THE LINEAR ARBORICITY OF GRAPHS WITH LOW TREEWIDTH

Xiang Tan
School of Mathematics and Quantitative Economics
Shandong University of Finance and Economics
Jinan, 250014, China
e-mail: xtandw@126.com
AND
Jian-Liang Wu
School of Mathematics
Shandong University
Jinan, 250100, China
e-mail: jlwu@sdu.edu.cn

Abstract

Let G be a graph with treewidth k. In the paper, it is proved that if $k \leq 3$ and maximum degree $\Delta \geq 5$, or $k=4$ and $\Delta \geq 9$, or $\Delta \geq 4 k-3$ and $k \geq 5$, then the linear arboricity $l a(G)$ of G is $\left\lceil\frac{\Delta}{2}\right\rceil$.

Keywords: graph, minor, linear arboricity, linear forest, treewidth.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

In this paper, all graphs considered are simple and undirected, and all undefined notation and definitions follow [7]. Let $G=(V, E)$ be a graph, where $V(G)$ is the vertex set and $E(G)$ is the edge set of G. For $v \in V(G)$, let $N(v)=\{u$: $u v \in E(G)\}$. The degree $d(v)$ of a vertex v is $|N(v)|, \Delta(G)$ (or simply Δ) is the maximum degree of G and $\delta(G)$ (or simply δ) is the minimum degree of G. For a subset $W \subseteq V, N(W)=\bigcup_{w \in W} N(w)$. For a real number x, we use $\lceil x\rceil$ to denote the least integer not less than x.

A linear forest is a graph in which each component is a path. A t-linear coloring is a map from $E(G)$ to $\{1,2, \ldots, t\}$ such that the edges using the same
color i induce a linear forest for any $i(1 \leq i \leq t)$. The linear arboricity $l a(G)$ of a graph G is the minimum number t for which G has a t-linear coloring. It is easy to see that $l a(G) \geq\left\lceil\frac{\Delta(G)}{2}\right\rceil$ for any graph G. At the same time, it is easy to check that for any regular graph, we have $l a(G) \geq\left\lceil\frac{\Delta+1}{2}\right\rceil$, and in [1] Akiyama, Exoo and Harary conjectured the equality holds. Their conjecture is equivalent to the following linear arboricity conjecture (LAC).
Conjecture A. For any graph G, $\left\lceil\frac{\Delta}{2}\right\rceil \leq l a(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil$.
Conjecture A was proved for complete graphs, complete bipartite graphs, trees and graphs with $\Delta \in\{3,4,5,6,8,10\}[1,2,8,9]$. In [11, 12], it is also proved for all planar graphs.

In the paper, we consider the linear arboricity of graphs with bounded treewidth. The notion of treewidth was first introduced by Robertson and Seymour [10]. For a graph G, a tree decomposition (T, \mathcal{V}) consists of a tree T and a collection $\mathcal{V}=\left\{V_{t} \subseteq V(G): t \in V(T)\right\}$ of bags such that

- $V(G)=\bigcup_{t \in V(T)} V_{t}$,
- for each $v w \in E(G)$ there exists a $t \in V(T)$ such that $v, w \in V_{t}$, and
- if $v \in V_{t_{1}} \cap V_{t_{2}}$, then $v \in V_{t}$ for all vertices t that lie on the path connecting t_{1} and t_{2} in T.
A tree decomposition (T, \mathcal{V}) of a graph G has width k, if all bags have size at most $k+1$. The treewidth of G, denoted by $t w(G)$, is the smallest number k for which there exists a width k tree decomposition of G. Treewidth plays a crucial role in the studies on graph minors. For every fixed k, denote by $T W_{k}$ the set of graphs with treewidth at most k, which can be characterised by a finite set of forbidden minors [3].

Let G be a graph of the treewidth k. In [5], it is proved that if $\Delta \geq \frac{(k+3)^{2}}{2}$, then the list chromatic index $\operatorname{ch}^{\prime}(G)=\Delta$, or if $\Delta \geq 3 k-3$ and $k \geq 3$, then the total chromatic $\chi^{\prime \prime}(G)=\Delta+1$. In this paper, we consider the linear arboricity of G associated with its treewidth and get the following Theorem 1.

