2, y3}. As x1 → (L, y2), e(y2, x4x5) = 0.
Note that [x2, x1, y2, y3, y4] ⊇ F4 and [x2, x1, y1, y2, y5] ⊇ F4. Then e(y3y4, x4x5) ≤
2 and e(y5y1, x4x5) ≤ 2 for otherwise [x3, x4, x5, y3, y4] ⊇ C5 and [x3, x4, x5, y1, y5]
⊇ C5. Hence e(R,L) ≤ 12, a contradiction. Next, suppose that N(x1) |L =
{yi, yi+1, yi+3} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y2, y4}. As x1 →
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(L, yi) for all i ∈ {3, 5}, e(yi, x4x5) = 0. It follows that e(x2, y3y4y5) ≥ 2 and
so [x1, x2, y3, y4, y5] ⊇ F . Then e(y1y2, x4x5) ≤ 2 as [x3, x4, x5, y1, y2] + C5.
Consequently, e(R,L) ≤ 12, a contradiction.

Lemma 8. Let D and L be two disjoint subgraphs of G such that D ∼= F4 and

L ∼= C5. If e(D − x3, L) ≥ 13, then [D,L] contains either 2C5 or F ⊎ C5 or

B ⊎ C5.

Proof. Let L = y1y2y3y4y5y1 and R = V (D)\{x3}. Suppose to the contrary
that [D,L] does not contain any of 2C5, F ⊎ C5 and B ⊎ C5. Without loss of
generality assume that e(x1x2, L) ≥ e(x4x5, L). It is clear that 7 ≤ e(x1x2, L) ≤
10 and, hence 2 ≤ e(x1, L) ≤ 5. If e(x1, L) ≥ 4, say N(x1) |L ⊇ {y1, y2, y3, y4},
then e(yi, x2x4x5) ≤ 1 as x1 → (L, yi) for all i ∈ {2, 3, 5}. Further, we have
e(yj , x2x4x5) ≤ 2 for all j ∈ {1, 4}, for otherwise, [D − x1 + yj ] would contain
C5 and [L− yj + x1] contain F . Hence e(R,L) ≤ 12, a contradiction. Therefore,
e(x1, L) ≤ 3.

Case 1. e(x1, L) = 2. In this case, e(x2, L) = 5 as e(x1x2, L) ≥ 7. First
suppose that N(x1) |L = {yi, yi+1} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L =
{y1, y2}. We claim that e(yiyi+1, x4x5) ≤ 2 for all i ∈ {2, 3, 4, 5}, for other-
wise, [(V (L) ∪ {x1, x2})\{yi, yi+1}] ⊇ C5 and [x3, x4, x5, yi, yi+1] ⊇ F . Then
e(y1, x4x5) = e(y4, x4x5) = 2 as e(x4x5, L) ≥ 6. It follows that [y2, y3, x1, x2, x3] ⊇
F and [x4, x5, y1, y4, y5] ⊇ C5, a contradiction. Next, suppose that N(x1) |L =
{yi, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y3}. We say that
e(y1y2, x4x5) ≤ 2 for otherwise [x1, x2, y5, y4, y3] ⊇ C5 and [x3, x4, x5, y1, y2] ⊇
F . Similarly, e(y2y3, x4x5) ≤ 2 and e(y4y5, x4x5) ≤ 2. Then e(y1, x4x5) =
e(y3, x4x5) = 2 as e(x4x5, L) ≥ 6. Further, we have e(y2, x4x5) = 0 as x1 →
(L, y2). Then e(y4y5, x4x5) = 2 and so [D,L] ⊇ F ⊎ C5, a contradiction.

Case 2. e(x1, L) = 3. In this case, e(x2, L) ≥ 4 as e(x1x2, L) ≥ 7. First sup-
pose that N(x1) |L = {yi, yi+1, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L =
{y1, y2, y3}. As x1 → (L, y2), e(y2, x4x5) ≤ 1. Further, if y2x2 ∈ E(G), then
e(y2, x4x5) = 0. IfN(x2) |L ⊇ {y4, y5}, then [y1, y2, y5, x1, x2] ⊇ C5 and [y2, y3, y4,
x1, x2] ⊇ C5. Further, e(y1y5, x4x5) ≤ 2 and e(y3y4, x4x5) ≤ 2 for otherwise
[y1, y5, x3, x4, x5] ⊇ F and [y3, y4, x3, x4, x5] ⊇ F . Hence e(R,L) = e(x1, L) +
e(x2, L)+e(y2, x4x5)+e(y1y5, x4x5)+e(y3y4, x4x5) ≤ 12, no matter whether y2x2
is an edge in E(G) or not, a contradiction. Then N(x2) |L + {y4, y5}. Without
loss of generality, we assume N(x2) |L = {y1, y2, y3, y4}. Then [y4, y5, y1, x1, x2] ⊇
C5 and [y2, y3, y4, x2, x1] ⊇ C5. Hence e(y1y5, x4x5) ≤ 2 and e(y2y3, x4x5) ≤ 2.
Then e(y4, x4x5) = 2 as e(x4x5, L) ≥ 6. This implies that [L− y4 + x1] ⊇ F and
[D−x1+y4] ⊇ C5, a contradiction. Next, suppose thatN(x1) |L = {yi, yi+1, yi+3}
for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y2, y4}. As x1 → (L, yi) for all
i ∈ {3, 5}, e(yi, x2x4x5) ≤ 1. Then e(yj , x2x4x5) = 3 for some j ∈ {1, 2}. It
follows that [L− yj + x1] ⊇ F and [D + yj − x1] ⊇ C5, a contradiction.
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Lemma 9. Let D and L be two disjoint subgraphs of G such that D ∼= F5 and

L ∼= C5. If e(D − x2, L) ≥ 13, then [D,L] contains either 2C5 or F1 ⊎ C5 or

K2,3 ⊎ C5.

Proof. Let L = y1y2y3y4y5y1 and R = V (D)\{x2}. Suppose to the contrary
that [D,L] does not contain any of 2C5, F1 ⊎ C5 and K2,3 ⊎ C5. If e(x1, L) ≥
4, say N(x1) |L ⊇ {y1, y2, y3, y4}, then e(yi, x3x4x5) ≤ 1 for all i ∈ {2, 3, 5}
as x1 → (L, yi). Further, e(y4, x3x4x5) ≤ 1 as [x1, y1, y2, y3, y5] ⊇ F1. Thus,
e(R,L) ≤ 12, a contradiction. Now suppose e(x1, L) = 1, say x1y1 ∈ E(G).
Suppose that x3yj ∈ E(G) for some j ∈ {2, 5}, then [x1, y1, yj , x3, x2] ⊇ C5. It
follows that e(x4x5, L−{y1, yj}) ≤ 3 for otherwise [(L−{y1, yj})∪{x4, x5}] would
contain C5 or F1 or K2,3, a contradiction. Then e(x3, L) ≥ e(R,L)− e(x4x5, L−
{y1, yj}) − 4 − e(x1, L) ≥ 5. Therefore, either e(x3, L) = 5 or e(x3, L) ≤ 3.
Similarly, either e(x5, L) = 5 or e(x5, L) ≤ 3. If e(x3, L) ≤ 3 and e(x5, L) ≤
3, then e(R,L) ≤ 12, a contradiction. Without loss of generality assume that
e(x3, L) = 5. If e(xi, y1) = 1, e(xj , y2y5) = 2 for some i ∈ {3, 4, 5}, j ∈ {3, 5},
i 6= j, then [L − y1 + xj ] ⊇ C5 and [D + y1 − xj ] ⊇ C5. This implies that
N(x4) |L = {y2, y3, y4, y5} and N(x5) |L ⊇ {y3, y4} and so [x1, x2, x3, y1, y2] ⊇ C5

and [x4, x5, y3, y4, y5] ⊇ C5, a contradiction.

