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Abstract

In this paper, we study the L(2, 1)-labeling of the Mycielski graph and
the iterated Mycielski graph of graphs in general. For a graph G and all
t ≥ 1, we give sharp bounds for λ(M t(G)) the L(2, 1)-labeling number of
the t-th iterated Mycielski graph in terms of the number of iterations t, the
order n of G, the maximum degree △, and λ(G) the L(2, 1)-labeling number
of G. For t = 1, we present necessary and sufficient conditions between the
4-star matching number of the complement graph and λ(M(G)) the L(2, 1)-
labeling number of the Mycielski graph of a graph, with some applications
to special graphs. For all t ≥ 2, we prove that for any graph G of order
n, we have 2t−1(n + 2) − 2 ≤ λ(M t(G)) ≤ 2t(n + 1) − 2. Thereafter, we
characterize the graphs achieving the upper bound 2t(n+1)−2, then by using
the Marriage Theorem and Tutte’s characterization of graphs with a perfect
2-matching, we characterize all graphs without isolated vertices achieving
the lower bound 2t−1(n+ 2) − 2. We determine the L(2, 1)-labeling number
for the Mycielski graph and the iterated Mycielski graph of some graph
classes.
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1. Introduction

The graphs considered in this paper are finite, simple, and undirected. For graph
terminology, we refer to [23].

In 1992, Griggs and Yeh [11] studied a variation of the frequency assignment
problem [12], where close transmitters must receive different channels and closer
transmitters must receive different channels at least two apart. This problem
is known as the L(2, 1)-labeling problem, the main target is to come up with a
frequency assignment with low-frequency bandwidth.

Formally, the L(2, 1)-labeling of a graph G = (V,E) is a function f from the
vertex set V to the set of all nonnegative integers such that |f(x) − f(y)| ≥ 2 if
dG(x, y) = 1 and |f(x) − f(y)| ≥ 1 if dG(x, y) = 2, where dG(x, y) is the distance
between the vertices x and y in G. The span of an L(2, 1)-labeling f is the
difference between the largest and the smallest label used by f . We may always
consider zero as the smallest label used, so that the span is the highest label
assigned. A k-L(2, 1)-labeling is an L(2, 1)-labeling with no label greater than k,
the minimum k so that G has a k-L(2, 1)-labeling is called the L(2, 1)-labeling

number or λ-number of G, and denoted by λ(G). An L(2, 1)-labeling with span
λ(G) is called a λ-labeling.

The L(2, 1)-labeling has been extensively studied (see surveys [3, 24]). The
determination of the exact value of λ(G) is an NP-Hard problem for graphs in
general, it is NP-Complete to determine whether a graph admits an L(2, 1)-
labeling with span at most λ ≥ 4 [7], the problem remains NP-Complete even
restricted to some graph families (see NP-completeness results references in [3]).
Therefore, the aim of the research was to bound the λ-number for graphs. By
using the greedy algorithm, Griggs and Yeh [11] proved that λ(G) ≤ △2 + 2△
for any graph G, where △ is the maximum degree of G. This upper bound was
later improved by Gonçalves in [10] to △2 + △ − 2, and it is the best known
upper bound for λ(G) in terms of the maximum degree for graphs in general.
Griggs and Yeh [11] conjectured that λ(G) ≤ △2, for any graph G with △ ≥ 2, it
is called △2-conjecture and is one of the most captivating open problems about
graph labeling with distance conditions. This conjecture was proven to be true by
Havet et al. [13] for graphs with a large maximum degree. The L(2, 1)-labeling
number attracted attention not only for general graphs but also when considering
specific graph classes. The decision version of the L(2, 1)-labeling problem has
been proven to be polynomial for complete graphs, paths, cycles, wheels, trees,
complete k-partite graphs, among other few graph classes. For an overview on
the subject of the L(2, 1)-labeling (and its generalizations), we refer the reader
to the surveys [3, 24].

In this paper, we investigate the L(2, 1)-labeling of the Mycielski graph and
the iterated Mycielski graph of graphs. In search of triangle-free graphs with a
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large chromatic number, Mycielski [19] used the following transformation.

Definition 1.1. For a given graph G = (V,E) of order n with V = {v1, v2, . . . ,
vn}, the Mycielski graph of G, denoted M(G), is the graph with vertex set V ∪V ′∪
{u}, where V ′ = {v′

i : vi ∈ V } and edge set E∪
{

viv
′
j : vivj ∈ E

}

∪
{

v′
iu : v′

i ∈ V ′
}

.
The vertex v′

i is called the copy of the vertex vi and u is called the root of M(G).

The t-th iterated Mycielski graph of G, denoted M t(G), is defined recursively
with M0(G) = G and for t ≥ 1 M t(G) = M(M t−1(G)). If t = 1, M1(G)
is the Mycielski graph of G and is denoted simply M(G). It is known that
χ(M(G)) = χ(G) + 1, and ω(M(G)) = max{2, ω(G)}, for any graph G, where
χ(G) and ω(G) are respectively the chromatic number and the clique number of
G. Many aspects and invariants of the Mycielski graphs have been studied (see
for example [2, 4, 5, 8, 16, 17, 20]), Mycielski graphs are known to be hard-to-color
instances and are used for testing coloring algorithms [4]. The L(2, 1)-labeling of
the Mycielski graph of graphs has been previously investigated in [17] and [20]. A
4-star matching H of a graph G is a subgraph such that H is a collection of vertex
disjoint star graphs K1,1, K1,2, K1,3 or K1,4. The 4-star matching number is the
maximum order of a 4-star matching of G. In [17], Lin and Lam gave sufficient
conditions on the 4-star matching number of the complement graph G, so that
λ(M(G)) ≤ 2n and λ(M(G)) = 2n+ k, for any k ≥ 1. This allows them to prove
that λ(M(G)) can be computed in polynomial time for graphs with diameter at
most 2, and then give the λ-number of the Mycielski graph of complete graph
Kn, and the Mycielski graph of the graph join of complete graph and the empty
graph. Shao and Solis-Oba in [20], also studied the L(2, 1)-labeling number of the
Mycielski and the iterated Mycielski graph of graphs. The authors as well gave
the λ-number of the Mycielski graph of complete graph, and depending on the
number of iterations determine the exact value or give bounds for λ(M t(Kn)),
then provided bounds for λ(M t(G)) for any graph G.

In this paper, we continue the work started by Lin and Lam [17], and Shao
and Solis-Oba [20]. In Section 2, we give some preliminary results about the
Mycielski and iterated Mycielski graph of graphs, and some previous results on
the L(2, 1)-labeling number of graphs.

Section 3 is dedicated to the L(2, 1)-labeling number of M(G). First, we
provide bounds involving the order n, the maximum degree △ and the λ-number
of G. Then we complete the equivalence relationship between the 4-star match-
ing number and the L(2, 1)-labeling number of the Mycielski graph of a graph.
Afterward, we give applications of this result to the L(2, 1)-labeling number of
the Mycielski graph of some particular graphs, not mentioned in [17]. The end
of Section 3 is dedicated to graphs with a lower bound λ(M(G)) = n+ 1, we give
a condition for a graph implying that λ(M(G)) = n+ 1. Then we determine the
L(2, 1)-labeling number of M(Pn) and M(Cn) the Mycielski graph of path and



492 K. Dliou, H. El Boujaoui and M. Kchikech

cycle respectively, which allow us to determine all the connected graphs realizing
λ(M(G)) equal to 4, 6 and 7, respectively.

Section 4 is devoted to the t-th iterated Mycielski graph of graphs with t ≥ 2.
As in Section 3, we give bounds for λ(M t(G)) in terms of the number of iterations
t, the order, the maximum degree, and λ(G). Then we show that for all t ≥ 2,
λ(M t(Kn)) = |M t(Kn)| − 1 = 2t(n + 1) − 2, then we characterize all graphs
having λ(M t(G)) = |M t(G)| − 1 = 2t(n+ 1) − 2. Later, we give a necessary and
sufficient condition for any graph G without isolated vertices achieving a lower
bound 2t−1(n+ 2) − 2 for the λ-number of the iterated Mycielski graph of G, we
apply that to get an upper bound that can be calculated in polynomial time for
any graph G, then we determine λ(M t(Pn)), and λ(M t(Cn)). Finally, we propose
a weak version of the △2-conjecture for the L(2, 1)-labeling of the Mycielski and
iterated Mycielski graph of graphs.

2. Preliminaries and Previous Results

For a graph G, let △Mt , degMt(x), and dMt(x, y) denote respectively, the max-
imum degree, the degree of a vertex x, and the distance between the vertices x
and y in M t(G). If t = 1, we denote simply △M , degM (x), and dM (x, y). As a
consequence of Definition 1.1, we have the following.

Lemma 2.1. If G is a graph of order n, then |M t(G)| = 2t(n+ 1) − 1.

Proof. From Definition 1.1, we have |M(G)| = 2n+ 1 = 2(n+ 1) − 1. By using
induction on t, we can show that |M t(G)| = 2t(n+ 1) − 1.

Observation 2.2. If H is a subgraph of a graph G, then for any t ≥ 1, M t(H)
is a subgraph of M t(G).

Lemma 2.3. Let G be a graph of order n and maximum degree △. For any

t ≥ 1, we have △Mt = max{2t−1(n+ 1) − 1, 2t△}.

Proof. By Definition 1.1, we have degM (u) = n, degM (x) = 2 degG(x), and
degM (x′) = degG(x) + 1 for all x ∈ V , where x′ is the copy of the vertex x in
M(G). Then △M = max{n, 2△}. Suppose that for k ≥ 1, we have △Mk =
max{2k−1(n+ 1) − 1, 2k△}.

For k + 1, if 2k−1(n + 1) − 1 ≥ 2k△, then △Mk = 2k−1(n + 1) − 1. Let
v be a vertex of Mk(G), such that degMk(v) = △Mk . From Definition 1.1
degMk+1(v) = 2 degMk(v) = 2k(n+ 1) − 2 ≥ degMk+1(x), for all x ∈ VMk ∪ V ′

Mk .
Also degMk+1(uk+1) = |Mk(G)| = 2k(n+ 1) − 1 > degMk+1(v), where uk+1 is the
root of Mk+1(G). So △Mk+1 = degMk+1(uk+1) = 2k(n+ 1) − 1.

Otherwise, if 2k△ ≥ 2k−1(n+ 1), then by the inductive hypothesis, we have
△Mk = max{2k−1(n+1)−1, 2k△} = 2k△. We have degMk+1(x) = 2 degMk(x) ≤
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2k+1△, for all x ∈ VMk . For x′ ∈ V ′
Mk , degMk+1(x′) = degMk(x) + 1 ≤ 2k △ +1 ≤

2k+1△. Also degMk+1(uk+1) = 2k(n + 1) − 1 < 2k+1△. Thus, △Mk+1 = 2k+1△.
It follows that △Mk+1 = max

{

2k(n+ 1) − 1, 2k+1 △
}

.

