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Abstract

Let G be a graph with treewidth k. In the paper, it is proved that if
k < 3 and maximum degree A > 5, or k=4 and A > 9, or A > 4k — 3 and
k > 5, then the linear arboricity la(G) of G is [5].
Keywords: graph, minor, linear arboricity, linear forest, treewidth.
2020 Mathematics Subject Classification: 05C15.

1. INTRODUCTION

In this paper, all graphs considered are simple and undirected, and all undefined
notation and definitions follow [7]. Let G = (V, E) be a graph, where V(G) is
the vertex set and E(G) is the edge set of G. For v € V(G), let N(v) = {u :
wv € E(G)}. The degree d(v) of a vertex v is |[N(v)|, A(G) (or simply A) is the
maximum degree of G and 6(G) (or simply J) is the minimum degree of G. For a
subset W C V, N(W) = e N(w). For a real number z, we use [z] to denote
the least integer not less than x.

A linear forest is a graph in which each component is a path. A t-linear
coloring is a map from E(G) to {1,2,...,t} such that the edges using the same
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color i induce a linear forest for any i (1 < i < t). The linear arboricity la(G)
of a graph G is the minimum number ¢ for which G has a t-linear coloring. It is

easy to see that la(G) > {A(QG)—‘ for any graph G. At the same time, it is easy to

check that for any regular graph, we have la(G) > [%L and in [1] Akiyama,
Exoo and Harary conjectured the equality holds. Their conjecture is equivalent
to the following linear arboricity conjecture (LAC).

Conjecture A. For any graph G, {%] < la(G) < (%W

Conjecture A was proved for complete graphs, complete bipartite graphs,
trees and graphs with A € {3,4,5,6,8,10} [1, 2, 8, 9]. In [11, 12], it is also
proved for all planar graphs.

In the paper, we consider the linear arboricity of graphs with bounded
treewidth. The notion of treewidth was first introduced by Robertson and Sey-
mour [10]. For a graph G, a tree decomposition (T,V) consists of a tree T and a
collection V ={V; CV(G) : t € V(T)} of bags such that

e V(G) = UtEV(T) Vi,
e for each vw € E(QG) there exists a t € V(T') such that v, w € V4, and

o if v €V N V,,, then v € V; for all vertices ¢ that lie on the path connecting
t1 and to in T

A tree decomposition (T, V) of a graph G has width k, if all bags have size at
most k + 1. The treewidth of G, denoted by tw(G), is the smallest number & for
which there exists a width k tree decomposition of G. Treewidth plays a crucial
role in the studies on graph minors. For every fixed k, denote by TW} the set
of graphs with treewidth at most k, which can be characterised by a finite set of
forbidden minors [3].

Let G be a graph of the treewidth k. In [5], it is proved that if A > (k23)2,
then the list chromatic index ch/(G) = A, or if A > 3k — 3 and k > 3, then the
total chromatic x”/(G) = A 4 1. In this paper, we consider the linear arboricity

of G associated with its treewidth and get the following Theorem 1.

Theorem 1. Let G be a graph with tw(G) < k and A < 2t for some integer t.
Then G has a t-linear coloring if one of the following conditions holds.

(1) k<3 andt>3;
(2) k<4 andt>5;
(3) k>5andt>2k—1.

By the theorem, it is easy to check the following corollary.

Corollary 2. Let G be a graph with treewidth k. Then la(G) = [%1 ifk <3
and A>5, ork=4and A>9, ork>5 and A > 4k — 3.
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Since the graph G = K5 — e, the complete graph of order 5 minus one edge,
has tw(G) = 3 and la(G) = 3, Theorem 1(1) is sharp. Moreover, Wu determined
completely the linear arboricity of series-parallel graphs [13] and Halin graphs
[14]. It is known that these two classes of graphs both have the treewidth at
most 3 [3, 4]. So we generalize these results.

