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Abstract

Let G be a graph with treewidth k. In the paper, it is proved that if
k ≤ 3 and maximum degree ∆ ≥ 5, or k = 4 and ∆ ≥ 9, or ∆ ≥ 4k − 3 and
k ≥ 5, then the linear arboricity la(G) of G is

⌈

∆

2

⌉

.
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1. Introduction

In this paper, all graphs considered are simple and undirected, and all undefined
notation and definitions follow [7]. Let G = (V,E) be a graph, where V (G) is
the vertex set and E(G) is the edge set of G. For v ∈ V (G), let N(v) = {u :
uv ∈ E(G)}. The degree d(v) of a vertex v is |N(v)|, ∆(G) (or simply ∆) is the
maximum degree of G and δ(G) (or simply δ) is the minimum degree of G. For a
subset W ⊆ V , N(W ) =

⋃

w∈W N(w). For a real number x, we use ⌈x⌉ to denote
the least integer not less than x.

A linear forest is a graph in which each component is a path. A t-linear
coloring is a map from E(G) to {1, 2, . . . , t} such that the edges using the same
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color i induce a linear forest for any i (1 ≤ i ≤ t). The linear arboricity la(G)
of a graph G is the minimum number t for which G has a t-linear coloring. It is

easy to see that la(G) ≥
⌈

∆(G)
2

⌉

for any graph G. At the same time, it is easy to

check that for any regular graph, we have la(G) ≥
⌈

∆+1
2

⌉

, and in [1] Akiyama,
Exoo and Harary conjectured the equality holds. Their conjecture is equivalent
to the following linear arboricity conjecture (LAC).

Conjecture A. For any graph G,
⌈

∆
2

⌉

≤ la(G) ≤
⌈

∆+1
2

⌉

.

Conjecture A was proved for complete graphs, complete bipartite graphs,
trees and graphs with ∆ ∈ {3, 4, 5, 6, 8, 10} [1, 2, 8, 9]. In [11, 12], it is also
proved for all planar graphs.

In the paper, we consider the linear arboricity of graphs with bounded
treewidth. The notion of treewidth was first introduced by Robertson and Sey-
mour [10]. For a graph G, a tree decomposition (T,V) consists of a tree T and a
collection V = {Vt ⊆ V (G) : t ∈ V (T )} of bags such that

• V (G) =
⋃

t∈V (T ) Vt,

• for each vw ∈ E(G) there exists a t ∈ V (T ) such that v, w ∈ Vt, and

• if v ∈ Vt1 ∩ Vt2 , then v ∈ Vt for all vertices t that lie on the path connecting
t1 and t2 in T .

A tree decomposition (T,V) of a graph G has width k, if all bags have size at
most k + 1. The treewidth of G, denoted by tw(G), is the smallest number k for
which there exists a width k tree decomposition of G. Treewidth plays a crucial
role in the studies on graph minors. For every fixed k, denote by TWk the set
of graphs with treewidth at most k, which can be characterised by a finite set of
forbidden minors [3].

Let G be a graph of the treewidth k. In [5], it is proved that if ∆ ≥ (k+3)2

2 ,
then the list chromatic index ch′(G) = ∆, or if ∆ ≥ 3k − 3 and k ≥ 3, then the
total chromatic χ′′(G) = ∆ + 1. In this paper, we consider the linear arboricity
of G associated with its treewidth and get the following Theorem 1.

Theorem 1. Let G be a graph with tw(G) ≤ k and ∆ ≤ 2t for some integer t.
Then G has a t-linear coloring if one of the following conditions holds.

(1) k ≤ 3 and t ≥ 3;

(2) k ≤ 4 and t ≥ 5;

(3) k ≥ 5 and t ≥ 2k − 1.

By the theorem, it is easy to check the following corollary.

Corollary 2. Let G be a graph with treewidth k. Then la(G) =
⌈

∆
2

⌉

if k ≤ 3
and ∆ ≥ 5, or k = 4 and ∆ ≥ 9, or k ≥ 5 and ∆ ≥ 4k − 3.
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Since the graph G = K5 − e, the complete graph of order 5 minus one edge,
has tw(G) = 3 and la(G) = 3, Theorem 1(1) is sharp. Moreover, Wu determined
completely the linear arboricity of series-parallel graphs [13] and Halin graphs
[14]. It is known that these two classes of graphs both have the treewidth at
most 3 [3, 4]. So we generalize these results.

2. Proof of Theorem 1

For a positive integer k, we use [k] to denote the set {1, 2, . . . , k}. Suppose
ϕ is a t-linear coloring of G, and the color set is [t]. For a color i ∈ [t], we
call an edge colored with i an i-edge. Let v be a vertex of G, we use Ci

ϕ(v)
to denote the set of colors appear i times at vertex v, where i ∈ {0, 1, 2}. Then
|C0

ϕ(v)|+|C1
ϕ(v)|+|C2

ϕ(v)| = t and |C1
ϕ(v)|+2|C2

ϕ(v)| = d(v). For any two vertices
of u and v, let Cϕ(u, v) = C2

ϕ(u) ∪ C2
ϕ(v) ∪ (C1

ϕ(u) ∩ C1
ϕ(v)), that is, Cϕ(u, v) is

the set of colors that appear at least twice at u and v. A monochromatic path is
a path whose edges receive the same color. We use the notation (u, i) ↔ (v, i) to
denote that there is a monochromatic path from u to v receives the same color i.
Let x1y1 ∈ E(G), we use x1y1 ↔ (u, i) to denote that there is a monochromatic
path from x1 to u receiving the same color i such that y1 is an internal vertex in
the path, and x1y1 6↔ (u, i) to denote such monochromatic path does not exist.

