DEGREE SUM CONDITION FOR VERTEX-DISJOINT 5-CYCLES

Maoqun Wang and Jianguo Qian ${ }^{1}$
School of Mathematical Sciences
Xiamen University
Xiamen, Fujian 361005, P.R. China
e-mail: jgqian@xmu.edu.cn

Abstract

Let n and k be two integers and G a graph with $n=5 k$ vertices. Wang proved that if $\delta(G) \geq 3 k$, then G contains k vertex disjoint cycles of length 5. In 2018, Chiba and Yamashita asked whether the degree condition can be replaced by degree sum condition. In this paper, we give a positive answer to this question.

Keywords: degree sum conditions; vertex disjoint 5-cycles.
2020 Mathematics Subject Classification: 05C38, O5C70, 05C75.

1. INTRODUCTION

Let G be a graph. We denote by $V(G)$ and $E(G)$ the vertex set and edge set of G, respectively, and call $|V(G)|$ the order of G. An edge joining two vertices x and y is denoted by $x y$. A class of subgraphs of G is vertex disjoint, or simply disjoint, if no two subgraphs in the class have a common vertex. The length of a cycle C (or a path P) is the number of edges on C (or P). For $X \subseteq V(G)$, the neighbour set of X, denoted by $N_{G}(X)$ or $N(X)$ with no confusion, is the set of the vertices not in X but adjacent to at least one vertex in X. In particular, if X consists of a single vertex x, then we call $\left|N_{G}(\{x\})\right|$ the degree of x and denote it by $d_{G}(x)$. We use $\delta(G)$ to denote the minimum degree of vertices in G. Define

$$
\sigma_{2}(G)=\min \{d(x)+d(y): x, y \in V(G), x \neq y, x y \notin E(G)\}
$$

The degree condition for the existence of cycle(s) with specified length(s) is one of the most elementary concerns in graph theory. A classic result should be

[^0]the one given by Dirac [4] in 1952, which says that every graph with n vertices and minimum degree at least $n / 2$ has a Hamilton cycle. Since then, this result has been generalized to various forms in terms of degree condition or degree sum condition. Corrádi and Hajnal [2] considered the maximum number of disjoint cycles in a graph and proved that if a graph G has at least $3 k$ vertices and minimum degree at least $2 k$, then G contains k disjoint cycles. In particular, when G has exactly $3 k$ vertices, then G contains k disjoint triangles. Erdős and Faudree [6] conjectured that if G has $4 k$ vertices and minimum degree $\delta(G) \geq 2 k$, then G contains k vertex disjoint cycles of length 4 . This conjecture was later confirmed by Wang [7]. In general, El-Zahar posed the following conjecture.

Conjecture 1 (El-Zahar, [5]). Let G be a graph of order $n=n_{1}+n_{2}+\cdots+n_{k}$ with $n_{i} \geq 3$ for each $i \in\{1,2, \ldots, k\}$. If $\delta(G) \geq\left\lceil\frac{n_{1}}{2}\right\rceil+\left\lceil\frac{n_{2}}{2}\right\rceil+\cdots+\left\lceil\frac{n_{k}}{2}\right\rceil$, then G has k disjoint cycles of length $n_{1}, n_{2}, \ldots, n_{k}$, where, for a real number $r,\lceil r\rceil$ is the least integer not less than r.

In the same paper, El-Zahar also proved that the above conjecture is true for $k=2$. In [1], Abbasi confirmed the conjecture for sufficiently large graphs by using the regularity lemma. Wang [8] proved the conjecture for the case when $n=5 k$ and $n_{i}=5(1 \leq i \leq k)$ as follows.

Theorem 2 (Wang, [8]). Let k be a positive integer and G a graph of order $n=5 k$. If $\delta(G) \geq(n+k) / 2$, then G contains k vertex disjoint cycles of length 5 .

In 2018, Chiba and Yamashita [3] posed the following question.
Question (Chiba and Yamashita, [3]). Let k be a positive integer and G a graph of order $n=5 k$. Is it true that if $\sigma_{2}(G) \geq n+k$, then G contains k vertex disjoint cycles of length 5 ?

In this paper, we give a positive answer to this question.
Theorem 3. Let k be a positive integer and G a graph of order $n=5 k$. If $\sigma_{2}(G) \geq n+k$, then G contains k vertex disjoint cycles of length 5 .

2. Preliminaries

For $X, Y \subseteq V(G)$, we denote by $N(X) \mid Y$ the neighbour set of X restricted on Y, i.e., $N(X) \mid Y=N(X) \cap Y$. For simplicity, if X consists of a single vertex x, we simply write $N(\{x\}) \mid Y$ as $N(x) \mid Y$, and if H is a subgraph of G, then we simply write $N(X) \mid V(H)$ as $N(X) \mid H$. A chord of a cycle C is an edge not on C that joins two vertices of C, and the number of chords of C is denoted by $\tau(C)$. Further, for $x \in V(C)$, we use $\tau(x, C)$ to denote the number of chords of C that are incident with x. For a graph H, we say that
G contains H if G has a subgraph isomorphic to H and denote by $G \supseteq H$. For two graphs G and G^{\prime}, we denote by $G \uplus G^{\prime}$ the vertex disjoint union of G and G^{\prime}. For simplicity, we write the vertex disjoint union of k copies of a graph H as $k H$. For two disjoint vertex subsets, or subgraphs, A and B of G, we define $E(A, B)$ to be the set of all the edges of G between A and B and denote $e(A, B)=|E(A, B)|$. For a vertex subset X of G, we denote by $[X]$ the subgraph of G induced by X. Further, for subgraphs $G_{1}, G_{2}, \ldots, G_{t}$ of G, we write $\left[V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup \cdots \cup V\left(G_{t}\right)\right]=\left[G_{1}, G_{2}, \ldots, G_{t}\right]$. For $t+1$ disjoint subgraphs H, L_{1}, \ldots, L_{t} of G, we call $\left\{H, L_{1}, \ldots, L_{t}\right\}$ a family of G if $L_{i} \cong C_{5}$ for all $i \in\{1,2, \ldots, t\}$. In particular, we call a family $\left\{H, L_{1}, \ldots, L_{t}\right\}$ optimal if $\sum_{i=1}^{t} \tau\left(L_{i}^{\prime}\right) \leq \sum_{i=1}^{t} \tau\left(L_{i}\right)$ for any family $\left\{H^{\prime}, L_{1}^{\prime}, \ldots, L_{t}^{\prime}\right\}$ of $\left[H, L_{1}, \ldots, L_{t}\right]$ with $H^{\prime} \cong H$ and $L_{i}^{\prime} \cong C_{5}$ for all $i \in\{1,2, \ldots, t\}$.

As usual, for $i \geq 3$, we denote by K_{i}, C_{i} and P_{i} the complete graph, cycle and path of order i, respectively. Following the notations in [8], let B, F, F_{1}, F_{2}, $F_{3}, F_{4}, F_{5}, K_{4}^{+}$be the graphs as illustrated in Figure 1. Let L be a 5 -cycle, $u \in V(L)$ and $x \in V(G) \backslash V(L)$. We write $x \rightarrow(L, u)$ if $[L-u+x] \supseteq C_{5}$. In particular, if $x \rightarrow(L, u)$ for all $u \in V(L)$, then we write $x \rightarrow L$. Further, for $\left\{v_{1}, v_{2}\right\} \subseteq V(G)$, we write $x \rightarrow\left(L, u ;\left\{v_{1}, v_{2}\right\}\right)$ if $x \rightarrow(L, u)$ and u is adjacent to both v_{1} and v_{2}.

B

F

F_{4}

F_{1}

F_{5}

F_{2}

Figure 1. The subgraphs $B, F, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, K_{4}^{+}$.
To prove the main theorem, we introduce the following lemmas.
Lemma 4 [8]. For a graph G, the following statements hold.
(a) Let B_{1} and B_{2} be two disjoint subgraphs of G with $B_{1} \cong B_{2} \cong B$ and R the set of the four vertices of degree 2 in B_{1}. If $e\left(R, B_{2}\right) \geq 13$, then $\left[B_{1}, B_{2}\right] \supseteq 2 C_{5}$ or $\left[B_{1}, B_{2}\right] \supseteq B \uplus C_{5}$.
(b) Let D and L be two disjoint subgraphs of G with $D \cong B$ and $L \cong C_{5}$ and x the unique vertex of degree 4 in D. If $e(D-x, L) \geq 13$, then $[D, L] \supseteq 2 C_{5}$.
(c) Let D and L be two disjoint subgraphs of G with $D \cong F_{2}$ and $L \cong C_{5}$ and R the set of the three vertices of degree 2 in D. If $e(R, L) \geq 10$, then
$[D, L] \supseteq F_{1} \uplus C_{5}$.
(d) Let P and L be two disjoint subgraphs of G with $P \cong P_{5}$ and $L \cong C_{5}$. If $e(P, L) \geq 16,[P, L] \nsupseteq 2 C_{5}$ and $\{P, L\}$ is optimal, then $[P, L] \supseteq F \uplus C_{5}$.
(e) Let $R \subseteq V(G)$ and L be a 5-cycle in $G-R$. If $|R|=4$ and $e(R, L) \geq 13$, then $x \rightarrow\left(L, y ;\left\{x_{1}, x_{2}\right\}\right)$ for some $y \in V(L), x \in R$ and $\left\{x_{1}, x_{2}\right\} \subseteq R \backslash\{x\}$; or there are vertex labellings $R=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ such that $N\left(x_{1}\right)\left|L=N\left(x_{2}\right)\right| L=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}, N\left(x_{3}\right) \mid L=\left\{y_{1}, y_{4}, y_{5}\right\}$ and $N\left(x_{4}\right) \mid L=\left\{y_{1}, y_{4}\right\}$.

Throughout the following, when we speak of a subgraph isomorphic to one of that in Figure 1, we always assume that its vertices are labelled as indicated in the figure. Further, for two vertex subsets $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{h}\right\}$, we write $e\left(\left\{x_{1}, x_{2}, \ldots, x_{k}\right\},\left\{y_{1}, y_{2}, \ldots, y_{h}\right\}\right)$ by $e\left(x_{1} x_{2} \cdots x_{k}, y_{1} y_{2} \cdots y_{h}\right)$ for simplicity.

Lemma 5 [8]. For a graph G, the following statements hold.
(a) Let D and L be two disjoint subgraphs of G with $D \cong F$ and $L \cong C_{5}$. If $\{D, L\}$ is optimal and $e(D, L) \geq 16$, then $[D, L]$ contains one of $F_{1} \uplus C_{5}$, $F_{2} \uplus C_{5}, B \uplus C_{5}$ and $2 C_{5}$; or the cycle L has a labelling $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ satisfying the following property
$\mathbf{P}_{1}: e\left(x_{1}, L\right)=0, e\left(x_{2} x_{4}, L\right)=10, N\left(x_{3}\right)\left|L=N\left(x_{5}\right)\right| L=\left\{y_{1}, y_{2}, y_{4}\right\}$, $\tau(L)=4$ and $y_{3} y_{5} \notin E(G)$.
(b) Let D, L and L^{\prime} be three disjoint subgraphs of G with $D \cong F, L \cong L^{\prime} \cong C_{5}$ and $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$. If D and L satisfy the property \mathbf{P}_{1} and $e\left(x_{1} x_{3} y_{3} y_{5}\right.$, $\left.L^{\prime}\right) \geq 13$, then $\left[D, L, L^{\prime}\right]$ contains either $F_{1} \uplus 2 C_{5}$ or $3 C_{5}$.

Lemma 6 [8]. For a graph G, the following statements hold.
(a) Let D and L be two disjoint subgraphs of G with $D \cong F_{1}$ and $L \cong C_{5}$. If $\{D, L\}$ is optimal and $e(D, L) \geq 16$, then $[D, L]$ contains one of $K_{4}^{+} \uplus C_{5}$, $K_{4}^{+} \uplus B, B \uplus C_{5}$ and $2 C_{5}$; or L has a labelling $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ satisfying the following property
$\mathbf{P}_{2}: e\left(x_{1}, L\right)=0, e\left(y_{1} y_{2} y_{4}, D-x_{1}\right)=12, N\left(y_{3}\right)\left|D=N\left(y_{5}\right)\right| D=\left\{x_{3}, x_{5}\right\}$, $\tau(L)=4$ and $y_{3} y_{5} \notin E$.
(b) Let D, L and L^{\prime} be three disjoint subgraphs of G with $D \cong F_{1}, L \cong L^{\prime} \cong C_{5}$ and $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$. If D and L satisfy $\mathbf{P}_{2},\left\{D, L, L^{\prime}\right\}$ is optimal and $e\left(x_{1} x_{4} y_{3} y_{5}, L^{\prime}\right) \geq 13$, then $\left[D, L, L^{\prime}\right]$ contains either $K_{4}^{+} \uplus 2 C_{5}$ or $3 C_{5}$.

Lemma 7. Let D and L be two disjoint subgraphs of G with $D \cong F_{3}$ and $L \cong C_{5}$. If $e\left(D-x_{3}, L\right) \geq 13$, then $[D, L]$ contains either $2 C_{5}$ or $F \uplus C_{5}$ or $B \uplus C_{5}$ or $F_{4} \uplus C_{5}$.

Proof. Let $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ and $R=V(D) \backslash\left\{x_{3}\right\}$. Suppose to the contrary that $[D, L]$ does not contain any of $2 C_{5}, F \uplus C_{5}, B \uplus C_{5}$ and $F_{4} \uplus C_{5}$. Suppose $e\left(x_{4} x_{5}, L\right) \geq 8$. Without loss of generality, assume that $e\left(x_{4}, L\right) \geq e\left(x_{5}, L\right)$. If $e\left(x_{4}, L\right)=5$, then since $e\left(x_{1} x_{2} x_{5}, L\right) \geq 8, L$ has a vertex y_{j} such that $x_{t} y_{j}, x_{5} y_{j} \in$ $E(G)$ for some $t \in\{1,2\}$ and so $x_{4} \rightarrow\left(L, y_{j} ;\left\{x_{5}, x_{t}\right\}\right)$. Thus $[D, L]$ contains $2 C_{5}$ or $F \uplus C_{5}$, a contradiction. Then $e\left(x_{4} x_{5}, L\right)=8$ and $e\left(x_{4}, L\right)=e\left(x_{5}, L\right)=4$, say $N\left(x_{4}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. If $N\left(x_{5}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}, y_{5}\right\}$ or $N\left(x_{5}\right) \mid L=$ $\left\{y_{1}, y_{2}, y_{4}, y_{5}\right\}$ or $N\left(x_{5}\right) \mid L=\left\{y_{1}, y_{3}, y_{4}, y_{5}\right\}$ or $N\left(x_{5}\right) \mid L=\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$, then since $e\left(x_{1} x_{2}, L\right) \geq 5, L$ has a vertex y_{j} such that $x_{r} \rightarrow\left(L, y_{j} ;\left\{x_{s}, x_{t}\right\}\right)$ for some $t \in$ $\{1,2\}$ and $\{r, s\}=\{4,5\}$. Hence $[D, L]$ contains $2 C_{5}$ or $F \uplus C_{5}$, a contradiction. If $N\left(x_{5}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, then $e\left(x_{1} x_{2}, y_{2} y_{3}\right)=0$ for otherwise $[D, L]$ contains $2 C_{5}$ or $F \uplus C_{5}$. Hence $e\left(x_{1} x_{2}, y_{1} y_{4} y_{5}\right) \geq 5$ and so $\left[x_{1}, x_{2}, y_{1}, y_{4}, y_{5}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{2}, y_{3}\right] \supseteq C_{5}$, again a contradiction. Therefore $e\left(x_{4} x_{5}, L\right) \leq 7$ and hence $e\left(x_{1} x_{2}, L\right) \geq 6$. If $e\left(x_{1}, L\right)=1$, say $x_{1} y_{1} \in E(G)$, then $e\left(y_{2} y_{3}, x_{4} x_{5}\right) \leq$ 1 (otherwise $\left[y_{1}, y_{4}, y_{5}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{2}, y_{3}\right]$ contains C_{5} or F or B). Similarly, $e\left(y_{4} y_{5}, x_{4} x_{5}\right) \leq 1$. Hence $e(R, L) \leq 10$, a contradiction. Now suppose $e\left(x_{1}, L\right) \geq 4$, say $N\left(x_{1}\right) \mid L \supseteq\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. If $x_{1} \rightarrow\left(L, y_{i}\right)$ for some $i \in\{1,2,3,4,5\}$, then $e\left(y_{i}, x_{4} x_{5}\right)=0$ (otherwise $\left[L-y_{i}+x_{1}\right] \supseteq C_{5}$ and $[D+$ $\left.y_{i}-x_{1}\right] \supseteq F_{4}$. This implies that $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}, e\left(x_{4} x_{5}, y_{1} y_{4}\right)=4$, $e\left(x_{2}, L\right)=5$. Therefore, $\left[y_{2}, y_{3}, x_{1}, x_{2}, x_{3}\right] \supseteq F$ and $\left[y_{1}, y_{4}, y_{5}, x_{4}, x_{5}\right] \supseteq C_{5}$, again a contradiction.