2. PROOF OF THEOREM 1

For a positive integer k, we use [k] to denote the set {1,2,...,k}. Suppose
¢ is a t-linear coloring of G, and the color set is [t]. For a color i € [t], we
call an edge colored with ¢ an i-edge. Let v be a vertex of GG, we use C’é(v)
to denote the set of colors appear i times at vertex v, where i € {0,1,2}. Then
|Cg(v)|+|Cé(v)|+]C?p(v)| =t and |C’é(v)|+2|C§(v)| = d(v). For any two vertices
of u and v, let C,(u,v) = Cf,(u) U Cfp(v) U (Cé(u) N C’é(v)), that is, Cy,(u,v) is
the set of colors that appear at least twice at u and v. A monochromatic path is
a path whose edges receive the same color. We use the notation (u,7) <> (v,4) to
denote that there is a monochromatic path from u to v receives the same color 3.
Let z1y; € E(G), we use z1y; <> (u,7) to denote that there is a monochromatic
path from x1 to u receiving the same color ¢ such that y; is an internal vertex in
the path, and z1y; 4 (u, i) to denote such monochromatic path does not exist.

Proof of Theorem 1. We prove the theorem by contradiction. Let G = (V, E)
be a counterexample to Theorem 1 with |V(G)| + |E(G)| as small as possible.

First, we describe some known lemmas for G. Note that proofs of Lemmas
3, 5 and 6 in [6] do not use planarity, so the results can apply to general graphs.
The proof of Lemma 3 can be found in [6, Lemma 4], Lemma 5 can be found in
[6, Lemma 5 and Lemma 6].

Lemma 3 [6]. For every edge wv € E(G), d(u) +d(v) >2t+2> A+ 2.

By the lemma, we have §(G) > 2. At the same time, we may apply Lemma
3 in [5] with parameters Ay = 2t, and obtain the following result.

Lemma 4 [5]. There are disjoint vertex sets U,W C V(G) and a vertex x € U,
such that

(a) W is stable with N(W) C U;

(b) d(w) < k for every w € W;

(c) WC N(z) CWUU; and

(d) |U <k+1and |W|>2t+2—2F.

In Lemma 4, W is stable means that W is a vertex independent set, that is,
the vertices of W are pairwise nonadjacent.
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Lemma 5 [6]. Every vertex is adjacent to at most one 2-vertex, and for any
2-vertex of G, its two neighbors are adjacent.

Proof of (1). We begin to prove (1). According to [8], if A(G) < 5, then G has
a 3-linear coloring. Henceforth, A(G) > 6. In the following figures, the vertices
marked by e have no other edge incident with it and any edge marked by broken
line means that it does not exist.

Lemma 6 [6]. G contains no subgraph isomorphic to one of configurations de-
picted in Figure 1.

) 7 y

(¢) d(v)=a-1

Figure 1. Forbidden configurations in Lemma 6.

The proof of (a) can be found in [6, Lemma 8], (b) can be found in [6, Lemma
7], (c) can be extracted from [6, Lemma 11], (d) can be found in [6, Corollary
13].

Lemma 7 [15]. G contains no subgraph isomorphic to one of configurations
depicted in Figure 2. In configuration (b), d(w) < 3 and w is incident with a
3-cycle.

(b)

Figure 2. Forbidden configurations in Lemma 7.

Proof. (a) Suppose G has a configuration as depicted in Figure 2(a). Then
G = G — {u,v} + {zy,yz,xz} has a t-coloring ¢. Without loss of generality,
assume that o(zy) # @(xz). We can recolor uz, uy with ¢(xy), vy, vz with
¢(yz) and uz, ve with p(zz) to obtain a t-linear coloring of G, a contradiction.
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(b) The detailed proof of (b) can be found in [15]. The following is a sketch
of the proof.

Suppose G has a configuration as depicted in Figure 2(b). By Lemma 6(b),
{zy,yz, 2z} N E(G)| = 1 or 3, then we consider the following two cases:

Case 1. |[{zy,yz,xz} NE(G)| = 1. Without loss of generality, we assume that
xzz € E(G) and zy, yz ¢ F(G). Then G' = G — {u,v} + {zy,yz} has a t-coloring
. And we can obtain a t-linear coloring of G by the method of color exchange,
a contradiction.

Case 2. |{zy,yz,2z} N E(G)| = 3. Then G’ = G — {u, v} has a t-coloring ¢.
In the same way, we can prove that G has a t-linear coloring, a contradiction. [

Lemma 8. For every vertex w € W, d(w) = 3.