Case 1. e(x1, L) = 2. First suppose that N(x1) |L = {yi, yi+1} for some
i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y2}. If e(x4, L) = 5, then e(x3x5, yi) ≤ 1
for all i ∈ {1, 2}, for otherwise, [L − yi + x4] ⊇ C5 and [D + yi − x4] ⊇ K2,3.
If e(x3x5, y3y4y5) ≥ 5, then [x1, x2, x4, y1, y2] ⊇ C5 and [x3, x5, y3, y4, y5] ⊇
C5, a contradiction. Thus, e(x3x5, y3y4y5) = 4, e(x3x5, yi) = 1 for all i ∈
{1, 2}. Further, either [x1, x2, x3, y1, y2] ⊇ C5 and [x4, x5, y3, y4, y5] ⊇ C5, or
[x1, x2, x5, y1, y2] ⊇ C5 and [x3, x4, y3, y4, y5] ⊇ C5, a contradiction. Therefore
e(x4, L) ≤ 4. If e(x4, y1y2) = 2, then e(yi+1yi−1, xj) ≤ 1 for all i ∈ {1, 2},
j ∈ {3, 5}, for otherwise, [L−yi+xj ] ⊇ C5, [D+yi−xj ] ⊇ C5. Hence e(R,L) ≤ 12,
a contradiction. Therefore, e(x4, y1y2) ≤ 1. Without loss of generality assume
that e(x3, L) ≥ e(x5, L). If e(x4, L) = 4, say N(x4) |L = {y2, y3, y4, y5}, then
[D + y2 − x3] would contain C5 and [L − y2 + x3] contain F1 or C5, a contra-
diction. Therefore e(x4, L) ≤ 3 and hence e(x3x5, L) ≥ 8. If e(x3, L) = 5, then
e(xi, yj) = 0 for all i ∈ {4, 5}, j ∈ {1, 2}, for otherwise, [L − yj + x3] ⊇ C5,
[D + yj − x3] ⊇ C5. Thus e(x4x5, y3y4y5) = 6. Then [x1, x2, x3, y1, y2] ⊇ C5

and [x4, x5, y3, y4, y5] ⊇ C5, a contradiction. Hence e(x3, L) = e(x5, L) = 4 and
e(x4, L) = 3. If x4y1 ∈ E(G), then e(x3x5, y2y5) ≤ 2 and so e(x3x5, y1y3y4) = 6.
This implies that [x1, x2, x3, y2, y3] ⊇ C5 and [x4, x5, y1, y4, y5] ⊇ C5, a contradic-
tion. Therefore, x4y1 /∈ E(G). Similarly, x4y2 /∈ E(G). Then e(x4, y3y4y5) =
3. We say that e(x3x5, y2y3) ≤ 3 for otherwise [x1, y1, y2, x3, x2] ⊇ C5 and
[x4, x5, y3, y4, y5] ⊇ C5. Then e(x3x5, y1y4y5) ≥ 5 and so [x1, x2, x4, y2, y3] ⊇ C5

and [x3, x5, y1, y4, y5] ⊇ C5, a contradiction.
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Next, suppose that N(x1) |L = {yi, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say
N(x1) |L = {y1, y3}. As x1 → (L, y2), e(y2, x3x5) = 0. If e(x4, L) ≤ 3, then
e(x3x5, L − y2) = 8 and so [L − y1 + x5] ⊇ F1 and [D − x5 + y1] ⊇ C5, a
contradiction. Without loss of generality assume that e(x3, L) ≥ e(x5, L). If
e(x4, L) = 4, then N(x3) |L = {y1, y3, y4, y5}. We claim that e(yi, x5) = 0 for
all i ∈ {1, 3}, for otherwise, [D − x3 + yi] ⊇ C5, [L − yi + x3] ⊇ F1. Hence
e(R,L) ≤ 12, a contradiction. If e(x4, L) = 5, then e(x3x5, y1y5y4) ≤ 4 for
otherwise [x1, y2, y3, x4, x2] ⊇ C5 and [x3, x5, y1, y5, y4] ⊇ C5. It follows that
e(x3x5, y3) = 2 and so [L − y3 + x4] ⊇ C5 and [D + y3 − x4] ⊇ K2,3, again a
contradiction.

Case 2. e(x1, L) = 3. First suppose that N(x1) |L = {yi, yi+1, yi+2} for some
i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y2, y3}. As x1 → (L, y2), e(y2, x3x4x5) ≤ 1.
Further, e(y4, x3x4x5) ≤ 1 as [x1, y1, y2, y3, y5] ⊇ F1. Similarly, e(y5, x3x4x5) ≤ 1.
Thus, e(R,L) ≤ 12, a contradiction. Next, suppose that N(x1) |L = {yi, yi+1,
yi+3} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |L = {y1, y2, y4}. As x1 → (L, yi)
for all i ∈ {3, 5}, e(yi, x3x5) = 0. Then e(x3x5, L) ≤ 6 and so e(x4, L) ≥ 4. If
e(x4, L) = 5, then e(yi, x3x5) ≤ 1 for all i ∈ {1, 2, 4}, for otherwise, [D−x4+yi] ⊇
K2,3 and [L−yi+x4] ⊇ C5. Hence e(R,L) ≤ 11, a contradiction. If e(x4, L) = 4,
then e(x3x5, y1y2y4) = 6. Further, if e(x4, y3y5) = 2, then [x1, x2, x4, y2, y3] ⊇ C5

and [x3, x5, y1, y4, y5] ⊇ K2,3, a contradiction. Thus e(x4, y3y5) ≤ 1. Without loss
of generality assume that N(x4) |L = {y1, y2, y3, y4}. Then [y2, y3, x1, x2, x4] ⊇
C5 and [y1, y4, y5, x3, x5] ⊇ K2,3, again a contradiction.

3. Proof of Theorem 3

Let G be a graph of order n = 5k with σ2(G) ≥ n + k. It is easy to see that
G is Hamiltonian if k = 1. In the following, we always assume that k ≥ 2.
Suppose, for a contradiction, that G + kC5. We may assume that G is maximal,
i.e., G + xy ⊇ kC5 for each pair of non-adjacent vertices x and y of G. Thus
G ⊇ P5 ⊎ (k − 1)C5. Our proof will follow from the following lemmas.

Lemma 10. For each s ∈ {1, 2, . . . , k}, G + sB ⊎ (k − s)C5.

Proof. To the contrary, suppose that G ⊇ sB⊎ (k− s)C5 for some s ∈ {1, 2, . . . ,
k}. Let s be the minimum number in {1, 2, . . . , k} for which G ⊇ sB ⊎ (k− s)C5

and let B1, . . . , Bs, L1, . . . , Lk−s be k disjoint subgraphs of G with Bi
∼= B for

i ∈ {1, 2, . . . , s} and Li
∼= C5 for i ∈ {1, 2, . . . , k − s}. Let R be the set of the

four vertices of degree 2 in B1. By Lemmas 4(a) and (b) and the minimality
of s, we see that e(R,Bi) ≤ 12 and e(R,Lj) ≤ 12 for all i ∈ {2, 3, . . . , s} and
j ∈ {1, 2, . . . , k−s}. Therefore

∑

x∈R dG(x) ≤ 12(k−1)+8 = 12k−4. However, by
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the degree sum condition, we have
∑

x∈R dG(x) = (dG(x2)+ dG(x4))+ (dG(x3)+
dG(x5)) ≥ 12k, a contradiction.

Lemma 11. G ⊇ F1 ⊎ (k − 1)C5.

Proof. First, we claim that G ⊇ F ⊎ (k − 1)C5. Let {H,L1, L2, . . . , Lk−1} be
an optimal family of G with H ∼= P5. If [H] ∼= P5 = x1x2x3x4x5, then dG(x1) +
dG(x5) ≥ 6k. Without loss of generality, we assume that dG(x1) ≥ 3k. Since
σ2(G) ≥ 6k,

∑

x∈V (H) dG(x) = dG(x1)+(dG(x2)+dG(x4))+(dG(x3)+dG(x5)) ≥
15k. Then e(H,G − V (H)) ≥ 15k − 8 = 15(k − 1) + 7. Thus e(H,Li) ≥ 16 for
some i ∈ {1, 2, . . . , k − 1}. By Lemma 4(d), [H,Li] ⊇ F ⊎ C5 and, hence G ⊇
F ⊎(k−1)C5. If [H] ∼= F4, then e(x1x2x4x5, G−V (H)) ≥ 12k−8 = 12(k−1)+4.
This implies that e(x1x2x4x5, Li) ≥ 13 for some i ∈ {1, 2, . . . , k− 1}. By Lemma
8 and Lemma 10, [H,Li] ⊇ F ⊎ C5 and so G ⊇ F ⊎ (k − 1)C5. If [H] ∼= F3, then
e(x1x2x4x5, G − V (H)) ≥ 12k − 7 = 12(k − 1) + 5. Hence e(x1x2x4x5, Li) ≥ 13
for some i ∈ {1, 2, . . . , k − 1}. By Lemmas 7, 8 and 10, [H,Li] ⊇ F ⊎ C5 and,
therefore, G ⊇ F ⊎ (k − 1)C5.