Case 1. $e\left(x_{1}, L\right)=2$. In this case, $e\left(x_{2}, L\right) \geq 4$ as $e\left(x_{1} x_{2}, L\right) \geq 6$. First suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=$ $\left\{y_{1}, y_{2}\right\}$, where and herein after, the subscript of a vertex y_{i} on C_{5} means in i modulo 5 if $i>5$. If $x_{2} y_{4} \in E(G)$, then $y_{1} y_{5} y_{4} x_{2} x_{1} y_{1} \cong y_{2} y_{3} y_{4} x_{2} x_{1} y_{2} \cong C_{5}$. Hence, $e\left(y_{1} y_{5}, x_{4} x_{5}\right) \leq 1$ and $e\left(y_{2} y_{3}, x_{4} x_{5}\right) \leq 1$, for otherwise, $\left[y_{2}, y_{3}, x_{3}, x_{4}, x_{5}\right]$ and $\left[y_{1}, y_{5}, x_{3}, x_{4}, x_{5}\right]$ would contain C_{5} or F or B. This means that $e(R, L) \leq$ 11, a contradiction. We now assume $x_{2} y_{4} \notin E(G)$ and, hence $N\left(x_{2}\right) \mid L=$ $\left\{y_{1}, y_{2}, y_{3}, y_{5}\right\}$. We claim that $e\left(y_{3} y_{4}, x_{4} x_{5}\right) \leq 1$. If not, then $\left[y_{1}, y_{2}, y_{5}, x_{1}, x_{2}\right] \supseteq$ $C_{5},\left[y_{3}, y_{4}, x_{3}, x_{4}, x_{5}\right]$ contains C_{5} or F or B, a contradiction. Similarly, e($y_{4} y_{5}$, $\left.x_{4} x_{5}\right) \leq 1$. Hence $e(R, L) \leq 12$, a contradiction. Next, suppose that $N\left(x_{1}\right) \mid L=$ $\left\{y_{i}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L, y_{2}\right)$, $e\left(y_{2}, x_{4} x_{5}\right)=0$. Recall that $e\left(x_{2}, L\right) \geq 4$. We have $\left[y_{1}, y_{2}, y_{3}, x_{1}, x_{2}\right] \supseteq C_{5}$. Therefore, $e\left(y_{4} y_{5}, x_{4} x_{5}\right) \leq 1$, for otherwise $\left[y_{4}, y_{5}, x_{3}, x_{4}, x_{5}\right.$] would contain C_{5} or F or B. It follows that $e(R, L) \leq 12$, again a contradiction.

Case 2. $e\left(x_{1}, L\right)=3$. First suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L, y_{2}\right), e\left(y_{2}, x_{4} x_{5}\right)=0$. Note that $\left[x_{2}, x_{1}, y_{2}, y_{3}, y_{4}\right] \supseteq F_{4}$ and $\left[x_{2}, x_{1}, y_{1}, y_{2}, y_{5}\right] \supseteq F_{4}$. Then $e\left(y_{3} y_{4}, x_{4} x_{5}\right) \leq$ 2 and $e\left(y_{5} y_{1}, x_{4} x_{5}\right) \leq 2$ for otherwise $\left[x_{3}, x_{4}, x_{5}, y_{3}, y_{4}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{1}, y_{5}\right]$ $\supseteq C_{5}$. Hence $e(R, L) \leq 12$, a contradiction. Next, suppose that $N\left(x_{1}\right) \mid L=$ $\left\{y_{i}, y_{i+1}, y_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{2}, y_{4}\right\}$. As $x_{1} \rightarrow$
$\left(L, y_{i}\right)$ for all $i \in\{3,5\}, e\left(y_{i}, x_{4} x_{5}\right)=0$. It follows that $e\left(x_{2}, y_{3} y_{4} y_{5}\right) \geq 2$ and so $\left[x_{1}, x_{2}, y_{3}, y_{4}, y_{5}\right] \supseteq F$. Then $e\left(y_{1} y_{2}, x_{4} x_{5}\right) \leq 2$ as $\left[x_{3}, x_{4}, x_{5}, y_{1}, y_{2}\right] \nsupseteq C_{5}$. Consequently, $e(R, L) \leq 12$, a contradiction.

Lemma 8. Let D and L be two disjoint subgraphs of G such that $D \cong F_{4}$ and $L \cong C_{5}$. If $e\left(D-x_{3}, L\right) \geq 13$, then $[D, L]$ contains either $2 C_{5}$ or $F \uplus C_{5}$ or $B \uplus C_{5}$.
Proof. Let $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ and $R=V(D) \backslash\left\{x_{3}\right\}$. Suppose to the contrary that $[D, L]$ does not contain any of $2 C_{5}, F \uplus C_{5}$ and $B \uplus C_{5}$. Without loss of generality assume that $e\left(x_{1} x_{2}, L\right) \geq e\left(x_{4} x_{5}, L\right)$. It is clear that $7 \leq e\left(x_{1} x_{2}, L\right) \leq$ 10 and, hence $2 \leq e\left(x_{1}, L\right) \leq 5$. If $e\left(x_{1}, L\right) \geq 4$, say $N\left(x_{1}\right) \mid L \supseteq\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, then $e\left(y_{i}, x_{2} x_{4} x_{5}\right) \leq 1$ as $x_{1} \rightarrow\left(L, y_{i}\right)$ for all $i \in\{2,3,5\}$. Further, we have $e\left(y_{j}, x_{2} x_{4} x_{5}\right) \leq 2$ for all $j \in\{1,4\}$, for otherwise, $\left[D-x_{1}+y_{j}\right]$ would contain C_{5} and $\left[L-y_{j}+x_{1}\right]$ contain F. Hence $e(R, L) \leq 12$, a contradiction. Therefore, $e\left(x_{1}, L\right) \leq 3$.

Case 1. $e\left(x_{1}, L\right)=2$. In this case, $e\left(x_{2}, L\right)=5$ as $e\left(x_{1} x_{2}, L\right) \geq 7$. First suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=$ $\left\{y_{1}, y_{2}\right\}$. We claim that $e\left(y_{i} y_{i+1}, x_{4} x_{5}\right) \leq 2$ for all $i \in\{2,3,4,5\}$, for otherwise, $\left[\left(V(L) \cup\left\{x_{1}, x_{2}\right\}\right) \backslash\left\{y_{i}, y_{i+1}\right\}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{i}, y_{i+1}\right] \supseteq F$. Then $e\left(y_{1}, x_{4} x_{5}\right)=e\left(y_{4}, x_{4} x_{5}\right)=2$ as $e\left(x_{4} x_{5}, L\right) \geq 6$. It follows that $\left[y_{2}, y_{3}, x_{1}, x_{2}, x_{3}\right] \supseteq$ F and $\left[x_{4}, x_{5}, y_{1}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. Next, suppose that $N\left(x_{1}\right) \mid L=$ $\left\{y_{i}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{3}\right\}$. We say that $e\left(y_{1} y_{2}, x_{4} x_{5}\right) \leq 2$ for otherwise $\left[x_{1}, x_{2}, y_{5}, y_{4}, y_{3}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{1}, y_{2}\right] \supseteq$ F. Similarly, $e\left(y_{2} y_{3}, x_{4} x_{5}\right) \leq 2$ and $e\left(y_{4} y_{5}, x_{4} x_{5}\right) \leq 2$. Then $e\left(y_{1}, x_{4} x_{5}\right)=$ $e\left(y_{3}, x_{4} x_{5}\right)=2$ as $e\left(x_{4} x_{5}, L\right) \geq 6$. Further, we have $e\left(y_{2}, x_{4} x_{5}\right)=0$ as $x_{1} \rightarrow$ $\left(L, y_{2}\right)$. Then $e\left(y_{4} y_{5}, x_{4} x_{5}\right)=2$ and so $[D, L] \supseteq F \uplus C_{5}$, a contradiction.

Case 2. $e\left(x_{1}, L\right)=3$. In this case, $e\left(x_{2}, L\right) \geq 4$ as $e\left(x_{1} x_{2}, L\right) \geq 7$. First suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=$ $\left\{y_{1}, y_{2}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L, y_{2}\right), e\left(y_{2}, x_{4} x_{5}\right) \leq 1$. Further, if $y_{2} x_{2} \in E(G)$, then $e\left(y_{2}, x_{4} x_{5}\right)=0$. If $N\left(x_{2}\right) \mid L \supseteq\left\{y_{4}, y_{5}\right\}$, then $\left[y_{1}, y_{2}, y_{5}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{2}, y_{3}, y_{4}\right.$, $\left.x_{1}, x_{2}\right] \supseteq C_{5}$. Further, $e\left(y_{1} y_{5}, x_{4} x_{5}\right) \leq 2$ and $e\left(y_{3} y_{4}, x_{4} x_{5}\right) \leq 2$ for otherwise $\left[y_{1}, y_{5}, x_{3}, x_{4}, x_{5}\right] \supseteq F$ and $\left[y_{3}, y_{4}, x_{3}, x_{4}, x_{5}\right] \supseteq F$. Hence $e(R, L)=e\left(x_{1}, L\right)+$ $e\left(x_{2}, L\right)+e\left(y_{2}, x_{4} x_{5}\right)+e\left(y_{1} y_{5}, x_{4} x_{5}\right)+e\left(y_{3} y_{4}, x_{4} x_{5}\right) \leq 12$, no matter whether $y_{2} x_{2}$ is an edge in $E(G)$ or not, a contradiction. Then $N\left(x_{2}\right) \mid L \nsupseteq\left\{y_{4}, y_{5}\right\}$. Without loss of generality, we assume $N\left(x_{2}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Then $\left[y_{4}, y_{5}, y_{1}, x_{1}, x_{2}\right] \supseteq$ C_{5} and $\left[y_{2}, y_{3}, y_{4}, x_{2}, x_{1}\right] \supseteq C_{5}$. Hence $e\left(y_{1} y_{5}, x_{4} x_{5}\right) \leq 2$ and $e\left(y_{2} y_{3}, x_{4} x_{5}\right) \leq 2$. Then $e\left(y_{4}, x_{4} x_{5}\right)=2$ as $e\left(x_{4} x_{5}, L\right) \geq 6$. This implies that $\left[L-y_{4}+x_{1}\right] \supseteq F$ and $\left[D-x_{1}+y_{4}\right] \supseteq C_{5}$, a contradiction. Next, suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}, y_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{2}, y_{4}\right\}$. As $x_{1} \rightarrow\left(L, y_{i}\right)$ for all $i \in\{3,5\}, e\left(y_{i}, x_{2} x_{4} x_{5}\right) \leq 1$. Then $e\left(y_{j}, x_{2} x_{4} x_{5}\right)=3$ for some $j \in\{1,2\}$. It follows that $\left[L-y_{j}+x_{1}\right] \supseteq F$ and $\left[D+y_{j}-x_{1}\right] \supseteq C_{5}$, a contradiction.

Lemma 9. Let D and L be two disjoint subgraphs of G such that $D \cong F_{5}$ and $L \cong C_{5}$. If e $\left(D-x_{2}, L\right) \geq 13$, then $[D, L]$ contains either $2 C_{5}$ or $F_{1} \uplus C_{5}$ or $K_{2,3} \uplus C_{5}$.

Proof. Let $L=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ and $R=V(D) \backslash\left\{x_{2}\right\}$. Suppose to the contrary that $[D, L]$ does not contain any of $2 C_{5}, F_{1} \uplus C_{5}$ and $K_{2,3} \uplus C_{5}$. If $e\left(x_{1}, L\right) \geq$ 4, say $N\left(x_{1}\right) \mid L \supseteq\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, then $e\left(y_{i}, x_{3} x_{4} x_{5}\right) \leq 1$ for all $i \in\{2,3,5\}$ as $x_{1} \rightarrow\left(L, y_{i}\right)$. Further, $e\left(y_{4}, x_{3} x_{4} x_{5}\right) \leq 1$ as $\left[x_{1}, y_{1}, y_{2}, y_{3}, y_{5}\right] \supseteq F_{1}$. Thus, $e(R, L) \leq 12$, a contradiction. Now suppose $e\left(x_{1}, L\right)=1$, say $x_{1} y_{1} \in E(G)$. Suppose that $x_{3} y_{j} \in E(G)$ for some $j \in\{2,5\}$, then $\left[x_{1}, y_{1}, y_{j}, x_{3}, x_{2}\right] \supseteq C_{5}$. It follows that $e\left(x_{4} x_{5}, L-\left\{y_{1}, y_{j}\right\}\right) \leq 3$ for otherwise $\left[\left(L-\left\{y_{1}, y_{j}\right\}\right) \cup\left\{x_{4}, x_{5}\right\}\right]$ would contain C_{5} or F_{1} or $K_{2,3}$, a contradiction. Then $e\left(x_{3}, L\right) \geq e(R, L)-e\left(x_{4} x_{5}, L-\right.$ $\left.\left\{y_{1}, y_{j}\right\}\right)-4-e\left(x_{1}, L\right) \geq 5$. Therefore, either $e\left(x_{3}, L\right)=5$ or $e\left(x_{3}, L\right) \leq 3$. Similarly, either $e\left(x_{5}, L\right)=5$ or $e\left(x_{5}, L\right) \leq 3$. If $e\left(x_{3}, L\right) \leq 3$ and $e\left(x_{5}, L\right) \leq$ 3 , then $e(R, L) \leq 12$, a contradiction. Without loss of generality assume that $e\left(x_{3}, L\right)=5$. If $e\left(x_{i}, y_{1}\right)=1, e\left(x_{j}, y_{2} y_{5}\right)=2$ for some $i \in\{3,4,5\}, j \in\{3,5\}$, $i \neq j$, then $\left[L-y_{1}+x_{j}\right] \supseteq C_{5}$ and $\left[D+y_{1}-x_{j}\right] \supseteq C_{5}$. This implies that $N\left(x_{4}\right) \mid L=\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$ and $N\left(x_{5}\right) \mid L \supseteq\left\{y_{3}, y_{4}\right\}$ and so $\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right] \supseteq C_{5}$ and $\left[x_{4}, x_{5}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction.