Proof. Suppose there exists a vertex w* € W such that d(w*) = 2. Let N(w*) =
{z,u1} CU. Then zu; € E(G) by Lemma 5. By Lemma 3, we have d(z) > 2t >
6. Since |U| < 4 and N(z) C U UW, we have [W| > 3. Let {w*, w1, w2} C W.
Then d(w;) = d(w2) = 3 by Lemma 5 and wjui, wou; ¢ E(G) by Figure 1(a).
Since |U| < 4, N(w;) = N(wz). Hence G has a configuration as depicted in
Figure 2(b), a contradiction. O

By Lemma 8 and Lemma 4 (b), the result of Theorem 1(1) is clear when
k<2.

Lemma 9. |U| = 4.

Proof. By Lemma 4 and Lemma 8, 3 < |U| < 4. Suppose |U| = 3 and U =
{z,y,z}. Sinced(x) > 2t—1 > 5and N(z) C UUW, |W| > 3. Let {u,v,w} C W.
Then d(u) = d(v) = d(w) = 3 and N(u) = N(v) = N(w) = U. If {zy,yz,zz} N
E(G) = 0, then G has a configuration as depicted in Figure 2(a); otherwise G
has a configuration as depicted in Figure 2(b), a contradiction. Hence |U| = 4. O

By Lemma 9, let U = {z,u1,u2,us}. By Lemma 3 and Lemma 4, |W| >
2t —1—|N(x)NU| >5—|N(z) NU| > 2. We consider the following four cases.

Case 1. |{zu1,zuz, zus} N E(G)| = 3. Without loss of generality, assume
that w € W and N(w) = {z,u1,u2}. Then ujus € E(G) by Figure 1(b). Since
x with two 3-neighbors, and the 3-neighbor w is incident with a triangle zujw,
we have d(z) = A > 6. For otherwise, G has a configuration as depicted in 1(c),
a contradiction. Since |U| = 4, |W| > 3. Let {w, w1, w2} C W. Then for each
i(1 <14 < 2), w; is incident with at least one 3-cycle. If N(w) = N(w;), then G has
a configuration as depicted in Figure 2(b), a contradiction. So N(w) # N(wy).
It follows that wius € E(G). Since |U| = 4, |[N(w) N N(w;y)| = 2. Without loss
of generality, assume that N(w) N N(w;) = {z,u1}. These implies that G has
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two 3-vertices w and w; such that N(w) = {z,us,u2}, N(w1) = {z,u1,us} and
{wug, wius, xuy, rus, rug} C E(G). Thus Figure 1(d) appears, a contradiction.

Case 2. [{xuy, xuz, zuz} NE(G)| = 2. Without loss of generality, assume zuy,
zug € E(G) and zug ¢ E(G). Since x has at least two 3-neighbors, and each 3-
neighbor w € W is incident with a triangle zujw or zusw, we have d(x) = A > 6
by Figure 1(c). It follows that [W| > 4. Since W C N(z), |N(w')N{uy, us, ug}| =
2 for any w' € W. It follows that there are two vertices u,v € W such that
N(u) = N(v). Note that any vertex in W is incident with at least one 3-cycle.
So G has a configuration as depicted in Figure 2(b), a contradiction.

Case 3. |{zu1,zuz, zus} N E(G)| = 1. Without loss of generality, assume
that zuy € E(G), zuz ¢ E(G), zus ¢ E(G). If there exists a vertex w € W
such that wu; € E(G), without loss of generality, suppose w*u; € E(G). Then
d(x) = A > 6 by Figure 1(c). Since |{zu1,zug,zus} N E(G)| = 1, we have
|W| > 5. Thus at least two vertices of W\{w*} have the same neighbors. And
because w* is incident with a 3-face, G has a configuration as depicted in Figure
2(b), a contradiction. Otherwise, if each vertex w € W is not adjacent to wuq,
then N(w) = {z,u2,us}. Since [{zxu;,zus, zuz} N E(G)| = 1 and d(x) > 5, we
have [W| > 4. Thus at least four vertices of degree 3 have the same neighbors.
Since xug,zus ¢ E(G), we have ugus € E(G) by Figure 2(a). Then G has a
configuration as depicted in Figure 2(b), a contradiction.