Proof of Theorem 1. We prove the theorem by contradiction. Let G = (V,E)
be a counterexample to Theorem 1 with |V (G)| + |E(G)| as small as possible.

First, we describe some known lemmas for G. Note that proofs of Lemmas
3, 5 and 6 in [6] do not use planarity, so the results can apply to general graphs.
The proof of Lemma 3 can be found in [6, Lemma 4], Lemma 5 can be found in
[6, Lemma 5 and Lemma 6].

Lemma 3 [6]. For every edge uv ∈ E(G), d(u) + d(v) ≥ 2t + 2 ≥ ∆ + 2.

By the lemma, we have δ(G) ≥ 2. At the same time, we may apply Lemma
3 in [5] with parameters ∆0 = 2t, and obtain the following result.

Lemma 4 [5]. There are disjoint vertex sets U,W ⊆ V (G) and a vertex x ∈ U ,

such that

(a) W is stable with N(W ) ⊆ U ;

(b) d(w) ≤ k for every w ∈ W ;

(c) W ⊆ N(x) ⊆ W ∪ U ; and

(d) |U | ≤ k + 1 and |W | ≥ 2t + 2 − 2k.

In Lemma 4, W is stable means that W is a vertex independent set, that is,
the vertices of W are pairwise nonadjacent.
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Lemma 5 [6]. Every vertex is adjacent to at most one 2-vertex, and for any

2-vertex of G, its two neighbors are adjacent.

Proof of (1). We begin to prove (1). According to [8], if ∆(G) ≤ 5, then G has
a 3-linear coloring. Henceforth, ∆(G) ≥ 6. In the following figures, the vertices
marked by • have no other edge incident with it and any edge marked by broken
line means that it does not exist.

Lemma 6 [6]. G contains no subgraph isomorphic to one of configurations de-

picted in Figure 1.
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Figure 1. Forbidden configurations in Lemma 6.

The proof of (a) can be found in [6, Lemma 8], (b) can be found in [6, Lemma
7], (c) can be extracted from [6, Lemma 11], (d) can be found in [6, Corollary
13].

Lemma 7 [15]. G contains no subgraph isomorphic to one of configurations

depicted in Figure 2. In configuration (b), d(w) ≤ 3 and w is incident with a

3-cycle.
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Figure 2. Forbidden configurations in Lemma 7.

Proof. (a) Suppose G has a configuration as depicted in Figure 2(a). Then
G′ = G − {u, v} + {xy, yz, xz} has a t-coloring ϕ. Without loss of generality,
assume that ϕ(xy) 6= ϕ(xz). We can recolor ux, uy with ϕ(xy), vy, vz with
ϕ(yz) and uz, vx with ϕ(xz) to obtain a t-linear coloring of G, a contradiction.
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(b) The detailed proof of (b) can be found in [15]. The following is a sketch
of the proof.

Suppose G has a configuration as depicted in Figure 2(b). By Lemma 6(b),
|{xy, yz, xz} ∩ E(G)| = 1 or 3, then we consider the following two cases:

Case 1. |{xy, yz, xz}∩E(G)| = 1. Without loss of generality, we assume that
xz ∈ E(G) and xy, yz /∈ E(G). Then G′ = G−{u, v}+ {xy, yz} has a t-coloring
ϕ. And we can obtain a t-linear coloring of G by the method of color exchange,
a contradiction.

Case 2. |{xy, yz, xz} ∩ E(G)| = 3. Then G′ = G− {u, v} has a t-coloring ϕ.
In the same way, we can prove that G has a t-linear coloring, a contradiction. �

Lemma 8. For every vertex w ∈ W , d(w) = 3.

Proof. Suppose there exists a vertex w∗ ∈ W such that d(w∗) = 2. Let N(w∗) =
{x, u1} ⊆ U . Then xu1 ∈ E(G) by Lemma 5. By Lemma 3, we have d(x) ≥ 2t ≥
6. Since |U | ≤ 4 and N(x) ⊆ U ∪W , we have |W | ≥ 3. Let {w∗, w1, w2} ⊆ W .
Then d(w1) = d(w2) = 3 by Lemma 5 and w1u1, w2u1 /∈ E(G) by Figure 1(a).
Since |U | ≤ 4, N(w1) = N(w2). Hence G has a configuration as depicted in
Figure 2(b), a contradiction. �

By Lemma 8 and Lemma 4 (b), the result of Theorem 1(1) is clear when
k ≤ 2.