Case 1. $e\left(x_{1}, L\right)=2$. First suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{2}\right\}$. If $e\left(x_{4}, L\right)=5$, then $e\left(x_{3} x_{5}, y_{i}\right) \leq 1$ for all $i \in\{1,2\}$, for otherwise, $\left[L-y_{i}+x_{4}\right] \supseteq C_{5}$ and $\left[D+y_{i}-x_{4}\right] \supseteq K_{2,3}$. If $e\left(x_{3} x_{5}, y_{3} y_{4} y_{5}\right) \geq 5$, then $\left[x_{1}, x_{2}, x_{4}, y_{1}, y_{2}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{5}, y_{3}, y_{4}, y_{5}\right] \supseteq$ C_{5}, a contradiction. Thus, $e\left(x_{3} x_{5}, y_{3} y_{4} y_{5}\right)=4, e\left(x_{3} x_{5}, y_{i}\right)=1$ for all $i \in$ $\{1,2\}$. Further, either $\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right] \supseteq C_{5}$ and $\left[x_{4}, x_{5}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, or [$\left.x_{1}, x_{2}, x_{5}, y_{1}, y_{2}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. Therefore $e\left(x_{4}, L\right) \leq 4$. If $e\left(x_{4}, y_{1} y_{2}\right)=2$, then $e\left(y_{i+1} y_{i-1}, x_{j}\right) \leq 1$ for all $i \in\{1,2\}$, $j \in\{3,5\}$, for otherwise, $\left[L-y_{i}+x_{j}\right] \supseteq C_{5},\left[D+y_{i}-x_{j}\right] \supseteq C_{5}$. Hence $e(R, L) \leq 12$, a contradiction. Therefore, $e\left(x_{4}, y_{1} y_{2}\right) \leq 1$. Without loss of generality assume that $e\left(x_{3}, L\right) \geq e\left(x_{5}, L\right)$. If $e\left(x_{4}, L\right)=4$, say $N\left(x_{4}\right) \mid L=\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$, then [$D+y_{2}-x_{3}$] would contain C_{5} and $\left[L-y_{2}+x_{3}\right]$ contain F_{1} or C_{5}, a contradiction. Therefore $e\left(x_{4}, L\right) \leq 3$ and hence $e\left(x_{3} x_{5}, L\right) \geq 8$. If $e\left(x_{3}, L\right)=5$, then $e\left(x_{i}, y_{j}\right)=0$ for all $i \in\{4,5\}, j \in\{1,2\}$, for otherwise, $\left[L-y_{j}+x_{3}\right] \supseteq C_{5}$, $\left[D+y_{j}-x_{3}\right] \supseteq C_{5}$. Thus $e\left(x_{4} x_{5}, y_{3} y_{4} y_{5}\right)=6$. Then $\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right] \supseteq C_{5}$ and $\left[x_{4}, x_{5}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{3}, L\right)=e\left(x_{5}, L\right)=4$ and $e\left(x_{4}, L\right)=3$. If $x_{4} y_{1} \in E(G)$, then $e\left(x_{3} x_{5}, y_{2} y_{5}\right) \leq 2$ and so $e\left(x_{3} x_{5}, y_{1} y_{3} y_{4}\right)=6$. This implies that $\left[x_{1}, x_{2}, x_{3}, y_{2}, y_{3}\right] \supseteq C_{5}$ and $\left[x_{4}, x_{5}, y_{1}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. Therefore, $x_{4} y_{1} \notin E(G)$. Similarly, $x_{4} y_{2} \notin E(G)$. Then $e\left(x_{4}, y_{3} y_{4} y_{5}\right)=$ 3. We say that $e\left(x_{3} x_{5}, y_{2} y_{3}\right) \leq 3$ for otherwise $\left[x_{1}, y_{1}, y_{2}, x_{3}, x_{2}\right] \supseteq C_{5}$ and $\left[x_{4}, x_{5}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$. Then $e\left(x_{3} x_{5}, y_{1} y_{4} y_{5}\right) \geq 5$ and so $\left[x_{1}, x_{2}, x_{4}, y_{2}, y_{3}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{5}, y_{1}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction.

Next, suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L, y_{2}\right), e\left(y_{2}, x_{3} x_{5}\right)=0$. If $e\left(x_{4}, L\right) \leq 3$, then $e\left(x_{3} x_{5}, L-y_{2}\right)=8$ and so $\left[L-y_{1}+x_{5}\right] \supseteq F_{1}$ and $\left[D-x_{5}+y_{1}\right] \supseteq C_{5}$, a contradiction. Without loss of generality assume that $e\left(x_{3}, L\right) \geq e\left(x_{5}, L\right)$. If $e\left(x_{4}, L\right)=4$, then $N\left(x_{3}\right) \mid L=\left\{y_{1}, y_{3}, y_{4}, y_{5}\right\}$. We claim that $e\left(y_{i}, x_{5}\right)=0$ for all $i \in\{1,3\}$, for otherwise, $\left[D-x_{3}+y_{i}\right] \supseteq C_{5},\left[L-y_{i}+x_{3}\right] \supseteq F_{1}$. Hence $e(R, L) \leq 12$, a contradiction. If $e\left(x_{4}, L\right)=5$, then $e\left(x_{3} x_{5}, y_{1} y_{5} y_{4}\right) \leq 4$ for otherwise $\left[x_{1}, y_{2}, y_{3}, x_{4}, x_{2}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{5}, y_{1}, y_{5}, y_{4}\right] \supseteq C_{5}$. It follows that $e\left(x_{3} x_{5}, y_{3}\right)=2$ and so $\left[L-y_{3}+x_{4}\right] \supseteq C_{5}$ and $\left[D+y_{3}-x_{4}\right] \supseteq K_{2,3}$, again a contradiction.

Case 2. $e\left(x_{1}, L\right)=3$. First suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L, y_{2}\right), e\left(y_{2}, x_{3} x_{4} x_{5}\right) \leq 1$. Further, $e\left(y_{4}, x_{3} x_{4} x_{5}\right) \leq 1$ as $\left[x_{1}, y_{1}, y_{2}, y_{3}, y_{5}\right] \supseteq F_{1}$. Similarly, $e\left(y_{5}, x_{3} x_{4} x_{5}\right) \leq 1$. Thus, $e(R, L) \leq 12$, a contradiction. Next, suppose that $N\left(x_{1}\right) \mid L=\left\{y_{i}, y_{i+1}\right.$, $\left.y_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L=\left\{y_{1}, y_{2}, y_{4}\right\}$. As $x_{1} \rightarrow\left(L, y_{i}\right)$ for all $i \in\{3,5\}, e\left(y_{i}, x_{3} x_{5}\right)=0$. Then $e\left(x_{3} x_{5}, L\right) \leq 6$ and so $e\left(x_{4}, L\right) \geq 4$. If $e\left(x_{4}, L\right)=5$, then $e\left(y_{i}, x_{3} x_{5}\right) \leq 1$ for all $i \in\{1,2,4\}$, for otherwise, $\left[D-x_{4}+y_{i}\right] \supseteq$ $K_{2,3}$ and $\left[L-y_{i}+x_{4}\right] \supseteq C_{5}$. Hence $e(R, L) \leq 11$, a contradiction. If $e\left(x_{4}, L\right)=4$, then $e\left(x_{3} x_{5}, y_{1} y_{2} y_{4}\right)=6$. Further, if $e\left(x_{4}, y_{3} y_{5}\right)=2$, then $\left[x_{1}, x_{2}, x_{4}, y_{2}, y_{3}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{5}, y_{1}, y_{4}, y_{5}\right] \supseteq K_{2,3}$, a contradiction. Thus $e\left(x_{4}, y_{3} y_{5}\right) \leq 1$. Without loss of generality assume that $N\left(x_{4}\right) \mid L=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Then $\left[y_{2}, y_{3}, x_{1}, x_{2}, x_{4}\right] \supseteq$ C_{5} and $\left[y_{1}, y_{4}, y_{5}, x_{3}, x_{5}\right] \supseteq K_{2,3}$, again a contradiction.

3. Proof of Theorem 3

Let G be a graph of order $n=5 k$ with $\sigma_{2}(G) \geq n+k$. It is easy to see that G is Hamiltonian if $k=1$. In the following, we always assume that $k \geq 2$. Suppose, for a contradiction, that $G \nsupseteq k C_{5}$. We may assume that G is maximal, i.e., $G+x y \supseteq k C_{5}$ for each pair of non-adjacent vertices x and y of G. Thus $G \supseteq P_{5} \uplus(k-1) C_{5}$. Our proof will follow from the following lemmas.

Lemma 10. For each $s \in\{1,2, \ldots, k\}, G \nsupseteq s B \uplus(k-s) C_{5}$.
Proof. To the contrary, suppose that $G \supseteq s B \uplus(k-s) C_{5}$ for some $s \in\{1,2, \ldots$, $k\}$. Let s be the minimum number in $\{1,2, \ldots, k\}$ for which $G \supseteq s B \uplus(k-s) C_{5}$ and let $B_{1}, \ldots, B_{s}, L_{1}, \ldots, L_{k-s}$ be k disjoint subgraphs of G with $B_{i} \cong B$ for $i \in\{1,2, \ldots, s\}$ and $L_{i} \cong C_{5}$ for $i \in\{1,2, \ldots, k-s\}$. Let R be the set of the four vertices of degree 2 in B_{1}. By Lemmas $4(\mathrm{a})$ and (b) and the minimality of s, we see that $e\left(R, B_{i}\right) \leq 12$ and $e\left(R, L_{j}\right) \leq 12$ for all $i \in\{2,3, \ldots, s\}$ and $j \in\{1,2, \ldots, k-s\}$. Therefore $\sum_{x \in R} d_{G}(x) \leq 12(k-1)+8=12 k-4$. However, by
the degree sum condition, we have $\sum_{x \in R} d_{G}(x)=\left(d_{G}\left(x_{2}\right)+d_{G}\left(x_{4}\right)\right)+\left(d_{G}\left(x_{3}\right)+\right.$ $\left.d_{G}\left(x_{5}\right)\right) \geq 12 k$, a contradiction.

Lemma 11. $G \supseteq F_{1} \uplus(k-1) C_{5}$.
Proof. First, we claim that $G \supseteq F \uplus(k-1) C_{5}$. Let $\left\{H, L_{1}, L_{2}, \ldots, L_{k-1}\right\}$ be an optimal family of G with $H \cong P_{5}$. If $[H] \cong P_{5}=x_{1} x_{2} x_{3} x_{4} x_{5}$, then $d_{G}\left(x_{1}\right)+$ $d_{G}\left(x_{5}\right) \geq 6 k$. Without loss of generality, we assume that $d_{G}\left(x_{1}\right) \geq 3 k$. Since $\sigma_{2}(G) \geq 6 k, \sum_{x \in V(H)} d_{G}(x)=d_{G}\left(x_{1}\right)+\left(d_{G}\left(x_{2}\right)+d_{G}\left(x_{4}\right)\right)+\left(d_{G}\left(x_{3}\right)+d_{G}\left(x_{5}\right)\right) \geq$ $15 k$. Then $e(H, G-V(H)) \geq 15 k-8=15(k-1)+7$. Thus $e\left(H, L_{i}\right) \geq 16$ for some $i \in\{1,2, \ldots, k-1\}$. By Lemma $4(\mathrm{~d}),\left[H, L_{i}\right] \supseteq F \uplus C_{5}$ and, hence $G \supseteq$ $F \uplus(k-1) C_{5}$. If $[H] \cong F_{4}$, then $e\left(x_{1} x_{2} x_{4} x_{5}, G-V(H)\right) \geq 12 k-8=12(k-1)+4$. This implies that $e\left(x_{1} x_{2} x_{4} x_{5}, L_{i}\right) \geq 13$ for some $i \in\{1,2, \ldots, k-1\}$. By Lemma 8 and Lemma 10, $\left[H, L_{i}\right] \supseteq F \uplus C_{5}$ and so $G \supseteq F \uplus(k-1) C_{5}$. If $[H] \cong F_{3}$, then $e\left(x_{1} x_{2} x_{4} x_{5}, G-V(H)\right) \geq 12 k-7=12(k-1)+5$. Hence $e\left(x_{1} x_{2} x_{4} x_{5}, L_{i}\right) \geq 13$ for some $i \in\{1,2, \ldots, k-1\}$. By Lemmas 7, 8 and 10, $\left[H, L_{i}\right] \supseteq F \uplus C_{5}$ and, therefore, $G \supseteq F \uplus(k-1) C_{5}$.

We first assume that $G \supseteq F_{2} \uplus(k-1) C_{5}$ and let $\left\{H, L_{1}, L_{2}, \ldots, L_{k-1}\right\}$ be a family of G with $H \cong F_{2}$. Note that $d_{G}\left(x_{1}\right)+d_{G}\left(x_{5}\right) \geq 6 k$, say $d_{G}\left(x_{1}\right) \geq$ $3 k$. Then $e\left(x_{1} x_{3} x_{5}, G-V(H)\right)=d_{G}\left(x_{1}\right)+\left(d_{G}\left(x_{3}\right)+d_{G}\left(x_{5}\right)\right)-6 \geq 9 k-6=$ $9(k-1)+3$ and, hence $e\left(x_{1} x_{3} x_{5}, L_{i}\right) \geq 10$ for some $i \in\{1,2, \ldots, k-1\}$. So by Lemma 4(c), $\left[H, L_{i}\right] \supseteq F_{1} \uplus C_{5}$ and, therefore, $G \supseteq F_{1} \uplus(k-1) C_{5}$. We now assume that $G \nsupseteq F_{2} \uplus(k-1) C_{5}$. Recalling that $G \supseteq F \uplus(k-1) C_{5}$, let $\left\{H, L_{1}, L_{2}, \ldots, L_{k-1}\right\}$ be an optimal family of G with $H \cong F$. If $[H] \cong F$ or $[H] \cong K_{2,3}$, say $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=V(H)$ with $x_{1} x_{3}, x_{1} x_{5}, x_{3} x_{5} \notin E(G)$ and $x_{2} x_{4} \notin E(G)$, then $d_{G}\left(x_{1}\right)+d_{G}\left(x_{5}\right) \geq 6 k$, say $d_{G}\left(x_{1}\right) \geq 3 k$. Further, $e(H, G-V(H)) \geq d_{G}\left(x_{1}\right)+\left(d_{G}\left(x_{3}\right)+d_{G}\left(x_{5}\right)\right)+\left(d_{G}\left(x_{2}\right)+d_{G}\left(x_{4}\right)\right)-12 \geq 15 k-12=$ $15(k-1)+3$. Then $e\left(H, L_{i}\right) \geq 16$ for some $i \in\{1,2, \ldots, k-1\}$. By Lemma $5(\mathrm{a})$ and Lemma 10, the cycle L_{i} has a labelling $L_{i}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ satisfying property \mathbf{P}_{1}. Therefore, $e\left(x_{1} x_{3} y_{3} y_{5}, G-V\left(H \cup L_{i}\right)\right) \geq 12 k-17=12(k-2)+7$ and, hence, $e\left(x_{1} x_{3} y_{3} y_{5}, L_{j}\right) \geq 13$ for some $j \in\{1, \ldots, k-1\} \backslash\{i\}$. So by Lemma 5 (b), we have $\left[H, L_{i}, L_{j}\right] \supseteq F_{1} \uplus 2 C_{5}$ and, hence, $G \supseteq F_{1} \uplus(k-1) C_{5}$. We next assume that $G \nsupseteq K_{2,3} \uplus(k-1) C_{5}$. If $[H] \cong F_{5}$, then $e\left(x_{1} x_{3} x_{4} x_{5}, G-V(H)\right)=$ $\left(d_{G}\left(x_{1}\right)+d_{G}\left(x_{4}\right)\right)+\left(d_{G}\left(x_{3}\right)+d_{G}\left(x_{5}\right)\right)-8 \geq 12 k-8=12(k-1)+4$. Thus $e\left(x_{1} x_{3} x_{4} x_{5}, L_{i}\right) \geq 13$ for some $i \in\{1,2, \ldots, k-1\}$. So by Lemma $9,\left[H, L_{i}\right] \supseteq$ $F_{1} \uplus C_{5}$, i.e., $G \supseteq F_{1} \uplus(k-1) C_{5}$.