We first assume that G ⊇ F2 ⊎ (k − 1)C5 and let {H,L1, L2, . . . , Lk−1} be
a family of G with H ∼= F2. Note that dG(x1) + dG(x5) ≥ 6k, say dG(x1) ≥
3k. Then e(x1x3x5, G − V (H)) = dG(x1) + (dG(x3) + dG(x5)) − 6 ≥ 9k − 6 =
9(k − 1) + 3 and, hence e(x1x3x5, Li) ≥ 10 for some i ∈ {1, 2, . . . , k − 1}. So
by Lemma 4(c), [H,Li] ⊇ F1 ⊎ C5 and, therefore, G ⊇ F1 ⊎ (k − 1)C5. We
now assume that G + F2 ⊎ (k − 1)C5. Recalling that G ⊇ F ⊎ (k − 1)C5,
let {H,L1, L2, . . . , Lk−1} be an optimal family of G with H ∼= F . If [H] ∼= F
or [H] ∼= K2,3, say {x1, x2, x3, x4, x5} = V (H) with x1x3, x1x5, x3x5 /∈ E(G)
and x2x4 /∈ E(G), then dG(x1) + dG(x5) ≥ 6k, say dG(x1) ≥ 3k. Further,
e(H,G−V (H)) ≥ dG(x1)+(dG(x3)+dG(x5))+(dG(x2)+dG(x4))−12 ≥ 15k−12 =
15(k − 1) + 3. Then e(H,Li) ≥ 16 for some i ∈ {1, 2, . . . , k − 1}. By Lemma
5(a) and Lemma 10, the cycle Li has a labelling Li = y1y2y3y4y5y1 satisfying
property P1. Therefore, e(x1x3y3y5, G− V (H ∪ Li)) ≥ 12k − 17 = 12(k − 2) + 7
and, hence, e(x1x3y3y5, Lj) ≥ 13 for some j ∈ {1, . . . , k − 1}\{i}. So by Lemma
5(b), we have [H,Li, Lj ] ⊇ F1 ⊎ 2C5 and, hence, G ⊇ F1 ⊎ (k − 1)C5. We next
assume that G + K2,3 ⊎ (k − 1)C5. If [H] ∼= F5, then e(x1x3x4x5, G − V (H)) =
(dG(x1) + dG(x4)) + (dG(x3) + dG(x5)) − 8 ≥ 12k − 8 = 12(k − 1) + 4. Thus
e(x1x3x4x5, Li) ≥ 13 for some i ∈ {1, 2, . . . , k − 1}. So by Lemma 9, [H,Li] ⊇
F1 ⊎ C5, i.e., G ⊇ F1 ⊎ (k − 1)C5.

Lemma 12. Let ψ = {H,L1, L2, . . . , Lk−1} be an optimal family of G with H ∼=
F1 and let T = {x2, x4, x5}. If G + K+

4 ⊎ (k − 1)C5, then for each t ∈ {1, 2, . . . ,
k − 1}, the following statements hold.

(a) If e(x1, Lt) = 5, then e(T, Lt) ≤ 5.

(b) If e(x1, Lt) = 4, then e(T, Lt) ≤ 7.
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(c) If e(x1, Lt) = 3, then e(T, Lt) ≤ 9.

(d) If e(x1, Lt) = 2, then e(T, Lt) ≤ 11.

(e) If e(x1, Lt) = 1, then e(T, Lt) ≤ 12.

(f) If e(x1, Lt) = 0, then e(T, Lt) ≤ 15.

Proof. Let Lt = y1y2y3y4y5y1 and Gt = [H,Lt]. If e(x1, Lt) = 5, then e(yi, T ) ≤
1 for all i ∈ {1, 2, 3, 4, 5} since Gt + 2C5. Hence, (a) follows directly.

To prove (b), without loss of generality assume that N(x1) |Lt = {y1, y2, y3,
y4}. Suppose to the contrary that e(T, Lt) ≥ 8. It is clear that τ(y5, Lt) = 0
for otherwise x1 → Lt and so Gt ⊇ 2C5. As x1 → (Lt, yi) for all i ∈ {2, 3, 5},
e(yi, T ) ≤ 1. Hence, e(y1y4, T ) ≥ 5, say e(y4, T ) = 3 and e(y1, T ) ≥ 2. If
e(y5, x2x4) ≥ 1, then [H−x1+y5] ⊇ F1 and τ(Lt−y5+x1) > τ(Lt), contradicting
the optimality of ψ. Thus, e(y5, x2x4) = 0. If y5x5 ∈ E(G), then y1x2 /∈ E(G)
for otherwise [y1, y2, y3, x1, x2] ⊇ C5 and [y4, y5, x3, x4, x5] ⊇ C5. This means
that e(y1, x4x5) = 2 and so [y2, y3, y4, x1, x2] ⊇ C5 and [y1, y5, x3, x4, x5] ⊇ C5,
a contradiction. Therefore, y5x5 /∈ E(G) and hence e(y1, T ) = 3, e(y2y3, T ) =
2. If e(y2y3, x5) = 2, then [y1, y5, y4, x1, x2] ⊇ C5 and [y2, y3, x3, x4, x5] ⊇ B,
contradicting Lemma 10. Hence, e(y2y3, x2x4) ≥ 1, say y3x2 ∈ E(G). We claim
that y1y3 ∈ E(G) for otherwise [y3, x2, x3, x4, x5] ⊇ F1 and τ(y1y2x1y4y5y1) >
τ(Lt). This implies that [y5, y1, y2, y3, x1] ⊇ K+

4 and [y4, x2, x3, x4, x5] ⊇ C5, a
contradiction.

To prove (c), suppose to the contrary that e(T, Lt) ≥ 10. Assume first
N(x1) |Lt={yi, yi+1, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |Lt={y1, y2, y3}.
As x1 → (Lt, y2), e(y2, T ) ≤ 1. For any i ∈ {1, 2, 3, 4, 5}, if [(V (Lt)∪{x1, x2})\{yi,
yi+1}] ⊇ C5, then e(yiyi+1, x4x5) ≤ 2 for otherwise [x3, x4, x5, yi, yi+1] ⊇ C5. If
e(x2, y4y5) = 2, then e(T, Lt) = e(x2, Lt) + e(x4x5, y2) + e(x4x5, y3y4) + e(x4x5,
y1y5) ≤ 9, no matter whether y2x2 is an edge of G or not, a contradiction.
Hence e(x2, y4y5) ≤ 1, say x2y4 /∈ E(G). Further, if e(x2, y3y5) = 2, then
e(x4x5, y1y2) ≤ 2 and e(x4x5, y4y5) ≤ 2. Since e(T, Lt) ≥ 10 and x2y4 /∈ E(G),
N(x2) |Lt = {y1, y2, y3, y5} and e(y3, x4x5) = 2. Therefore, [x3, x2, x1, y1, y2] ⊇
K+

4 . Then e(y5, x4x5) = 0 as Gt + K+
4 ⊎ C5. Therefore, e(y4, x4x5) = 2. Then

[x1, x2, y1, y2, y5] ⊇ C5 and [x3, x4, x5, y3, y4] ⊇ C5, a contradiction. Therefore,
e(x2, y3y5) ≤ 1. If x2y5 ∈ E(G), then e(x4x5, y1y2) ≤ 2, e(x4x5, y3y4) ≤ 2
and so e(T, Lt) ≤ 9, a contradiction. Thus x2y5 /∈ E(G). If x2y1 ∈ E(G),
then e(x4x5, y4y5) ≤ 2 and so e(T, Lt) = e(x2, Lt) + e(x4x5, y2) + e(x4x5, y1y3) +
e(x4x5, y4y5) ≤ 9, no matter whether y2x2 is an edge of G or not, a contradic-
tion. Hence x2y1 /∈ E(G). Similarly, x2y3 /∈ E(G). Then e(T, Lt) ≤ 9, no matter
whether y2x2 is an edge in E(G) or not, again a contradiction.

Next, assume that N(x1) |Lt = {yi, yi+1, yi+3} for some i ∈ {1, 2, 3, 4, 5}, say
N(x1) |Lt = {y1, y2, y4}. As x1 → (Lt, yi) for all i ∈ {3, 5}, e(yi, T ) ≤ 1. Further,
if e(x2, Lt) ≤ 1 or e(x2, Lt) = 2, N(x2) |Lt ∩ {y3, y5} 6= ∅ or e(x2, Lt) = 3,
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N(x2) |Lt ⊇ {y3, y5}, then e(T, Lt) ≤ 9, a contradiction. Suppose e(x2, Lt) ≤ 3.
If x2y4 ∈ E(G), then e(y1y5, x4x5) ≤ 2, e(y2y3, x4x5) ≤ 2 and so e(T, Lt) ≤ 9, a
contradiction. Hence x2y4 /∈ E(G). Then N(x2) |Lt ⊇ {y1, y2}. It follows that
e(y1y5, x4x5) ≤ 2, e(y2y3, x4x5) ≤ 2 and so e(T, Lt) ≤ 9, again a contradiction.