Theorem 1. Let G be a graph with $t w(G) \leq k$ and $\Delta \leq 2 t$ for some integer t. Then G has a t-linear coloring if one of the following conditions holds.
(1) $k \leq 3$ and $t \geq 3$;
(2) $k \leq 4$ and $t \geq 5$;
(3) $k \geq 5$ and $t \geq 2 k-1$.

By the theorem, it is easy to check the following corollary.
Corollary 2. Let G be a graph with treewidth k. Then la $(G)=\left\lceil\frac{\Delta}{2}\right\rceil$ if $k \leq 3$ and $\Delta \geq 5$, or $k=4$ and $\Delta \geq 9$, or $k \geq 5$ and $\Delta \geq 4 k-3$.

Since the graph $G=K_{5}-e$, the complete graph of order 5 minus one edge, has $t w(G)=3$ and $l a(G)=3$, Theorem $1(1)$ is sharp. Moreover, Wu determined completely the linear arboricity of series-parallel graphs [13] and Halin graphs [14]. It is known that these two classes of graphs both have the treewidth at most $3[3,4]$. So we generalize these results.

2. Proof of Theorem 1

For a positive integer k, we use $[k]$ to denote the set $\{1,2, \ldots, k\}$. Suppose φ is a t-linear coloring of G, and the color set is $[t]$. For a color $i \in[t]$, we call an edge colored with i an i-edge. Let v be a vertex of G, we use $C_{\varphi}^{i}(v)$ to denote the set of colors appear i times at vertex v, where $i \in\{0,1,2\}$. Then $\left|C_{\varphi}^{0}(v)\right|+\left|C_{\varphi}^{1}(v)\right|+\left|C_{\varphi}^{2}(v)\right|=t$ and $\left|C_{\varphi}^{1}(v)\right|+2\left|C_{\varphi}^{2}(v)\right|=d(v)$. For any two vertices of u and v, let $C_{\varphi}(u, v)=C_{\varphi}^{2}(u) \cup C_{\varphi}^{2}(v) \cup\left(C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)\right)$, that is, $C_{\varphi}(u, v)$ is the set of colors that appear at least twice at u and v. A monochromatic path is a path whose edges receive the same color. We use the notation $(u, i) \leftrightarrow(v, i)$ to denote that there is a monochromatic path from u to v receives the same color i. Let $x_{1} y_{1} \in E(G)$, we use $x_{1} y_{1} \leftrightarrow(u, i)$ to denote that there is a monochromatic path from x_{1} to u receiving the same color i such that y_{1} is an internal vertex in the path, and $x_{1} y_{1} \not \leftrightarrow(u, i)$ to denote such monochromatic path does not exist.
Proof of Theorem 1. We prove the theorem by contradiction. Let $G=(V, E)$ be a counterexample to Theorem 1 with $|V(G)|+|E(G)|$ as small as possible.

First, we describe some known lemmas for G. Note that proofs of Lemmas 3,5 and 6 in [6] do not use planarity, so the results can apply to general graphs. The proof of Lemma 3 can be found in [6, Lemma 4], Lemma 5 can be found in [6, Lemma 5 and Lemma 6].
Lemma 3 [6]. For every edge $u v \in E(G), d(u)+d(v) \geq 2 t+2 \geq \Delta+2$.
By the lemma, we have $\delta(G) \geq 2$. At the same time, we may apply Lemma 3 in [5] with parameters $\Delta_{0}=2 t$, and obtain the following result.

Lemma 4 [5]. There are disjoint vertex sets $U, W \subseteq V(G)$ and a vertex $x \in U$, such that
(a) W is stable with $N(W) \subseteq U$;
(b) $d(w) \leq k$ for every $w \in W$;
(c) $W \subseteq N(x) \subseteq W \cup U$; and
(d) $|U| \leq k+1$ and $|W| \geq 2 t+2-2 k$.

In Lemma $4, W$ is stable means that W is a vertex independent set, that is, the vertices of W are pairwise nonadjacent.