Notice that M(G) is a connected graph if and only if G has no isolated ver-
tices. The diameter of a graph diam(G), is the greatest distance between any pair
of vertices in G. If G is disconnected, then diam(G) is considered to be infinite.
In [8], Fisher et al. proved that diam(M(G)) = min{max{2,diam(G)}, 4}, for
every graph G without isolated vertices. The following lemmas are a consequence
of the proof of this result and the definition of M(G).

Lemma 2.4 [8]. For vi and vj two non-isolated vertices in G, we have dM (u, v′
i)

= 1, dM (u, vi) = 2, dM (v′
i, v

′
j) = 2, dM (vi, v

′
i) = 2, dM (vi, v

′
j) = min{3, d(vi, vj)},

and dM (vi, vj) = min{4, d(vi, vj)}.

If vi is an isolated vertex in G, then vi is isolated in M(G), and v′
i is adjacent

to the root u.

Lemma 2.5. If G is a graph without isolated vertices, then for t≥1, diam(M t(G))
= min{max{2,diam(G)}, 4}.

Proof. Based on [8], we have diam(M(G)) = min{max{2,diam(G)}, 4}. Sup-
pose that for k ≥ 1, we have diam(Mk(G)) = min{max{2,diam(G)}, 4}. We have
Mk+1(G) = M(Mk(G)), so diam(Mk+1(G)) = min{max{2,diam(Mk(G)}, 4}. If
diam(G) = 1 or 2, then by the inductive hypothesis diam(Mk(G)) = 2, it fol-
lows that diam(Mk+1(G)) = 2. If diam(G) = 3, by the inductive hypothesis
diam(Mk(G)) = 3 and so diam(Mk+1(G)) = 3. By using the same argument if
diam(G) ≥ 4, we get that diam(Mk+1(G)) = 4.

By Lemma 2.5, if the diameter of a graph G is 1 or 2, then the diameter
of the t-th iterated Mycielski graph M t(G) is 2, for any t ≥ 1. It is clear from
the definition of the L(2, 1)-labeling that any vertices at distance less or equal
to 2 must be assigned distinct labels. So for any diameter two graph G, all the
vertices must be assigned different labels λ(G) ≥ |G| − 1. These arguments will
also be used throughout the paper.

We recall some previous results on the L(2, 1)-labeling of graphs.

Lemma 2.6 [11]. If G is a graph of maximum degree △ ≥ 1, then λ(G) ≥ △+1.

If λ(G) = △ + 1, then for every vertex v of degree △, f(v) = 0 or f(v) = △ + 1
for any λ-labeling f .

For t ≥ 1, from Lemma 2.6 and Lemma 2.3, an obvious lower bound for
λ(M t(G)) would be max{2t−1(n+ 1), 2t △ +1}.

Lemma 2.7 [6]. If H is a subgraph of a graph G, then λ(H) ≤ λ(G).
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Theorem 2.8 [11]. If G is a diameter 2 graph with maximum degree △, then

λ(G) ≤ △2.

In the proof of Theorem 2.8, Griggs and Yeh proved that for a graph G of
order n and maximum degree △ ≥ (n − 1)/2 ≥ 3, we have λ(G) < △2. Since
△M = max{n, 2△} and |M(G)| = 2n+ 1, it means the △2-conjecture is true for
the Mycielski graph of any graph G of order n ≥ 3.

The path covering number pv(G) of a graph, is the smallest number of vertex-
disjoint paths needed to cover all the vertices of a graphG. The complement graph

G of the graph G is the graph whose vertex set is V and where xy ∈ E(G) if
only if xy /∈ E(G). In [9], Georges et al. related the path covering number of the
complement graph G to the L(2, 1)-labeling number of G.

Theorem 2.9 [9]. For any graph G of order n, we have the following.

• λ(G) ≤ n− 1 if and only if pv(G) = 1.

• λ(G) = n+ r − 2 if and only if pv(G) = r ≥ 2.

3. The Mycielski Graph of a Graph M(G)

3.1. Bounds for the L(2, 1)-labeling number of M(G)

Theorem 3.1. Let G be a graph of order n ≥ 1 and maximum degree △ ≥ 0.

Then we have

max{n+ 1, 2(△ + 1)} ≤ λ(M(G)) ≤ (n+ 1) + λ(G).

Proof. According to the definition of the Mycielski graph of a graph, the degree
of the root degM (u) = n, then λ(M(G)) ≥ n+ 1. Otherwise, for △ ≥ 1, we have
the star graph K1,△ is a subgraph of G. Then by Observation 2.2 and Lemma 2.7,
we have λ(M(G)) ≥ λ(M(K1,△)). Since diam(K1,△) = 2 and |K1,△| = △ + 1, it
follows that diam(M(K1,△)) = 2, and λ(M(K1,△)) ≥ |M(K1,△)| − 1 = 2(△ + 1).
Thus, λ(M(G)) ≥ 2(△ + 1).

For the upper bound, let h be a λ-labeling of G. We denote M(G) the
Mycielski graph of G with vertex set V (M(G)) = {vi, v

′
i, u : 1 ≤ i ≤ n}, where v′

i

is the copy of vi in M(G) and u is the root. Since every λ-labeling must assign
the label 0 to a vertex of G, we consider without loss of generality that h(vn) = 0.
We define the following labeling f on V (M(G)).

f(x) =















i− 1 if x = v′
i, 1 ≤ i ≤ n,

n+ h(vi) if x = vi, 1 ≤ i ≤ n,

(n+ 1) + λ(G) if x = u.

Now we will check that f is an L(2, 1)-labeling of M(G), we get five cases.
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• We have |f(v′
i) − f(v′

j)| = |i − j| ≥ 1 and dM (v′
i, v

′
j) = 2, for all 1 ≤ i, j ≤ n

i 6= j.

• By Lemma 2.4, if dM (vi, vj) = 1 (respectively, 2), then dG(vi, vj) = 1 (respec-
tively, 2). We have |f(vi)−f(vj)| = |h(vi)−h(vj)|. This means |f(vi)−f(vj)| ≥
2, if dM (vi, vj) = 1 and |f(vi) − f(vj)| ≥ 1, if dM (vi, vj) = 2.

• For all 1 ≤ i, j ≤ n, we have |f(vi) − f(v′
j)| = |n+h(vi) − j+ 1|. The distance

two conditions are respected for all the following cases.

(i) If 1 ≤ j ≤ n− 1, then |f(vi) − f(v′
j)| ≥ 2.

(ii) If j = n and i = n, we have |f(vn) − f(v′
n)| = 1, and dM (vn, v

′
n) ≥ 2.

(iii) If j = n and dG(vi, vn) = 1, we have |h(vi) − h(vn)| ≥ 2, so h(vi) ≥ 2. It
follows that |f(vi) − f(v′

n)| ≥ 2.

(iv) If j = n and dG(vi, vn) ≥ 2, by Lemma 2.4 we have dM (vi, v
′
n) ≥ 2, and

|f(vi) − f(v′
n)| ≥ 1.

• For all 1 ≤ i ≤ n, |f(u) − f(v′
i)| = |(n+ 1) + λ(G) − i+ 1| ≥ 2.

• For all 1 ≤ i ≤ n, |f(u) − f(vi)| = |(n + 1) + λ(G) − (n + h(vi))| ≥ 1, and
dM (u, vi) ≥ 2.

So f is an L(2, 1)-labeling of M(G) with span (n + 1) + λ(G). Hence
λ(M(G)) ≤ (n+ 1) + λ(G).

Corollary 3.2. If G is a diameter 2 graph of maximum degree △, then λ(M(G))
≤ 2(△2 + 1).

Proof. By Theorem 2.8 for a diameter 2 graph, we have λ(G) ≤ △2. Also,
we have |G| = n ≤ △2 + 1, known as the Moore bound due to Hoffman and
Singleton [14]. By combining this with the upper bound of Theorem 3.1, we get
that λ(M(G)) ≤ 2(△2 + 1).

The bound 2(△2 + 1) in Corollary 3.2 can only be attained by the Mycielski
graph of diameter two Moore graphs [14], since the diameter of the Mycielski
graph of these graphs is two, and these are the only diameter two graphs with
order △2 + 1 and λ-number equal to △2 [11]. The only known graphs achieving
this bound are C5 the cycle of order 5, the Petersen graph, and the Hoffman-
Singleton graph.

3.2. L(2, 1)-labeling number of the Mycielski graph of a graph and
the star matching of the complement graph

By using the upper bound of Theorem 3.1 and Theorem 2.9, we can link the
λ-number of M(G) to the path covering of the complement graph G. So if
pv(G) = 1, i.e., G has a Hamiltonian path, then λ(M(G)) ≤ 2n, the equality holds
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for diameter two graphs. Also if pv(G) ≥ 2, then λ(M(G)) ≤ 2n+pv(G)−1. But
for more relevant conditions, the study of the path covering of the complement
of M(G) is required.

We can see that for any graph G, M(G) the complement of the Mycielski
graph of G is a connected graph. The neighborhood of u in M(G) is V . For
all 1 ≤ i ≤ n, viv

′
i ∈ E(M(G)). For i 6= j, v′

iv
′
j ∈ E(M(G)). Also viv

′
j , vivj ∈

E(M(G)) if and only if vivj /∈ E(G). The subgraph induced by the set V is G.
The subgraph induced by the set V ′ is the complete graph on n vertices.

Let m be an integer greater or equal to 2. An m-star matching H of G is a
subgraph of G such that each component of H is isomorphic to a star graph K1,i,
with 1 ≤ i ≤ m. The m-star matching number, denoted sm(G), is the maximum
order of an m-star matching of G, an m-star matching of order sm(G) is said to be
maximum. If sm(G) = |G|, we say that G has a perfect m-star matching, a perfect
m-star matching is known also as star-factor or {K1,1,K1,2, . . . ,K1,m}-factor [1,
22]. The problem of finding whether or not a graph G admits a perfect m-star
matching can be solved in polynomial time [15]. In [17], Lin and Lam studied
the m-star matching and the m-star matching number sm(G). They delivered an
algorithm to compute sm(G) running in O(|V ||E|). Then they related the 4-star
matching number of G to the path covering number of M(G). In the following we
denote by i4(G) the number of vertices unmatched in a maximum 4-star matching
of G, i.e. i4(G) = n− s4(G).

Theorem 3.3 [17]. For any graph G, we have the following.

(i) If i4(G) ≤ 4, then pv(M(G)) = 1.

(ii) If i4(G) ≥ 5, then pv(M(G)) =

⌈

i4(G)
2

⌉

− 1.

We show that the converse holds in both cases, similarly to Theorem 2.9
in [9].