Lemma 12. Let $\psi=\left\{H, L_{1}, L_{2}, \ldots, L_{k-1}\right\}$ be an optimal family of G with $H \cong$ F_{1} and let $T=\left\{x_{2}, x_{4}, x_{5}\right\}$. If $G \nsupseteq K_{4}^{+} \uplus(k-1) C_{5}$, then for each $t \in\{1,2, \ldots$, $k-1\}$, the following statements hold.
(a) If $e\left(x_{1}, L_{t}\right)=5$, then $e\left(T, L_{t}\right) \leq 5$.
(b) If $e\left(x_{1}, L_{t}\right)=4$, then $e\left(T, L_{t}\right) \leq 7$.
(c) If $e\left(x_{1}, L_{t}\right)=3$, then $e\left(T, L_{t}\right) \leq 9$.
(d) If $e\left(x_{1}, L_{t}\right)=2$, then $e\left(T, L_{t}\right) \leq 11$.
(e) If $e\left(x_{1}, L_{t}\right)=1$, then $e\left(T, L_{t}\right) \leq 12$.
(f) If $e\left(x_{1}, L_{t}\right)=0$, then $e\left(T, L_{t}\right) \leq 15$.

Proof. Let $L_{t}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ and $G_{t}=\left[H, L_{t}\right]$. If $e\left(x_{1}, L_{t}\right)=5$, then $e\left(y_{i}, T\right) \leq$ 1 for all $i \in\{1,2,3,4,5\}$ since $G_{t} \nsupseteq 2 C_{5}$. Hence, (a) follows directly.

To prove (b), without loss of generality assume that $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}\right.$, $\left.y_{4}\right\}$. Suppose to the contrary that $e\left(T, L_{t}\right) \geq 8$. It is clear that $\tau\left(y_{5}, L_{t}\right)=0$ for otherwise $x_{1} \rightarrow L_{t}$ and so $G_{t} \supseteq 2 C_{5}$. As $x_{1} \rightarrow\left(L_{t}, y_{i}\right)$ for all $i \in\{2,3,5\}$, $e\left(y_{i}, T\right) \leq 1$. Hence, $e\left(y_{1} y_{4}, T\right) \geq 5$, say $e\left(y_{4}, T\right)=3$ and $e\left(y_{1}, T\right) \geq 2$. If $e\left(y_{5}, x_{2} x_{4}\right) \geq 1$, then $\left[H-x_{1}+y_{5}\right] \supseteq F_{1}$ and $\tau\left(L_{t}-y_{5}+x_{1}\right)>\tau\left(L_{t}\right)$, contradicting the optimality of ψ. Thus, $e\left(y_{5}, x_{2} x_{4}\right)=0$. If $y_{5} x_{5} \in E(G)$, then $y_{1} x_{2} \notin E(G)$ for otherwise $\left[y_{1}, y_{2}, y_{3}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{4}, y_{5}, x_{3}, x_{4}, x_{5}\right] \supseteq C_{5}$. This means that $e\left(y_{1}, x_{4} x_{5}\right)=2$ and so $\left[y_{2}, y_{3}, y_{4}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{1}, y_{5}, x_{3}, x_{4}, x_{5}\right] \supseteq C_{5}$, a contradiction. Therefore, $y_{5} x_{5} \notin E(G)$ and hence $e\left(y_{1}, T\right)=3, e\left(y_{2} y_{3}, T\right)=$ 2. If $e\left(y_{2} y_{3}, x_{5}\right)=2$, then $\left[y_{1}, y_{5}, y_{4}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{2}, y_{3}, x_{3}, x_{4}, x_{5}\right] \supseteq B$, contradicting Lemma 10 . Hence, $e\left(y_{2} y_{3}, x_{2} x_{4}\right) \geq 1$, say $y_{3} x_{2} \in E(G)$. We claim that $y_{1} y_{3} \in E(G)$ for otherwise $\left[y_{3}, x_{2}, x_{3}, x_{4}, x_{5}\right] \supseteq F_{1}$ and $\tau\left(y_{1} y_{2} x_{1} y_{4} y_{5} y_{1}\right)>$ $\tau\left(L_{t}\right)$. This implies that $\left[y_{5}, y_{1}, y_{2}, y_{3}, x_{1}\right] \supseteq K_{4}^{+}$and $\left[y_{4}, x_{2}, x_{3}, x_{4}, x_{5}\right] \supseteq C_{5}$, a contradiction.

To prove (c), suppose to the contrary that $e\left(T, L_{t}\right) \geq 10$. Assume first $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+1}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L_{t}, y_{2}\right), e\left(y_{2}, T\right) \leq 1$. For any $i \in\{1,2,3,4,5\}$, if $\left[\left(V\left(L_{t}\right) \cup\left\{x_{1}, x_{2}\right\}\right) \backslash\left\{y_{i}\right.\right.$, $\left.\left.y_{i+1}\right\}\right] \supseteq C_{5}$, then $e\left(y_{i} y_{i+1}, x_{4} x_{5}\right) \leq 2$ for otherwise $\left[x_{3}, x_{4}, x_{5}, y_{i}, y_{i+1}\right] \supseteq C_{5}$. If $e\left(x_{2}, y_{4} y_{5}\right)=2$, then $e\left(T, L_{t}\right)=e\left(x_{2}, L_{t}\right)+e\left(x_{4} x_{5}, y_{2}\right)+e\left(x_{4} x_{5}, y_{3} y_{4}\right)+e\left(x_{4} x_{5}\right.$, $\left.y_{1} y_{5}\right) \leq 9$, no matter whether $y_{2} x_{2}$ is an edge of G or not, a contradiction. Hence $e\left(x_{2}, y_{4} y_{5}\right) \leq 1$, say $x_{2} y_{4} \notin E(G)$. Further, if $e\left(x_{2}, y_{3} y_{5}\right)=2$, then $e\left(x_{4} x_{5}, y_{1} y_{2}\right) \leq 2$ and $e\left(x_{4} x_{5}, y_{4} y_{5}\right) \leq 2$. Since $e\left(T, L_{t}\right) \geq 10$ and $x_{2} y_{4} \notin E(G)$, $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{5}\right\}$ and $e\left(y_{3}, x_{4} x_{5}\right)=2$. Therefore, $\left[x_{3}, x_{2}, x_{1}, y_{1}, y_{2}\right] \supseteq$ K_{4}^{+}. Then $e\left(y_{5}, x_{4} x_{5}\right)=0$ as $G_{t} \nsupseteq K_{4}^{+} \uplus C_{5}$. Therefore, $e\left(y_{4}, x_{4} x_{5}\right)=2$. Then [$\left.x_{1}, x_{2}, y_{1}, y_{2}, y_{5}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{3}, y_{4}\right] \supseteq C_{5}$, a contradiction. Therefore, $e\left(x_{2}, y_{3} y_{5}\right) \leq 1$. If $x_{2} y_{5} \in E(G)$, then $e\left(x_{4} x_{5}, y_{1} y_{2}\right) \leq 2, e\left(x_{4} x_{5}, y_{3} y_{4}\right) \leq 2$ and so $e\left(T, L_{t}\right) \leq 9$, a contradiction. Thus $x_{2} y_{5} \notin E(G)$. If $x_{2} y_{1} \in E(G)$, then $e\left(x_{4} x_{5}, y_{4} y_{5}\right) \leq 2$ and so $e\left(T, L_{t}\right)=e\left(x_{2}, L_{t}\right)+e\left(x_{4} x_{5}, y_{2}\right)+e\left(x_{4} x_{5}, y_{1} y_{3}\right)+$ $e\left(x_{4} x_{5}, y_{4} y_{5}\right) \leq 9$, no matter whether $y_{2} x_{2}$ is an edge of G or not, a contradiction. Hence $x_{2} y_{1} \notin E(G)$. Similarly, $x_{2} y_{3} \notin E(G)$. Then $e\left(T, L_{t}\right) \leq 9$, no matter whether $y_{2} x_{2}$ is an edge in $E(G)$ or not, again a contradiction.

Next, assume that $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+1}, y_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{4}\right\}$. As $x_{1} \rightarrow\left(L_{t}, y_{i}\right)$ for all $i \in\{3,5\}, e\left(y_{i}, T\right) \leq 1$. Further, if $e\left(x_{2}, L_{t}\right) \leq 1$ or $e\left(x_{2}, L_{t}\right)=2, N\left(x_{2}\right) \mid L_{t} \cap\left\{y_{3}, y_{5}\right\} \neq \emptyset$ or $e\left(x_{2}, L_{t}\right)=3$,
$N\left(x_{2}\right) \mid L_{t} \supseteq\left\{y_{3}, y_{5}\right\}$, then $e\left(T, L_{t}\right) \leq 9$, a contradiction. Suppose $e\left(x_{2}, L_{t}\right) \leq 3$. If $x_{2} y_{4} \in E(G)$, then $e\left(y_{1} y_{5}, x_{4} x_{5}\right) \leq 2, e\left(y_{2} y_{3}, x_{4} x_{5}\right) \leq 2$ and so $e\left(T, L_{t}\right) \leq 9$, a contradiction. Hence $x_{2} y_{4} \notin E(G)$. Then $N\left(x_{2}\right) \mid L_{t} \supseteq\left\{y_{1}, y_{2}\right\}$. It follows that $e\left(y_{1} y_{5}, x_{4} x_{5}\right) \leq 2, e\left(y_{2} y_{3}, x_{4} x_{5}\right) \leq 2$ and so $e\left(T, L_{t}\right) \leq 9$, again a contradiction.

Now suppose $e\left(x_{2}, L_{t}\right) \geq 4$. If $y_{3} y_{5} \in E(G)$, then $x_{1} \rightarrow L_{t}$. Since $e\left(T, L_{t}\right) \geq$ 10 , there is a vertex y_{i} for some $i \in\{1,2,3,4,5\}$ such that $e\left(y_{i}, T\right) \geq 2$. Then $\left[H-x_{1}+y_{i}\right] \supseteq C_{5}$ and $\left[L_{t}-y_{i}+x_{1}\right] \supseteq C_{5}$, a contradiction. Thus $y_{3} y_{5} \notin$ $E(G)$. If $x_{2} y_{3} \in E(G)$ and $y_{1} y_{3} \notin E(G)$, then $\left[y_{3}, x_{2}, x_{3}, x_{4}, x_{5}\right] \cong F_{1}$ and $\tau\left(L_{t}\right)<\tau\left(L_{t}-y_{3}+x_{1}\right)$, a contradiction. Therefore, if $x_{2} y_{3} \in E(G)$, then $y_{1} y_{3} \in E(G)$. Similarly, if $x_{2} y_{5} \in E(G)$, then $y_{2} y_{5} \in E(G)$. We claim that $e\left(y_{1} y_{2} y_{4}, x_{4} x_{5}\right)=6$ if $\left|N\left(x_{2}\right)\right| L_{t} \mid=4$. If $x_{2} y_{3} \in E(G)$ and $x_{2} y_{5} \in E(G)$, then $e\left(y_{1} y_{2} y_{4}, x_{4} x_{5}\right)=6$ since $e\left(y_{i}, T\right) \leq 1$ for all $i \in\{3,5\}$. Without loss of generality, assume that $x_{2} y_{3} \in E(G)$ and $x_{2} y_{5} \notin E(G)$. If $e\left(y_{5}, x_{4} x_{5}\right)=0$, then $e\left(y_{1} y_{2} y_{4}, x_{4} x_{5}\right)=6$ as $e\left(y_{3}, T\right) \leq 1$. If $e\left(y_{5}, x_{4} x_{5}\right)=2$, then $\left[x_{1}, y_{1}, y_{2}, y_{3}, y_{4}\right] \supseteq C_{5}$ and $\left[y_{5}, x_{2}, x_{3}, x_{4}, x_{5}\right] \supseteq C_{5}$, a contradiction. If $e\left(y_{5}, x_{4} x_{5}\right)=1$, then $e\left(y_{4}, x_{4} x_{5}\right)=$ 0 for otherwise $\left[y_{1}, y_{2}, y_{3}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{4}, y_{5}, x_{3}, x_{4}, x_{5}\right]$ would contain C_{5} or B. Therefore, $e\left(T, L_{t}\right) \leq 9$, a contradiction. If $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, then $\left[y_{4}, y_{5}, x_{3}, x_{4}, x_{5}\right] \supseteq F_{1}$. Further, $\tau\left(L_{t}\right)=4$ as $\tau\left(L_{t}\right) \geq \tau\left(y_{1} y_{2} y_{3} x_{2} x_{1} y_{1}\right)$. Similarly, if $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{5}\right\}$ or $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{4}, y_{5}\right\}$, then we also have $\tau\left(L_{t}\right)=4$. If $N\left(x_{2}\right) \mid L_{t}=\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$, then $\left[x_{1}, y_{1}, x_{3}, x_{4}, x_{5}\right] \supseteq F_{1}$. Further, $\left\{y_{1} y_{3}, y_{1} y_{4}, y_{2} y_{5}\right\} \subseteq E(G)$ as $\tau\left(L_{t}\right) \geq \tau\left(y_{2} y_{3} y_{4} y_{5} x_{2} y_{2}\right)$. If $N\left(x_{2}\right) \mid L_{t}=$ $\left\{y_{1}, y_{3}, y_{4}, y_{5}\right\}$, then $\left[x_{1}, y_{2}, x_{3}, x_{4}, x_{5}\right] \supseteq F_{1}$. Further, $\left\{y_{1} y_{3}, y_{2} y_{4}, y_{2} y_{5}\right\} \subseteq E(G)$ as $\tau\left(L_{t}\right) \geq \tau\left(y_{1} x_{2} y_{3} y_{4} y_{5} y_{1}\right)$. If $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$, then $e\left(y_{1} y_{2} y_{4}\right.$, $\left.x_{4} x_{5}\right) \geq 5$ since $e\left(y_{i}, T\right) \leq 1$ for all $i \in\{3,5\}$. We claim that $\tau\left(L_{t}\right)=4$ if $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$. If $e\left(y_{4}, x_{4} x_{5}\right)=2$, then $\left[x_{1}, y_{4}, x_{3}, x_{4}, x_{5}\right] \supseteq$ F_{1}. Further, $\tau\left(L_{t}\right)=4$ as $\tau\left(L_{t}\right) \geq \tau\left(y_{1} y_{2} y_{3} x_{2} y_{5} y_{1}\right)$. If $e\left(y_{4}, x_{4} x_{5}\right) \leq 1$, then $e\left(y_{1} y_{2}, x_{4} x_{5}\right)=4$ and so $\left[x_{1}, y_{1}, x_{3}, x_{4}, x_{5}\right] \supseteq F_{1}$ and $\left[x_{1}, y_{2}, x_{3}, x_{4}, x_{5}\right] \supseteq F_{1}$. Further, $\tau\left(L_{t}\right)=4$ as $\tau\left(L_{t}\right) \geq \tau\left(x_{2} y_{2} y_{3} y_{4} y_{5} x_{2}\right)$ and $\tau\left(L_{t}\right) \geq \tau\left(y_{1} x_{2} y_{3} y_{4} y_{5} y_{1}\right)$.