Lemma 9. |U | = 4.

Proof. By Lemma 4 and Lemma 8, 3 ≤ |U | ≤ 4. Suppose |U | = 3 and U =
{x, y, z}. Since d(x) ≥ 2t−1 ≥ 5 and N(x) ⊆ U∪W , |W | ≥ 3. Let {u, v, w} ⊆ W .
Then d(u) = d(v) = d(w) = 3 and N(u) = N(v) = N(w) = U . If {xy, yz, xz} ∩
E(G) = ∅, then G has a configuration as depicted in Figure 2(a); otherwise G
has a configuration as depicted in Figure 2(b), a contradiction. Hence |U | = 4. �

By Lemma 9, let U = {x, u1, u2, u3}. By Lemma 3 and Lemma 4, |W | ≥
2t− 1 − |N(x) ∩ U | ≥ 5 − |N(x) ∩ U | ≥ 2. We consider the following four cases.

Case 1. |{xu1, xu2, xu3} ∩ E(G)| = 3. Without loss of generality, assume
that w ∈ W and N(w) = {x, u1, u2}. Then u1u2 ∈ E(G) by Figure 1(b). Since
x with two 3-neighbors, and the 3-neighbor w is incident with a triangle xu1w,
we have d(x) = ∆ ≥ 6. For otherwise, G has a configuration as depicted in 1(c),
a contradiction. Since |U | = 4, |W | ≥ 3. Let {w,w1, w2} ⊆ W . Then for each
i(1 ≤ i ≤ 2), wi is incident with at least one 3-cycle. If N(w) = N(w1), then G has
a configuration as depicted in Figure 2(b), a contradiction. So N(w) 6= N(w1).
It follows that w1u3 ∈ E(G). Since |U | = 4, |N(w) ∩N(w1)| = 2. Without loss
of generality, assume that N(w) ∩ N(w1) = {x, u1}. These implies that G has
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two 3-vertices w and w1 such that N(w) = {x, u1, u2}, N(w1) = {x, u1, u3} and
{wu2, w1u3, xu1, xu2, xu3} ⊆ E(G). Thus Figure 1(d) appears, a contradiction.

Case 2. |{xu1, xu2, xu3}∩E(G)| = 2. Without loss of generality, assume xu1,
xu2 ∈ E(G) and xu3 /∈ E(G). Since x has at least two 3-neighbors, and each 3-
neighbor w ∈ W is incident with a triangle xu1w or xu2w, we have d(x) = ∆ ≥ 6
by Figure 1(c). It follows that |W | ≥ 4. Since W ⊆ N(x), |N(w′)∩{u1, u2, u3}| =
2 for any w′ ∈ W . It follows that there are two vertices u, v ∈ W such that
N(u) = N(v). Note that any vertex in W is incident with at least one 3-cycle.
So G has a configuration as depicted in Figure 2(b), a contradiction.

Case 3. |{xu1, xu2, xu3} ∩ E(G)| = 1. Without loss of generality, assume
that xu1 ∈ E(G), xu2 /∈ E(G), xu3 /∈ E(G). If there exists a vertex w ∈ W
such that wu1 ∈ E(G), without loss of generality, suppose w∗u1 ∈ E(G). Then
d(x) = ∆ ≥ 6 by Figure 1(c). Since |{xu1, xu2, xu3} ∩ E(G)| = 1, we have
|W | ≥ 5. Thus at least two vertices of W\{w∗} have the same neighbors. And
because w∗ is incident with a 3-face, G has a configuration as depicted in Figure
2(b), a contradiction. Otherwise, if each vertex w ∈ W is not adjacent to u1,
then N(w) = {x, u2, u3}. Since |{xu1, xu2, xu3} ∩ E(G)| = 1 and d(x) ≥ 5, we
have |W | ≥ 4. Thus at least four vertices of degree 3 have the same neighbors.
Since xu2, xu3 /∈ E(G), we have u2u3 ∈ E(G) by Figure 2(a). Then G has a
configuration as depicted in Figure 2(b), a contradiction.

Case 4. |{xu1, xu2, xu3}∩E(G)| = 0. Then |W | ≥ 5. Let {w1, w2, w3, w4, w5}
⊆ W . At the same time, at least two vertices of W have the same neighbors.
Without loss of generality, assume that N(w1) = N(w2) = {x, u1, u2}. Since xu1,
xu2 /∈ E(G), we have u1u2 ∈ E(G) by Lemma 7. Similarly, |N(wi)∩{u1, u2}| = 1
for any i ∈ {3, 4, 5}. It follows that there are at least two vertices in {w3, w4, w5}
having the same neighbors. Hence G has a configuration as depicted in Figure
2(b), a contradiction too.

All these contradictions imply that (1) holds.

Proof of (2). Next, we begin to prove (2). By (1), we assume that tw(G) = 4.
According to [8], if ∆ ≤ 8, then G has a 5-linear coloring. Henceforth ∆ ≥ 9.
Let w∗ ∈ W ⊆ N(x). Then G′ = G − w∗x has a t-linear coloring ϕ. Denote
ni = |{ϕ(uw) = i : u ∈ U\{x}, w ∈ W}| for any i ∈ [t], and W ′ = {w ∈ W :
ϕ(xw) ∈ C0

ϕ(w∗)}. We have the five fundamental facts.