Cased. |{zxuy,zus, xus}NE(G)| = 0. Then [W| > 5. Let {wy, wa, w3, wq, ws}
C W. At the same time, at least two vertices of W have the same neighbors.
Without loss of generality, assume that N(w;1) = N(w2) = {z,u1,us}. Since zuq,
zug ¢ E(Q), we have ujug € E(G) by Lemma 7. Similarly, | N (w;) N {u1,u2}| =1
for any i € {3,4,5}. It follows that there are at least two vertices in {ws, w4, ws}
having the same neighbors. Hence G has a configuration as depicted in Figure
2(b), a contradiction too.

All these contradictions imply that (1) holds.

Proof of (2). Next, we begin to prove (2). By (1), we assume that tw(G) = 4.
According to [8], if A < 8, then G has a 5-linear coloring. Henceforth A > 9.
Let w* € W C N(z). Then G’ = G — w*z has a t-linear coloring ¢. Denote
n; = {pluw) =i :u e U\{z},w € W}| for any ¢ € [t], and W = {w € W :
o(zw) € Cg(w*)}. We have the five fundamental facts.

D Co(w*, ) = [t];

@ Ifi € CL(w*), then i € C%(x), or i € Cl(z) and (w*,i) > (,1);
@ [W'| > 2|Co(w")| — (|U] = 1) > 2|CP(w*)| — 4;

@ [W]=IN@\U| = d(z) - (U] = 1) = 2t = 2 = d(w");

® n; <2(|U| —1) < 2k =8 for each i € [t].
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In the following, we will use the structure properties of G and the method of
color exchange to obtain a contradiction to prove (2). We consider the following
three cases.

Case 1. d(w*) = 2, that is, dg/(w*) = 1. Without loss of generality, assume
that CL(w*) = {1}. Then CQ(w*) = C2(z) = [t] \ {1}, 1 € CL(x) and (z,1) «
(w*,1) by @ and @. Since d(x)+d(w*) > 2t+2 > 12 and |U| < 5, |[IW \w*| > 5.
It follows that |[W’| > 4. For any w € W' if 1 ¢ C?O(w), we can recolor zw with
1 and color w*z with ¢(zw) to obtain a t-linear coloring of G, a contradiction.
So 1 € CZ(w) for any w € W' and it follows from CL(w*) = {1} that n; >
2 x |W'|+1>9, a contradiction with (D).

Case 2. d(w*) = 3.

Subcase 2.1. C’fp(w*) # (). Without loss of generality, assume that C?p(w*) =
{1}. Then CY(w*) = CZ(z) = [t] \ {1} and 1 € CQ(x) U C (x). Since t > 5 and
|U\x| < 4, [W'| > 4. If there is a vertex w € W' such that 1 € Cg(w), then
we can recolor zw with 1 and color w*x with ¢(zw) to obtain a t¢-linear coloring
of G, a contradiction. So 1 € CJ(w) U Ci(w) for any w € W’. At the same
time, if there are two vertices w', w” € W such that 1 € Cj(w') N CL(w"), then
it is impossible that (w,1) < (z,1) for any w € {w',w”}(if (x,1) exists). So
there is at most one element w € W’ such that 1 € Cé(w), and it follows that
ny >2x (1+ W' —=1)4+1>9, a contradiction with (.

Subcase 2.2. CZ(w*) = (). Without loss of generality, assume that C,(w*) =
{1,2}. Then {3,4,...,t} € CZ(z) and {1,2} C C}(x)U CZ(x). Since dg(x) <
2t -1, {1,2} n Cé(m)| > 1. Without loss of generality, assume that 1 € Ci,(a:).
Then (w*,1) < (z,1) by @. Since t > 5, [W'| > 2. Let wy,wy € W’. Then
{o(zw1), p(zwz)}N{1,2} = @ by the definition of W’. If 1 ¢ CZ(w1), then we can
recolor zw; with 1 and color w*xz with ¢(zwi), a contradiction. So 1 € CZ(wy).
By the same argument, we have 1 € C’g(wg).