Let $R=\left\{x_{1}, x_{3}, y_{3}, y_{5}\right\}$. If $x_{3} y_{3} \in E(G)$, then $x_{2} y_{3} \notin E(G)$ and so $N\left(x_{2}\right) \mid L_{t}$ $=\left\{y_{1}, y_{2}, y_{4}, y_{5}\right\}$. Then $\left[y_{1}, y_{4}, y_{5}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{2}, y_{3}, x_{3}, x_{4}, x_{5}\right] \supseteq C_{5}$, a contradiction. Thus $x_{3} y_{3} \notin E(G)$. Similarly, $x_{3} y_{5} \notin E(G)$. Hence R is an independent set. As $e\left(R, G-V\left(G_{t}\right)\right) \geq 12 k-18=12(k-2)+6, e\left(R, L_{i}\right) \geq 13$ for some $i \in\{1,2, \ldots, k-1\} \backslash\{t\}$.

Claim 1. If $u \rightarrow\left(L_{i}, z ;\{v, w\}\right)$ for some $z \in V\left(L_{i}\right), u \in R$ and $\{v, w\} \subseteq R \backslash\{u\}$, then $\left[G_{t}, L_{i}\right] \supseteq 3 C_{5}$.

Proof. We separate the proof into two cases.
Case 1. $e\left(x_{2}, y_{3} y_{5}\right)=2$. In this case, $e\left(x_{4} x_{5}, y_{3} y_{5}\right)=0$. Further, $e\left(x_{4} x_{5}\right.$, $\left.y_{1} y_{2} y_{4}\right)=6$ if $\left|N\left(x_{2}\right)\right| L_{t} \mid=4$ and $e\left(x_{4} x_{5}, y_{1} y_{2} y_{4}\right) \geq 5$ if $\left|N\left(x_{2}\right)\right| L_{t} \mid=5$. Recall that $\tau\left(L_{t}\right)=4$ if $\left|N\left(x_{2}\right)\right| L_{t} \mid=5$. Hence, y_{1}, y_{2} and y_{4} are symmetric in $\left[L_{t}\right]$ if $\left|N\left(x_{2}\right)\right| L_{t} \mid=5$. Without loss of generality, assume that $e\left(x_{4} x_{5}, y_{1} y_{4}\right)=4$.

Further, by the symmetry of x_{1}, y_{3} and y_{5} in $\left[L_{t}+x_{1}\right]$, we need only to consider the following cases. If $x_{1} \rightarrow\left(L_{i}, z ;\left\{y_{3}, y_{5}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{1}\right] \supseteq C_{5},\left[y_{1}, y_{2}, y_{3}, y_{5}, z\right] \supseteq C_{5}$ and $\left[x_{2}, x_{3}, x_{4}, x_{5}, y_{4}\right] \supseteq C_{5}$. If $x_{1} \rightarrow$ $\left(L_{i}, z ;\left\{y_{3}, x_{3}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{1}\right] \supseteq C_{5},\left[y_{3}, x_{2}, x_{5}, x_{3}, z\right] \supseteq C_{5}$ and $\left[y_{1}, y_{2}, y_{4}, y_{5}, x_{4}\right] \supseteq C_{5}$. If $x_{3} \rightarrow\left(L_{i}, z ;\left\{y_{3}, y_{5}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{3}\right] \supseteq C_{5},\left[y_{1}, y_{2}, y_{3}, y_{5}, z\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, x_{4}, x_{5}, y_{4}\right] \supseteq C_{5}$.

Case 2. $e\left(x_{2}, y_{3} y_{5}\right)=1$, say $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. In this case, $e\left(x_{4} x_{5}, y_{1} y_{2} y_{4}\right)=6$ and $e\left(x_{4} x_{5}, y_{3}\right)=0$. Further, $e\left(x_{4} x_{5}, y_{5}\right)=0$ for otherwise $\left[y_{1}, y_{2}, y_{3}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{4}, y_{5}, x_{3}, x_{4}, x_{5}\right]$ would contain C_{5} or B. By the symmetry of x_{1} and y_{3} in $\left[L_{t}+x_{1}\right]$, we need only to consider the following cases. If $x_{1} \rightarrow\left(L_{i}, z ;\left\{y_{3}, y_{5}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{1}\right] \supseteq C_{5}$, $\left[y_{1}, y_{2}, y_{3}, y_{5}, z\right] \supseteq C_{5}$ and $\left[x_{2}, x_{3}, x_{4}, x_{5}, y_{4}\right] \supseteq C_{5}$. If $x_{1} \rightarrow\left(L_{i}, z ;\left\{y_{3}, x_{3}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{1}\right] \supseteq C_{5},\left[y_{3}, x_{2}, x_{5}, x_{3}, z\right] \supseteq C_{5}$ and $\left[y_{1}, y_{2}, y_{4}, y_{5}\right.$, $\left.x_{4}\right] \supseteq C_{5}$. If $x_{1} \rightarrow\left(L_{i}, z ;\left\{y_{5}, x_{3}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{1}\right] \supseteq C_{5}$, $\left[y_{4}, y_{5}, z, x_{2}, x_{3}\right] \supseteq C_{5}$ and $\left[y_{1}, y_{2}, y_{3}, x_{4}, x_{5}\right] \supseteq C_{5}$.

If $x_{3} \rightarrow\left(L_{i}, z ;\left\{y_{3}, y_{5}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{3}\right] \supseteq C_{5}$, $\left[y_{1}, y_{2}, y_{3}, z, y_{5}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, x_{4}, x_{5}, y_{4}\right] \supseteq C_{5}$. If $x_{3} \rightarrow\left(L_{i}, z ;\left\{y_{3}, x_{1}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+x_{3}\right] \supseteq C_{5},\left[x_{1}, y_{2}, x_{2}, y_{3}, z\right] \supseteq C_{5}$ and $\left[y_{1}, y_{5}, y_{4}, x_{4}\right.$, $\left.x_{5}\right] \supseteq C_{5}$. If $y_{5} \rightarrow\left(L_{i}, z ;\left\{x_{3}, x_{1}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+y_{5}\right] \supseteq C_{5}$, $\left[x_{1}, x_{2}, x_{3}, x_{5}, z\right] \supseteq C_{5}$ and $\left[y_{1}, y_{2}, y_{3}, y_{4}, x_{4}\right] \supseteq C_{5}$. If $y_{5} \rightarrow\left(L_{i}, z ;\left\{y_{3}, x_{1}\right\}\right)$ for some $z \in V\left(L_{i}\right)$, then $\left[L_{i}-z+y_{5}\right] \supseteq C_{5},\left[y_{1}, y_{2}, y_{3}, x_{1}, z\right] \supseteq C_{5}$ and $\left[x_{2}, x_{3}, x_{4}, x_{5}\right.$, $\left.y_{4}\right] \supseteq C_{5}$.

By Claim 1 and Lemma 4(e), there are vertex labellings $R=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $L_{i}=b_{1} b_{2} b_{3} b_{4} b_{5} b_{1}$ such that $e\left(a_{1} a_{2}, b_{1} b_{2} b_{3} b_{4}\right)=8, e\left(a_{3}, b_{1} b_{5} b_{4}\right)=3$ and $e\left(a_{4}, b_{1} b_{4}\right)=2$. Recall that $e\left(x_{4} x_{5}, y_{1} y_{2} y_{4}\right)=6$ if $\left|N\left(x_{2}\right)\right| L_{t} \mid=4$, and $e\left(x_{4} x_{5}\right.$, $\left.y_{1} y_{2} y_{4}\right) \geq 5$ and $\tau\left(L_{t}\right)=4$ if $\left|N\left(x_{2}\right)\right| L_{t} \mid=5$. Assume first that $\left|N\left(x_{2}\right)\right| L_{t} \mid=5$. Then x_{1}, y_{3} and y_{5} are symmetric in $\left[L_{t}+x_{1}\right]$. Further, y_{1}, y_{2} and y_{4} are symmetric in $\left[L_{t}\right]$. Without loss of generality, assume that $e\left(x_{4} x_{5}, y_{1} y_{4}\right)=4$. If $x_{3} \in\left\{a_{1}, a_{2}\right\}$, say $\left\{x_{3}, y_{3}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{1}, b_{1}, y_{5}, b_{4}, b_{5}\right] \supseteq C_{5},\left[x_{2}, x_{3}, x_{4}, x_{5}, y_{1}\right] \supseteq C_{5}$ and $\left[b_{2}, b_{3}, y_{2}, y_{3}, y_{4}\right] \supseteq B$, a contradiction. If $x_{3} \notin\left\{a_{1}, a_{2}\right\}$, say $\left\{x_{1}, y_{3}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{3}, y_{5}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5},\left[x_{1}, x_{2}, x_{4}, x_{5}, y_{1}\right] \supseteq C_{5}$ and $\left[b_{2}, b_{3}, y_{2}, y_{3}, y_{4}\right] \supseteq B$, again a contradiction.

Next, assume that $\left|N\left(x_{2}\right)\right| L_{t} \mid=4$. If $e\left(x_{2}, y_{3} y_{5}\right)=2$, then x_{1}, y_{3} and y_{5} are symmetric in $\left[L_{t}+x_{1}\right]$. If $x_{3} \in\left\{a_{1}, a_{2}\right\}$, say $\left\{x_{3}, y_{3}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{1}, b_{1}, y_{5}, b_{4}, b_{5}\right] \supseteq C_{5},\left[x_{2}, x_{3}, x_{4}, x_{5}, y_{1}\right] \supseteq C_{5}$ and $\left[b_{2}, b_{3}, y_{2}, y_{3}, y_{4}\right] \supseteq B$, or $\left[x_{1}, b_{1}, y_{5}, b_{4}, b_{5}\right] \supseteq C_{5},\left[x_{2}, x_{3}, x_{4}, x_{5}, y_{2}\right] \supseteq C_{5}$ and $\left[b_{2}, b_{3}, y_{1}, y_{3}, y_{4}\right] \supseteq B$, a contradiction. If $x_{3} \notin\left\{a_{1}, a_{2}\right\}$, say $\left\{x_{1}, y_{3}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{3}, y_{5}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$, $\left[y_{3}, x_{2}, x_{5}, x_{4}, y_{4}\right] \supseteq C_{5}$ and $\left[b_{2}, b_{3}, x_{1}, y_{1}, y_{2}\right] \supseteq B$, again a contradiction. If $e\left(x_{2}, y_{3} y_{5}\right)=1$, then $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ or $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{4}, y_{5}\right\}$. Without loss of generality, assume that $N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. By the symmetry of x_{1} and y_{3} in $\left[L_{t}+x_{1}\right]$, we need only to consider the following
cases. If $\left\{x_{3}, y_{3}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{1}, b_{1}, y_{5}, b_{4}, b_{5}\right] \supseteq C_{5},\left[x_{2}, x_{3}, x_{4}, x_{5}, y_{1}\right] \supseteq$ C_{5} and $\left[b_{2}, b_{3}, y_{2}, y_{3}, y_{4}\right] \supseteq B$, a contradiction. If $\left\{x_{3}, y_{5}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{1}, b_{1}, y_{3}, b_{4}, b_{5}\right] \supseteq C_{5},\left[x_{2}, x_{3}, x_{4}, x_{5}, y_{1}\right] \supseteq C_{5}$ and $\left[b_{2}, b_{3}, y_{2}, y_{4}, y_{5}\right] \supseteq B$, a contradiction. If $\left\{x_{1}, y_{5}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{3}, b_{1}, y_{3}, b_{4}, b_{5}\right] \supseteq C_{5},\left[x_{1}, x_{2}, x_{4}, x_{5}, y_{2}\right] \supseteq$ C_{5} and $\left[b_{2}, b_{3}, y_{1}, y_{4}, y_{5}\right] \supseteq B$, a contradiction. If $\left\{x_{1}, y_{3}\right\}=\left\{a_{1}, a_{2}\right\}$, then $\left[x_{3}, b_{1}, y_{5}, b_{4}, b_{5}\right] \supseteq C_{5},\left[x_{1}, x_{2}, x_{4}, x_{5}, y_{4}\right] \supseteq C_{5}$ and $\left[b_{2}, b_{3}, y_{1}, y_{2}, y_{3}\right] \supseteq B$, again a contradiction.