1© Cϕ(w∗, x) = [t];

2© If i ∈ C1
ϕ(w∗), then i ∈ C2

ϕ(x), or i ∈ C1
ϕ(x) and (w∗, i) ↔ (x, i);

3© |W ′| ≥ 2|C0
ϕ(w∗)| − (|U | − 1) ≥ 2|C0

ϕ(w∗)| − 4;

4© |W | = |N(x)\U | ≥ d(x) − (|U | − 1) ≥ 2t− 2 − d(w∗);

5© ni ≤ 2(|U | − 1) ≤ 2k = 8 for each i ∈ [t].
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In the following, we will use the structure properties of G and the method of
color exchange to obtain a contradiction to prove (2). We consider the following
three cases.

Case 1. d(w∗) = 2, that is, dG′(w∗) = 1. Without loss of generality, assume
that C1

ϕ(w∗) = {1}. Then C0
ϕ(w∗) = C2

ϕ(x) = [t] \ {1}, 1 ∈ C1
ϕ(x) and (x, 1) ↔

(w∗, 1) by 1© and 2©. Since d(x)+d(w∗) ≥ 2t+2 ≥ 12 and |U | ≤ 5, |W \w∗| ≥ 5.
It follows that |W ′| ≥ 4. For any w ∈ W ′, if 1 /∈ C2

ϕ(w), we can recolor xw with
1 and color w∗x with ϕ(xw) to obtain a t-linear coloring of G, a contradiction.
So 1 ∈ C2

ϕ(w) for any w ∈ W ′ and it follows from C1
ϕ(w∗) = {1} that n1 ≥

2 × |W ′| + 1 ≥ 9, a contradiction with 5©.

Case 2. d(w∗) = 3.

Subcase 2.1. C2
ϕ(w∗) 6= ∅. Without loss of generality, assume that C2

ϕ(w∗) =
{1}. Then C0

ϕ(w∗) = C2
ϕ(x) = [t] \ {1} and 1 ∈ C0

ϕ(x) ∪ C1
ϕ(x). Since t ≥ 5 and

|U\x| ≤ 4, |W ′| ≥ 4. If there is a vertex w ∈ W ′ such that 1 ∈ C0
ϕ(w), then

we can recolor xw with 1 and color w∗x with ϕ(xw) to obtain a t-linear coloring
of G, a contradiction. So 1 ∈ C1

ϕ(w) ∪ C2
ϕ(w) for any w ∈ W ′. At the same

time, if there are two vertices w′, w′′ ∈ W such that 1 ∈ C1
ϕ(w′) ∩ C1

ϕ(w′′), then
it is impossible that (w, 1) ↔ (x, 1) for any w ∈ {w′, w′′}(if (x, 1) exists). So
there is at most one element w ∈ W ′ such that 1 ∈ C1

ϕ(w), and it follows that
n1 ≥ 2 × (1 + |W ′| − 1) + 1 ≥ 9, a contradiction with 5©.

Subcase 2.2. C2
ϕ(w∗) = ∅. Without loss of generality, assume that C1

ϕ(w∗) =
{1, 2}. Then {3, 4, . . . , t} ⊆ C2

ϕ(x) and {1, 2} ⊂ C1
ϕ(x) ∪ C2

ϕ(x). Since dG′(x) ≤
2t − 1, |{1, 2} ∩ C1

ϕ(x)| ≥ 1. Without loss of generality, assume that 1 ∈ C1
ϕ(x).

Then (w∗, 1) ↔ (x, 1) by 2©. Since t ≥ 5, |W ′| ≥ 2. Let w1, w2 ∈ W ′. Then
{ϕ(xw1), ϕ(xw2)}∩{1, 2} = ∅ by the definition of W ′. If 1 /∈ C2

ϕ(w1), then we can
recolor xw1 with 1 and color w∗x with ϕ(xw1), a contradiction. So 1 ∈ C2

ϕ(w1).
By the same argument, we have 1 ∈ C2

ϕ(w2).

Suppose that 2 ∈ C1
ϕ(x). Then (x, 2) ↔ (w∗, 2) by 2©. Since dG(w1) ≤ 4,

2 /∈ C2
ϕ(w1). Thus we can recolor xw1 with 2 and color w∗x with ϕ(xw1), a

contradiction, too. Hence 2 ∈ C2
ϕ(x), that is, {2, 3, . . . , t} = C2

ϕ(x).

Since |U\x| ≤ 4, there exist w3, w4 ∈ N(x) ∩ (W \ {w∗, w1, w2}) such that
ϕ(xw3) 6= 1 and ϕ(xw4) 6= 1. Similarly, we also have that for any wi(i = 3 or 4),
if ϕ(xwi) 6= 2, that is, ϕ(xwi) ∈ {3, . . . , t}, then 1 ∈ C2

ϕ(wi). At the same time, if
1 ∈ C2

ϕ(w3) ∩ C2
ϕ(w4), then n1 ≥ 9, a contradiction. So we assume, without loss

of generality, that 1 /∈ C2
ϕ(w4). It follows that ϕ(xw4) = 2.