Lemma 5 [6]. Every vertex is adjacent to at most one 2-vertex, and for any 2-vertex of G, its two neighbors are adjacent.

Proof of (1). We begin to prove (1). According to [8], if $\Delta(G) \leq 5$, then G has a 3 -linear coloring. Henceforth, $\Delta(G) \geq 6$. In the following figures, the vertices marked by • have no other edge incident with it and any edge marked by broken line means that it does not exist.

Lemma 6 [6]. G contains no subgraph isomorphic to one of configurations depicted in Figure 1.

Figure 1. Forbidden configurations in Lemma 6.

The proof of (a) can be found in [6, Lemma 8], (b) can be found in [6, Lemma $7]$, (c) can be extracted from [6, Lemma 11], (d) can be found in [6, Corollary 13].

Lemma 7 [15]. G contains no subgraph isomorphic to one of configurations depicted in Figure 2. In configuration $(\mathrm{b}), d(w) \leq 3$ and w is incident with a 3 -cycle.

Figure 2. Forbidden configurations in Lemma 7.

Proof. (a) Suppose G has a configuration as depicted in Figure 2(a). Then $G^{\prime}=G-\{u, v\}+\{x y, y z, x z\}$ has a t-coloring φ. Without loss of generality, assume that $\varphi(x y) \neq \varphi(x z)$. We can recolor $u x$, $u y$ with $\varphi(x y), v y, v z$ with $\varphi(y z)$ and $u z, v x$ with $\varphi(x z)$ to obtain a t-linear coloring of G, a contradiction.
(b) The detailed proof of (b) can be found in [15]. The following is a sketch of the proof.

Suppose G has a configuration as depicted in Figure 2(b). By Lemma 6(b), $|\{x y, y z, x z\} \cap E(G)|=1$ or 3 , then we consider the following two cases:

Case 1. $|\{x y, y z, x z\} \cap E(G)|=1$. Without loss of generality, we assume that $x z \in E(G)$ and $x y, y z \notin E(G)$. Then $G^{\prime}=G-\{u, v\}+\{x y, y z\}$ has a t-coloring φ. And we can obtain a t-linear coloring of G by the method of color exchange, a contradiction.

Case 2. $|\{x y, y z, x z\} \cap E(G)|=3$. Then $G^{\prime}=G-\{u, v\}$ has a t-coloring φ. In the same way, we can prove that G has a t-linear coloring, a contradiction. \square

Lemma 8. For every vertex $w \in W, d(w)=3$.
Proof. Suppose there exists a vertex $w^{*} \in W$ such that $d\left(w^{*}\right)=2$. Let $N\left(w^{*}\right)=$ $\left\{x, u_{1}\right\} \subseteq U$. Then $x u_{1} \in E(G)$ by Lemma 5 . By Lemma 3, we have $d(x) \geq 2 t \geq$ 6. Since $|U| \leq 4$ and $N(x) \subseteq U \cup W$, we have $|W| \geq 3$. Let $\left\{w^{*}, w_{1}, w_{2}\right\} \subseteq W$. Then $d\left(w_{1}\right)=d\left(w_{2}\right)=3$ by Lemma 5 and $w_{1} u_{1}, w_{2} u_{1} \notin E(G)$ by Figure 1(a). Since $|U| \leq 4, N\left(w_{1}\right)=N\left(w_{2}\right)$. Hence G has a configuration as depicted in Figure 2(b), a contradiction.

By Lemma 8 and Lemma 4 (b), the result of Theorem 1(1) is clear when $k \leq 2$.

Lemma 9. $|U|=4$.
Proof. By Lemma 4 and Lemma $8,3 \leq|U| \leq 4$. Suppose $|U|=3$ and $U=$ $\{x, y, z\}$. Since $d(x) \geq 2 t-1 \geq 5$ and $N(x) \subseteq U \cup W,|W| \geq 3$. Let $\{u, v, w\} \subseteq W$. Then $d(u)=d(v)=d(w)=3$ and $N(u)=N(v)=N(w)=U$. If $\{x y, y z, x z\} \cap$ $E(G)=\emptyset$, then G has a configuration as depicted in Figure 2(a); otherwise G has a configuration as depicted in Figure 2(b), a contradiction. Hence $|U|=4$.