Suppose that 2 € C’}p(x). Then (z,2) < (w*,2) by @. Since dg(w1) < 4,
2 ¢ Cf,(wl). Thus we can recolor zw; with 2 and color w*z with ¢(zw;), a
contradiction, too. Hence 2 € CZ(m), that is, {2,3,...,t} = C’g(a:).

Since |U\z| < 4, there exist wz,ws € N(z) N (W \ {w*, w1, w2}) such that
o(zws) # 1 and p(zrwy) # 1. Similarly, we also have that for any w;(i = 3 or 4),
if p(xw;) # 2, that is, p(zw;) € {3,...,t}, then 1 € C2(w;). At the same time, if
1e C?D(QU3) N CZ(wy), then ny > 9, a contradiction. So we assume, without loss
of generality, that 1 ¢ C’f,(fw4). It follows that p(zws) = 2.

Suppose that ¢(zws) # 2. Then first we recolor zws with 1. Next, if
(w*,2) <> (z,2), we recolor zw; with 2, and color w*x with ¢(zw;); otherwise,
we color w*x with 2. Thus we obtain a ¢-linear coloring of G, a contradiction. So
p(zws) = 2.
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Thus ¢(xw3) = p(rws) = 2 and 1 ¢ C’i(w4). Suppose that 1 ¢ Cf,(wg).
First, we recolor zws with 1. Then, if zwy < (w*,2), we can recolor zw; with
2 and color w*x with ¢(xw); otherwise we color w*x with 2. Thus a t-linear
coloring of GG is obtained, a contradiction. So 1 € C(Z (ws3).

Finally, we obtain a t-linear coloring of G as follows. First, we recolor zwy
with 1, color w*x with 2. Then, if zws < (w*,2), then 2 € Cg(w;g) and we
exchange the coloring of xw; and zws.

Case 3. d(w*) = 4.

Subcase 3.1. CZ(w*) # . Without loss of generality, assume that C2(w*) =
{1} and Cl(w*) = {2}. Then |[W'| > 2. Let wi,ws € W’. Tt follows from
1 * 1 * 2
2 € O (w*) and @ that 2 € Cy(z) and (w*,2) + (x,2), or 2 € CZ(x).

Subcase 3.1.1. 2 € Cé(:r) and (w*,2) <> (z,2). Then it is similar to prove
that 2 € C2(w1) N CZ(wa). This implies that 1 ¢ C2(w1) U C3(ws).

Suppose 1 € C’g(x). We can recolor xwy with 1 and color w*z with ¢(zw)
to obtain a t-linear coloring of GG, a contradiction.

Suppose 1 € Cl(z). Then 1 € CL(wi) and (w1,1) < (z,1). For otherwise,
we can recolor xw; with 1 and color w*z with ¢(zw;), a contradiction. Since
1¢ C’g(wg), we can recolor xwy with 1 and color w*z with ¢(xws) to obtain a
t-linear coloring of GG, a contradiction.

Suppose 1 € C’f,(x). Then dg/(z) = 2t — 1 > 9 and we can get that
[W\{w*}| = m > 5. Assume that W = {w*, w1,...,wy}. If |[W'| > 4, with-
out loss of generality, assume that p(zws), @(xws) ¢ {1,2}. It is easy to see
that 2 € Cf,(wg). For otherwise, we can recolor xws with 2 and color w*z with
(xzws), a contradiction. Similarly, 2 € C’g (wq). Thus ng > 9, a contradiction. If
|[W'| = 3, since |[U| < 5 and ¢t > 5, there must exist an edge zw; which colored
by 1. Without loss of generality, assume that ¢(zws) ¢ {1,2} and p(zwy) = 1.
Then 2 € Cg(wi), i=1,2,3 1f2¢ C’i(w4), first we can recolor zwy with 2.
Next, if (z,1) <> (w1,1), we can recolor xwy with 1 and color w*z with ¢(xws)
to obtain a t-linear coloring of G. Otherwise, we can recolor zw; with 1 and
color w*x with p(zw;), a contradiction. Thus 2 € C’g(w4). We have ny > 9, a
contradiction. If |[W’| = 2, then we can assume that p(zws) = @(zwy) = 1. If
2 ¢ Cz,(wg), first we can recolor zws with 2. Next, if (z,1) + (w1, 1), we can
recolor xwy with 1 and color w*z with ¢(xws) to obtain a t-linear coloring of G.
Otherwise, we can recolor zw; with 1 and color w*z with ¢(zw;), a contradiction.
Thus 2 € C’Z (ws). Similarly 2 € C;(w4). Then ng > 9, a contradiction.