Theorem 3.4. For any graph G, we have the following.

(a) i4(G) ≤ 4 if and only if pv(M(G)) = 1.

(b)

⌈

i4(G)
2

⌉

= r ≥ 3 if and only if pv(M(G)) = r − 1.

Proof. (a) Considering (i) and the contraposition of (ii) in Theorem 3.3, we get
the necessity and sufficiency.

(b) Let r ≥ 3. To verify (b) we proceed by induction on r, we prove first that
(b) is true for r = 3.

Claim 3.5. If pv(M(G)) = 2, then the root u is not an end-vertex of a path in

a minimum path covering of M(G).
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Proof. If pv(M(G)) = 2, let P 1 and P 2 be the two paths of a minimum path
covering of M(G). Suppose that u is an end-vertex of P 1. Since u is adjacent
in M(G) to every vertex in V , a vertex in V cannot be an end-vertex of P 2,
otherwise M(G) has a Hamiltonian path. So both ends of P 2 are from V ′. Since
the subgraph induced by V ′ is a complete graph, the other extremity of P 1 is in
V . Let z be the other end of P 1, x′ and y′ the ends of P 2. Since u is adjacent to
z, x′ is adjacent to y′. If z′ the copy of z belongs to P 1, we have z′ is adjacent
to x′ and y′, we can construct a Hamiltonian path of M(G). If z′ belongs to P 2,
then since z is adjacent to z′, in this case also M(G) has a Hamiltonian path, a
contradiction.

If pv(M(G)) = 2, let x, y ∈ V and be such that x or its copy and y or its
copy are end-vertices of the two different paths in a minimum path covering of
M(G). We consider the graph H with vertex set V and edge set of its complement
E(H) = E(G) ∪ {xy}. It is clear that pv(M(H)) = 1, and i4(H) ≥ i4(G) − 2.
Since pv(M(G)) = 2, according to (a) we have 4 ≥ i4(H), and i4(G) ≥ 5. It

follows that

⌈

i4(G)
2

⌉

= 3. So from Theorem 3.3(ii), we have Theorem 3.4(b) is

true for r = 3.

Assume that (b) is true for 3 ≤ r ≤ k, and let r = k + 1.

If pv(M(G)) = k, let x, y ∈ V and be such that x or its copy and y or
its copy are end-vertices of two different paths in a minimum path covering of
M(G). We consider the graph H with vertex set V and edge set of its complement
E(H) = E(G)∪{xy}. We have pv(M(H)) = k−1, and i4(H) ≥ i4(G)−2. So by

the inductive hypothesis

⌈

i4(H)
2

⌉

= k, hence 2k+2 ≥ i4(G). Since pv(M(G)) = k,

by the inductive hypothesis i4(G) ≥ 2k + 1. It follows that

⌈

i4(G)
2

⌉

= k + 1.

Theorem 3.3(ii) completes the equivalence.

By combining Theorem 2.9 and Theorem 3.4, we get the following results.

Theorem 3.6. Let G be any graph of order n. Then the following statements

hold.

(a) λ(M(G)) ≤ 2n if and only if i4(G) ≤ 4.

(b) For any positive integer r, we have

λ(M(G)) = 2n+ r if and only if

⌈

i4(G)

2

⌉

= r + 2.

Next, we give applications of the previous theorem to the λ-number of the
Mycielski graph of certain graphs.
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If the diameter of G is 1 or 2, then diam(M(G)) = 2, and we can conclude

from Theorem 3.6 that λ(M(G)) = 2n+ max

{

2,

⌈

i4(G)
2

⌉}

− 2.

Corollary 3.7. Let G be a graph of order n. If the clique number ω(G) ≤ 4,

then λ(M(G)) ≤ 2n.

Proof. By Theorem 3.6(a) if λ(M(G)) > 2n, then i4(G) ≥ 5. This means that
ω(G) ≥ 5.

The graphs with clique number less or equal to 4 in Corollary 3.7 include
trees, planar graphs, and subcubic graphs.

If X is any subset of V , we denote NG(X) the set of all vertices in V adjacent
to at least one vertex from X in G. In [17], a criterion for a graph to have a
perfect m-star matching is given, this appeared also in [1, 15, 22].

Theorem 3.8 [1, 15, 17, 22]. A graph G has a perfect m-star matching if and

only if for any independent set S in G, |NG(S)| ≥ |S|/m.

Corollary 3.9. Let G be a graph of order n and maximum degree △ ≤ n− 2. If

3(n− 1) + δ ≥ 4△, then λ(M(G)) ≤ 2n.

Proof. Let △ and δ denote, respectively, the maximum and minimum degree of
the complement graph G. For any independent set S in G, let |E

G
(S)| denote

the number of edges incident to the vertices of S in G. We have

(1) |N
G

(S)|△ ≥ |E
G

(S)| ≥ δ|S|.

If 3(n − 1) + δ ≥ 4△, then since △ = (n − 1) − δ and δ = (n − 1) − △, we
have 4δ ≥ △. Therefore from Inequality (1) we get that |N

G
(S)| ≥ |S|/4, for any

independent set S in G. Then by Theorem 3.8, G has a perfect 4-star matching.
Hence from Theorem 3.6(a), we have λ(M(G)) ≤ 2n.

From Corollary 3.9, any regular graph G of order n, except complete graphs,
has λ(M(G)) ≤ 2n. In [17], it is shown that for complete graph λ(M(K2)) = 4
and λ(M(Kn)) = 2n+

⌈

n
2

⌉

−2 for n ≥ 3. Next, we determine the exact λ-number
of the Mycielski graph of complete k-partite graphs.

Corollary 3.10. Let G be a complete k-partite graph of order n, where the partite

sets consist of p sets of order greater or equal 2 and q singletons.

• If q ≤ 4, then λ(M(G)) = 2n.

• If q ≥ 5, then λ(M(G)) = 2n+
⌈ q

2

⌉

− 2.

Proof. We have G is formed of p connected components that are complete graphs
of order greater or equal to 2, and q isolated vertices. Therefore i4(G) = q. If
q ≤ 4, by Theorem 3.6(a), λ(M(G)) ≤ 2n. Since diam(M(G)) = 2, it follows that
λ(M(G)) = 2n. If q ≥ 5, then by Theorem 3.6(b), λ(M(G)) = 2n+

⌈ q
2

⌉

− 2.
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Let G1, G2 be two disjoint graphs. The disjoint union of G1 and G2, denoted
by G1 ∪ G2, is the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪
E(G2). The joint of G1 and G2 denoted G1 ∨ G2 is the graph obtained from
G1 ∪G2 by joining each vertex of G1 to each vertex of G2.

Corollary 3.11. Let G1, G2, . . . , Gk be a collection of disjoint graphs having,

respectively, n1, n2, . . . , nk vertices. Let n =
∑k

i=1 ni. Then λ(M(G1 ∨G2 ∨ · · · ∨

Gk)) = 2n+ max
{

2,
⌈

I
2

⌉}

− 2, where I =
∑k

i=1 i4(Gi).

Proof. Let G = G1 ∨ G2 ∨ · · · ∨ Gk. We have G = G1 ∪ G2 ∪ · · · ∪ Gk. It
follows that i4(G) =

∑k
i=1 i4(Gi) = I. Thus, by Theorem 3.6(a), if I ≤ 4, then

λ(M(G)) ≤ 2n. Since diam(G) = 2, it follows that λ(M(G)) = 2n. If I ≥ 5,

from Theorem 3.6(b), λ(M(G)) = 2n+
⌈

I
2

⌉

− 2.

3.3. Graphs with λ(M(G)) = n + 1

For k ≥ 1, the kth power of a graph G is the graph Gk with vertex set V and
edge set E(Gk) = {vivj : 1 ≤ dG(vi, vj) ≤ k}. Then the square of a graph G2 has
the edge set of its complement graph E(G2) = {vivj : dG(vi, vj) ≥ 3}. Next we
give a condition, so that λ(M(G)) = n+ 1.

Lemma 3.12. In a graph G of order n, if the vertex set V can be partitioned

into k ≥ 1 vertex-disjoint cliques in G2 such that at least k − 1 cliques are of

order greater or equal 3, then λ(M(G)) = n+ 1.

Proof. Let V =
⋃k

r=1 Sr be such that Sr are vertex-disjoint cliques in G2 of
order |Sr| = nr ≥ 3 for 1 ≤ r ≤ k − 1, and |Sk| = nk ≥ 1, where

∑k
r=1 nr = n.

For 1 ≤ r ≤ k, let us denote Sr = {vi,r : 1 ≤ i ≤ nr}, let v′
i,r be the copy of the

vertex vi,r, and let u be the root of M(G). We have dG(vi,r, vj,r) ≥ 3 for any two
distinct vertices in Sr, so a vertex in Sr+1 can be adjacent to at most one vertex
in Sr. For 1 ≤ r ≤ k − 1, the cliques Sr in G2 are symmetric of order greater
or equal 3. We suppose without loss of generality that dG(vnr,r, v1,r+1)) ≥ 2, for
1 ≤ r ≤ k − 1. Let ψ1 = 0 and for r ≥ 2, ψr =

∑r−1
j=1 nj . With respect to the

previous assumption, we label the vertices of M(G) as following.

• For 1 ≤ r ≤ k − 1, define f(v1,r) = ψr. For 2 ≤ i ≤ nr, f(vi,r) = ψr + 1. Also
f(v′

1,r) = ψr + 1, and f(v′
2,r) = ψr. For 3 ≤ i ≤ nr, f(v′

i,r) = ψr + i− 1.

• If |Sk| = 1, then let f(v1,k) = n, and f(v′
1,k) = n− 1.

• If |Sk| = 2, then let f(v1,k) = n − 2, f(v′
1,k) = n − 1, f(v2,k) = n − 1, and

f(v′
2,k) = n− 2.

• If |Sk| ≥ 3, then define f(v1,k) = ψk. For 2 ≤ i ≤ nk, f(vi,k) = ψk + 1. Also
f(v′

1,k) = ψk + 1, and f(v′
2,k) = ψk. For 3 ≤ i ≤ nk, f(v′

i,k) = ψk + i− 1.
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Finally, label the root u by f(u) = n + 1. We have dG(vi,r, vj,r)) ≥ 3, and
for 1 ≤ r ≤ k − 1 we have dG(vnr,r, v1,r+1)) ≥ 2. This means by Lemma 2.4 that
dM (vi,r, vj,r)) ≥ 3, dM (v′

i,r, vj,r)) = 3, and dM (v′
nr,r, v1,r+1)) ≥ 2. The labeling f

is an L(2, 1)-labeling of M(G) with span n+ 1. Hence λ(M(G)) = n+ 1.