Suppose that ϕ(xw3) 6= 2. Then first we recolor xw4 with 1. Next, if
(w∗, 2) ↔ (x, 2), we recolor xw1 with 2, and color w∗x with ϕ(xw1); otherwise,
we color w∗x with 2. Thus we obtain a t-linear coloring of G, a contradiction. So
ϕ(xw3) = 2.
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Thus ϕ(xw3) = ϕ(xw4) = 2 and 1 /∈ C2
ϕ(w4). Suppose that 1 /∈ C2

ϕ(w3).
First, we recolor xw3 with 1. Then, if xw4 ↔ (w∗, 2), we can recolor xw1 with
2 and color w∗x with ϕ(xw1); otherwise we color w∗x with 2. Thus a t-linear
coloring of G is obtained, a contradiction. So 1 ∈ C2

ϕ(w3).
Finally, we obtain a t-linear coloring of G as follows. First, we recolor xw4

with 1, color w∗x with 2. Then, if xw3 ↔ (w∗, 2), then 2 ∈ C2
ϕ(w3) and we

exchange the coloring of xw1 and xw3.

Case 3. d(w∗) = 4.

Subcase 3.1. C2
ϕ(w∗) 6= ∅. Without loss of generality, assume that C2

ϕ(w∗) =
{1} and C1

ϕ(w∗) = {2}. Then |W ′| ≥ 2. Let w1, w2 ∈ W ′. It follows from
2 ∈ C1

ϕ(w∗) and 2© that 2 ∈ C1
ϕ(x) and (w∗, 2) ↔ (x, 2), or 2 ∈ C2

ϕ(x).

Subcase 3.1.1. 2 ∈ C1
ϕ(x) and (w∗, 2) ↔ (x, 2). Then it is similar to prove

that 2 ∈ C2
ϕ(w1) ∩ C2

ϕ(w2). This implies that 1 /∈ C2
ϕ(w1) ∪ C2

ϕ(w2).
Suppose 1 ∈ C0

ϕ(x). We can recolor xw1 with 1 and color w∗x with ϕ(xw1)
to obtain a t-linear coloring of G, a contradiction.

Suppose 1 ∈ C1
ϕ(x). Then 1 ∈ C1

ϕ(w1) and (w1, 1) ↔ (x, 1). For otherwise,
we can recolor xw1 with 1 and color w∗x with ϕ(xw1), a contradiction. Since
1 /∈ C2

ϕ(w2), we can recolor xw2 with 1 and color w∗x with ϕ(xw2) to obtain a
t-linear coloring of G, a contradiction.

Suppose 1 ∈ C2
ϕ(x). Then dG′(x) = 2t − 1 ≥ 9 and we can get that

|W\{w∗}| = m ≥ 5. Assume that W = {w∗, w1, . . . , wm}. If |W ′| ≥ 4, with-
out loss of generality, assume that ϕ(xw3), ϕ(xw4) /∈ {1, 2}. It is easy to see
that 2 ∈ C2

ϕ(w3). For otherwise, we can recolor xw3 with 2 and color w∗x with
ϕ(xw3), a contradiction. Similarly, 2 ∈ C2

ϕ(w4). Thus n2 ≥ 9, a contradiction. If
|W ′| = 3, since |U | ≤ 5 and t ≥ 5, there must exist an edge xwi which colored
by 1. Without loss of generality, assume that ϕ(xw3) /∈ {1, 2} and ϕ(xw4) = 1.
Then 2 ∈ C2

ϕ(wi), i = 1, 2, 3. If 2 /∈ C2
ϕ(w4), first we can recolor xw4 with 2.

Next, if (x, 1) ↔ (w1, 1), we can recolor xw2 with 1 and color w∗x with ϕ(xw2)
to obtain a t-linear coloring of G. Otherwise, we can recolor xw1 with 1 and
color w∗x with ϕ(xw1), a contradiction. Thus 2 ∈ C2

ϕ(w4). We have n2 ≥ 9, a
contradiction. If |W ′| = 2, then we can assume that ϕ(xw3) = ϕ(xw4) = 1. If
2 /∈ C2

ϕ(w3), first we can recolor xw3 with 2. Next, if (x, 1) ↔ (w1, 1), we can
recolor xw2 with 1 and color w∗x with ϕ(xw2) to obtain a t-linear coloring of G.
Otherwise, we can recolor xw1 with 1 and color w∗x with ϕ(xw1), a contradiction.
Thus 2 ∈ C2

ϕ(w3). Similarly 2 ∈ C2
ϕ(w4). Then n2 ≥ 9, a contradiction.

Subcase 3.1.2. 2 ∈ C2
ϕ(x). Then 1 ∈ C0

ϕ(x) or 1 ∈ C1
ϕ(x) and dG′(x) ≥

2(t − 1) ≥ 8. Since |U | ≤ 5, we have |W\{w∗}| = m ≥ 4. Assume that W =
{w∗, w1, . . . , wm} and ϕ(xw3) 6= 1, ϕ(xw4) 6= 1.