Now suppose e(x2, Lt) ≥ 4. If y3y5 ∈ E(G), then x1 → Lt. Since e(T, Lt) ≥
10, there is a vertex yi for some i ∈ {1, 2, 3, 4, 5} such that e(yi, T ) ≥ 2. Then
[H − x1 + yi] ⊇ C5 and [Lt − yi + x1] ⊇ C5, a contradiction. Thus y3y5 /∈
E(G). If x2y3 ∈ E(G) and y1y3 /∈ E(G), then [y3, x2, x3, x4, x5] ∼= F1 and
τ(Lt) < τ(Lt − y3 + x1), a contradiction. Therefore, if x2y3 ∈ E(G), then
y1y3 ∈ E(G). Similarly, if x2y5 ∈ E(G), then y2y5 ∈ E(G). We claim that
e(y1y2y4, x4x5) = 6 if |N(x2) |Lt | = 4. If x2y3 ∈ E(G) and x2y5 ∈ E(G),
then e(y1y2y4, x4x5) = 6 since e(yi, T ) ≤ 1 for all i ∈ {3, 5}. Without loss of
generality, assume that x2y3 ∈ E(G) and x2y5 /∈ E(G). If e(y5, x4x5) = 0, then
e(y1y2y4, x4x5) = 6 as e(y3, T ) ≤ 1. If e(y5, x4x5) = 2, then [x1, y1, y2, y3, y4] ⊇ C5

and [y5, x2, x3, x4, x5] ⊇ C5, a contradiction. If e(y5, x4x5) = 1, then e(y4, x4x5) =
0 for otherwise [y1, y2, y3, x1, x2] ⊇ C5 and [y4, y5, x3, x4, x5] would contain C5 or
B. Therefore, e(T, Lt) ≤ 9, a contradiction. If N(x2) |Lt = {y1, y2, y3, y4}, then
[y4, y5, x3, x4, x5] ⊇ F1. Further, τ(Lt) = 4 as τ(Lt) ≥ τ(y1y2y3x2x1y1). Simi-
larly, if N(x2) |Lt = {y1, y2, y3, y5} or N(x2) |Lt = {y1, y2, y4, y5}, then we also
have τ(Lt) = 4. If N(x2) |Lt = {y2, y3, y4, y5}, then [x1, y1, x3, x4, x5] ⊇ F1.
Further, {y1y3, y1y4, y2y5} ⊆ E(G) as τ(Lt) ≥ τ(y2y3y4y5x2y2). If N(x2) |Lt =
{y1, y3, y4, y5}, then [x1, y2, x3, x4, x5] ⊇ F1. Further, {y1y3, y2y4, y2y5} ⊆ E(G)
as τ(Lt) ≥ τ(y1x2y3y4y5y1). If N(x2) |Lt = {y1, y2, y3, y4, y5}, then e(y1y2y4,
x4x5) ≥ 5 since e(yi, T ) ≤ 1 for all i ∈ {3, 5}. We claim that τ(Lt) = 4
if N(x2) |Lt = {y1, y2, y3, y4, y5}. If e(y4, x4x5) = 2, then [x1, y4, x3, x4, x5] ⊇
F1. Further, τ(Lt) = 4 as τ(Lt) ≥ τ(y1y2y3x2y5y1). If e(y4, x4x5) ≤ 1, then
e(y1y2, x4x5) = 4 and so [x1, y1, x3, x4, x5] ⊇ F1 and [x1, y2, x3, x4, x5] ⊇ F1.
Further, τ(Lt) = 4 as τ(Lt) ≥ τ(x2y2y3y4y5x2) and τ(Lt) ≥ τ(y1x2y3y4y5y1).

Let R = {x1, x3, y3, y5}. If x3y3 ∈ E(G), then x2y3 /∈ E(G) and so N(x2) |Lt

= {y1, y2, y4, y5}. Then [y1, y4, y5, x1, x2] ⊇ C5 and [y2, y3, x3, x4, x5] ⊇ C5, a
contradiction. Thus x3y3 /∈ E(G). Similarly, x3y5 /∈ E(G). Hence R is an
independent set. As e(R,G− V (Gt)) ≥ 12k − 18 = 12(k − 2) + 6, e(R,Li) ≥ 13
for some i ∈ {1, 2, . . . , k − 1}\{t}.

Claim 1. If u→ (Li, z; {v, w}) for some z ∈ V (Li), u ∈ R and {v, w} ⊆ R \{u},
then [Gt, Li] ⊇ 3C5.

Proof. We separate the proof into two cases.

Case 1. e(x2, y3y5) = 2. In this case, e(x4x5, y3y5) = 0. Further, e(x4x5,
y1y2y4) = 6 if |N(x2)|Lt| = 4 and e(x4x5, y1y2y4) ≥ 5 if |N(x2)|Lt| = 5. Recall
that τ(Lt) = 4 if |N(x2)|Lt| = 5. Hence, y1, y2 and y4 are symmetric in [Lt]
if |N(x2)|Lt| = 5. Without loss of generality, assume that e(x4x5, y1y4) = 4.
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Further, by the symmetry of x1, y3 and y5 in [Lt + x1], we need only to con-
sider the following cases. If x1 → (Li, z; {y3, y5}) for some z ∈ V (Li), then
[Li − z + x1] ⊇ C5, [y1, y2, y3, y5, z] ⊇ C5 and [x2, x3, x4, x5, y4] ⊇ C5. If x1 →
(Li, z; {y3, x3}) for some z ∈ V (Li), then [Li−z+x1] ⊇ C5, [y3, x2, x5, x3, z] ⊇ C5

and [y1, y2, y4, y5, x4] ⊇ C5. If x3 → (Li, z; {y3, y5}) for some z ∈ V (Li), then
[Li − z + x3] ⊇ C5, [y1, y2, y3, y5, z] ⊇ C5 and [x1, x2, x4, x5, y4] ⊇ C5.

Case 2. e(x2, y3y5) = 1, say N(x2) |Lt = {y1, y2, y3, y4}. In this case,
e(x4x5, y1y2y4) = 6 and e(x4x5, y3) = 0. Further, e(x4x5, y5) = 0 for other-
wise [y1, y2, y3, x1, x2] ⊇ C5 and [y4, y5, x3, x4, x5] would contain C5 or B. By
the symmetry of x1 and y3 in [Lt + x1], we need only to consider the following
cases. If x1 → (Li, z; {y3, y5}) for some z ∈ V (Li), then [Li − z + x1] ⊇ C5,
[y1, y2, y3, y5, z] ⊇ C5 and [x2, x3, x4, x5, y4] ⊇ C5. If x1 → (Li, z; {y3, x3}) for
some z ∈ V (Li), then [Li − z+ x1] ⊇ C5, [y3, x2, x5, x3, z] ⊇ C5 and [y1, y2, y4, y5,
x4] ⊇ C5. If x1 → (Li, z; {y5, x3}) for some z ∈ V (Li), then [Li − z + x1] ⊇ C5,
[y4, y5, z, x2, x3] ⊇ C5 and [y1, y2, y3, x4, x5] ⊇ C5.