Subcase 3.1.2. 2 € C3(x). Then 1 € C)(z) or 1 € C}(z) and der(z) >
2(t — 1) > 8. Since |U] < 5, we have [IW\{w*}| = m > 4. Assume that W =
{w*,wy,...,wy} and p(zws) # 1, p(xw,) # 1.

Suppose 1 € Cg(x). Then 1 € Cf,(wl). For otherwise, we can recolor zw;
with 1 and color w*z with ¢(zw;), a contradiction. Similarly, 1 € C’f,(wg). If
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p(zws) # 2, similarly 1 € CZ(ws). If p(zws) = 2, we also have 1 € CZ(ws).
For otherwise, we can recolor zws with 1 to obtain a new ¢-linear coloring ¢’ of
G', where 2 € Cé, (x), which satisfies Subcase 3.1.1, a contradiction. Thus 1 €
Cg(wg). In the same way, we have 1 € Cf,(w4). Then ny > 10, a contradiction.

Now suppose 1 € C&,(ac).

First we consider the case that |[WW’| > 4. Without loss of generality, assume
that o(zws) ¢ {1,2} and @(zws) ¢ {1,2}. Then 1 € CL(wi) and (z,1) «
(wi,1), or 1 € Cg(wl). For otherwise, we can recolor xw; with 1 and color
w*z with p(zw;), a contradiction. If 1 € Cl(w1) and (x,1) ¢ (w1,1), then
1 e C’i(wg). For otherwise, we can recolor xws with 1 and color w*x with
@(zwy), a contradiction. Similarly, 1 € C2(ws3), 1 € C3(wy). Then ny > 9, a
contradiction. Thus 1 € C%(w1). Similarly, we have 1 € C2(w;), i = 2,3,4. Then
nq > 10, a contradiction.

Secondly, we consider the case that |[W’| = 3. Without loss of generality,
assume that ¢(zws) # 2, o(zws) = 2. Then 1 € Cl(w1) and (z,1) + (wy, 1),
or 1l € C?p(wl). If1 e C’}D(wl) and (x,1) < (wy,1), then 1 € Cfo(wg) and
1e Cf,(wg). If1¢ Cg(w4), we can recolor xwy with 1 to obtain a new ¢-linear
coloring ¢’ of G’ which satisfies 2 € C’;, (x), by Subcase 3.1.1, a contradiction.
Thus 1 € CZ(wy4). We have n; > 9, a contradiction. Thus 1 € CZ(w). Similarly,
1e Cf,(wg) and 1 € CZ(’LU?)). If1e Cg(w4), we can recolor zw4 with 1 to get a
new t-linear coloring ¢ of G’ which satisfies 2 € C’é,(x), a contradiction. Thus
1¢ Cg(w4). We have n; > 9, a contradiction.

Finally, we consider the case that |[W'| = 2. Without loss of generality,
assume that p(zws) = @(xwy) = 2. Then 1 ¢ C’g(wl). If1e C’j,(uu), then
(z,1) <> (wy,1). We can get 1 € Ci('l,UQ). If1¢ Cg(W3), we can recolor zws
with 1 to get a contradiction. Thus 1 € C’?D(wg). Similarly, 1 € C?D(wz;). Then
ny > 9, a contradiction. Therefore 1 € C’g(wl) and 1 € Cg(wg). If1e C’g(wg),
or 1 € Cl(w3) and (z,1) # (ws,1), we can recolor zws with 1 to get a new
t-linear coloring ¢’ of G’ such that 2 € C';, (z), a contradiction. If 1 € CJ(ws3)
and (z,1) < (w3, 1), then 1 € CZ(wy4). For otherwise, we can recolor zw, with
1 to get a contradiction. We have ny > 9, a contradiction. If 1 € C'?D(wg), since
1¢ Cg(w4), we also have ni > 9, a contradiction.