In the case of the empty graph Kn, we have M(Kn) ∼= K1,n ∪ Kn. Since
λ(K1,n) = n + 1, we have λ(M(Kn)) = n + 1, we can get the same result using
Lemma 3.12. We are now interested in some connected graphs, we consider the
graph path Pn and cycle Cn.

Let Pn denote the graph path of order n ≥ 3 with vertex set V (Pn) =
{v1, . . . , vn} and edge set E(Pn) = {vivi+1 : 1 ≤ i ≤ n− 1}. Denote V (M(Pn)) =
V (Pn) ∪ {v′

i : 1 ≤ i ≤ n} ∪ {u}, where v′
i is the copy of the vertex vi, and u is the

root of M(Pn).

Proposition 3.13.

λ(M(Pn)) =















6 if n = 3, 4,

7 if n = 5,

n+ 1 if n ≥ 6.

Proof. • For n = 3, we have diam(P3) = 2. So from Theorem 3.6, λ(M(P3)) = 6.

• For n = 4, we have a 6-L(2, 1)-labeling of M(P4) shown in Figure 1. Hence
λ(M(P4)) ≤ 6. Also we have M(P3) is a subgraph of M(P4). By Lemma 2.7, it
follows that λ(M(P4)) ≥ λ(M(P3)) = 6. Thus, λ(M(P4)) = 6.

• For n = 5, Figure 2 illustrates a 7-L(2, 1)-labeling of M(P5). This implies also
by Theorem 3.1 that 6 ≤ λ(M(P5)) ≤ 7.

0

2 5 43

4 1 6 3

Figure 1. A 6-L(2, 1)-labeling of M(P4).

0

2 4 63

6 1 3 17

5

Figure 2. A 7-L(2, 1)-labeling of M(P5).

Suppose that λ(M(P5)) = 6. Then there is an L(2, 1)-labeling f of M(P5)
using labels in the set L = {0, 1, 2, 3, 4, 5, 6}. Since degM (u) = 5, by Lemma 2.6,
f(u) = 0 or f(u) = 6. Without loss of generality, we suppose that f(u) = 0.
Since all the vertices are at distance less or equal to 2 from u, it is the only vertex
with label 0. We denote by N(v) the open neighborhood of a vertex v, and by
N2(v) the set of all vertices at distance at most 2 from a vertex v in M(P5). We
have N(u) = {v′

1, v
′
2, v

′
3, v

′
4, v

′
5}, and dM (v′

i, v
′
j) = 2, for 1 ≤ i, j ≤ 5. So each

vertex v′
i must receive a distinct label from the set {2, 3, 4, 5, 6} different from
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f(u) = 0. We have every vertex in M(P5) is at distance less or equal 2 form v3.
It means that v3 must receive a distinct label from v′

1, v
′
2, v

′
3, v

′
4, v

′
5, and u. Hence

f(v3) = 1, and v3 is the only vertex with label 1. We have {u, v3, v
′
1, v

′
2, v

′
3, v

′
4} ⊂

N2(v2), and the vertices u, v3, v
′
1, v

′
2, v

′
3 and v′

4 receive distinct labels from the set
L which leaves only the label assigned to v′

5 available for v2. Hence f(v2) = f(v′
5).

Also, {u, v3, v
′
2, v

′
3, v

′
4, v

′
5} ⊂ N2(v4). By using the same arguments as before,

we get that f(v4) = f(v′
1). N2(v1) = {u, v2, v3, v

′
1, v

′
2, v

′
3}, and each vertex in

N2(v1) have a distinct label from L (f(v2)=f(v′
5)). Then f(v1) = f(v′

4). Also
N2(v5) = {u, v3, v4, v

′
3, v

′
4, v

′
5}, with f(v4) = f(v′

1). Hence f(v5) = f(v′
2). We

have N(v3) = {v2, v4, v
′
2, v

′
4}, with f(v2) = f(v′

5), f(v4) = f(v′
1), and f(v3) =

1. It follows that the labels assigned to v′
1, v

′
2, v

′
4 and v′

5 must be greater or
equal to 3. Hence, the only remaining label for v′

3 is f(v′
3) = 2. We have

v2 and v4 are adjacent to v′
3, f(v2) = f(v′

5), f(v4) = f(v′
1), and f(v′

3) = 2.
Then f(v′

5) and f(v′
1) must be greater than 3, hence f(v′

5), f(v′
1) ∈ {4, 5, 6}.

Since v′
1 is adjacent to v2 and f(v2) = f(v′

5), we have |f(v′
5) − f(v′

1)| ≥ 2.
Therefore f(v′

1), f(v′
5) ∈ {4, 6}, which means also that f(v′

2), f(v′
4) ∈ {3, 5}. Since

f(v2) = f(v′
5), and f(v1) = f(v′

4), it follows that |f(v′
5) − f(v′

4)| ≥ 2. Also,
f(v4) = f(v′

1) and f(v5) = f(v′
2), hence |f(v′

1) − f(v′
2)| ≥ 2. If f(v′

1) = 4, then
since |f(v′

1) − f(v′
2)| ≥ 2, f(v′

2) /∈ {3, 5}, a contradiction. Now if f(v′
1) = 6,

then f(v′
5) = 4. Since |f(v′

5) − f(v′
4)| ≥ 2, f(v′

4) /∈ {3, 5}, again a contradiction.
Therefore λ(M(P5)) ≥ 7. Hence λ(M(P5)) = 7.

• For n ≥ 6, we define a labeling f on V (M(Pn)) as following.

f(u) = 0, f(v′
1) = 6, f(v′

2) = 5, f(v′
3) = 4, f(v′

4) = 7, f(v′
5) = 2, f(v′

6) = 3, and
f(v′

i) = i+ 1 if i ≥ 7.

f(v1) = 7, f(v2) = 1, f(v3) = 3, f(v4) = 6, f(v5) = 1, f(v6) = 4, and for i ≥ 7:

f(vi) = 6 if i ≡ 1 (mod 3), f(vi) = 2 if i ≡ 2 (mod 3), f(vi) = 4 if i ≡ 0 (mod 3).

The idea is to come up with a 7-L(2, 1)-labeling of the subgraph induced by
H = {u, vi, v

′
i : 1 ≤ i ≤ 6} isomorphic to M(P6). Then if i ≥ 7, assign each

vertex copy v′
i consecutive labels beginning with 8, and label the vertices vi with

labels 6, 2, 4 for i ≡ 1 (mod 3), i ≡ 2 (mod 3), and i ≡ 0 (mod 3), respectively.
This is an L(2, 1)-labeling of M(Pn) with span n+ 1. Hence λ(M(Pn)) ≤ n+ 1,
for n ≥ 6. It follows from Theorem 3.1 that λ(M(Pn)) = n+ 1, for n ≥ 6.

Let Cn be the graph cycle with vertex set V (Cn) = {v0, v1, . . . , vn−1} and
edge set E(Cn) = {vivi+1(mod n) : 0 ≤ i ≤ n − 1}, where the indices are taken
modulo n. We denote V (M(Cn)) = V (Cn) ∪ {v′

i : 1 ≤ i ≤ n} ∪ {u}, we have

E(M(Cn)) =
{

vivi+1(mod n), viv
′
i+1(mod n), v

′
ivi+1(mod n) : 0 ≤ i ≤ n− 1

}

∪
{

v′
iu :

0 ≤ i ≤ n− 1
}

.
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Proposition 3.14.

λ(M(Cn)) =



























6 if n = 3,

8 if n = 4,

10 if n = 5,

n+ 1 if n ≥ 6.

Proof. • For 3 ≤ n ≤ 5, since diam(C3) = 1, diam(C4) = diam(C5) = 2, from
Lemma 2.4, diam(M(C3)) = diam(M(C4)) = diam(M(C5)) = 2. By applying
Theorem 3.6, we get that λ(M(C3)) = 6, λ(M(C4)) = 8, and λ(M(C5)) = 10.

• For n ≥ 6, in Figure 3, Figure 4, and Figure 5, respectively, we present an
L(2, 1)-labeling for M(C6), M(C7), and M(C8), respectively, with span 7, 8,
and 9. It follows from the lower bound in Theorem 3.1 that λ(M(C6)) = 7,
λ(M(C7)) = 8, and λ(M(C8)) = 9.

0

2

73

6

5

4

6

1

4

7

1

3

Figure 3. A 7-L(2, 1)-labeling of M(C6).

0

2
5

4

7 8
4

1

8

3

16

7

6

3

Figure 4. An 8-L(2, 1)-labeling of M(C7).
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3

4

5
9

4

9

7

1

2

6

1

6

8

5

7

Figure 5. A 9-L(2, 1)-labeling of M(C8).

For n ≥ 9, we partition the vertex set V (Cn) into cliques in C2
n as following.

If n ≡ 0 (mod 3), for 0 ≤ i ≤ n
3 − 1, the sets Si =

{

vi, vi+ n
3
, vi+2 n

3

}

form

disjoint cliques of order 3 in C2
n. We have V (Cn) =

⋃

i=0 Si.
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If n ≡ 1 (mod 3), for 0 ≤ i ≤ ⌊n
3 ⌋−1, the sets Si =

{

vi, vi+⌊ n
3

⌋, vi+2⌊ n
3

⌋

}

form

disjoint cliques of order 3 in C2
n. We have V (Cn) =

⋃

i=0 Si ∪ {vn−1}.

If n ≡ 2 (mod 3), for 1 ≤ i ≤
⌈

n
3

⌉

− 1, the sets Si =
{

vi, vi+⌈ n
3 ⌉, vi+2⌈ n

3 ⌉−1

}

form disjoint cliques of order 3 in C2
n, and v0v⌈ n

3 ⌉ is an edge in C2
n. We have

V (Cn) =
⋃

i=1 Si ∪
{

v0, v⌈ n
3 ⌉

}

.

The cycle Cn in the three cases verifies the condition in Lemma 3.12. Hence
λ(M(Cn)) = n+ 1, for n ≥ 6.

For a connected graph G of order n in Theorem 3.1 we have λ(M(G)) ≥ n+1.
It means that for any fixed positive integer k, there are finitely many connected
graphs having λ(M(G)) = k. In the following, we determine all the connected
graphs having λ(M(G)) equal to 4, 6 and 7. These are the smallest possible values
for the λ-number of the Mycielski graph of any non-trivial connected graph.

Corollary 3.15. For a connected graph G, we have the following.

(1) λ(M(G)) = 4 if and only if G is K2.

(2) λ(M(G)) = 6 if and only if G ∈ {P3, P4, C3}.

(3) λ(M(G)) = 7 if and only if G ∈ {P5, P6, C6}.

Proof. From Theorem 3.1, for a connected graph G of order n and maximum
degree △, we have

(2) λ(M(G)) ≥ max{n+ 1, 2(△ + 1)}.