If x3 → (Li, z; {y3, y5}) for some z ∈ V (Li), then [Li − z + x3] ⊇ C5,
[y1, y2, y3, z, y5] ⊇ C5 and [x1, x2, x4, x5, y4] ⊇ C5. If x3 → (Li, z; {y3, x1}) for
some z ∈ V (Li), then [Li − z+ x3] ⊇ C5, [x1, y2, x2, y3, z] ⊇ C5 and [y1, y5, y4, x4,
x5] ⊇ C5. If y5 → (Li, z; {x3, x1}) for some z ∈ V (Li), then [Li − z + y5] ⊇ C5,
[x1, x2, x3, x5, z] ⊇ C5 and [y1, y2, y3, y4, x4] ⊇ C5. If y5 → (Li, z; {y3, x1}) for
some z ∈ V (Li), then [Li− z+ y5] ⊇ C5, [y1, y2, y3, x1, z] ⊇ C5 and [x2, x3, x4, x5,
y4] ⊇ C5. �

By Claim 1 and Lemma 4(e), there are vertex labellings R = {a1, a2, a3, a4}
and Li = b1b2b3b4b5b1 such that e(a1a2, b1b2b3b4) = 8, e(a3, b1b5b4) = 3 and
e(a4, b1b4) = 2. Recall that e(x4x5, y1y2y4) = 6 if |N(x2)|Lt| = 4, and e(x4x5,
y1y2y4) ≥ 5 and τ(Lt) = 4 if |N(x2)|Lt| = 5. Assume first that |N(x2)|Lt| = 5.
Then x1, y3 and y5 are symmetric in [Lt+x1]. Further, y1, y2 and y4 are symmetric
in [Lt]. Without loss of generality, assume that e(x4x5, y1y4) = 4. If x3 ∈ {a1, a2},
say {x3, y3} = {a1, a2}, then [x1, b1, y5, b4, b5] ⊇ C5, [x2, x3, x4, x5, y1] ⊇ C5 and
[b2, b3, y2, y3, y4] ⊇ B, a contradiction. If x3 /∈ {a1, a2}, say {x1, y3} = {a1, a2},
then [x3, y5, b1, b5, b4] ⊇ C5, [x1, x2, x4, x5, y1] ⊇ C5 and [b2, b3, y2, y3, y4] ⊇ B,
again a contradiction.

Next, assume that |N(x2)|Lt| = 4. If e(x2, y3y5) = 2, then x1, y3 and
y5 are symmetric in [Lt + x1]. If x3 ∈ {a1, a2}, say {x3, y3} = {a1, a2}, then
[x1, b1, y5, b4, b5] ⊇ C5, [x2, x3, x4, x5, y1] ⊇ C5 and [b2, b3, y2, y3, y4] ⊇ B, or
[x1, b1, y5, b4, b5] ⊇ C5, [x2, x3, x4, x5, y2] ⊇ C5 and [b2, b3, y1, y3, y4] ⊇ B, a con-
tradiction. If x3 /∈ {a1, a2}, say {x1, y3} = {a1, a2}, then [x3, y5, b1, b5, b4] ⊇ C5,
[y3, x2, x5, x4, y4] ⊇ C5 and [b2, b3, x1, y1, y2] ⊇ B, again a contradiction. If
e(x2, y3y5) = 1, then N(x2) |Lt = {y1, y2, y3, y4} or N(x2) |Lt = {y1, y2, y4, y5}.
Without loss of generality, assume that N(x2) |Lt = {y1, y2, y3, y4}. By the
symmetry of x1 and y3 in [Lt + x1], we need only to consider the following
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cases. If {x3, y3} = {a1, a2}, then [x1, b1, y5, b4, b5] ⊇ C5, [x2, x3, x4, x5, y1] ⊇
C5 and [b2, b3, y2, y3, y4] ⊇ B, a contradiction. If {x3, y5} = {a1, a2}, then
[x1, b1, y3, b4, b5] ⊇ C5, [x2, x3, x4, x5, y1] ⊇ C5 and [b2, b3, y2, y4, y5] ⊇ B, a con-
tradiction. If {x1, y5} = {a1, a2}, then [x3, b1, y3, b4, b5] ⊇ C5, [x1, x2, x4, x5, y2] ⊇
C5 and [b2, b3, y1, y4, y5] ⊇ B, a contradiction. If {x1, y3} = {a1, a2}, then
[x3, b1, y5, b4, b5] ⊇ C5, [x1, x2, x4, x5, y4] ⊇ C5 and [b2, b3, y1, y2, y3] ⊇ B, again a
contradiction.

To prove (d), suppose to the contrary that e(T, Lt) ≥ 12. Assume first
N(x1) |Lt = {yi, yi+1} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |Lt = {y1, y2}. For
any i ∈ {1, 2, 3, 4, 5}, if [(V (Lt)∪{x1, x2})\{yi, yi+1}] ⊇ C5, then e(yiyi+1, x4x5) ≤
2 for otherwise [x3, x4, x5, yi, yi+1] ⊇ C5. It follows that if x2y4 ∈ E(G), then
e(y1y5, x4x5) ≤ 2, e(y2y3, x4x5) ≤ 2 and so e(T, Lt) ≤ 11, a contradiction. Hence
x2y4 /∈ E(G). If e(x2, y3y5) = 2, then e(y3y4, x4x5) ≤ 2, e(y4y5, x4x5) ≤ 2 and
so e(y1y2, x4x5) = 4 and e(x2, y1y2y3y5) = 4. Further, y3x5 /∈ E(G) and y5x4 /∈
E(G) as Gt + 2C5. Moreover, x4y4, x5y5 ∈ E(G) as e(T, Lt) ≥ 12. Clearly,
Gt ⊇ 2C5, a contradiction. Therefore, e(x2, y3y5) ≤ 1 and hence e(x2, y1y2y3y5) ≤
3. If e(x2, y1y2y3y5) = 3, say x2y3 ∈ E(G), then e(x4x5, y4y5) ≤ 2. It fol-
lows that e(T, Lt) ≤ 11, a contradiction. Hence e(x2, y1y2y3y5) ≤ 2. Then
e(x4x5, Lt) = 10 and so [x1, y1, x4, y3, y2] ⊇ C5 and [y4, y5, x2, x3, x5] ⊇ B, a con-
tradiction. Next, assume that N(x1) |Lt = {yi, yi+2} for some i ∈ {1, 2, 3, 4, 5},
say N(x1) |Lt = {y1, y3}. As x1 → (Lt, y2), e(y2, T ) ≤ 1. If e(x2, y1y3) ≥ 1, then
[x1, x2, y1, y2, y3] ⊇ C5 and so e(x4x5, y4y5) ≤ 2. Then e(T, Lt) = e(x2, Lt) +
e(x4x5, y4y5)+e(x4x5, y1y3)+e(x4x5, y2) ≤ 11, no matter whether x2y2 ∈ E(G) or
x2y2 /∈ E(G), a contradiction. Therefore, e(x2, y1y3) = 0 and hence e(T, Lt) ≤ 11,
again a contradiction.

To prove (e), suppose to the contrary that e(T, Lt) ≥ 13. Without loss of
generality assume that x1y1 ∈ E(G). If e(x2, y3y4) ≥ 1, say x2y3 ∈ E(G), then
e(y4y5, x4x5) ≤ 2 for otherwise [y1, y2, y3, x1, x2] ⊇ C5 and [x3, x4, x5, y4, y5] ⊇ C5.
Therefore, 6 ≥ e(x4x5, y1y2y3) = e(T, Lt) − e(x2, Lt) − e(x4x5, y4y5) ≥ 6. Then
e(x4x5, y1y2y3) = 6 and e(x2, Lt) = 5. Further, [x1, y1, y5, y4, x2] ⊇ C5 and
[y2, y3, x3, x4, x5] ⊇ C5, a contradiction. Therefore, e(x2, y3y4) = 0 and hence
e(x2, Lt) = 3, e(x4x5, Lt) = 10. It follows that [x1, y1, x5, x3, x2] ⊇ C5 and
[y2, y3, y4, y5, x4] ⊇ C5, again a contradiction.

Lemma 13. G ⊇ K+
4 ⊎ (k − 1)C5.

Proof. Suppose to the contrary that G + K+
4 ⊎ (k − 1)C5. By Lemma 11, let

ψ = {H,L1, L2, . . . , Lk−1} be an optimal family of G with H ∼= F1. Suppose
that e(H,Li) ≥ 16 for some i ∈ {1, 2, . . . , k − 1}, say e(H,L1) ≥ 16. By Lemma
6(a) and Lemma 10, we may first assume that there exists a labelling L1 =
y1y2y3y4y5y1 with property P2. Let R = {x1, x4, y3, y5} and G1 = [H,L1]. Then
e(R, V (G1)−R) ≤ 16 and so e(R,G−V (G1)) ≥ (dG1

(x1)+dG1
(x4))+(dG1

(y3)+
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dG1
(y5)) − 16 ≥ 12k − 16 = 12(k − 2) + 8. Hence, e(R,Li) ≥ 13 for some

i ∈ {2, 3, . . . , k − 1}. So by Lemma 6(b), [G1, Li] ⊇ K+
4 ⊎ 2C5 and, therefore

G ⊇ K+
4 ⊎(k−1)C5, a contradiction. Next, we assume thatG ⊇ K+

4 ⊎B⊎(k−2)C5

and let K+
4 , B, L1, L2, . . . , Lk−2 be k disjoint subgraphs of G with Li

∼= C5 for
i ∈ {1, 2, . . . , k − 2}. Let B = y1y2y3y1y4y5y1 and R′ = {y2, y3, y4, y5}. We
claim that e(R′,K+