To prove (d), suppose to the contrary that $e\left(T, L_{t}\right) \geq 12$. Assume first $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+1}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}\right\}$. For any $i \in\{1,2,3,4,5\}$, if $\left[\left(V\left(L_{t}\right) \cup\left\{x_{1}, x_{2}\right\}\right) \backslash\left\{y_{i}, y_{i+1}\right\}\right] \supseteq C_{5}$, then $e\left(y_{i} y_{i+1}, x_{4} x_{5}\right) \leq$ 2 for otherwise $\left[x_{3}, x_{4}, x_{5}, y_{i}, y_{i+1}\right] \supseteq C_{5}$. It follows that if $x_{2} y_{4} \in E(G)$, then $e\left(y_{1} y_{5}, x_{4} x_{5}\right) \leq 2, e\left(y_{2} y_{3}, x_{4} x_{5}\right) \leq 2$ and so $e\left(T, L_{t}\right) \leq 11$, a contradiction. Hence $x_{2} y_{4} \notin E(G)$. If $e\left(x_{2}, y_{3} y_{5}\right)=2$, then $e\left(y_{3} y_{4}, x_{4} x_{5}\right) \leq 2, e\left(y_{4} y_{5}, x_{4} x_{5}\right) \leq 2$ and so $e\left(y_{1} y_{2}, x_{4} x_{5}\right)=4$ and $e\left(x_{2}, y_{1} y_{2} y_{3} y_{5}\right)=4$. Further, $y_{3} x_{5} \notin E(G)$ and $y_{5} x_{4} \notin$ $E(G)$ as $G_{t} \nsupseteq 2 C_{5}$. Moreover, $x_{4} y_{4}, x_{5} y_{5} \in E(G)$ as $e\left(T, L_{t}\right) \geq 12$. Clearly, $G_{t} \supseteq 2 C_{5}$, a contradiction. Therefore, $e\left(x_{2}, y_{3} y_{5}\right) \leq 1$ and hence $e\left(x_{2}, y_{1} y_{2} y_{3} y_{5}\right) \leq$ 3. If $e\left(x_{2}, y_{1} y_{2} y_{3} y_{5}\right)=3$, say $x_{2} y_{3} \in E(G)$, then $e\left(x_{4} x_{5}, y_{4} y_{5}\right) \leq 2$. It follows that $e\left(T, L_{t}\right) \leq 11$, a contradiction. Hence $e\left(x_{2}, y_{1} y_{2} y_{3} y_{5}\right) \leq 2$. Then $e\left(x_{4} x_{5}, L_{t}\right)=10$ and so $\left[x_{1}, y_{1}, x_{4}, y_{3}, y_{2}\right] \supseteq C_{5}$ and $\left[y_{4}, y_{5}, x_{2}, x_{3}, x_{5}\right] \supseteq B$, a contradiction. Next, assume that $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L_{t}, y_{2}\right), e\left(y_{2}, T\right) \leq 1$. If $e\left(x_{2}, y_{1} y_{3}\right) \geq 1$, then $\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right] \supseteq C_{5}$ and so $e\left(x_{4} x_{5}, y_{4} y_{5}\right) \leq 2$. Then $e\left(T, L_{t}\right)=e\left(x_{2}, L_{t}\right)+$ $e\left(x_{4} x_{5}, y_{4} y_{5}\right)+e\left(x_{4} x_{5}, y_{1} y_{3}\right)+e\left(x_{4} x_{5}, y_{2}\right) \leq 11$, no matter whether $x_{2} y_{2} \in E(G)$ or $x_{2} y_{2} \notin E(G)$, a contradiction. Therefore, $e\left(x_{2}, y_{1} y_{3}\right)=0$ and hence $e\left(T, L_{t}\right) \leq 11$, again a contradiction.

To prove (e), suppose to the contrary that $e\left(T, L_{t}\right) \geq 13$. Without loss of generality assume that $x_{1} y_{1} \in E(G)$. If $e\left(x_{2}, y_{3} y_{4}\right) \geq 1$, say $x_{2} y_{3} \in E(G)$, then $e\left(y_{4} y_{5}, x_{4} x_{5}\right) \leq 2$ for otherwise $\left[y_{1}, y_{2}, y_{3}, x_{1}, x_{2}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{4}, y_{5}\right] \supseteq C_{5}$. Therefore, $6 \geq e\left(x_{4} x_{5}, y_{1} y_{2} y_{3}\right)=e\left(T, L_{t}\right)-e\left(x_{2}, L_{t}\right)-e\left(x_{4} x_{5}, y_{4} y_{5}\right) \geq 6$. Then $e\left(x_{4} x_{5}, y_{1} y_{2} y_{3}\right)=6$ and $e\left(x_{2}, L_{t}\right)=5$. Further, $\left[x_{1}, y_{1}, y_{5}, y_{4}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{2}, y_{3}, x_{3}, x_{4}, x_{5}\right] \supseteq C_{5}$, a contradiction. Therefore, $e\left(x_{2}, y_{3} y_{4}\right)=0$ and hence $e\left(x_{2}, L_{t}\right)=3, e\left(x_{4} x_{5}, L_{t}\right)=10$. It follows that $\left[x_{1}, y_{1}, x_{5}, x_{3}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{2}, y_{3}, y_{4}, y_{5}, x_{4}\right] \supseteq C_{5}$, again a contradiction.

Lemma 13. $G \supseteq K_{4}^{+} \uplus(k-1) C_{5}$.
Proof. Suppose to the contrary that $G \nsupseteq K_{4}^{+} \uplus(k-1) C_{5}$. By Lemma 11, let $\psi=\left\{H, L_{1}, L_{2}, \ldots, L_{k-1}\right\}$ be an optimal family of G with $H \cong F_{1}$. Suppose that $e\left(H, L_{i}\right) \geq 16$ for some $i \in\{1,2, \ldots, k-1\}$, say $e\left(H, L_{1}\right) \geq 16$. By Lemma 6(a) and Lemma 10, we may first assume that there exists a labelling $L_{1}=$ $y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ with property \mathbf{P}_{2}. Let $R=\left\{x_{1}, x_{4}, y_{3}, y_{5}\right\}$ and $G_{1}=\left[H, L_{1}\right]$. Then $e\left(R, V\left(G_{1}\right)-R\right) \leq 16$ and so $e\left(R, G-V\left(G_{1}\right)\right) \geq\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{1}}\left(x_{4}\right)\right)+\left(d_{G_{1}}\left(y_{3}\right)+\right.$
$\left.d_{G_{1}}\left(y_{5}\right)\right)-16 \geq 12 k-16=12(k-2)+8$. Hence, $e\left(R, L_{i}\right) \geq 13$ for some $i \in\{2,3, \ldots, k-1\}$. So by Lemma 6(b), $\left[G_{1}, L_{i}\right] \supseteq K_{4}^{+} \uplus 2 C_{5}$ and, therefore $G \supseteq K_{4}^{+} \uplus(k-1) C_{5}$, a contradiction. Next, we assume that $G \supseteq K_{4}^{+} \uplus B \uplus(k-2) C_{5}$ and let $K_{4}^{+}, B, L_{1}, L_{2}, \ldots, L_{k-2}$ be k disjoint subgraphs of G with $L_{i} \cong C_{5}$ for $i \in\{1,2, \ldots, k-2\}$. Let $B=y_{1} y_{2} y_{3} y_{1} y_{4} y_{5} y_{1}$ and $R^{\prime}=\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$. We claim that $e\left(R^{\prime}, K_{4}^{+}\right) \leq 15$. Suppose to the contrary that $e\left(R^{\prime}, K_{4}^{+}\right) \geq 16$. If $e\left(x_{1}, R^{\prime}\right) \leq 1$, then $e\left(R^{\prime}, x_{2} x_{3} x_{4} x_{5}\right) \geq 15$. It is easy to see that $\left[K_{4}^{+}, B\right] \supseteq K_{4}^{+} \uplus C_{5}$, a contradiction. If $e\left(x_{1}, R^{\prime}\right) \geq 3$, say $x_{1} y_{2}, x_{1} y_{3}, x_{1} y_{4} \in E(G)$, then $\left[B-y_{i}+x_{1}\right] \supseteq$ C_{5} for all $i \in\{2,3,5\}$. However, $e\left(y_{j}, x_{2} x_{3} x_{4} x_{5}\right) \geq 2$ for some $j \in\{2,3,5\}$ and so $\left[K_{4}^{+}-x_{1}+y_{j}\right] \supseteq C_{5}$, a contradiction. If $e\left(x_{1}, R^{\prime}\right)=2$, then we just need to consider $x_{1} y_{2}, x_{1} y_{4} \in E(G)$ and $x_{1} y_{2}, x_{1} y_{3} \in E(G)$. If $x_{1} y_{2}, x_{1} y_{4} \in E(G)$, then $\left[B-y_{i}+x_{1}\right] \supseteq C_{5}$ for all $i \in\{3,5\}$. However, $e\left(y_{j}, x_{2} x_{3} x_{4} x_{5}\right) \geq 2$ for some $j \in\{3,5\}$ and so $\left[K_{4}^{+}-x_{1}+y_{j}\right] \supseteq C_{5}$, a contradiction. If $x_{1} y_{2}, x_{1} y_{3} \in E(G)$, then $e\left(x_{2}, y_{2} y_{3}\right)=0$ for otherwise $\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. Then $e\left(y_{2} y_{3}, x_{3} x_{4} x_{5}\right)=6$ and $e\left(y_{4} y_{5}, x_{2} x_{3} x_{4} x_{5}\right)=8$ and so $\left[K_{4}^{+}, B\right] \supseteq 2 C_{5}$, again a contradiction. Further, $e\left(R^{\prime}, G-V\left(K_{4}^{+} \cup B\right)\right) \geq 12 k-$ $15-8=12(k-2)+1$. Hence $e\left(R^{\prime}, L_{j}\right) \geq 13$ for some $j \in\{1,2, \ldots, k-2\}$. So by Lemma 4(b), $\left[B, L_{j}\right] \supseteq 2 C_{5}$, i.e., $G \supseteq K_{4}^{+} \uplus(k-1) C_{5}$, a contradiction. Therefore, $e\left(H, L_{i}\right) \leq 15$ for each $i \in\{1,2, \ldots, k-1\}$. It follows that $d_{G}\left(x_{1}\right)>3 k$, for otherwise, we obtain $e(H, G-V(H))=\left(d_{G}\left(x_{1}\right)+d_{G}\left(x_{3}\right)\right)+\left(d_{G}\left(x_{2}\right)+d_{G}\left(x_{4}\right)\right)+$ $\left(d_{G}\left(x_{1}\right)+d_{G}\left(x_{5}\right)\right)-d_{G}\left(x_{1}\right)-12 \geq 18 k-d_{G}\left(x_{1}\right)-12 \geq 15 k-12>15(k-1)$, then there exists $i \in\{1,2, \ldots, k-1\}$ such that $e\left(H, L_{i}\right) \geq 16$, a contradiction.

For r with $0 \leq r \leq 5$, let $\mathcal{A}_{r}=\left\{L_{t} \mid e\left(x_{1}, L_{t}\right)=r, 1 \leq t \leq k-1\right\}$ and $a_{r}=\left|\mathcal{A}_{r}\right|$. It is clear that $a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=k-1$. Further, it can be seen that

$$
\begin{equation*}
d_{G}\left(x_{1}\right)=d_{H}\left(x_{1}\right)+\sum_{r=0}^{5} \sum_{L_{t} \in \mathcal{A}_{r}} e\left(x_{1}, L_{t}\right)=1+a_{1}+2 a_{2}+3 a_{3}+4 a_{4}+5 a_{5} . \tag{1}
\end{equation*}
$$

Let $R_{1}=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$. By Lemma 12, we obtain

$$
\begin{align*}
\sum_{x \in R_{1}} d_{G}(x) & =\sum_{x \in R_{1}} d_{H}(x)+\sum_{r=0}^{5} \sum_{L_{t} \in \mathcal{A}_{r}} e\left(R_{1}, L_{t}\right) \tag{2}\\
& \leq 9+15 a_{0}+13 a_{1}+13 a_{2}+12 a_{3}+11 a_{4}+10 a_{5}
\end{align*}
$$

By (1) and (2), we obtain $d_{G}\left(x_{1}\right)+\sum_{x \in R_{1}} d_{G}(x) \leq 10+15 a_{0}+14 a_{1}+15 a_{2}+$ $15 a_{3}+15 a_{4}+15 a_{5}=15 k-5-a_{1}$. But by the degree sum condition, we have $d_{G}\left(x_{1}\right)+\sum_{x \in R_{1}} d_{G}(x) \geq 15 k$, which is a contradiction.

Lemma 14. For any family $\left\{H, L_{1}, \ldots, L_{k-1}\right\}$ of G with $H \cong K_{4}^{+}, d_{G}\left(x_{2}\right)<3 k$.

Proof. Suppose to the contrary that $d_{G}\left(x_{2}\right) \geq 3 k$ for some family $\psi=\left\{H, L_{1}\right.$, $\left.\ldots, L_{k-1}\right\}$ with $H \cong K_{4}^{+}$. Further, we assume that $\sum_{i=1}^{k-1} \tau\left(L_{i}^{\prime}\right) \leq \sum_{i=1}^{k-1} \tau\left(L_{i}\right)$ for any family $\left\{H^{\prime}, L_{1}^{\prime}, \ldots, L_{k-1}^{\prime}\right\}$ with $H^{\prime} \cong K_{4}^{+}$and $d_{G}\left(x_{2}\right) \geq 3 k$. Let $Q=$ $\left[x_{2}, x_{3}, x_{4}, x_{5}\right]$ and $T=\left[x_{3}, x_{4}, x_{5}\right]$. Then $Q \cong K_{4}$ and $T \cong K_{3}$. For r with $0 \leq r \leq 5$, let $\mathcal{B}_{r}=\left\{L_{t} \mid e\left(x_{1}, L_{t}\right)=r, 1 \leq t \leq k-1\right\}$ and $b_{r}=\left|\mathcal{B}_{r}\right|$. It is clear that $b_{0}+b_{1}+b_{2}+b_{3}+b_{4}+b_{5}=k-1$.

Claim 2. For each $t \in\{1,2, \ldots, k-1\}$, the following statements hold.
(a) If $e\left(x_{1}, L_{t}\right)=5$, then $e\left(Q, L_{t}\right) \leq 5$.
(b) If $e\left(x_{1}, L_{t}\right)=4$, then $e\left(Q, L_{t}\right) \leq 9$ except possible one L_{t} with $e\left(Q, L_{t}\right)=10$.
(c) If $e\left(x_{1}, L_{t}\right)=3$, then $e\left(Q, L_{t}\right) \leq 12$.
(d) If $e\left(x_{1}, L_{t}\right)=2$, then $e\left(Q, L_{t}\right) \leq 15$.
(e) If $e\left(x_{1}, L_{t}\right)=1$, then $e\left(Q, L_{t}\right) \leq 16$.
(f) If $e\left(x_{1}, L_{t}\right)=0$, then $e\left(Q, L_{t}\right) \leq 20$.

Proof. Let $L_{t}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ and $G_{t}=\left[H, L_{t}\right]$. If $e\left(x_{1}, L_{t}\right)=5$, then $e\left(y_{i}, Q\right) \leq$ 1 for all $i \in\{1,2,3,4,5\}$ since $G_{t} \nsupseteq 2 C_{5}$. Hence, (a) follows directly.