The only connected graph with △ = 1 is K2 and we have λ(M(K2)) = 4. If
△ ≥ 2, from the inequality (2), λ(M(G)) ≥ 6. It follows that λ(M(G)) = 4 if
and only if G ∼= K2. Also there is no connected graph with λ(M(G)) = 5.

The only connected graphs with △ = 2 are path graphs and cycles. Based on
inequality (2), if △ ≥ 3, then λ(M(G)) ≥ 8. Then if 6 ≤ λ(M(G)) ≤ 7, it means
necessarily that G is a path or a cycle graph. In Proposition 3.13 and Proposi-
tion 3.14, the only connected graphs with λ(M(G)) = 6 are P3, P4, and C3. Also
the only connected graphs with λ(M(G)) = 7 are P5, P6, and C6.

4. The Iterated Mycielski Graph of a Graph M t(G)

4.1. Bounds for λ(M t(G))

Theorem 4.1. If G is a graph of order n ≥ 2 and maximum degree △ ≥ 0, then

for t ≥ 2 we have

2t−1 max{n+ 2, 2(△ + 2)} − 2 ≤ λ(M t(G)) ≤ (2t − 1)(n+ 1) + λ(G).
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Proof. For a graph G of order n ≥ 2 from Definition 1.1, we have K1,n is
a subgraph of M(G). Then by Observation 2.2, M t−1(K1,n) is a subgraph of
M t(G). Since diam(K1,n) = 2, it follows from Lemma 2.5 and Lemma 2.7 that
λ(M t(G)) ≥ λ(M t−1(K1,n)) ≥ |M t−1(K1,n)| − 1. By Lemma 2.1 |M t−1(K1,n)| =
2t−1(n+ 2) − 1, hence λ(M t(G)) ≥ 2t−1(n+ 2) − 2, for t ≥ 2. If △ ≥ 1, we have
K1,△ is a subgraph of G. By using the same arguments as before, we get that
λ(M t(G)) ≥ 2t(△ + 2) − 2.

On the other hand, for t ≥ 2, we have M t(G) = M(M t−1(G)). So by the
upper bound of Theorem 3.1, λ(M t(G)) ≤ (|M t−1(G)| + 1) + λ(M t−1(G)) =
2t−1(n+1)+λ(M t−1(G)). Recursively we get that λ(M t(G)) ≤

∑t−1
i=0 2i(n+1)+

λ(G) = (2t − 1)(n+ 1) + λ(G).

The lower bound 2t−1(n+2)−2 and the upper bound of Theorem 4.1 are true
also for n = 1. The upper bound coincides with the upper bound in Theorem 3.1
for t = 1. As a consequence we make the following observation.

Observation 4.2. If a graph G of order n has λ(G) ≤ n− 1, then for any t ≥ 1,

λ(M t(G)) ≤ |M t(G)| − 1 = 2t(n+ 1)− 2, and there is equality if G is of diameter

two.

Further, we denote V t =
{

vk
i : 1 ≤ i ≤ n and 0 ≤ k ≤ 2t − 1

}

, the set
composed of the vertices of V and all their copies in M t(G), where v1

i is the copy
of v0

i in M(G). v2
i and v3

i are respectively the copies of v0
i and v1

i in M2(G).
v4

i , v
5
i , v

6
i , v

7
i are respectively the copies of v0

i , v
1
i , v

2
i , v

3
i in M3(G) and so forth. In

M t(G) for 0 ≤ k ≤ 2t−1 − 1, we have v2t−1+k
i is the exact copy of the vertex vk

i

from M t−1(G). For t ≥ 2, let Ut be the set of all the roots (i.e. roots and their
consecutive copies in all levels) in M t(G). Recursively Ut = Ut−1 ∪ U ′

t−1 ∪ {ut,0}
and |Ut| = 2t − 1. We denote the set of roots Ut = {ui,j : 1 ≤ i ≤ t and 0 ≤ j ≤
2t−i −1} such that for example in M3(G), u1,0 is the root of M(G), u1,1 the copy
of u1,0, and u2,0 the root of M2(G). u1,2, u1,3, u2,1 are respectively the copies of
u1,0, u1,1, u2,0, and u3,0 is the root in M3(G), and so forth. Figure 6 illustrates
an adjacency of a vertex and its copies vk

i in M2(G), with respect to the above
ordering.

Lemma 4.3. If dG

(

v0
i , v

0
j

)

≤ 2, then for any t ≥ 1 and all 0 ≤ k,m ≤ 2t − 1,

we have dMt(vk
i , v

m
j ) ≤ 2, and if v0

i is not an isolated vertex for k 6= m, we have

dMt

(

vk
i , v

m
i

)

= 2.

Proof. By using Lemma 2.4 inductively, we get the results.

The eccentricity of a vertex v in a graph G, is the greatest distance between
v and any other vertex in G. By Lemma 4.3, if a vertex has eccentricity 1 or 2 in
G, then the vertex and all its copies are of eccentricity 2 in M t(G). In a graph G
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v2
j

v3
j

v1
j

v0
j

v3
i

v2
i

v1
i

v0
i

u10

u11

u20

Figure 6. An example of an adjacency of the vertices vk

i
in M2(G).

without isolated vertices, we have from the definition of the Mycielski construc-
tion, the eccentricity of the root in M(G) is 2, so from above the eccentricity of
all the roots and their copies is 2 in M t(G), for any t ≥ 1.

Proposition 4.4. If G is a graph without isolated vertices of order n, with k
vertices of eccentricity 2, then for t ≥ 1, we have λ(M t(G)) ≥ 2t−1(n+k+2)−2.

Proof. For t ≥ 1, let v0
1, v

0
2, . . . , v

0
k be the vertices of eccentricity 2 in G. Let

V t−1
i be the set composed of a vertex v0

i and all its copies in M t−1(G). In M t(G),
by Lemma 4.3 and Definition 1.1, the vertices in

⋃k
i=1 V

t−1
i ∪V ′

t−1 ∪Ut−1 ∪ {ut,0}
are all within distance two, where Ut−1 is the set of roots and their copies in
M t−1(G), V ′

t−1 is the set of copies of the vertices of M t−1(G) in M t(G), and

ut,0 is the root of M t(G). Hence λ(M t(G)) ≥
∑k

i=1 |V t−1
i | + |V ′

t−1| + |Ut−1| =
k2t−1 + 2t−1(n+ 1) − 1 + 2t−1 − 1 = 2t−1(n+ k + 2) − 2.

For a graph G of order n, by Proposition 4.4, if λ(M(G)) = n+1, then G has
at most one vertex of eccentricity 2. Also for t ≥ 2, if λ(M t(G)) = 2t−1(n+2)−2,
then no vertex in G has eccentricity 2. There exist graphs with one vertex of
eccentricity 2 and λ(M(G)) = n + 1. Figure 7 illustrates a tree graph T of
order 9 with one vertex of eccentricity 2, having λ(M(T )) = 10. Based on
Proposition 4.4, λ(M t(T )) ≥ 2t−1(n + 3) − 2 > 2t−1(n + 2) − 2. Therefore, if
λ(M(G)) = n+ 1, then not necessarily λ(M t(G)) = 2t−1(n+ 2) − 2, for t ≥ 2.

4.2. Graphs with λ(M t(G)) = 2t(n + 1) − 2

Shao and Solis-Oba in [20], gave bounds for the λ-number of some iterated My-
cielski graph of complete graph Kn. In the following, we give the exact value of
the λ-number of M t(Kn), for any t ≥ 2.

Theorem 4.5. For any t ≥ 2 and n ≥ 2, we have λ(M t(Kn)) = 2t(n+ 1) − 2.

Proof. For n ≥ 2, we have diam(Kn) = 1, so by Lemma 2.5 for any t ≥ 2, we
have diam(M t(Kn)) = 2. Let V 2 = {vk

i : 0 ≤ k ≤ 3 and 1 ≤ i ≤ n } be the set
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Figure 7. A 10-L(2, 1)-labeling of the Mycielski graph of a tree T of order 9.

composed of the vertice of V and all their consecutive copies in M2(Kn). Let χi

with 1 ≤ i ≤ n be a sequence of vertices in M2(Kn), where χi = v2
i v

0
i v

1
i if i is odd

and χi = v1
i v

0
i v

2
i if i is even. We label the vertices of M2(Kn) using consecutive

labels beginning with 0, in the following order χ1χ2 · · ·χnv
3
nv

3
n−1 · · · v3

1u11u10u20.

This does not violate the distance two conditions, since two consecutive ver-
tices are either a vertex and its copy or two vertices from the same level, which
are successively at distance two. This leads to an L(2, 1)-labeling of M2(Kn) with
span |M2(Kn)| − 1. Since the diameter is 2, then λ(M2(Kn)) = |M2(Kn)| − 1.
From Observation 4.2 and Lemma 2.1, we get λ(M t(Kn)) = |M t(Kn)| − 1 =
2t(n+ 1) − 2, for any t ≥ 2.

Since any graph G of order n ≥ 2 is a subgraph of the complete graph Kn,
we can conclude that for t ≥ 2, we have λ(M t(G)) ≤ |M t(G)| − 1 = 2t(n+ 1) − 2.
This could also be proven using Theorem 3.6 by showing that for any graph
G, the complement of the Mycielski graph M(G) has a perfect 4-star matching,
which means by Theorem 3.6(a) that λ(M2(G)) ≤ |M2(G)| − 1. Then the result
follows from Observation 4.2 for any t ≥ 2.

Corollary 4.6. Let G1 and G2 be two graphs of the same order |G1| = |G2| ≥ 2.

Then for any t ≥ 2, we have λ(M t(G1)) + 2t ≤ λ(M t+1(G2)).

Proof. For t ≥ 2, let G1 and G2 be two graphs such that |G1| = |G2| = n ≥ 2.
By Theorem 4.1 and Theorem 4.5, we have λ(M t(G1)) ≤ 2t(n + 1) − 2 and
λ(M t+1(G2)) ≥ 2t(n+ 2) − 2. Hence λ(M t(G1)) + 2t ≤ λ(M t+1(G2)).

Let us denote M t(G) the complement graph of M t(G). The close relation
between Hamiltonicity and the L(2, 1)-labeling allow us to prove the following.

Corollary 4.7. For any graph G and any t ≥ 2, M t(G) is a Hamiltonian graph.

Proof. Let G be a graph of order n. First we show that M2(G) is Hamiltonian.
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Let χi with 2 ≤ i ≤ n be a sequence of vertices in M2(G), where χi = v2
i v

0
i v

1
i

if i is odd, and χi = v1
i v

0
i v

2
i if i is even. Take the vertices of M2(G) in the

following order, v0
1v

1
1χ2χ3 · · ·χnv

3
nv

3
n−1 · · · v3

1v
2
1u11u10u20v

0
1.