By Lemma 9 , let $U=\left\{x, u_{1}, u_{2}, u_{3}\right\}$. By Lemma 3 and Lemma $4,|W| \geq$ $2 t-1-|N(x) \cap U| \geq 5-|N(x) \cap U| \geq 2$. We consider the following four cases.

Case 1. $\left|\left\{x u_{1}, x u_{2}, x u_{3}\right\} \cap E(G)\right|=3$. Without loss of generality, assume that $w \in W$ and $N(w)=\left\{x, u_{1}, u_{2}\right\}$. Then $u_{1} u_{2} \in E(G)$ by Figure 1(b). Since x with two 3 -neighbors, and the 3-neighbor w is incident with a triangle $x u_{1} w$, we have $d(x)=\Delta \geq 6$. For otherwise, G has a configuration as depicted in 1(c), a contradiction. Since $|U|=4,|W| \geq 3$. Let $\left\{w, w_{1}, w_{2}\right\} \subseteq W$. Then for each $i(1 \leq i \leq 2), w_{i}$ is incident with at least one 3 -cycle. If $N(w)=N\left(w_{1}\right)$, then G has a configuration as depicted in Figure 2(b), a contradiction. So $N(w) \neq N\left(w_{1}\right)$. It follows that $w_{1} u_{3} \in E(G)$. Since $|U|=4,\left|N(w) \cap N\left(w_{1}\right)\right|=2$. Without loss of generality, assume that $N(w) \cap N\left(w_{1}\right)=\left\{x, u_{1}\right\}$. These implies that G has
two 3-vertices w and w_{1} such that $N(w)=\left\{x, u_{1}, u_{2}\right\}, N\left(w_{1}\right)=\left\{x, u_{1}, u_{3}\right\}$ and $\left\{w u_{2}, w_{1} u_{3}, x u_{1}, x u_{2}, x u_{3}\right\} \subseteq E(G)$. Thus Figure 1(d) appears, a contradiction.

Case 2. $\left|\left\{x u_{1}, x u_{2}, x u_{3}\right\} \cap E(G)\right|=2$. Without loss of generality, assume $x u_{1}$, $x u_{2} \in E(G)$ and $x u_{3} \notin E(G)$. Since x has at least two 3-neighbors, and each 3neighbor $w \in W$ is incident with a triangle $x u_{1} w$ or $x u_{2} w$, we have $d(x)=\Delta \geq 6$ by Figure 1 (c). It follows that $|W| \geq 4$. Since $W \subseteq N(x),\left|N\left(w^{\prime}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}\right|=$ 2 for any $w^{\prime} \in W$. It follows that there are two vertices $u, v \in W$ such that $N(u)=N(v)$. Note that any vertex in W is incident with at least one 3 -cycle. So G has a configuration as depicted in Figure 2(b), a contradiction.

Case 3. $\left|\left\{x u_{1}, x u_{2}, x u_{3}\right\} \cap E(G)\right|=1$. Without loss of generality, assume that $x u_{1} \in E(G), x u_{2} \notin E(G), x u_{3} \notin E(G)$. If there exists a vertex $w \in W$ such that $w u_{1} \in E(G)$, without loss of generality, suppose $w^{*} u_{1} \in E(G)$. Then $d(x)=\Delta \geq 6$ by Figure 1(c). Since $\left|\left\{x u_{1}, x u_{2}, x u_{3}\right\} \cap E(G)\right|=1$, we have $|W| \geq 5$. Thus at least two vertices of $W \backslash\left\{w^{*}\right\}$ have the same neighbors. And because w^{*} is incident with a 3 -face, G has a configuration as depicted in Figure 2(b), a contradiction. Otherwise, if each vertex $w \in W$ is not adjacent to u_{1}, then $N(w)=\left\{x, u_{2}, u_{3}\right\}$. Since $\left|\left\{x u_{1}, x u_{2}, x u_{3}\right\} \cap E(G)\right|=1$ and $d(x) \geq 5$, we have $|W| \geq 4$. Thus at least four vertices of degree 3 have the same neighbors. Since $x u_{2}, x u_{3} \notin E(G)$, we have $u_{2} u_{3} \in E(G)$ by Figure 2(a). Then G has a configuration as depicted in Figure 2(b), a contradiction.