4 ) ≤ 15. Suppose to the contrary that e(R′,K+
4 ) ≥ 16. If

e(x1, R
′) ≤ 1, then e(R′, x2x3x4x5) ≥ 15. It is easy to see that [K+

4 , B] ⊇ K+
4 ⊎C5,

a contradiction. If e(x1, R
′) ≥ 3, say x1y2, x1y3, x1y4 ∈ E(G), then [B−yi+x1] ⊇

C5 for all i ∈ {2, 3, 5}. However, e(yj , x2x3x4x5) ≥ 2 for some j ∈ {2, 3, 5} and
so [K+

4 − x1 + yj ] ⊇ C5, a contradiction. If e(x1, R
′) = 2, then we just need

to consider x1y2, x1y4 ∈ E(G) and x1y2, x1y3 ∈ E(G). If x1y2, x1y4 ∈ E(G),
then [B − yi + x1] ⊇ C5 for all i ∈ {3, 5}. However, e(yj , x2x3x4x5) ≥ 2 for some
j ∈ {3, 5} and so [K+

4 −x1+yj ] ⊇ C5, a contradiction. If x1y2, x1y3 ∈ E(G), then
e(x2, y2y3) = 0 for otherwise [x1, x2, y1, y2, y3] ⊇ C5 and [x3, x4, x5, y4, y5] ⊇ C5,
a contradiction. Then e(y2y3, x3x4x5) = 6 and e(y4y5, x2x3x4x5) = 8 and so
[K+

4 , B] ⊇ 2C5, again a contradiction. Further, e(R′, G − V (K+
4 ∪ B)) ≥ 12k −

15− 8 = 12(k− 2)+1. Hence e(R′, Lj) ≥ 13 for some j ∈ {1, 2, . . . , k− 2}. So by
Lemma 4(b), [B,Lj ] ⊇ 2C5, i.e., G ⊇ K+

4 ⊎ (k−1)C5, a contradiction. Therefore,
e(H,Li) ≤ 15 for each i ∈ {1, 2, . . . , k − 1}. It follows that dG(x1) > 3k, for
otherwise, we obtain e(H,G−V (H)) = (dG(x1)+ dG(x3))+ (dG(x2)+ dG(x4))+
(dG(x1) + dG(x5)) − dG(x1) − 12 ≥ 18k − dG(x1) − 12 ≥ 15k − 12 > 15(k − 1),
then there exists i ∈ {1, 2, . . . , k − 1} such that e(H,Li) ≥ 16, a contradiction.

For r with 0 ≤ r ≤ 5, let Ar = {Lt | e(x1, Lt) = r, 1 ≤ t ≤ k − 1} and
ar = |Ar|. It is clear that a0 + a1 + a2 + a3 + a4 + a5 = k − 1. Further, it can be
seen that

dG(x1) = dH(x1) +
5

∑

r=0

∑

Lt∈Ar

e(x1, Lt) = 1 + a1 + 2a2 + 3a3 + 4a4 + 5a5.(1)

Let R1 = {x1, x2, x4, x5}. By Lemma 12, we obtain

∑

x∈R1

dG(x) =
∑

x∈R1

dH(x) +
5

∑

r=0

∑

Lt∈Ar

e(R1, Lt)

≤ 9 + 15a0 + 13a1 + 13a2 + 12a3 + 11a4 + 10a5.

(2)

By (1) and (2), we obtain dG(x1) +
∑

x∈R1
dG(x) ≤ 10 + 15a0 + 14a1 + 15a2 +

15a3 + 15a4 + 15a5 = 15k − 5 − a1. But by the degree sum condition, we have
dG(x1) +

∑

x∈R1
dG(x) ≥ 15k, which is a contradiction.

Lemma 14. For any family {H,L1, . . . , Lk−1} of G with H ∼= K+
4 , dG(x2) < 3k.
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Proof. Suppose to the contrary that dG(x2) ≥ 3k for some family ψ = {H,L1,
. . . , Lk−1} with H ∼= K+

4 . Further, we assume that
∑k−1

i=1 τ(L
′
i) ≤

∑k−1
i=1 τ(Li)

for any family {H ′, L′
1, . . . , L

′
k−1} with H ′ ∼= K+

4 and dG(x2) ≥ 3k. Let Q =
[x2, x3, x4, x5] and T = [x3, x4, x5]. Then Q ∼= K4 and T ∼= K3. For r with
0 ≤ r ≤ 5, let Br = {Lt | e(x1, Lt) = r, 1 ≤ t ≤ k − 1} and br = |Br|. It is clear
that b0 + b1 + b2 + b3 + b4 + b5 = k − 1.

Claim 2. For each t ∈ {1, 2, . . . , k − 1}, the following statements hold.

(a) If e(x1, Lt) = 5, then e(Q,Lt) ≤ 5.

(b) If e(x1, Lt) = 4, then e(Q,Lt) ≤ 9 except possible one Lt with e(Q,Lt) = 10.

(c) If e(x1, Lt) = 3, then e(Q,Lt) ≤ 12.

(d) If e(x1, Lt) = 2, then e(Q,Lt) ≤ 15.

(e) If e(x1, Lt) = 1, then e(Q,Lt) ≤ 16.

(f) If e(x1, Lt) = 0, then e(Q,Lt) ≤ 20.

Proof. Let Lt = y1y2y3y4y5y1 and Gt = [H,Lt]. If e(x1, Lt) = 5, then e(yi, Q) ≤
1 for all i ∈ {1, 2, 3, 4, 5} since Gt + 2C5. Hence, (a) follows directly.

To prove (b), sayN(x1) |Lt = {y1, y2, y3, y4}. First, we claim that {y1y3, y2y4,
y1y4} ⊆ E(Lt), N(x2) |Lt = {y1, y2, y3, y4} and N(x3) |Lt = N(x4) |Lt = N(x5) |
Lt = {y1, y4} if e(Q,Lt) ≥ 10. It is clear that τ(y5, Lt) = 0 for otherwise
x1 → Lt and so Gt ⊇ 2C5. As x1 → (Lt, yi) for i ∈ {2, 3, 5}, e(yi, Q) ≤ 1.
Hence, e(y1y4, Q) ≥ 7, say e(y1, Q) ≥ 3 and e(y4, Q) = 4. If x2y5 ∈ E(G),
then [Q + y5] ⊇ K+

4 and τ(x1y1y2y3y4x1) > τ(Lt), contradicting the definition
of ψ. Hence x2y5 /∈ E(G). We say that e(xi, yj) = 0 for all i ∈ {3, 4, 5} and
j ∈ {2, 3}. If not, then [x1, x2, xi, y2, y3] ⊇ C5 and [(V (T ) ∪ {y1, y4, y5})\{xi}] ⊇
C5. If e(y5, T ) ≥ 1, then x2y1 /∈ E(G) for otherwise [x1, x2, y1, y2, y3] ⊇ C5

and [x3, x4, x5, y4, y5] ⊇ C5. Hence e(y1, T ) = 3. Then [x1, x2, y2, y3, y4] ⊇ C5

and [x3, x4, x5, y1, y5] ⊇ C5, a contradiction. Therefore, e(y5, T ) = 0. Then
e(y1, Q) = e(y4, Q) = 4 and e(y2y3, x2) = 2. If y1y3 /∈ E(G) or y2y4 /∈ E(G), then
[x3, x2, x1, y3, y2] ⊇ K+

4 and τ(y1x4x5y4y5y1) > τ(Lt), a contradiction. Hence
y1y3, y2y4 ∈ E(G). If y1y4 /∈ E(G), then either dG(y1) ≥ 3k or dG(y4) ≥ 3k,
say dG(y1) ≥ 3k. Then [y5, y1, y2, y3, x1] ⊇ K+

4 and τ(y4x2x3x4x5y4) > τ(Lt),
contradicting the definition of ψ. Hence, y1y4 ∈ E(G). Next, we claim that at
most one Lt with e(x1, Lt) = 4 and e(Q,Lt) = 10. If not, then there is another
one L′

t = z1z2z3z4z5z1 with e(x1, L
′
t) = 4 and e(Q,L′

t) = 10. Without loss of gen-
erality, assume that N(x1) |L

′
t = {z1, z2, z3, z4}. Then {z1z3, z2z4, z1z4} ⊆ E(L′

t),
N(x2) |L

′
t = {z1, z2, z3, z4} and N(x3) |L

′
t = N(x4) |L

′
t = N(x5) |L

′
t = {z1, z4}.