Notice that this is similar to the order proposed in Theorem 4.5 for labeling
M2(Kn). Since every two consecutive vertices are non-adjacent in M2(G), then
the vertices of M2(G) taken in the above order form a Hamiltonian cycle. Thus,
for any graph G we have M2(G) is Hamiltonian. For t ≥ 2, since M t(G) ∼=
M2(M t−2(G)), M t(G) is a Hamiltonian graph for any t ≥ 2.

Next we characterize the graphs with λ(M t(G)) = 2t(n+ 1) − 2, for t ≥ 2.

Theorem 4.8. Let G be a graph of order n ≥ 2. Then for t ≥ 2, we have

λ(M t(G)) = 2t(n+ 1) − 2 if and only if G ∼= Kn or diam(G) = 2.

Proof. For t ≥ 2, if G ∼= Kn, then by Theorem 4.5 we have λ(M t(G)) = 2t(n+
1) − 2. If diam(G) = 2, from Theorem 4.5 we have λ(M t(G)) ≤ 2t(n + 1) − 2.
By Lemma 2.5, diam(M t(G)) = 2, the vertices must be assigned distinct labels,
hence λ(M t(G)) = 2t(n+ 1) − 2.

Conversely, suppose that G is a graph of order n ≥ 2, with diam(G) ≥ 3. So
there are at least two vertices at distance greater or equal to 3, one from another.
Without loss of generality, we suppose that dG(v0

1, v
0
n) ≥ 3. For t = 2, let χi with

2 ≤ i ≤ n−1 be a sequence of vertices inM2(G), where χi = v2
i v

0
i v

1
i if i is odd, and

χi = v1
i v

0
i v

2
i if i is even. The labeling f assigns consecutive labels to the vertices

beginning with 0 in the following order, v0
1v

1
1χ2χ3 · · ·χn−1v

3
n−1v

3
n−2 · · · v3

1v
2
1.

This is similar to the order in Theorem 4.5. The maximum label assigned is
f(v2

1) = 4n− 5. We have dG(v0
1, v

0
n) ≥ 3, so by Lemma 2.4 we have dM2(v2

1, v
0
n) ≥

3, and dM2(v2
1, v

1
n) = 3. We label f(v0

n) = f(v2
1) = 4n − 5, f(v1

n) = 4n − 4,
f(v2

n) = 4n− 3, f(v3
n) = 4n− 2, f(u11) = 4n− 1, f(u10) = 4n, f(u20) = 4n+ 1.

This is a valid L(2, 1)-labeling of M2(G) with span 4n + 1. Hence λ(M2(G)) ≤
4n+ 1 = 4(n+ 1) − 3. From the upper bound of Theorem 3.1 and Theorem 4.1,
for all t ≥ 3, we have λ(M t(G)) ≤ (2t−2 − 1)(|M2(G)| + 1) + λ(M2(G)). Since
|M2(G)| = 4(n+ 1) − 1, it follows that for all t ≥ 2, λ(M t(G)) ≤ 2t(n+ 1) − 3.

4.3. Graphs with λ(M t(G)) = 2t−1(n + 2) − 2

Lemma 4.9. Let t ≥ 2 and 1 ≤ i, j ≤ n. Then for 1 ≤ k ≤ 2t−1 − 1, we have

dMt

(

vk
i , v

2t−1+k
j

)

=2, and for 2t−1+1 ≤ k ≤ 2t−1, we have dMt

(

vk
i , v

2t−1−1
j

)

=2.

Proof. For 1 ≤ k ≤ 2t−1 − 1, we have v2t−1+k
j is the copy of vk

j in M t(G). Since

dMt−1

(

vk
i , v

k
j

)

= 2, by Lemma 2.4 we have dMt

(

vk
i , v

2t−1+k
j

)

= 2.

For t ≥ 2, v3
i is the copy of v1

i . So by Lemma 2.4 dM2

(

v3
i , v

1
j

)

= 2. Since

dM2

(

v3
i , v

2
j

)

= 2, by using Lemma 2.4 inductively, we can show that for 2t−1+1 ≤
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k ≤ 2t − 1, we have dMt

(

vk
i , v

2t−1−1
j

)

= 2.

Lemma 4.10. If v0
i and v0

j are not isolated vertices, then for 0 ≤ k ≤ 2t−1 − 1,

we have dMt

(

vk
i , v

2t−k−1
j

)

= min
{

3, dG

(

v0
i , v

0
j

)}

.

Proof. We have v2t−k−1
i is the copy of v2t−1−k−1

i in M t(G). Based on Lemma 2.4,

we have dMt

(

vk
i , v

2t−k−1
j

)

= min
{

3, dMt−1

(

vk
i , v

2t−1−k−1
j

)}

. If 0 ≤ k ≤ 2t−2 −1,

we have dMt−1

(

vk
i , v

2t−1−k−1
j

)

= min
{

3, dMt−2

(

vk
i , v

2t−2−k−1
j

)}

. Otherwise, if

2t−2 ≤ k ≤ 2t−1 − 1, by symmetry k = 2t−1 −m− 1 where 0 ≤ m ≤ 2t−2 − 1, so

dMt−1

(

vk
i , v

2t−1−k−1
j

)

=dMt−1

(

v2t−1−m−1
i , vm

j

)

=min
{

3, dMt−2

(

v2t−2−m−1
i , vm

j

)}

.

By recursively using Lemma 2.4, we get dMt

(

vk
i , v

2t−k−1
j

)

= min
{

3, dG

(

v0
i , v

0
j

)}

.

In the case where v0
i or v0

j are isolated vertices, for 1 ≤ k ≤ 2t−1 − 1, we have

dMt

(

vk
i , v

2t−k−1
j

)

= 3.

The direct product G×K2, called the canonical double cover (or Kronecker

double cover) is a bipartite graph with two partition sets X = V × {x} and
Y = V × {y}, where (vi, x)(vj , y) ∈ E(G×K2) if and only if vivj ∈ E(G).

From Lemma 4.10, v2t−1−1
i v2t−1

j ∈ E(M t(G)) if and only if v0
i v

0
j ∈ E(G).

Since two copies of the same vertex or copies from the same level are non-adjacent,
we have the following result.

Observation 4.11. For t ≥ 2, let S =
{

v2t−1−1
i , v2t−1

i : 1 ≤ i ≤ n
}

. In M t(G),

the subgraph induced by the vertices in S is isomorphic to G×K2.

A matching in a graph G is a collection of vertex-disjoint edges in G, a
perfect matching is a matching that covers all the vertices of G. The following
theorem known as the Marriage Theorem, gives a criterion for any bipartite graph
G = (X,Y ) to have a perfect matching.

Theorem 4.12 (The Marriage Theorem). Let G = (X,Y ) be a bipartite graph.

Then G has a perfect matching if and only if |X| = |Y | and for any S ⊆ X,

|NG(S)| ≥ |S|.

A 2-matching of a graph G is an assignment of weights 0, 1, or 2 to the edges
of G such that the sum of weights of edges incident to any vertex in G is less or
equal to 2 (see Chapter 6 in [18]). A 2-matching of a graph G can be seen as
components with degree vertex at most 2. The sum of weights in a 2-matching
is called the size. The maximum size of a 2-matching is denoted by ν2(G), which
can be computed in polynomial time [21]. A perfect 2-matching is a 2-matching
where the sum of weights incident to any vertex in G is exactly 2. Tutte in [21],
provides a characterization for the existence of perfect 2-matching of a graph.
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Theorem 4.13 [21]. A graph G has a perfect 2-matching if and only if for any

independent set S ⊆ V , |NG(S)| ≥ |S|.

A perfect 2-matching can be seen as a spanning subgraph in which each
component is a single edge K2 or a cycle. Since every even cycle has a perfect
matching, a graph with a perfect 2-matching has a spanning subgraph in which
each component is a single edge or an odd cycle. It is easy to see from the
two preceding Theorem 4.12 and Theorem 4.13, that the existence of perfect
2-matching in a graph G is equivalent to that G×K2 admits a perfect matching.

Theorem 4.14. Let G be a graph without isolated vertices of order n ≥ 2. Then

for t ≥ 2, λ(M t(G)) = 2t−1(n+2)−2 if and only if for any S ⊆ V , |D2(S)| ≥ |S|,
where D2(S) = {x ∈ V : ∃ v ∈ S, dG(x, v) > 2}.

Proof. Let G be a graph without isolated vertices of order n ≥ 2 such that
for t ≥ 2, λ(M t(G)) = 2t−1(n + 2) − 2. Let f be a λ-labeling of M t(G), using
labels from the set L = {0, . . . , 2t−1(n + 2) − 2}. From Lemma 4.3, we have
dMt

(

vk
i , u

)

≤ 2 and dMt(u, u′) ≤ 2, for all vk
i ∈ V t and all u, u′ ∈ Ut. The roots

are assigned distinct labels, different from the labels assigned to the vertices in V t.
So for 2t−1 ≤ k ≤ 2t − 1, we have f

(

vk
i

)

∈ L \ f(Ut) and |L \ f(Ut)| = 2t−1n. For

1 ≤ i, j ≤ n, we have dMt

(

vk
i , v

m
j

)

= 2, where 2t−1 ≤ k,m ≤ 2t−1. It follows that

the 2t−1n vertices vk
i where 2t−1 ≤ k ≤ 2t − 1, and 1 ≤ i ≤ n, have distinct labels

and use all the labels in L\f(Ut). By Lemma 4.9, we have dMt

(

vk
i , v

2t−1−1
j

)

= 2,

for 2t−1 + 1 ≤ k ≤ 2t − 1. The only labels remaining in L \ f(Ut), for the vertices

v2t−1−1
j , are those assigned to the vertices v2t−1

i . Since dMt

(

v2t−1−1
i , v2t−1−1

j

)

= 2

and dMt

(

v2t−1

i , v2t−1

j

)

= 2, we have f
(

v2t−1−1
i

)

6= f
(

v2t−1−1
j

)

and f
(

v2t−1

i

)

6=

f
(

v2t−1

j

)

. It follows that for any vertex v2t−1

j , there is one and only one vertex

v2t−1−1
i such that f

(

v2t−1−1
i

)

= f
(

v2t−1

j

)

. Let (vi, x) and (vj , y), 1 ≤ i, j ≤ n,

denote the vertices of G×K2, where (vi, x)(vj , y) ∈ E(G×K2) if and only if v0
i v

0
j ∈

E(G). Let M =
{

(vi, x)(vj , y) : f
(

v2t−1−1
i

)

= f
(

v2t−1

j

)}

. Since f
(

v2t−1−1
i

)

=

f
(

v2t−1

j

)

, we have by Lemma 4.10 that dG

(

v0
i , v

0
j

)

≥ 3. From Observation 4.11,

M is a perfect matching of the graph G2 ×K2, then by Theorem 4.12 we get the
necessity.