Case 4. $\left|\left\{x u_{1}, x u_{2}, x u_{3}\right\} \cap E(G)\right|=0$. Then $|W| \geq 5$. Let $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$ $\subseteq W$. At the same time, at least two vertices of W have the same neighbors. Without loss of generality, assume that $N\left(w_{1}\right)=N\left(w_{2}\right)=\left\{x, u_{1}, u_{2}\right\}$. Since $x u_{1}$, $x u_{2} \notin E(G)$, we have $u_{1} u_{2} \in E(G)$ by Lemma 7. Similarly, $\left|N\left(w_{i}\right) \cap\left\{u_{1}, u_{2}\right\}\right|=1$ for any $i \in\{3,4,5\}$. It follows that there are at least two vertices in $\left\{w_{3}, w_{4}, w_{5}\right\}$ having the same neighbors. Hence G has a configuration as depicted in Figure 2(b), a contradiction too.

All these contradictions imply that (1) holds.
Proof of (2). Next, we begin to prove (2). By (1), we assume that $t w(G)=4$. According to [8], if $\Delta \leq 8$, then G has a 5 -linear coloring. Henceforth $\Delta \geq 9$. Let $w^{*} \in W \subseteq N(x)$. Then $G^{\prime}=G-w^{*} x$ has a t-linear coloring φ. Denote $n_{i}=|\{\varphi(u w)=i: u \in U \backslash\{x\}, w \in W\}|$ for any $i \in[t]$, and $W^{\prime}=\{w \in W:$ $\left.\varphi(x w) \in C_{\varphi}^{0}\left(w^{*}\right)\right\}$. We have the five fundamental facts.
(1) $C_{\varphi}\left(w^{*}, x\right)=[t]$;
(2) If $i \in C_{\varphi}^{1}\left(w^{*}\right)$, then $i \in C_{\varphi}^{2}(x)$, or $i \in C_{\varphi}^{1}(x)$ and $\left(w^{*}, i\right) \leftrightarrow(x, i)$;
(3) $\left|W^{\prime}\right| \geq 2\left|C_{\varphi}^{0}\left(w^{*}\right)\right|-(|U|-1) \geq 2\left|C_{\varphi}^{0}\left(w^{*}\right)\right|-4$;
(4) $|W|=|N(x) \backslash U| \geq d(x)-(|U|-1) \geq 2 t-2-d\left(w^{*}\right)$;
(5) $n_{i} \leq 2(|U|-1) \leq 2 k=8$ for each $i \in[t]$.

In the following, we will use the structure properties of G and the method of color exchange to obtain a contradiction to prove (2). We consider the following three cases.

Case 1. $d\left(w^{*}\right)=2$, that is, $d_{G^{\prime}}\left(w^{*}\right)=1$. Without loss of generality, assume that $C_{\varphi}^{1}\left(w^{*}\right)=\{1\}$. Then $C_{\varphi}^{0}\left(w^{*}\right)=C_{\varphi}^{2}(x)=[t] \backslash\{1\}, 1 \in C_{\varphi}^{1}(x)$ and $(x, 1) \leftrightarrow$ $\left(w^{*}, 1\right)$ by (1) and (2). Since $d(x)+d\left(w^{*}\right) \geq 2 t+2 \geq 12$ and $|U| \leq 5,\left|W \backslash w^{*}\right| \geq 5$. It follows that $\left|W^{\prime}\right| \geq 4$. For any $w \in W^{\prime}$, if $1 \notin C_{\varphi}^{2}(w)$, we can recolor $x w$ with 1 and color $w^{*} x$ with $\varphi(x w)$ to obtain a t-linear coloring of G, a contradiction. So $1 \in C_{\varphi}^{2}(w)$ for any $w \in W^{\prime}$ and it follows from $C_{\varphi}^{1}\left(w^{*}\right)=\{1\}$ that $n_{1} \geq$ $2 \times\left|W^{\prime}\right|+1 \geq 9$, a contradiction with (5).