Suppose 1 ∈ C0
ϕ(x). Then 1 ∈ C2

ϕ(w1). For otherwise, we can recolor xw1

with 1 and color w∗x with ϕ(xw1), a contradiction. Similarly, 1 ∈ C2
ϕ(w2). If
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ϕ(xw3) 6= 2, similarly 1 ∈ C2
ϕ(w3). If ϕ(xw3) = 2, we also have 1 ∈ C2

ϕ(w3).
For otherwise, we can recolor xw3 with 1 to obtain a new t-linear coloring ϕ′ of
G′, where 2 ∈ C1

ϕ′(x), which satisfies Subcase 3.1.1, a contradiction. Thus 1 ∈

C2
ϕ(w3). In the same way, we have 1 ∈ C2

ϕ(w4). Then n1 ≥ 10, a contradiction.

Now suppose 1 ∈ C1
ϕ(x).

First we consider the case that |W ′| ≥ 4. Without loss of generality, assume
that ϕ(xw3) /∈ {1, 2} and ϕ(xw4) /∈ {1, 2}. Then 1 ∈ C1

ϕ(w1) and (x, 1) ↔
(w1, 1), or 1 ∈ C2

ϕ(w1). For otherwise, we can recolor xw1 with 1 and color
w∗x with ϕ(xw1), a contradiction. If 1 ∈ C1

ϕ(w1) and (x, 1) ↔ (w1, 1), then
1 ∈ C2

ϕ(w2). For otherwise, we can recolor xw2 with 1 and color w∗x with
ϕ(xw2), a contradiction. Similarly, 1 ∈ C2

ϕ(w3), 1 ∈ C2
ϕ(w4). Then n1 ≥ 9, a

contradiction. Thus 1 ∈ C2
ϕ(w1). Similarly, we have 1 ∈ C2

ϕ(wi), i = 2, 3, 4. Then
n1 ≥ 10, a contradiction.

Secondly, we consider the case that |W ′| = 3. Without loss of generality,
assume that ϕ(xw3) 6= 2, ϕ(xw4) = 2. Then 1 ∈ C1

ϕ(w1) and (x, 1) ↔ (w1, 1),
or 1 ∈ C2

ϕ(w1). If 1 ∈ C1
ϕ(w1) and (x, 1) ↔ (w1, 1), then 1 ∈ C2

ϕ(w2) and
1 ∈ C2

ϕ(w3). If 1 /∈ C2
ϕ(w4), we can recolor xw4 with 1 to obtain a new t-linear

coloring ϕ′ of G′ which satisfies 2 ∈ C1
ϕ′(x), by Subcase 3.1.1, a contradiction.

Thus 1 ∈ C2
ϕ(w4). We have n1 ≥ 9, a contradiction. Thus 1 ∈ C2

ϕ(w1). Similarly,
1 ∈ C2

ϕ(w2) and 1 ∈ C2
ϕ(w3). If 1 ∈ C0

ϕ(w4), we can recolor xw4 with 1 to get a
new t-linear coloring ϕ′ of G′ which satisfies 2 ∈ C1

ϕ′(x), a contradiction. Thus

1 /∈ C0
ϕ(w4). We have n1 ≥ 9, a contradiction.

Finally, we consider the case that |W ′| = 2. Without loss of generality,
assume that ϕ(xw3) = ϕ(xw4) = 2. Then 1 /∈ C0

ϕ(w1). If 1 ∈ C1
ϕ(w1), then

(x, 1) ↔ (w1, 1). We can get 1 ∈ C2
ϕ(w2). If 1 /∈ C2

ϕ(w3), we can recolor xw3

with 1 to get a contradiction. Thus 1 ∈ C2
ϕ(w3). Similarly, 1 ∈ C2

ϕ(w4). Then
n1 ≥ 9, a contradiction. Therefore 1 ∈ C2

ϕ(w1) and 1 ∈ C2
ϕ(w2). If 1 ∈ C0

ϕ(w3),
or 1 ∈ C1

ϕ(w3) and (x, 1) 6↔ (w3, 1), we can recolor xw3 with 1 to get a new
t-linear coloring ϕ′ of G′ such that 2 ∈ C1

ϕ′(x), a contradiction. If 1 ∈ C1
ϕ(w3)

and (x, 1) ↔ (w3, 1), then 1 ∈ C2
ϕ(w4). For otherwise, we can recolor xw4 with

1 to get a contradiction. We have n1 ≥ 9, a contradiction. If 1 ∈ C2
ϕ(w3), since

1 /∈ C0
ϕ(w4), we also have n1 ≥ 9, a contradiction.

Subcase 3.2. C2
ϕ(w∗) = ∅. Without loss of generality, assume that C1

ϕ(w∗) =
{1, 2, 3}. Then i /∈ C0

ϕ(x), i = 1, 2, 3, and at least one of them appears exactly
one time on x. Without loss of generality, assume that 1 ∈ C1

ϕ(x). Then (x, 1) ↔
(w∗, 1).