Conversely, suppose that for any S ⊆ V , we have |D2(S)| ≥ |S|. This
means by Theorem 4.13 that the graph G2 has a perfect 2-matching, which means
that G2 has a spanning subgraph H, whose connected components are vertex-
disjoint edges or odd cycles. Let E1, E2, . . . , Er be the K2 components, and let
C1, C2, . . . , Cs be the odd cycle components of H.

Further, we denote x0
i y

0
i is the edge Ei and c0

1,ic
0
2,i · · · c0

ni,i
is the odd cycle
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Ci, where ni = |Ci|. We define an L(2, 1)-labeling f to the vertices of M t(G) as
follows.

Suppose that r ≥ 2. First we label the vertices xk
1, y

k
1 with 0 ≤ k ≤ 2t − 1,

where xk
1 and yk

1 are the vertices x0
1 and y0

1 and their consecutive copies. The
labeling f assigns in descending order the labels 2t−1 − 1, 2t−1 − 2, . . . , 0, respec-
tively, to x0

1, x
1
1, . . . , x

2t−1−1
1 and the labels 2t − 1, 2t − 2, . . . , 2t−1, respectively, to

x2t−1

1 , x2t−1+1
1 , . . . , x2t−1

1 . Then assign the same list of consecutive labels, now in

ascending order 0, 1, . . . , 2t−1 − 1, respectively, to the vertices y2t−1

1 , y2t−1+1
1 , . . . ,

y2t−1
1 and the labels 2t−1, 2t−1 + 1, . . . , 2t − 1, respectively, to y0

1, y
1
1, . . . , y

2t−1−1
1 .

• For 0 ≤ k ≤ 2t−1 − 1, f
(

xk
1

)

= 2t−1 − k − 1, and for 2t−1 ≤ k ≤ 2t − 1,
f

(

xk
1

)

= 3 × 2t−1 − k − 1.

• For 0 ≤ k ≤ 2t−1 − 1, f
(

yk
1

)

= k + 2t−1, and for 2t−1 ≤ k ≤ 2t − 1, f
(

yk
1

)

=
k − 2t−1.

We have f
(

xk
1

)

= f (ym
1 ) if m = 2t − k − 1. Since x0

1y
0
1 ∈ E(G2), we have

dG

(

x0
1, y

0
1

)

≥ 3, so by Lemma 4.10 dMt

(

xk
1, y

2t−k−1
1

)

= 3. Otherwise f
(

xk
1

)

6=

f (ym
1 ). Since x0

1 and y0
1 are not adjacent in G, we have dMt

(

xk
1, y

m
1

)

≥ 2, for

all 0 ≤ k,m ≤ 2t − 1. Also dMt

(

xk
1, x

m
1

)

= dMt

(

yk
1 , y

m
1

)

= 2, f
(

xk
1

)

6= f (xm
1 )

and f
(

yk
1

)

6= f (ym
1 ). The smallest label is f

(

x2t−1−1
1

)

= f
(

y2t−1

1

)

= 0, the

maximum label is f
(

x2t−1

1

)

= f
(

y2t−1−1
1

)

= 2t − 1.

For 2 ≤ i ≤ r, we have dG

(

x0
i , y

0
i

)

≥ 3, so a vertex in Ei−1 cannot be adjacent
in G to both x0

i and y0
i . Since in every Ei the vertices x0

i and y0
i are symmetric,

we rearrange the vertices of each Ei depending on the cases.
(i) If x0

i−1 is adjacent in G to a vertex in Ei, we consider without loss of
generality that x0

i−1 is adjacent to y0
i .

(ii) If x0
i−1 is not adjacent to Ei and y0

i−1 is adjacent, we let dG(y0
i−1, x

0
i ) = 1.

Otherwise the vertices in Ei−1 and Ei are mutually non-adjacent. This means
that dG(x0

i−1, x
0
i ) ≥ 2, and dG

(

y0
i−1, y

0
i

)

≥ 2, for all 2 ≤ i ≤ r.
With respect to the above assumptions, we label the vertices xk

i and yk
i with

2 ≤ i ≤ r, as following.

• For 2 ≤ i ≤ r − 1, and 0 ≤ k ≤ 2t − 1, f
(

xk
i

)

= (i − 1)2t + f
(

xk
1

)

, and

f
(

yk
i

)

= (i− 1)2t + f
(

yk
1

)

.

• For 0 ≤ k ≤ 2t−1 − 1, f
(

xk
r

)

= (r − 1)2t + f
(

xk
1

)

, and for 2t−1 ≤ k ≤ 2t − 1,

f
(

xk
r

)

= (r − 1)2t + k.

• For 0 ≤ k ≤ 2t−1 − 1, f
(

yk
r

)

= r2t − k − 1, and for 2t−1 ≤ k ≤ 2t − 1,

f
(

yk
r

)

= (r − 1)2t + f
(

yk
1

)

.
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The labeling f uses distinct labels from (i − 1)2t, . . . , i2t − 1, for every pair
of xk

i ,ym
i , where m = 2t − k− 1, by using the same pattern for xk

1, ym
1 (except for

xk
r ,yk

r ). In the case where r = 1, let for 0 ≤ k ≤ 2t−1 − 1, f
(

xk
1

)

= 2t−1 − k − 1,

for 2t−1 ≤ k ≤ 2t − 1, f
(

xk
1

)

= k, for 0 ≤ k ≤ 2t−1 − 1, f
(

yk
1

)

= 2t − k − 1, and

for 2t−1 ≤ k ≤ 2t − 1, f
(

yk
1

)

= k − 2t−1. The only vertices from two different

components, with the difference between the labels equal to 1, are for x2t−1

i−1 and

y2t−1−1
i−1 , with both x2t−1−1

i and y2t−1

i . This does not violate the distance two
conditions, since dG

(

x0
i−1, x

0
i

)

≥ 2, and dG

(

y0
i−1, y

0
i

)

≥ 2, for all 2 ≤ i ≤ r. The

maximum label assigned is f
(

x2t−1
r

)

= f(y0
r ) = r2t − 1.

If s ≥ 1, next we label the vertices of the odd cycle components Ci. We make
the following claim.

Claim 4.15. For a vertex v in G not in the odd cycle component Ci = c0
1,ic

0
2,i · · ·

c0
ni,i

, there is at least one edge c0
p,ic

0
q,i ∈ Ci such that v is not adjacent in G to

both c0
p,i and c0

q,i.

Proof. We prove this by using contradiction. We suppose that v is adjacent to
at least one endpoint of any c0

p,ic
0
q,i ∈ Ci. We may assume that v is adjacent to

c0
1,i. Since dG

(

c0
1,i, c

0
2,i

)

≥ 3, v is not adjacent to c0
2,i, so v is adjacent to c0

3,i, and

so forth. Hence, if j is odd, then v is adjacent to c0
j,i, and if j is even, then v

is not adjacent to c0
j,i. Since v is adjacent to c0

1,i, v is not adjacent to c0
ni,i

. It
follows that ni is even, a contradiction.

Since the cycles Ci are symmetric, we may consider that dG

(

yr, c
0
1,1

)

≥

2, and dG

(

yr, c
0
n1,1

)

≥ 2, and for 1 ≤ i ≤ s − 1, dG

(

c0
ni,i
, c0

1,i+1

)

≥ 2, and

dG

(

c0
ni,i
, c0

ni+1,i+1

)

≥ 2. We label the vertices ck
j,i where 1 ≤ j ≤ ni, 1 ≤ i ≤ s

and 0 ≤ k ≤ 2t − 1, with respect to the above assumptions.

• For 0 ≤ k ≤ 2t−1 − 1, f
(

ck
1,1

)

= r2t + 2t−1 − k− 1, and for 2t−1 ≤ k ≤ 2t − 1,

f
(

ck
1,1

)

= r2t + k.

• For 2 ≤ j ≤ n1 − 1 and all 0 ≤ k ≤ 2t − 1, f
(

ck
j,1

)

= f
(

ck
1,1

)

+ (j − 1)2t−1.

• For 0 ≤ k ≤ 2t−1 − 1, f
(

ck
n1,1

)

= f
(

ck
1,1

)

+ (n1 − 1)2t−1, and for 2t−1 ≤ k ≤

2t − 1, f
(

ck
n1,1

)

= f
(

c2t−k−1
1,1

)

.

The smallest label for the vertices ck
i,1 is f

(

c2t−1−1
1,1

)

= f
(

c2t−1

n1,1

)

= r2t, and

the maximum is f
(

c0
n1,1

)

= f
(

c2t−1
n1−1,1

)

= r2t + n12t−1 − 1. Now let ϕi =
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r2t +
∑i−1

j=1 nj2
t−1. For 2 ≤ i ≤ s, we label f

(

c2t−1−1
1,i

)

= f
(

c2t−1

ni,i

)

= ϕi, then we

label vertices in the following way.

• For 0 ≤ k ≤ 2t−1 − 1, f
(

ck
1,i

)

= ϕi + 2t−1 − k − 1, and for 2t−1 ≤ k ≤ 2t − 1,

f
(

ck
1,i

)

= ϕi + k.

• For 2 ≤ j ≤ ni − 1 and all 0 ≤ k ≤ 2t − 1, f(ck
j,i) = f

(

ck
1,i

)

+ (j − 1)2t−1.

• For 0 ≤ k ≤ 2t−1 − 1, f
(

ck
ni,i

)

= f
(

ck
1,i

)

+ (ni − 1)2t−1, and for 2t−1 ≤ k ≤

2t − 1, f
(

ck
ni,i

)

= f
(

c2t−k−1
1,i

)

.

The labeling f uses ni2
t−1 distinct labels for the ni2

t vertices of each compo-

nent Ci and their copies. For 0 ≤ k ≤ 2t−1 − 1, we have f
(

ck
1,i

)

= f
(

c2t−k−1
ni,i

)

,

and for 2 ≤ j ≤ ni f
(

ck
j,i

)

= f
(

c2t−k−1
j−1,i

)

. It is possible, since dG

(

c0
j,i, c

0
j−1,i

)

≥ 3,

which means by Lemma 4.10 that dMt

(

ck
j,i, c

2t−k−1
j−1,i

)

= 3. For two vertices ck
j,i,

cm
l,i from the same component, the difference between the labels is equal to 1 in

the following cases.

(i) The vertices are copies of the same vertex, or if 2t−1 ≤ k,m ≤ 2t − 1, in

those two cases dMt

(

ck
j,i, c

m
l,i

)

= 2.

(ii) For l = j + 1, we have dG

(

c0
j,i, c

0
j+1,i

)

≥ 3, then dMt

(

ck
j,i, c

m
j+1,i

)

≥ 2.