Case 2. $d\left(w^{*}\right)=3$.
Subcase 2.1. $C_{\varphi}^{2}\left(w^{*}\right) \neq \emptyset$. Without loss of generality, assume that $C_{\varphi}^{2}\left(w^{*}\right)=$ $\{1\}$. Then $C_{\varphi}^{0}\left(w^{*}\right)=C_{\varphi}^{2}(x)=[t] \backslash\{1\}$ and $1 \in C_{\varphi}^{0}(x) \cup C_{\varphi}^{1}(x)$. Since $t \geq 5$ and $|U \backslash x| \leq 4,\left|W^{\prime}\right| \geq 4$. If there is a vertex $w \in W^{\prime}$ such that $1 \in C_{\varphi}^{0}(w)$, then we can recolor $x w$ with 1 and color $w^{*} x$ with $\varphi(x w)$ to obtain a t-linear coloring of G, a contradiction. So $1 \in C_{\varphi}^{1}(w) \cup C_{\varphi}^{2}(w)$ for any $w \in W^{\prime}$. At the same time, if there are two vertices $w^{\prime}, w^{\prime \prime} \in W$ such that $1 \in C_{\varphi}^{1}\left(w^{\prime}\right) \cap C_{\varphi}^{1}\left(w^{\prime \prime}\right)$, then it is impossible that $(w, 1) \leftrightarrow(x, 1)$ for any $w \in\left\{w^{\prime}, w^{\prime \prime}\right\}$ (if $(x, 1)$ exists). So there is at most one element $w \in W^{\prime}$ such that $1 \in C_{\varphi}^{1}(w)$, and it follows that $n_{1} \geq 2 \times\left(1+\left|W^{\prime}\right|-1\right)+1 \geq 9$, a contradiction with (5).

Subcase 2.2. $C_{\varphi}^{2}\left(w^{*}\right)=\emptyset$. Without loss of generality, assume that $C_{\varphi}^{1}\left(w^{*}\right)=$ $\{1,2\}$. Then $\{3,4, \ldots, t\} \subseteq C_{\varphi}^{2}(x)$ and $\{1,2\} \subset C_{\varphi}^{1}(x) \cup C_{\varphi}^{2}(x)$. Since $d_{G^{\prime}}(x) \leq$ $2 t-1,\left|\{1,2\} \cap C_{\varphi}^{1}(x)\right| \geq 1$. Without loss of generality, assume that $1 \in C_{\varphi}^{1}(x)$. Then $\left(w^{*}, 1\right) \leftrightarrow(x, 1)$ by (2). Since $t \geq 5,\left|W^{\prime}\right| \geq 2$. Let $w_{1}, w_{2} \in W^{\prime}$. Then $\left\{\varphi\left(x w_{1}\right), \varphi\left(x w_{2}\right)\right\} \cap\{1,2\}=\emptyset$ by the definition of W^{\prime}. If $1 \notin C_{\varphi}^{2}\left(w_{1}\right)$, then we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. So $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. By the same argument, we have $1 \in C_{\varphi}^{2}\left(w_{2}\right)$.

Suppose that $2 \in C_{\varphi}^{1}(x)$. Then $(x, 2) \leftrightarrow\left(w^{*}, 2\right)$ by (2). Since $d_{G}\left(w_{1}\right) \leq 4$, $2 \notin C_{\varphi}^{2}\left(w_{1}\right)$. Thus we can recolor $x w_{1}$ with 2 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction, too. Hence $2 \in C_{\varphi}^{2}(x)$, that is, $\{2,3, \ldots, t\}=C_{\varphi}^{2}(x)$.