Therefore, [y1, y5, y4, x4, x5] ⊇ C5, [x2, z4, z5, z1, x3] ⊇ C5 and [y2, y3, x1, z2, z3] ⊇
B, contradicting Lemma 10.

To prove (c), suppose to the contrary that e(Q,Lt) ≥ 13. Assume first
N(x1) |Lt={yi, yi+1, yi+3} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |Lt={y1, y2, y4}.
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As x1 → (Lt, yi) for all i ∈ {3, 5}, e(yi, Q) ≤ 1. Further, y3y5 /∈ E(G) as
x1 6→ Lt. It follows that e(y1y2y4, Q) ≥ 11 and so e(x2, y1y4) ≥ 1, e(x2, y2y4) ≥ 1.
Then [x1, x2, y1, y5, y4] ⊇ C5 and [x1, x2, y2, y3, y4] ⊇ C5. Further, as e(yi, T ) ≥
2 for all i ∈ {1, 2}, e(y3y5, T ) = 0 for otherwise [x3, x4, x5, y2, y3] ⊇ C5 or
[x3, x4, x5, y1, y5] ⊇ C5, a contradiction. Then N(y3)|Q ∪N(y5)|Q ⊆ {x2}.

Let R = {x1, x4, y3, y5}. Then e(R, V (Gt) − R) ≤ 18 and so e(R,G −
V (Gt)) ≥ 12k − 18 = 12(k − 2) + 6 and hence e(R,Li) ≥ 13 for some i ∈
{1, 2, 3, . . . , k− 1}\{t}. Note that e(Q,Lt) ≥ 13 and N(y3)|Q∪N(y5)|Q ⊆ {x2}.
If u → (Li, z; {v, w}) for some z ∈ V (Li), u ∈ R and {v, w} ⊆ R \ {u}, then
[Gt, Li] ⊇ 3C5, a contradiction. By Lemma 4(e), there are vertex labellings
Li = z1z2z3z4z5z1 and R = {a1, a2, a3, a4} such that e(a1a2, z1z2z3z4) = 8,
e(a3, z1z5z4) = 3 and e(a4, z1z4) = 2. If {a1, a2} = {x1, x4}, then set {r, s} =
{1, 2} with yr ∈ N(x1) |Lt ∩N(x4) |Lt. We can see that [x1, yr, x4, z2, z3] ⊇ C5,
[y3, y5, z1, z5, z4] ⊇ C5 and [x2, x3, x5, ys, y4] ⊇ C5, a contradiction. If {a1, a2} =
{x1, yi} for some i ∈ {3, 5}, say {a1, a2} = {x1, y5}, then [x1, y1, y5, z2, z3] ⊇ C5,
[y3, x4, z1, z5, z4] ⊇ C5 and [y2, y4, x2, x3, x5] ⊇ C5, a contradiction. If {a1, a2} =
{x4, yi} for some i ∈ {3, 5}, say {a1, a2} = {x4, y5}, then we set {r, s} = {1, 4}
with x4yr ∈ E(G). It is clear that [x4, yr, y5, z2, z3] ⊇ C5, [x1, y3, z1, z5, z4] ⊇ C5

and [x2, x3, x5, y2, ys] ⊇ C5, a contradiction. Hence {a1, a2} = {y3, y5}. There-
fore, [y3, y4, y5, z2, z3] ⊇ C5, [x1, x4, z1, z5, z4] ⊇ C5 and [x2, x3, x5, y1, y2] ⊇ C5,
again a contradiction.

Next, assume that N(x1) |Lt = {yi, yi+1, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say
N(x1) |Lt = {y1, y2, y3}. As x1 → (Lt, y2), e(y2, Q) ≤ 1. Suppose e(x2, y4y5) ≥ 1,
say x2y5 ∈ E(G). Then e(y3y4, T ) ≤ 3 for otherwise [x1, x2, y5, y1, y2] ⊇ C5 and
[x3, x4, x5, y3, y4] ⊇ C5. Further, if x2y4 ∈ E(G), then similarly, e(y1y5, T ) ≤ 3
and so e(Q,Lt) ≤ 12, a contradiction. Hence x2y4 /∈ E(G). Since e(Q,Lt) ≥
13, then e(y1y5, Q) = 8, e(y3y4, T ) = 3, e(y2, Q) = 1 and x2y3 ∈ E(G). If
e(y4, T ) ≥ 1, then [x3, x4, x5, y4, y5] ⊇ C5 and [y1, y2, y3, x1, x2] ⊇ C5, a contra-
diction. Thus e(y4, T ) = 0 and so e(y3, T ) = 3. Then [x1, y2, y1, x3, x2] ⊇ C5

and [y3, y4, y5, x4, x5] ⊇ C5, a contradiction. Therefore, e(x2, y4y5) = 0. If
e(x2, y1y3) ≥ 1, then [x1, x2, y1, y2, y3] ⊇ C5 and so e(y4y5, T ) ≤ 3. It fol-
lows that e(Q,Lt) = e(y4y5, T ) + e(y1y3, T ) + e(y2, T ) + e(x2, y1y2y3) ≤ 12, no
matter whether y2x2 is an edge of E(G) or not, a contradiction. Therefore,
e(x2, y1y3y4y5) = 0 and hence e(T, y1y3y4y5) = 12. Then [x1, y3, x3, y1, y2] ⊇ C5

and [x2, x4, y4, y5, x5] ⊇ C5, again a contradiction.

To prove (d), suppose to the contrary that e(Q,Lt) ≥ 16. Assume first
N(x1) |Lt = {yi, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |Lt = {y1, y3}. As
x1 → (Lt, y2), e(y2, Q) ≤ 1. Therefore, e(Q, y1y3y4y5) ≥ 15 and hence e(x2, y1y3)
≥ 1. Then [x1, x2, y1, y2, y3] ⊇ C5 and so e(y4y5, T ) ≤ 3. This implies that
e(Q, y1y3y4y5) ≤ 13, a contradiction. Next, assume that N(x1) |Lt = {yi, yi+1}
for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |Lt = {y1, y2}. If x2y4 ∈ E(G), then
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e(y2y3, T ) ≤ 3 for otherwise [x1, x2, y4, y5, y1] ⊇ C5 and [x3, x4, x5, y2, y3] ⊇ C5,
a contradiction. Similarly, if x2y4 ∈ E(G), then e(y1y5, T ) ≤ 3. This means
that e(Q,Lt) ≤ 14, a contradiction. Hence x2y4 /∈ E(G). If e(x2, y3y5) ≥ 1,
say x2y5 ∈ E(G), then [x1, x2, y5, y1, y2] ⊇ C5 and so e(y3y4, T ) ≤ 3. Fur-
ther, e(y1y2y5, Q) = 12 as e(Q,Lt) ≥ 16. This implies that [x1, y1, x5, x4, x2] ⊇
C5 and [y2, y3, y4, y5, x3] ⊇ C5, a contradiction. Hence e(x2, y3y5) = 0. If
y3x3 ∈ E(G), then e(y1y4y5, x4x5) ≤ 4 for otherwise [x1, y2, y3, x3, x2] ⊇ C5 and
[x4, x5, y1, y4, y5] ⊇ C5. Thus e(Q,Lt) = e(x2, y1y2)+e(x3, Lt)+e(x4x5, y1y4y5)+
e(x4x5, y2y3) ≤ 15, a contradiction. Then y3x3 /∈ E(G). Similarly, y3x4, y3x5 /∈
E(G). Then e(Q,Lt) = e(x2, y1y2) + e(x3x4x5, y1y2y4y5) ≤ 14, again a contra-
diction.