(iii) If l = j + 2, k = 2t − 1 and m = 2t−1 − 1, we have from Lemma 4.9

dMt

(

c2t−1
j,i , c2t−1−1

l,i

)

= 2. For two vertices from different odd cycle components,

we have the difference between the labels assigned is equal to 1, it happens only
for c0

ni,i
and c2t−1

ni−1,i with c2t−1−1
1,i+1 and c2t−1

ni+1,i+1. For 1 ≤ i ≤ s − 1, we have

dG

(

c0
ni,i
, c0

ni+1,i+1

)

≥ 2 and dG

(

c0
ni,i
, c0

1,i+1

)

≥ 2. Also from Lemma 4.9 the

vertices are at distance greater or equal 2 in M t(G).

The maximum label assigned is f
(

c0
ns,s

)

= f
(

c2t−1
ns−1,s

)

= r2t+
∑s

j=1 nj2t−1−

1 = n2t−1 − 1.

We finally label the remaining 2t − 1 roots with consecutive labels beginning
with the label n2t−1 in the following order

u1,2t−1−1u1,2t−1−2 · · ·u1,0u2,2t−2−1u2,2t−2−2 · · ·u2,0u3,2t−3−1 · · ·ut,0.

Since dMt

(

u1,2t−1−1, c
0
ns,s

)

= 2, dMt

(

u1,2t−1−1, c
2t−1
ns−1,s

)

= 2, dMt (ui,j , ui,j−1)

= 2, and dMt(ui,0, ui+1,2t−(i+1)−1) = 2, this produces an L(2, 1)-labeling with span

2t−1(n+ 2) − 2. In Figure 8, we show an L(2, 1)-labeling with the same schema
for M2(G), where G2 has a perfect 2-matching consisting of two K2 components
and two cycles of order 3 and 5, respectively. Hence from the lower bound of
Theorem 4.1 for t ≥ 2, we have λ(M t(G)) = 2t−1(n+ 2) − 2.
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4

5 11 13 9
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c0
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c0
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c0
1,2

17

c0
2,2

19

c0
3,2

21

c0
4,2

23

c0
5,2

22201816
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1523211917

25
u1,0

24
u1,1

26
u2,0

Figure 8. An L(2, 1)-labeling of M2(G) as in Theorem 4.6, where G2 has a perfect 2-
matching with two K2 components and two cycles of order 3 and 5, here the edges
represent a perfect matching of G2 ×K2.

The labeling defined in Theorem 4.14 is a valid L(2, 1)-labeling for any graph
G of order n ≥ 2. If G2 has a perfect 2-matching, then we can label the vertices
of M t(G) with a labeling having span 2t−1(n + 2) − 2. Next, we give an upper
bound for λ(M t(G)) in terms of the maximum size of a 2-matching of G2.

Theorem 4.16. Let G be a graph of order n ≥ 2, with ν2(G2) = p. Then for

t ≥ 2, we have λ(M t(G)) ≤ 2t−1(2n− p+ 2) − 2.

Proof. Let G be a graph with ν2(G2) = p. So there is an induced subgraph H
of G2 of order p such that H has a perfect 2-matching. Let VH be the set of
vertices of H. From Theorem 4.14, we can label the vertices of M t(G[VH ]) with
an L(2, 1)-labeling f with span 2t−1(p+ 2) − 2, where f(ut,0) = 2t−1(p+ 2) − 2.

Now in M t(G), if p < n, then the vertices remaining unlabeled by f are
the vertices in V \ VH and their copies. Let us denote vk

i , where 1 ≤ i ≤ q,
and 0 ≤ k ≤ 2t − 1, such that p + q = n, the vertices of V \ VH and their
consecutive copies. Let χi with 2 ≤ i ≤ q be a sequence of vertices in M t(G),
where χi = v2

i v
0
i v

1
i if i is odd, and χi = v1

i v
0
i v

2
i if i is even. The only vertex

labeled 2t−1(p+ 2) − 2 by f is ut,0. Using consecutive labels we label the vertices
vk

i , with 1 ≤ i ≤ q beginning with the label 2t−1(p+ 2) − 1, in the following order

v0
1v

2
1v

1
1χ2 · · ·χqv

3
qv

3
q−1 · · · v3

1v
4
1 · · · v4

qv
5
q · · · v2t−1

1 .

This produces an L(2, 1)-labeling with span 2t−1(p + 2) − 2 + 2t(n − p) =
2t−1(2n− p+ 2) − 2.

Similarly to Subsection 3.3, we put interest in connected graphs, the path
Pn and cycle Cn, which we use to determine some connected graphs with the
smallest λ(M t(G)).
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Corollary 4.17. For t ≥ 2,

λ(M t(Pn)) =

{

4 × 2t − 2 if n = 3, 4, 5,

2t−1(n+ 2) − 2 if n ≥ 6.

Proof. For n = 3, we have diam(P3) = 2. By Theorem 4.8 for t ≥ 2 we have
λ(M t(P3)) = 4 × 2t − 2.

For n = 4, P 2
4 consists of a single edge and 2 isolated vertices. So ν2(P 2

4 ) = 2,
it follows from Theorem 4.16 that λ(M t(P4)) ≤ 4 × 2t − 2. Since M t(P3) is a
subgraph of M t(P4), from above λ(M t(P4)) = 4 × 2t − 2.

For n = 5, P 2
5 consists of 2 independent edges and one isolated vertex. Hence

ν2(P 2
5 ) = 4, so from Theorem 4.16, λ(M t(P5)) ≤ 4 × 2t − 2. Also M t(P3) is a

subgraph of M t(P5), then λ(M t(P5)) = 4 × 2t − 2.
For n ≥ 6, it is easy to see that the path Pn verifies the condition of Theo-

rem 4.14, thus λ(M t(Pn)) = 2t−1(n+ 2) − 2.

Corollary 4.18. For t ≥ 2,

λ(M t(Cn)) =



























4 × 2t − 2 if n = 3,

5 × 2t − 2 if n = 4,

6 × 2t − 2 if n = 5,

2t−1(n+ 2) − 2 if n ≥ 6.

Proof. We have diam(C3) = 1, and diam(C4) = diam(C5) = 2. So by Theo-
rem 4.8, for t ≥ 2, we have λ(M t(C3)) = 4 × 2t − 2, λ(M t(C4)) = 5 × 2t − 2, and
λ(M t(C5)) = 6 × 2t − 2. If n ≥ 6, then the cycle Cn satisfies the condition of
Theorem 4.14, thus λ(M t(Cn)) = 2t−1(n+ 2) − 2.

Corollary 4.19. Let G be a connected graph, for t ≥ 2 we have the following.

(1) λ(M t(G)) = 3 × 2t − 2 if and only if G is K2.

(2) λ(M t(G)) = 4 × 2t − 2 if and only if G ∈ {P3, P4, P5, P6, C3, C6}.

(3) λ(M t(G)) = 9 × 2t−1 − 2 if and only if G ∈ {P7, C7}.

Proof. From the lower bound of Theorem 4.1, for t ≥ 2, we have

(3) λ(M t(G)) ≥ 2t−1 max{n+ 2, 2(△ + 2)} − 2.

We have K2 is the only connected graph with △ = 1, by Theorem 4.5
λ(M t(K2)) = 3 × 2t − 2. Based on inequality (3), if △ ≥ 2, then λ(M t(G)) ≥
4 × 2t − 2. Therefore, λ(M t(G)) = 3 × 2t − 2 if and only if G ∼= K2.

If △ = 2, then G is either a path graph or a cycle. Then the graphs in
Corollary 4.17 and Corollary 4.18 are the only connected graphs with △ = 2.
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From inequality (3), if △ ≥ 3, then λ(M t(G)) ≥ 5 × 2t − 2. Hence, based on
Corollary 4.17 and Corollary 4.18, we can conclude that λ(M t(G)) = 4 × 2t − 2
if and only if G ∈ {P3, P4, P5, P6, C3, C6}. Also, λ(M t(G)) = 9 × 2t−1 − 2 if and
only if G ∈ {P7, C7}.

For any other non-trivial connected graph G not mentioned in Corollary 4.19
for t ≥ 2, we have λ(M t(G)) ≥ 5 × 2t − 2.

5. Open Problems

From the statement of the △2-conjecture, and the upper bound of Theorem 3.1
and Theorem 4.1, we propose a weaker conjecture for the L(2, 1)-labeling number
of the Mycielski graph and the iterated Mycielski graph of graphs.

Conjecture 5.1. For any graph G of order n ≥ 1, with maximum degree △, and

for all t ≥ 1, we have λ(M t(G)) ≤ (2t − 1)(n+ 1) + △2.

It is clear from Theorem 3.1 and Theorem 4.1 that if λ(G) ≤ △2, then for
any t ≥ 1, λ(M t(G)) ≤ (2t − 1)(n+ 1) + △2.

Remark 5.2. For any positive integers t, t′ such that t′ > t ≥ 1, if λ(M t(G)) ≤
(2t − 1)(n+ 1) + △2, then λ(M t′

(G)) ≤ (2t′

− 1)(n+ 1) + △2.

Proof. From the definition of the iterated Mycielski graph of a graph G, for
t′ > t ≥ 1, we have M t′

(G) = M t′−t(M t(G)). From the upper bound of Theo-
rem 3.1 and Theorem 4.1, we get that λ(M t′

(G)) ≤ (2t′−t −1)(n+1)+λ(M t(G)).
Therefore if λ(M t(G)) ≤ (2t − 1)(n+ 1) + △2, then

λ(M t′

(G)) ≤ (2t′−t − 1)(n+ 1) + λ(M t(G))

≤ (2t′−t − 1)(n+ 1) + (2t − 1)(n+ 1) + △2 = (2t′−t + 2t − 2)(n+ 1) + △2.

For t′ > t ≥ 1, we have

(2t′

− 1) − (2t′−t + 2t − 2) = 2t′

− 2t′−t − 2t + 1

= 2t(2t′−t) − 2t′−t − (2t − 1) = 2t′−t(2t − 1) − (2t − 1) = (2t − 1)(2t′−t − 1) > 0.

It means that λ(M t′

(G)) ≤ (2t′

− 1)(n+ 1) + △2.

Remark 5.2 shows that if Conjecture 5.1 is true for an iteration t ≥ 1, then
it is true for any iteration greater than t.

From our study, for any t ≥ 1, the only graphs with at least one edge that
we know having λ(M t(G)) = (2t − 1)(n + 1) + △2, are the graph K2, and the
graphs achieving the bound in Corollary 3.2, which are the cycle C5, the Petersen
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graph, the Hoffman-Singleton graph, and possibly a diameter two Moore graph
of maximum degree 57, and order 572 + 1 if such graph exists.

The complexity of the L(2, 1)-labeling problem should be investigated more,
whether for the Mycielski graph of graphs in general or the Mycielski graph of
graphs not studied yet. For instance, trees, since the L(2, 1)-labeling number can
be determined in polynomial time for trees [6], we may ask if it is also the case
for the Mycielski graphs generated from trees?
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