To prove (b), say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. First, we claim that $\left\{y_{1} y_{3}, y_{2} y_{4}\right.$, $\left.y_{1} y_{4}\right\} \subseteq E\left(L_{t}\right), N\left(x_{2}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $N\left(x_{3}\right)\left|L_{t}=N\left(x_{4}\right)\right| L_{t}=N\left(x_{5}\right) \mid$ $L_{t}=\left\{y_{1}, y_{4}\right\}$ if $e\left(Q, L_{t}\right) \geq 10$. It is clear that $\tau\left(y_{5}, L_{t}\right)=0$ for otherwise $x_{1} \rightarrow L_{t}$ and so $G_{t} \supseteq 2 C_{5}$. As $x_{1} \rightarrow\left(L_{t}, y_{i}\right)$ for $i \in\{2,3,5\}, e\left(y_{i}, Q\right) \leq 1$. Hence, $e\left(y_{1} y_{4}, Q\right) \geq 7$, say $e\left(y_{1}, Q\right) \geq 3$ and $e\left(y_{4}, Q\right)=4$. If $x_{2} y_{5} \in E(G)$, then $\left[Q+y_{5}\right] \supseteq K_{4}^{+}$and $\tau\left(x_{1} y_{1} y_{2} y_{3} y_{4} x_{1}\right)>\tau\left(L_{t}\right)$, contradicting the definition of ψ. Hence $x_{2} y_{5} \notin E(G)$. We say that $e\left(x_{i}, y_{j}\right)=0$ for all $i \in\{3,4,5\}$ and $j \in\{2,3\}$. If not, then $\left[x_{1}, x_{2}, x_{i}, y_{2}, y_{3}\right] \supseteq C_{5}$ and $\left[\left(V(T) \cup\left\{y_{1}, y_{4}, y_{5}\right\}\right) \backslash\left\{x_{i}\right\}\right] \supseteq$ C_{5}. If $e\left(y_{5}, T\right) \geq 1$, then $x_{2} y_{1} \notin E(G)$ for otherwise $\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{4}, y_{5}\right] \supseteq C_{5}$. Hence $e\left(y_{1}, T\right)=3$. Then $\left[x_{1}, x_{2}, y_{2}, y_{3}, y_{4}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{1}, y_{5}\right] \supseteq C_{5}$, a contradiction. Therefore, $e\left(y_{5}, T\right)=0$. Then $e\left(y_{1}, Q\right)=e\left(y_{4}, Q\right)=4$ and $e\left(y_{2} y_{3}, x_{2}\right)=2$. If $y_{1} y_{3} \notin E(G)$ or $y_{2} y_{4} \notin E(G)$, then $\left[x_{3}, x_{2}, x_{1}, y_{3}, y_{2}\right] \supseteq K_{4}^{+}$and $\tau\left(y_{1} x_{4} x_{5} y_{4} y_{5} y_{1}\right)>\tau\left(L_{t}\right)$, a contradiction. Hence $y_{1} y_{3}, y_{2} y_{4} \in E(G)$. If $y_{1} y_{4} \notin E(G)$, then either $d_{G}\left(y_{1}\right) \geq 3 k$ or $d_{G}\left(y_{4}\right) \geq 3 k$, say $d_{G}\left(y_{1}\right) \geq 3 k$. Then $\left[y_{5}, y_{1}, y_{2}, y_{3}, x_{1}\right] \supseteq K_{4}^{+}$and $\tau\left(y_{4} x_{2} x_{3} x_{4} x_{5} y_{4}\right)>\tau\left(L_{t}\right)$, contradicting the definition of ψ. Hence, $y_{1} y_{4} \in E(G)$. Next, we claim that at most one L_{t} with $e\left(x_{1}, L_{t}\right)=4$ and $e\left(Q, L_{t}\right)=10$. If not, then there is another one $L_{t}^{\prime}=z_{1} z_{2} z_{3} z_{4} z_{5} z_{1}$ with $e\left(x_{1}, L_{t}^{\prime}\right)=4$ and $e\left(Q, L_{t}^{\prime}\right)=10$. Without loss of generality, assume that $N\left(x_{1}\right) \mid L_{t}^{\prime}=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$. Then $\left\{z_{1} z_{3}, z_{2} z_{4}, z_{1} z_{4}\right\} \subseteq E\left(L_{t}^{\prime}\right)$, $N\left(x_{2}\right) \mid L_{t}^{\prime}=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and $N\left(x_{3}\right)\left|L_{t}^{\prime}=N\left(x_{4}\right)\right| L_{t}^{\prime}=N\left(x_{5}\right) \mid L_{t}^{\prime}=\left\{z_{1}, z_{4}\right\}$. Therefore, $\left[y_{1}, y_{5}, y_{4}, x_{4}, x_{5}\right] \supseteq C_{5},\left[x_{2}, z_{4}, z_{5}, z_{1}, x_{3}\right] \supseteq C_{5}$ and $\left[y_{2}, y_{3}, x_{1}, z_{2}, z_{3}\right] \supseteq$ B, contradicting Lemma 10 .

To prove (c), suppose to the contrary that $e\left(Q, L_{t}\right) \geq 13$. Assume first $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+1}, y_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{4}\right\}$.

As $x_{1} \rightarrow\left(L_{t}, y_{i}\right)$ for all $i \in\{3,5\}, e\left(y_{i}, Q\right) \leq 1$. Further, $y_{3} y_{5} \notin E(G)$ as $x_{1} \nrightarrow L_{t}$. It follows that $e\left(y_{1} y_{2} y_{4}, Q\right) \geq 11$ and so $e\left(x_{2}, y_{1} y_{4}\right) \geq 1, e\left(x_{2}, y_{2} y_{4}\right) \geq 1$. Then $\left[x_{1}, x_{2}, y_{1}, y_{5}, y_{4}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, y_{2}, y_{3}, y_{4}\right] \supseteq C_{5}$. Further, as $e\left(y_{i}, T\right) \geq$ 2 for all $i \in\{1,2\}, e\left(y_{3} y_{5}, T\right)=0$ for otherwise $\left[x_{3}, x_{4}, x_{5}, y_{2}, y_{3}\right] \supseteq C_{5}$ or $\left[x_{3}, x_{4}, x_{5}, y_{1}, y_{5}\right] \supseteq C_{5}$, a contradiction. Then $N\left(y_{3}\right)\left|Q \cup N\left(y_{5}\right)\right| Q \subseteq\left\{x_{2}\right\}$.

Let $R=\left\{x_{1}, x_{4}, y_{3}, y_{5}\right\}$. Then $e\left(R, V\left(G_{t}\right)-R\right) \leq 18$ and so $e(R, G-$ $\left.V\left(G_{t}\right)\right) \geq 12 k-18=12(k-2)+6$ and hence $e\left(R, L_{i}\right) \geq 13$ for some $i \in$ $\{1,2,3, \ldots, k-1\} \backslash\{t\}$. Note that $e\left(Q, L_{t}\right) \geq 13$ and $N\left(y_{3}\right)\left|Q \cup N\left(y_{5}\right)\right| Q \subseteq\left\{x_{2}\right\}$. If $u \rightarrow\left(L_{i}, z ;\{v, w\}\right)$ for some $z \in V\left(L_{i}\right), u \in R$ and $\{v, w\} \subseteq R \backslash\{u\}$, then $\left[G_{t}, L_{i}\right] \supseteq 3 C_{5}$, a contradiction. By Lemma 4(e), there are vertex labellings $L_{i}=z_{1} z_{2} z_{3} z_{4} z_{5} z_{1}$ and $R=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ such that $e\left(a_{1} a_{2}, z_{1} z_{2} z_{3} z_{4}\right)=8$, $e\left(a_{3}, z_{1} z_{5} z_{4}\right)=3$ and $e\left(a_{4}, z_{1} z_{4}\right)=2$. If $\left\{a_{1}, a_{2}\right\}=\left\{x_{1}, x_{4}\right\}$, then set $\{r, s\}=$ $\{1,2\}$ with $y_{r} \in N\left(x_{1}\right)\left|L_{t} \cap N\left(x_{4}\right)\right| L_{t}$. We can see that $\left[x_{1}, y_{r}, x_{4}, z_{2}, z_{3}\right] \supseteq C_{5}$, $\left[y_{3}, y_{5}, z_{1}, z_{5}, z_{4}\right] \supseteq C_{5}$ and $\left[x_{2}, x_{3}, x_{5}, y_{s}, y_{4}\right] \supseteq C_{5}$, a contradiction. If $\left\{a_{1}, a_{2}\right\}=$ $\left\{x_{1}, y_{i}\right\}$ for some $i \in\{3,5\}$, say $\left\{a_{1}, a_{2}\right\}=\left\{x_{1}, y_{5}\right\}$, then $\left[x_{1}, y_{1}, y_{5}, z_{2}, z_{3}\right] \supseteq C_{5}$, $\left[y_{3}, x_{4}, z_{1}, z_{5}, z_{4}\right] \supseteq C_{5}$ and $\left[y_{2}, y_{4}, x_{2}, x_{3}, x_{5}\right] \supseteq C_{5}$, a contradiction. If $\left\{a_{1}, a_{2}\right\}=$ $\left\{x_{4}, y_{i}\right\}$ for some $i \in\{3,5\}$, say $\left\{a_{1}, a_{2}\right\}=\left\{x_{4}, y_{5}\right\}$, then we set $\{r, s\}=\{1,4\}$ with $x_{4} y_{r} \in E(G)$. It is clear that $\left[x_{4}, y_{r}, y_{5}, z_{2}, z_{3}\right] \supseteq C_{5},\left[x_{1}, y_{3}, z_{1}, z_{5}, z_{4}\right] \supseteq C_{5}$ and $\left[x_{2}, x_{3}, x_{5}, y_{2}, y_{s}\right] \supseteq C_{5}$, a contradiction. Hence $\left\{a_{1}, a_{2}\right\}=\left\{y_{3}, y_{5}\right\}$. Therefore, $\left[y_{3}, y_{4}, y_{5}, z_{2}, z_{3}\right] \supseteq C_{5},\left[x_{1}, x_{4}, z_{1}, z_{5}, z_{4}\right] \supseteq C_{5}$ and $\left[x_{2}, x_{3}, x_{5}, y_{1}, y_{2}\right] \supseteq C_{5}$, again a contradiction.

Next, assume that $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+1}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L_{t}, y_{2}\right), e\left(y_{2}, Q\right) \leq 1$. Suppose $e\left(x_{2}, y_{4} y_{5}\right) \geq 1$, say $x_{2} y_{5} \in E(G)$. Then $e\left(y_{3} y_{4}, T\right) \leq 3$ for otherwise $\left[x_{1}, x_{2}, y_{5}, y_{1}, y_{2}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{3}, y_{4}\right] \supseteq C_{5}$. Further, if $x_{2} y_{4} \in E(G)$, then similarly, $e\left(y_{1} y_{5}, T\right) \leq 3$ and so $e\left(Q, L_{t}\right) \leq 12$, a contradiction. Hence $x_{2} y_{4} \notin E(G)$. Since $e\left(Q, L_{t}\right) \geq$ 13 , then $e\left(y_{1} y_{5}, Q\right)=8, e\left(y_{3} y_{4}, T\right)=3, e\left(y_{2}, Q\right)=1$ and $x_{2} y_{3} \in E(G)$. If $e\left(y_{4}, T\right) \geq 1$, then $\left[x_{3}, x_{4}, x_{5}, y_{4}, y_{5}\right] \supseteq C_{5}$ and $\left[y_{1}, y_{2}, y_{3}, x_{1}, x_{2}\right] \supseteq C_{5}$, a contradiction. Thus $e\left(y_{4}, T\right)=0$ and so $e\left(y_{3}, T\right)=3$. Then $\left[x_{1}, y_{2}, y_{1}, x_{3}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{3}, y_{4}, y_{5}, x_{4}, x_{5}\right] \supseteq C_{5}$, a contradiction. Therefore, $e\left(x_{2}, y_{4} y_{5}\right)=0$. If $e\left(x_{2}, y_{1} y_{3}\right) \geq 1$, then $\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right] \supseteq C_{5}$ and so $e\left(y_{4} y_{5}, T\right) \leq 3$. It follows that $e\left(Q, L_{t}\right)=e\left(y_{4} y_{5}, T\right)+e\left(y_{1} y_{3}, T\right)+e\left(y_{2}, T\right)+e\left(x_{2}, y_{1} y_{2} y_{3}\right) \leq 12$, no matter whether $y_{2} x_{2}$ is an edge of $E(G)$ or not, a contradiction. Therefore, $e\left(x_{2}, y_{1} y_{3} y_{4} y_{5}\right)=0$ and hence $e\left(T, y_{1} y_{3} y_{4} y_{5}\right)=12$. Then $\left[x_{1}, y_{3}, x_{3}, y_{1}, y_{2}\right] \supseteq C_{5}$ and $\left[x_{2}, x_{4}, y_{4}, y_{5}, x_{5}\right] \supseteq C_{5}$, again a contradiction.

To prove (d), suppose to the contrary that $e\left(Q, L_{t}\right) \geq 16$. Assume first $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L_{t}, y_{2}\right), e\left(y_{2}, Q\right) \leq 1$. Therefore, $e\left(Q, y_{1} y_{3} y_{4} y_{5}\right) \geq 15$ and hence $e\left(x_{2}, y_{1} y_{3}\right)$ ≥ 1. Then $\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right] \supseteq C_{5}$ and so $e\left(y_{4} y_{5}, T\right) \leq 3$. This implies that $e\left(Q, y_{1} y_{3} y_{4} y_{5}\right) \leq 13$, a contradiction. Next, assume that $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+1}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}\right\}$. If $x_{2} y_{4} \in E(G)$, then
$e\left(y_{2} y_{3}, T\right) \leq 3$ for otherwise $\left[x_{1}, x_{2}, y_{4}, y_{5}, y_{1}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, y_{2}, y_{3}\right] \supseteq C_{5}$, a contradiction. Similarly, if $x_{2} y_{4} \in E(G)$, then $e\left(y_{1} y_{5}, T\right) \leq 3$. This means that $e\left(Q, L_{t}\right) \leq 14$, a contradiction. Hence $x_{2} y_{4} \notin E(G)$. If $e\left(x_{2}, y_{3} y_{5}\right) \geq 1$, say $x_{2} y_{5} \in E(G)$, then $\left[x_{1}, x_{2}, y_{5}, y_{1}, y_{2}\right] \supseteq C_{5}$ and so $e\left(y_{3} y_{4}, T\right) \leq 3$. Further, $e\left(y_{1} y_{2} y_{5}, Q\right)=12$ as $e\left(Q, L_{t}\right) \geq 16$. This implies that $\left[x_{1}, y_{1}, x_{5}, x_{4}, x_{2}\right] \supseteq$ C_{5} and $\left[y_{2}, y_{3}, y_{4}, y_{5}, x_{3}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{2}, y_{3} y_{5}\right)=0$. If $y_{3} x_{3} \in E(G)$, then $e\left(y_{1} y_{4} y_{5}, x_{4} x_{5}\right) \leq 4$ for otherwise $\left[x_{1}, y_{2}, y_{3}, x_{3}, x_{2}\right] \supseteq C_{5}$ and $\left[x_{4}, x_{5}, y_{1}, y_{4}, y_{5}\right] \supseteq C_{5}$. Thus $e\left(Q, L_{t}\right)=e\left(x_{2}, y_{1} y_{2}\right)+e\left(x_{3}, L_{t}\right)+e\left(x_{4} x_{5}, y_{1} y_{4} y_{5}\right)+$ $e\left(x_{4} x_{5}, y_{2} y_{3}\right) \leq 15$, a contradiction. Then $y_{3} x_{3} \notin E(G)$. Similarly, $y_{3} x_{4}, y_{3} x_{5} \notin$ $E(G)$. Then $e\left(Q, L_{t}\right)=e\left(x_{2}, y_{1} y_{2}\right)+e\left(x_{3} x_{4} x_{5}, y_{1} y_{2} y_{4} y_{5}\right) \leq 14$, again a contradiction.