To prove (e), suppose to the contrary that e(Q,Lt) ≥ 17. Without loss
of generality assume that x1y1 ∈ E(G). Suppose e(x2, y3y4) ≥ 1, say x2y3 ∈
E(G). Then [x1, x2, y1, y2, y3] ⊇ C5 and so e(y4y5, T ) ≤ 3. Since e(Q,Lt) ≥ 17,
e(y1y2y3, Q) = 12, e(y4y5, T ) = 3 and e(x2, y4y5) = 2. Then [x1, x2, y4, y5, y1] ⊇
C5 and [x3, x4, x5, y2, y3] ⊇ C5, a contradiction. Hence e(x2, y3y4) = 0 and so
e(T, Lt) ≥ 14. This implies that e(xi, y2y5) = 2 and y1xj ∈ E(G) for some
{i, j} ⊆ {3, 4, 5} with i 6= j. Then [Lt − y1 + xi] ⊇ C5 and [H + y1 − xi] ⊇ C5, a
contradiction. �

Recall that b0 + b1 + b2 + b3 + b4 + b5 = k − 1. Further, we can see that

dG(x1) = dH(x1) +

5
∑

r=0

∑

Lt∈Br

e(x1, Lt) = 1 + b1 + 2b2 + 3b3 + 4b4 + 5b5.(3)

By Claim 2, there may exist one L′
t ∈ B4 with e(H,L′

t) = 14. Further, we obtain

∑

x∈V (H)

dG(x) =
∑

x∈V (H)

dH(x) +
3

∑

r=0

∑

Lt∈Br

e(H,Lt) +
∑

Lt∈B5

e(H,Lt)

+
∑

Lt∈B4\{L′

t
}

e(H,Lt) + e(H,L′
t)

≤ 14 + 20b0 + 17b1 + 17b2 + 15b3 + 10b5 + (13b4 + 1)

= 15 + 20b0 + 17b1 + 17b2 + 15b3 + 13b4 + 10b5.

(4)

Combining (4) with (3), we obtain 2dG(x1)+
∑

x∈V (H) dG(x) ≤ 17+20b0+19b1+
21b2 + 21b3 + 21b4 + 20b5 = 21k − b0 − 2b1 − b5 − 4. Since dG(x2) ≥ 3k, we have
2dG(x1) +

∑

x∈V (H) dG(x) = dG(x2) + (dG(x1) + dG(x3)) + (dG(x1) + dG(x4)) +
(dG(x1) + dG(x5)) ≥ 21k, which is a contradiction.

Let ψ = {H,L1, L2, . . . , Lk−1} be an optimal family of G with H ∼= K+
4 , and

let Br and br be defined as in the proof of Lemma 14. Let Q = [x2, x3, x4, x5] and
T = [x3, x4, x5].
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Lemma 15. For each t ∈ {1, 2, . . . , k − 1}, the following statements hold.

(a) If e(x1, Lt) = 5, then e(T, Lt) ≤ 3.

(b) If e(x1, Lt) = 4, then e(T, Lt) ≤ 6.

(c) If e(x1, Lt) = 3, then e(T, Lt) ≤ 9.

(d) If 1 ≤ e(x1, Lt) ≤ 2, then e(T, Lt) ≤ 12.

(e) If e(x1, Lt) = 0, then e(T, Lt) ≤ 15.

Proof. Let Lt = y1y2y3y4y5y1 and Gt = [H,Lt]. To prove (a), suppose to the
contrary that e(T, Lt) ≥ 4. As Gt + 2C5, e(yi, Q) ≤ 1 for all i ∈ {1, 2, 3, 4, 5}.
Further, by the optimality of ψ, we obtain [Lt] ∼= K5. Without loss of generality
assume that y1x3 ∈ E(G). Then y1x2 /∈ E(G) and so dG(y1) ≥ 3k, [Q+y1] ⊇ K+

4 ,
[Lt − y1 + x1] ∼= K5. Therefore, we may assume that dG(x1) ≥ 3k. Since
e(T, Lt) ≥ 4, e(xl, Lt) ≥ 2 for some l ∈ {3, 4, 5}, say x3y1, x3y2 ∈ E(G). Then
[x2, x1, y3, y4, y5] ⊇ K+

4 , [x3, x4, x5, y1, y2] ⊇ B. Let L′ = [x3, x4, x5, y1, y2] and
R′ = {y1, y2, x4, x5}. Note that e(R′, x2x1y3y4y5) ≤ 11 and

∑

x∈R′ dL′(x) = 8.
Then e(R′, G−V (Gt)) ≥ 12k− 19 = 12(k− 2)+5 and so e(R′, Li) ≥ 13 for some
i ∈ {1, . . . , k − 1}\{t}. By Lemma 4(b), [L′, Li] ⊇ 2C5. This contradicts Lemma
14 as [x2, x1, y3, y4, y5] ⊇ K+

4 and dG(x1) ≥ 3k.

To prove (b), suppose to the contrary that e(T, Lt) ≥ 7. Without loss of
generality assume that N(x1) |Lt = {y1, y2, y3, y4}. It is clear that τ(y5, Lt) = 0
for otherwise x1 → Lt and so Gt ⊇ 2C5. As x1 → (Lt, yi) for i ∈ {2, 3, 5},
e(yi, T ) ≤ 1. If e(y5, T ) = 1, then [Q + y5] ⊇ K+

4 and τ(Lt − y5 + x1) > τ(Lt),
contradicting the optimality of ψ. Therefore, e(y5, T ) = 0 and hence e(y1y4, T ) ≥
5. Without loss of generality, assume that e(y1, T ) = 3 and y4x3, y4x4 ∈ E(G).
Further, since e(T, Lt) ≥ 7, e(y2y3, T ) ≥ 1. If x3 ∈ N(y2)|T ∪ N(y3)|T , then
[x1, y2, y3, x3, x2] ⊇ C5 and [y1, y4, y5, x4, x5] ⊇ C5, a contradiction. If x4 ∈
N(y2)|T ∪ N(y3)|T , then [x1, y2, y3, x4, x2] ⊇ C5 and [y1, y4, y5, x3, x5] ⊇ C5, a
contradiction. If x5 ∈ N(y2)|T ∪ N(y3)|T , then [x1, y2, y3, x5, x2] ⊇ C5 and
[y1, y4, y5, x3, x4] ⊇ C5, again a contradiction.

To prove (c), suppose to the contrary that e(T, Lt) ≥ 10. Assume first
N(x1) |Lt={yi, yi+1, yi+2} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |Lt={y1, y2, y3}.
As x1 → (Lt, y2), e(y2, T ) ≤ 1. Without loss of generality assume that e(y1y4, T )
≥ e(y3y5, T ). Then [x1, y2, y3, xi, x2] ⊇ C5 and [(V (T ) ∪ {y1, y4, y5})\{xi}] ⊇ C5,
where xi ∈ N(y2)|T ∪N(y3)|T , a contradiction. Next, assume that N(x1) |Lt =
{yi, yi+1, yi+3} for some i ∈ {1, 2, 3, 4, 5}, say N(x1) |Lt = {y1, y2, y4}. As x1 →
(Lt, yi) for i ∈ {3, 5}, e(yi, T ) ≤ 1. Since e(T, Lt) ≥ 10, e(y1y4, x4x5) ≥ 3 and
e(y3y5, T ) ≥ 1, say x3y3 ∈ E(G). Then [x1, y2, y3, x3, x2] ⊇ C5 and [y1, y5, y4, x4,
x5] ⊇ C5, a contradiction.

To prove (d), suppose to the contrary that e(T, Lt) ≥ 13. Without loss of
generality assume that x1y1 ∈ E(G). Since e(T, Lt) ≥ 13, e(y2y5, T ) ≥ 4. Assume
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first that e(y2y5, T ) = 4, say x3 ∈ N(y2)|T ∩N(y5)|T . Further, since e(T, Lt) ≥
13, e(y1, T ) = 3. Then [x1, y1, x2, x4, x5] ⊇ C5 and [x3, y2, y3, y4, y5] ⊇ C5, a con-
tradiction. Next, assume that e(y2y5, T ) ≥ 5, say {x3, x4} ⊆ N(y2)|T ∩N(y5)|T .
Since e(T, Lt) ≥ 13, e(y1, T ) ≥ 1. If y1x3 ∈ E(G), then [x1, y1, x2, x3, x5] ⊇ C5

and [x4, y2, y3, y4, y5] ⊇ C5, a contradiction. If y1x4 ∈ E(G), then [x1, y1, x2,
x4, x5] ⊇ C5 and [x3, y2, y3, y4, y5] ⊇ C5, a contradiction. If y1x5 ∈ E(G), then
[x1, y1, x2, x4, x5] ⊇ C5 and [x3, y2, y3, y4, y5] ⊇ C5, again a contradiction.

Let R = {x1, x3, x4, x5}. By Lemma 15, we obtain

∑

x∈R

dG(x) =
∑

x∈R

dH(x) +
5

∑

r=0

∑

Lt∈Br

e(R,Lt)

≤ 10 + 15b0 + 13b1 + 14b2 + 12b3 + 10b4 + 8b5.

(5)

Combining (5) with (3), we have 2dG(x1)+
∑

x∈R dG(x) ≤ 12+15b0+15b1+
18b2+18b3+18b4+18b5 = 18k−3b0−3b1−6. But by the degree sum condition,
we have 2dG(x1) +

∑

x∈R dG(x) ≥ 18k, a contradiction. This proves Theorem 3.
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