Since dG′(x) ≥ 2t− 3 ≥ 7 and |U | ≤ 5, we have |W\{w∗}| = m ≥ 3. Assume
that W = {w∗, w1, . . . , wm}.

Subcase 3.2.1. 2 ∈ C1
ϕ(x) or 3 ∈ C1

ϕ(x). Without loss of generality, assume
that 2 ∈ C1

ϕ(x). Then (x, 2) ↔ (w∗, 2).
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Suppose |W ′| ≥ 1. Without loss of generality, assume that ϕ(xw1) /∈ {1, 2, 3}.
Then 1 ∈ C2

ϕ(w1). For otherwise, we can recolor xw1 with 1 and color w∗x with
ϕ(xw1), a contradiction. Since d(w1) ≤ 4, we have 2 /∈ C2

ϕ(w1). Thus we can
recolor xw1 with 2 and color w∗x with ϕ(xw1) to obtain a t-linear coloring of G,
a contradiction.

Now suppose |W ′| = 0. Without loss of generality, assume that ϕ(xwi) = i,
i = 1, 2, 3. If 1 /∈ C2

ϕ(w2), we can recolor xw2 with 1 and color w∗x with 2,
a contradiction. Thus 1 ∈ C2

ϕ(w2). Since 2 ∈ C1
ϕ(x) and (x, 2) ↔ (w∗, 2), we

have 2 ∈ C2
ϕ(w2). Then 3 ∈ C0

ϕ(w2) for d(w2) ≤ 4. Similarly, 3 ∈ C0
ϕ(w1). If

1 /∈ C2
ϕ(w3), we can recolor xw3 with 1, xw1 with 3 and color w∗x with 1 to

obtain a t-linear coloring of G, a contradiction. Thus 1 ∈ C2
ϕ(w3). Similarly

2 ∈ C2
ϕ(w3). But it is impossible since d(w3) ≤ 4.

Subcase 3.2.2. 2 ∈ C2
ϕ(x) and 3 ∈ C2

ϕ(x). Since dG′(x) ≥ 2t − 1 ≥ 9 and
|U | ≤ 5, we have |W\{w∗}| = m ≥ 5.

Suppose |W ′| = 0. Without loss of generality, assume that ϕ(xw1) = 1,
ϕ(xw2) = ϕ(xw3) = 2 and ϕ(xw4) = ϕ(xw5) = 3. If 1 /∈ C2

ϕ(w2), first we can
recolor xw2 with 1. Then xw3 ↔ (w∗, 2). For otherwise, we can color w∗x with 2
to obtain a t-linear coloring of G. If 2 /∈ C2

ϕ(w1), we can recolor xw1 with 2 and
color w∗x with 1. Thus 2 ∈ C2

ϕ(w1). Since 1 ∈ C1
ϕ(x) and (x, 1) ↔ (w∗, 1), we

have 1 ∈ C2
ϕ(w1). Thus we can get that 3 ∈ C0

ϕ(w1) for d(w1) ≤ 4. If 2 /∈ C2
ϕ(w4),

we can recolor xw4 with 2, xw1 with 3 and color w∗x with 1. Thus 2 ∈ C2
ϕ(w4).

Now we can recolor xw4 with 1, xw2 with 2, xw1 with 3 and color w∗x with 1, a
contradiction. Therefore 1 ∈ C2

ϕ(w2). Similarly we have 1 ∈ C2
ϕ(wi), i = 3, 4, 5.

Then n2 ≥ 10, a contradiction.

Suppose |W ′| = 1. Without loss of generality, assume that ϕ(xw1) /∈ {1, 2, 3},
ϕ(xw2) = 2 and ϕ(xw3) = ϕ(xw4) = 3. Then 1 ∈ C2

ϕ(w1). For otherwise, we can
recolor xw1 with 1 and color w∗x with ϕ(xw1). If 1 /∈ C2

ϕ(w3), first we can recolor
xw3 with 1. We can get xw4 ↔ (w∗, 3). Next we can recolor xw1 with 3 and
color w∗x with ϕ(xw1), a contradiction. Thus 1 ∈ C2

ϕ(w3). Similarly 1 ∈ C2
ϕ(w2)

and 1 ∈ C2
ϕ(w4). Then n1 ≥ 9, a contradiction.

Suppose |W ′| = 2. Without loss of generality, assume that ϕ(xw1), ϕ(xw2) /∈
{1, 2, 3}, ϕ(xw3) = α, ϕ(xw4) = β, α, β ∈ {2, 3}. Then 1 ∈ C2

ϕ(w1) ∩ C2
ϕ(w2). If

1 /∈ C2
ϕ(w3), first we recolor xw3 with 1. If (x, α) 6↔ (w∗, α), we can color w∗x

with α. Otherwise, we can recolor xw1 with α and color w∗x with ϕ(xw1) to
get a t-linear coloring of G. Thus 1 ∈ C2

ϕ(w3). Similarly 1 ∈ C2
ϕ(w4). Therefore

n1 ≥ 9, a contradiction.