To prove (e), suppose to the contrary that $e\left(Q, L_{t}\right) \geq 17$. Without loss of generality assume that $x_{1} y_{1} \in E(G)$. Suppose $e\left(x_{2}, y_{3} y_{4}\right) \geq 1$, say $x_{2} y_{3} \in$ $E(G)$. Then $\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right] \supseteq C_{5}$ and so $e\left(y_{4} y_{5}, T\right) \leq 3$. Since $e\left(Q, L_{t}\right) \geq 17$, $e\left(y_{1} y_{2} y_{3}, Q\right)=12, e\left(y_{4} y_{5}, T\right)=3$ and $e\left(x_{2}, y_{4} y_{5}\right)=2$. Then $\left[x_{1}, x_{2}, y_{4}, y_{5}, y_{1}\right] \supseteq$ C_{5} and $\left[x_{3}, x_{4}, x_{5}, y_{2}, y_{3}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{2}, y_{3} y_{4}\right)=0$ and so $e\left(T, L_{t}\right) \geq 14$. This implies that $e\left(x_{i}, y_{2} y_{5}\right)=2$ and $y_{1} x_{j} \in E(G)$ for some $\{i, j\} \subseteq\{3,4,5\}$ with $i \neq j$. Then $\left[L_{t}-y_{1}+x_{i}\right] \supseteq C_{5}$ and $\left[H+y_{1}-x_{i}\right] \supseteq C_{5}$, a contradiction.

Recall that $b_{0}+b_{1}+b_{2}+b_{3}+b_{4}+b_{5}=k-1$. Further, we can see that

$$
\begin{equation*}
d_{G}\left(x_{1}\right)=d_{H}\left(x_{1}\right)+\sum_{r=0}^{5} \sum_{L_{t} \in \mathcal{B}_{r}} e\left(x_{1}, L_{t}\right)=1+b_{1}+2 b_{2}+3 b_{3}+4 b_{4}+5 b_{5} . \tag{3}
\end{equation*}
$$

By Claim 2, there may exist one $L_{t}^{\prime} \in \mathcal{B}_{4}$ with $e\left(H, L_{t}^{\prime}\right)=14$. Further, we obtain

$$
\begin{align*}
\sum_{x \in V(H)} d_{G}(x) & =\sum_{x \in V(H)} d_{H}(x)+\sum_{r=0}^{3} \sum_{L_{t} \in \mathcal{B}_{r}} e\left(H, L_{t}\right)+\sum_{L_{t} \in \mathcal{B}_{5}} e\left(H, L_{t}\right) \\
& +\sum_{L_{t} \in \mathcal{B}_{4} \backslash\left\{L_{t}^{\prime}\right\}} e\left(H, L_{t}\right)+e\left(H, L_{t}^{\prime}\right) \tag{4}\\
& \leq 14+20 b_{0}+17 b_{1}+17 b_{2}+15 b_{3}+10 b_{5}+\left(13 b_{4}+1\right) \\
& =15+20 b_{0}+17 b_{1}+17 b_{2}+15 b_{3}+13 b_{4}+10 b_{5} .
\end{align*}
$$

Combining (4) with (3), we obtain $2 d_{G}\left(x_{1}\right)+\sum_{x \in V(H)} d_{G}(x) \leq 17+20 b_{0}+19 b_{1}+$ $21 b_{2}+21 b_{3}+21 b_{4}+20 b_{5}=21 k-b_{0}-2 b_{1}-b_{5}-4$. Since $d_{G}\left(x_{2}\right) \geq 3 k$, we have $2 d_{G}\left(x_{1}\right)+\sum_{x \in V(H)} d_{G}(x)=d_{G}\left(x_{2}\right)+\left(d_{G}\left(x_{1}\right)+d_{G}\left(x_{3}\right)\right)+\left(d_{G}\left(x_{1}\right)+d_{G}\left(x_{4}\right)\right)+$ $\left(d_{G}\left(x_{1}\right)+d_{G}\left(x_{5}\right)\right) \geq 21 k$, which is a contradiction.

Let $\psi=\left\{H, L_{1}, L_{2}, \ldots, L_{k-1}\right\}$ be an optimal family of G with $H \cong K_{4}^{+}$, and let \mathcal{B}_{r} and b_{r} be defined as in the proof of Lemma 14. Let $Q=\left[x_{2}, x_{3}, x_{4}, x_{5}\right]$ and $T=\left[x_{3}, x_{4}, x_{5}\right]$.

Lemma 15. For each $t \in\{1,2, \ldots, k-1\}$, the following statements hold.
(a) If $e\left(x_{1}, L_{t}\right)=5$, then $e\left(T, L_{t}\right) \leq 3$.
(b) If $e\left(x_{1}, L_{t}\right)=4$, then $e\left(T, L_{t}\right) \leq 6$.
(c) If $e\left(x_{1}, L_{t}\right)=3$, then $e\left(T, L_{t}\right) \leq 9$.
(d) If $1 \leq e\left(x_{1}, L_{t}\right) \leq 2$, then $e\left(T, L_{t}\right) \leq 12$.
(e) If $e\left(x_{1}, L_{t}\right)=0$, then $e\left(T, L_{t}\right) \leq 15$.

Proof. Let $L_{t}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ and $G_{t}=\left[H, L_{t}\right]$. To prove (a), suppose to the contrary that $e\left(T, L_{t}\right) \geq 4$. As $G_{t} \nsupseteq 2 C_{5}, e\left(y_{i}, Q\right) \leq 1$ for all $i \in\{1,2,3,4,5\}$. Further, by the optimality of ψ, we obtain $\left[L_{t}\right] \cong K_{5}$. Without loss of generality assume that $y_{1} x_{3} \in E(G)$. Then $y_{1} x_{2} \notin E(G)$ and so $d_{G}\left(y_{1}\right) \geq 3 k,\left[Q+y_{1}\right] \supseteq K_{4}^{+}$, $\left[L_{t}-y_{1}+x_{1}\right] \cong K_{5}$. Therefore, we may assume that $d_{G}\left(x_{1}\right) \geq 3 k$. Since $e\left(T, L_{t}\right) \geq 4, e\left(x_{l}, L_{t}\right) \geq 2$ for some $l \in\{3,4,5\}$, say $x_{3} y_{1}, x_{3} y_{2} \in E(G)$. Then $\left[x_{2}, x_{1}, y_{3}, y_{4}, y_{5}\right] \supseteq K_{4}^{+},\left[x_{3}, x_{4}, x_{5}, y_{1}, y_{2}\right] \supseteq B$. Let $L^{\prime}=\left[x_{3}, x_{4}, x_{5}, y_{1}, y_{2}\right]$ and $R^{\prime}=\left\{y_{1}, y_{2}, x_{4}, x_{5}\right\}$. Note that $e\left(R^{\prime}, x_{2} x_{1} y_{3} y_{4} y_{5}\right) \leq 11$ and $\sum_{x \in R^{\prime}} d_{L^{\prime}}(x)=8$. Then $e\left(R^{\prime}, G-V\left(G_{t}\right)\right) \geq 12 k-19=12(k-2)+5$ and so $e\left(R^{\prime}, L_{i}\right) \geq 13$ for some $i \in\{1, \ldots, k-1\} \backslash\{t\}$. By Lemma 4(b), $\left[L^{\prime}, L_{i}\right] \supseteq 2 C_{5}$. This contradicts Lemma 14 as $\left[x_{2}, x_{1}, y_{3}, y_{4}, y_{5}\right] \supseteq K_{4}^{+}$and $d_{G}\left(x_{1}\right) \geq 3 k$.

To prove (b), suppose to the contrary that $e\left(T, L_{t}\right) \geq 7$. Without loss of generality assume that $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. It is clear that $\tau\left(y_{5}, L_{t}\right)=0$ for otherwise $x_{1} \rightarrow L_{t}$ and so $G_{t} \supseteq 2 C_{5}$. As $x_{1} \rightarrow\left(L_{t}, y_{i}\right)$ for $i \in\{2,3,5\}$, $e\left(y_{i}, T\right) \leq 1$. If $e\left(y_{5}, T\right)=1$, then $\left[Q+y_{5}\right] \supseteq K_{4}^{+}$and $\tau\left(L_{t}-y_{5}+x_{1}\right)>\tau\left(L_{t}\right)$, contradicting the optimality of ψ. Therefore, $e\left(y_{5}, T\right)=0$ and hence $e\left(y_{1} y_{4}, T\right) \geq$ 5. Without loss of generality, assume that $e\left(y_{1}, T\right)=3$ and $y_{4} x_{3}, y_{4} x_{4} \in E(G)$. Further, since $e\left(T, L_{t}\right) \geq 7, e\left(y_{2} y_{3}, T\right) \geq 1$. If $x_{3} \in N\left(y_{2}\right)\left|T \cup N\left(y_{3}\right)\right| T$, then $\left[x_{1}, y_{2}, y_{3}, x_{3}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{1}, y_{4}, y_{5}, x_{4}, x_{5}\right] \supseteq C_{5}$, a contradiction. If $x_{4} \in$ $N\left(y_{2}\right)\left|T \cup N\left(y_{3}\right)\right| T$, then $\left[x_{1}, y_{2}, y_{3}, x_{4}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{1}, y_{4}, y_{5}, x_{3}, x_{5}\right] \supseteq C_{5}$, a contradiction. If $x_{5} \in N\left(y_{2}\right)\left|T \cup N\left(y_{3}\right)\right| T$, then $\left[x_{1}, y_{2}, y_{3}, x_{5}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{1}, y_{4}, y_{5}, x_{3}, x_{4}\right] \supseteq C_{5}$, again a contradiction.

To prove (c), suppose to the contrary that $e\left(T, L_{t}\right) \geq 10$. Assume first $N\left(x_{1}\right) \mid L_{t}=\left\{y_{i}, y_{i+1}, y_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{3}\right\}$. As $x_{1} \rightarrow\left(L_{t}, y_{2}\right), e\left(y_{2}, T\right) \leq 1$. Without loss of generality assume that $e\left(y_{1} y_{4}, T\right)$ $\geq e\left(y_{3} y_{5}, T\right)$. Then $\left[x_{1}, y_{2}, y_{3}, x_{i}, x_{2}\right] \supseteq C_{5}$ and $\left[\left(V(T) \cup\left\{y_{1}, y_{4}, y_{5}\right\}\right) \backslash\left\{x_{i}\right\}\right] \supseteq C_{5}$, where $x_{i} \in N\left(y_{2}\right)\left|T \cup N\left(y_{3}\right)\right| T$, a contradiction. Next, assume that $N\left(x_{1}\right) \mid L_{t}=$ $\left\{y_{i}, y_{i+1}, y_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$, say $N\left(x_{1}\right) \mid L_{t}=\left\{y_{1}, y_{2}, y_{4}\right\}$. As $x_{1} \rightarrow$ $\left(L_{t}, y_{i}\right)$ for $i \in\{3,5\}, e\left(y_{i}, T\right) \leq 1$. Since $e\left(T, L_{t}\right) \geq 10, e\left(y_{1} y_{4}, x_{4} x_{5}\right) \geq 3$ and $e\left(y_{3} y_{5}, T\right) \geq 1$, say $x_{3} y_{3} \in E(G)$. Then $\left[x_{1}, y_{2}, y_{3}, x_{3}, x_{2}\right] \supseteq C_{5}$ and $\left[y_{1}, y_{5}, y_{4}, x_{4}\right.$, $\left.x_{5}\right] \supseteq C_{5}$, a contradiction.

To prove (d), suppose to the contrary that $e\left(T, L_{t}\right) \geq 13$. Without loss of generality assume that $x_{1} y_{1} \in E(G)$. Since $e\left(T, L_{t}\right) \geq 13, e\left(y_{2} y_{5}, T\right) \geq 4$. Assume
first that $e\left(y_{2} y_{5}, T\right)=4$, say $x_{3} \in N\left(y_{2}\right)\left|T \cap N\left(y_{5}\right)\right| T$. Further, since $e\left(T, L_{t}\right) \geq$ $13, e\left(y_{1}, T\right)=3$. Then $\left[x_{1}, y_{1}, x_{2}, x_{4}, x_{5}\right] \supseteq C_{5}$ and $\left[x_{3}, y_{2}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. Next, assume that $e\left(y_{2} y_{5}, T\right) \geq 5$, say $\left\{x_{3}, x_{4}\right\} \subseteq N\left(y_{2}\right)\left|T \cap N\left(y_{5}\right)\right| T$. Since $e\left(T, L_{t}\right) \geq 13, e\left(y_{1}, T\right) \geq 1$. If $y_{1} x_{3} \in E(G)$, then $\left[x_{1}, y_{1}, x_{2}, x_{3}, x_{5}\right] \supseteq C_{5}$ and $\left[x_{4}, y_{2}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. If $y_{1} x_{4} \in E(G)$, then $\left[x_{1}, y_{1}, x_{2}\right.$, $\left.x_{4}, x_{5}\right] \supseteq C_{5}$ and $\left[x_{3}, y_{2}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, a contradiction. If $y_{1} x_{5} \in E(G)$, then $\left[x_{1}, y_{1}, x_{2}, x_{4}, x_{5}\right] \supseteq C_{5}$ and $\left[x_{3}, y_{2}, y_{3}, y_{4}, y_{5}\right] \supseteq C_{5}$, again a contradiction.

Let $R=\left\{x_{1}, x_{3}, x_{4}, x_{5}\right\}$. By Lemma 15, we obtain

$$
\begin{align*}
\sum_{x \in R} d_{G}(x) & =\sum_{x \in R} d_{H}(x)+\sum_{r=0}^{5} \sum_{L_{t} \in \mathcal{B}_{r}} e\left(R, L_{t}\right) \tag{5}\\
& \leq 10+15 b_{0}+13 b_{1}+14 b_{2}+12 b_{3}+10 b_{4}+8 b_{5} .
\end{align*}
$$

Combining (5) with (3), we have $2 d_{G}\left(x_{1}\right)+\sum_{x \in R} d_{G}(x) \leq 12+15 b_{0}+15 b_{1}+$ $18 b_{2}+18 b_{3}+18 b_{4}+18 b_{5}=18 k-3 b_{0}-3 b_{1}-6$. But by the degree sum condition, we have $2 d_{G}\left(x_{1}\right)+\sum_{x \in R} d_{G}(x) \geq 18 k$, a contradiction. This proves Theorem 3 .

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading of our original manuscript and constructive suggestions. This work was supported by the National Natural Science Foundation of China [Grant numbers, 11971406, 12171402]

References

[1] S. Abbasi, The Solution of the El-Zahar Problem (PhD Thesis, Rutgers University, 1998).
[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439. https://doi.org/10.1007/BF01895727
[3] S. Chiba and T. Yamashita, Degree conditions for the existence of vertex-disjoint cycles and paths: A survey, Graphs Combin. 34 (2018) 1-83. https://doi.org/10.1007/s00373-017-1873-5
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) s3-2 (1952) 69-81.
https://doi.org/10.1112/plms/s3-2.1.69
[5] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230. https://doi.org/10.1016/0012-365X(84)90050-5
[6] P. Erdős, Some Recent Combinatorial Problems (Technical Report, University of Bielefeld, 1990).
[7] H. Wang, Proof of the Erdös-Faudree conjecture on quadrilaterals, Graphs Combin. 26 (2010) 833-877.
https://doi.org/10.1007/s00373-010-0948-3
[8] H. Wang, Disjoint 5-cycles in a graph, Discuss. Math. Graph Theory 32 (2012) 221-242.
https://doi.org/10.7151/dmgt. 1605
Received 1 August 2021
Revised 1 May 2022
Accepted 2 May 2022
Available online 16 May 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

[^0]: ${ }^{1}$ Corresponding author.