Subcase 3.2. CZ(w*) = . Without loss of generality, assume that C(w*) =
{1,2,3}. Then i ¢ C’g(az), 1 =1,2,3, and at least one of them appears exactly
one time on z. Without loss of generality, assume that 1 C’; (). Then (x,1) <>
(w*, 1).

Since dgr(x) > 2t —3 > 7 and |U| < 5, we have [W\{w*}| = m > 3. Assume
that W = {w*, w1, ..., wn}.

Subcase 3.2.1. 2 € C’é(az) or 3 € Cé(x). Without loss of generality, assume
that 2 € C}O(a:). Then (x,2) <> (w*,2).
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Suppose |WW’| > 1. Without loss of generality, assume that ¢(zw;) ¢ {1,2,3}.
Then 1 € CZ(w1). For otherwise, we can recolor zw; with 1 and color w*z with
p(zw), a contradiction. Since d(w;) < 4, we have 2 ¢ Cf,(wl). Thus we can
recolor zw; with 2 and color w*z with ¢(zw;) to obtain a ¢-linear coloring of G,
a contradiction.

Now suppose |[W’| = 0. Without loss of generality, assume that ¢(zw;) = 1,
i=1,23 If1¢ C’f,(wg), we can recolor xwy with 1 and color w*x with 2,
a contradiction. Thus 1 € C’g(wg). Since 2 € Cj(x) and (,2) < (w*,2), we
have 2 € C’Z(wg). Then 3 € C’g(wg) for d(w2) < 4. Similarly, 3 € C’g(wl). If
1 ¢ C%(ws3), we can recolor zws with 1, zw; with 3 and color w*z with 1 to
obtain a t-linear coloring of GG, a contradiction. Thus 1 € Cg(wg). Similarly
2¢ C’i(wg). But it is impossible since d(ws) < 4.

Subcase 3.2.2. 2 € C2(z) and 3 € CZ(x). Since dgr(z) > 2t —1 > 9 and
|U| <5, we have [IW\{w*}| =m > 5.

Suppose |W’| = 0. Without loss of generality, assume that p(zw;) = 1,
p(rws) = p(rwsz) = 2 and p(zws) = p(zws) = 3. If 1 ¢ C?D(wg), first we can
recolor zws with 1. Then zws <+ (w*,2). For otherwise, we can color w*z with 2
to obtain a t-linear coloring of G. If 2 ¢ Ci(wl), we can recolor xw; with 2 and
color w*z with 1. Thus 2 € CZ(w;). Since 1 € Cl(x) and (z,1) ¢ (w*, 1), we
have 1 € CZ(wy). Thus we can get that 3 € CQ(wy) for d(wy) < 4. If 2 ¢ Cé(w@,
we can recolor zwy with 2, xw; with 3 and color w*z with 1. Thus 2 € C@(w4).
Now we can recolor zwy4 with 1, zwy with 2, xw, with 3 and color w*z with 1, a
contradiction. Therefore 1 € Cz,(wg). Similarly we have 1 € C’g(wi), i =3,4,5.
Then ny > 10, a contradiction.

Suppose |W’| = 1. Without loss of generality, assume that ¢(zw;) ¢ {1,2, 3},
p(zwy) = 2 and p(rws) = @(zws) = 3. Then 1 € CZ(wy). For otherwise, we can
recolor zw; with 1 and color w*z with ¢(zwy). If 1 ¢ C’g (ws), first we can recolor
zws with 1. We can get zws <> (w*,3). Next we can recolor zw; with 3 and
color w*x with ¢(zw), a contradiction. Thus 1 € Cf,(wg). Similarly 1 € C’%(wQ)
and 1 € C’f,(w4). Then ny > 9, a contradiction.