Suppose |W ′| = 3. Without loss of generality, assume that ϕ(xw1), ϕ(xw2),
ϕ(xw3) /∈ {1, 2, 3} and ϕ(xw4) = 2. Then 1 ∈ C2

ϕ(wi), i = 1, 2, 3. If 1 /∈ C2
ϕ(w4),

first we can recolor xw4 with 1. Then if (x, 2) 6↔ (w∗, 2), we can color w∗x with 2.
Otherwise, we can recolor xw1 with 2 and color w∗x with ϕ(xw1), a contradiction.
Thus 1 ∈ C2

ϕ(w4). We have n1 ≥ 9, a contradiction.
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Suppose |W ′| ≥ 4. Without loss of generality, assume that ϕ(xwi) /∈ {1, 2, 3},
i = 1, 2, 3, 4. Then it is easy to get that 1 ∈ C2

ϕ(wi), i = 1, 2, 3, 4. Thus n1 ≥ 9, a
contradiction.

Hence, we complete the proof of Theorem 1(2).

Proof of (3). Finally, we begin to prove (3). By the minimality of G, G′ =
G−w∗x has a t-linear coloring ϕ. |W ′| ≥ 2|C0

ϕ(w∗)|−(|U |−1) ≥ 2|C0
ϕ(w∗)|−k ≥

2[2k − 1 − (k − 1)] − k = k. Without loss of generality, assume that ϕ(xwi) =
βi ∈ C0

ϕ(w∗), i = 1, 2, . . . , k.

Case 1. C2
ϕ(w∗) = ∅. Without loss of generality, assume that C1

ϕ(w∗) =
{α1, α2, . . . , αm}, where m = d(w∗) − 1 ≤ k − 1.

Then αi ∈ C1
ϕ(x) ∪ C2

ϕ(x), i = 1, 2, . . . ,m. Since dG′(x) ≤ 2t − 1, there
must exist a color α ∈ C1

ϕ(w∗) such that α ∈ C1
ϕ(x). Then (x, α) ↔ (w∗, α). If

α /∈ C2
ϕ(w1), we can recolor xw1 with α and color w∗x with β1 to obtain a t-linear

coloring of G, a contradiction. Thus α ∈ C2
ϕ(w1). Similarly, we have α ∈ C2

ϕ(wi),
i = 2, 3, . . . , k. Then nα ≥ 2k + 1, a contradiction.

Case 2. C2
ϕ(w∗) 6= ∅. If α ∈ C1

ϕ(w∗), then α ∈ C2
ϕ(x). For otherwise, similar

to Case 1, we can get nα ≥ 2k + 1, a contradiction. And since dG′(x) ≤ 2t − 1,
there must exist a color β ∈ C2

ϕ(w∗) such that β ∈ C0
ϕ(x) ∪ C1

ϕ(x).

Suppose β ∈ C0
ϕ(x). Then β ∈ C2

ϕ(w1). For otherwise, we can recolor xw1

with β and color w∗x with β1, a contradiction. Similarly, we have β ∈ C2
ϕ(wi),

i = 2, 3, . . . , k. Then nβ ≥ 2k + 2, a contradiction.

Suppose β ∈ C1
ϕ(x). If β ∈ C0

ϕ(w1), or β ∈ C1
ϕ(w1) and (x, β) 6↔ (w1, β), we

can recolor xw1 with β and color w∗x with β1, a contradiction. If β ∈ C1
ϕ(w1)

and (x, β) ↔ (w1, β), then β ∈ C2
ϕ(w2). For otherwise, we can recolor xw2 with β

and color w∗x with β2, a contradiction. Similarly, β ∈ C2
ϕ(wi), i = 3, . . . , k. Then

nβ ≥ 2(k− 1) + 1 + 2 = 2k + 1, a contradiction. Thus β ∈ C2
ϕ(w1). Similarly, we

have β ∈ C2
ϕ(wi), i = 2, 3, . . . , k. Then nβ ≥ 2k + 2, a contradiction.

This completes the proof of Theorem 1(3).

3. Conjecture and Open Question

In [5], it is proved that if G is a graph with ∆ ≥ 3k− 3 and k ≥ 3, then the total
chromatic χ′′(G) = ∆ + 1. In this paper, we show that if ∆ ≥ 3k − 3 and k = 3
or k = 4, then the linear arboricity la(G) is

⌈

∆
2

⌉

. Thus, we give the following
conjecture.

Conjecture B. If G is a graph with ∆ ≥ 3k − 3 when k is even, ∆ ≥ 3k − 4
when k is odd, k ≥ 3, then the linear arboricity la(G) of G is

⌈

∆
2

⌉

.

We propose the following open question. Is the bound on ∆ is sharp?
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[6] M. Cygan, J.-F. Hou,  L. Kowalik, B. Lužar and J.L. Wu, A planar linear arboricity

conjecture, J. Graph Theory 69 (2012) 403–425.
https://doi.org/10.1002/jgt.20592

[7] R. Diestel, Graph Theory, 4th Edition (Springer-Verlag, New York, 2010).
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