Suppose |[W’| = 2. Without loss of generality, assume that p(zwi), (zws) ¢
{1,2,3}, o(rws) = o, p(zws) = B, o, B € {2,3}. Then 1 € CZ(w1) N CZ(wy). If
1¢ Cg(wg), first we recolor zws with 1. If (z,a) 4 (w*,a), we can color w*z
with «. Otherwise, we can recolor xw; with « and color w*z with p(xw;) to
get a t-linear coloring of G. Thus 1 € CZ(ws). Similarly 1 € CZ(wy4). Therefore
ny1 > 9, a contradiction.

Suppose |W’| = 3. Without loss of generality, assume that p(zw;), ¢(zws),
p(zwz) ¢ {1,2,3} and p(xwy) = 2. Then 1 € CZ(w;), i = 1,2,3. If 1 ¢ C2(wa),
first we can recolor zw, with 1. Then if (x,2) % (w*,2), we can color w*z with 2.
Otherwise, we can recolor zw; with 2 and color w*z with ¢(zw;), a contradiction.
Thus 1 € C’Z(w4). We have ny > 9, a contradiction.



THE LINEAR ARBORICITY OF GRAPHS WITH Low TREEWIDTH 485

Suppose |W’| > 4. Without loss of generality, assume that p(zw;) ¢ {1,2,3},
i =1,2,3,4. Then it is easy to get that 1 € Cf,(wi), 1=1,2,3,4. Thusn; > 9, a
contradiction.

Hence, we complete the proof of Theorem 1(2).

Proof of (3). Finally, we begin to prove (3). By the minimality of G, G' =
G —w*x has a t-linear coloring ¢. |W'| > Q\Cg(w*)\ —(|U|-1) > 2|Cg(w*)| —k>
22k — 1 — (k—1)] — k = k. Without loss of generality, assume that p(zw;) =
Bie CYw*),i=1,2,... k.

Case 1. CZ(w*) = 0. Without loss of generality, assume that C}(w*) =
{a1,9,...,am}, where m =d(w*) — 1 < k—1.

Then o; € CL(z) UCE(x), i = 1,2,...,m. Since dg(x) < 2t — 1, there
must exist a color a € Ci,(w*) such that a € C(x). Then (z,a) < (w*, a). If
ad C?O(wl), we can recolor xw; with a and color w*x with 31 to obtain a ¢-linear
coloring of G, a contradiction. Thus « € C’f,(wl). Similarly, we have « € Cz, (w;),
1=2,3,...,k. Then n, > 2k 4+ 1, a contradiction.

Case 2. Ci(w*) #£0. If a € Cé(w*), then « € C’g(x). For otherwise, similar
to Case 1, we can get n, > 2k + 1, a contradiction. And since dg/(z) < 2t — 1,
there must exist a color § € Cz,(w*) such that 8 € C’g(x) U C&,(:U).

Suppose § € Cg(x). Then 3 € Cz,(wl). For otherwise, we can recolor rw;
with 8 and color w*x with £1, a contradiction. Similarly, we have 8 € C’%(wi),
i =2,3,...,k. Then ng > 2k + 2, a contradiction.

Suppose 3 € CL(z). If f € CQ(w1), or B € Cl(wy) and (z,B) ¢ (w1, ), we
can recolor rwy with 8 and color w*x with S1, a contradiction. If 8 € C;(wl)
and (z, B) <> (w1, ), then g € Cfo(wg). For otherwise, we can recolor xws with
and color w*x with (s, a contradiction. Similarly, 8 € Cfa(wi), 1=3,...,k. Then
ng > 2(k—1)+1+2=2k+1, a contradiction. Thus § € C2(w;). Similarly, we
have g € C’g(wi), i=2,3,...,k. Then ng > 2k + 2, a contradiction.

This completes the proof of Theorem 1(3). |

3. CONJECTURE AND OPEN QUESTION

In [5], it is proved that if G is a graph with A > 3k —3 and k& > 3, then the total
chromatic x”(G) = A + 1. In this paper, we show that if A >3k —3 and k =3
or k = 4, then the linear arboricity la(G) is [%] Thus, we give the following
conjecture.

Conjecture B. If G is a graph with A > 3k — 3 when k is even, A > 3k — 4
when k is odd, k > 3, then the linear arboricity la(G) of G is (%]

We propose the following open question. Is the bound on A is sharp?
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