Since $|U \backslash x| \leq 4$, there exist $w_{3}, w_{4} \in N(x) \cap\left(W \backslash\left\{w^{*}, w_{1}, w_{2}\right\}\right)$ such that $\varphi\left(x w_{3}\right) \neq 1$ and $\varphi\left(x w_{4}\right) \neq 1$. Similarly, we also have that for any $w_{i}(i=3$ or 4$)$, if $\varphi\left(x w_{i}\right) \neq 2$, that is, $\varphi\left(x w_{i}\right) \in\{3, \ldots, t\}$, then $1 \in C_{\varphi}^{2}\left(w_{i}\right)$. At the same time, if $1 \in C_{\varphi}^{2}\left(w_{3}\right) \cap C_{\varphi}^{2}\left(w_{4}\right)$, then $n_{1} \geq 9$, a contradiction. So we assume, without loss of generality, that $1 \notin C_{\varphi}^{2}\left(w_{4}\right)$. It follows that $\varphi\left(x w_{4}\right)=2$.

Suppose that $\varphi\left(x w_{3}\right) \neq 2$. Then first we recolor $x w_{4}$ with 1 . Next, if $\left(w^{*}, 2\right) \leftrightarrow(x, 2)$, we recolor $x w_{1}$ with 2 , and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$; otherwise, we color $w^{*} x$ with 2 . Thus we obtain a t-linear coloring of G, a contradiction. So $\varphi\left(x w_{3}\right)=2$.

Thus $\varphi\left(x w_{3}\right)=\varphi\left(x w_{4}\right)=2$ and $1 \notin C_{\varphi}^{2}\left(w_{4}\right)$. Suppose that $1 \notin C_{\varphi}^{2}\left(w_{3}\right)$. First, we recolor $x w_{3}$ with 1 . Then, if $x w_{4} \leftrightarrow\left(w^{*}, 2\right)$, we can recolor $x w_{1}$ with 2 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$; otherwise we color $w^{*} x$ with 2 . Thus a t-linear coloring of G is obtained, a contradiction. So $1 \in C_{\varphi}^{2}\left(w_{3}\right)$.

Finally, we obtain a t-linear coloring of G as follows. First, we recolor $x w_{4}$ with 1 , color $w^{*} x$ with 2 . Then, if $x w_{3} \leftrightarrow\left(w^{*}, 2\right)$, then $2 \in C_{\varphi}^{2}\left(w_{3}\right)$ and we exchange the coloring of $x w_{1}$ and $x w_{3}$.

Case 3. $d\left(w^{*}\right)=4$.
Subcase 3.1. $C_{\varphi}^{2}\left(w^{*}\right) \neq \emptyset$. Without loss of generality, assume that $C_{\varphi}^{2}\left(w^{*}\right)=$ $\{1\}$ and $C_{\varphi}^{1}\left(w^{*}\right)=\{2\}$. Then $\left|W^{\prime}\right| \geq 2$. Let $w_{1}, w_{2} \in W^{\prime}$. It follows from $2 \in C_{\varphi}^{1}\left(w^{*}\right)$ and (2) that $2 \in C_{\varphi}^{1}(x)$ and $\left(w^{*}, 2\right) \leftrightarrow(x, 2)$, or $2 \in C_{\varphi}^{2}(x)$.

Subcase 3.1.1. $2 \in C_{\varphi}^{1}(x)$ and $\left(w^{*}, 2\right) \leftrightarrow(x, 2)$. Then it is similar to prove that $2 \in C_{\varphi}^{2}\left(w_{1}\right) \cap C_{\varphi}^{2}\left(w_{2}\right)$. This implies that $1 \notin C_{\varphi}^{2}\left(w_{1}\right) \cup C_{\varphi}^{2}\left(w_{2}\right)$.

Suppose $1 \in C_{\varphi}^{0}(x)$. We can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$ to obtain a t-linear coloring of G, a contradiction.

Suppose $1 \in C_{\varphi}^{1}(x)$. Then $1 \in C_{\varphi}^{1}\left(w_{1}\right)$ and $\left(w_{1}, 1\right) \leftrightarrow(x, 1)$. For otherwise, we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. Since $1 \notin C_{\varphi}^{2}\left(w_{2}\right)$, we can recolor $x w_{2}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{2}\right)$ to obtain a t-linear coloring of G, a contradiction.

Suppose $1 \in C_{\varphi}^{2}(x)$. Then $d_{G^{\prime}}(x)=2 t-1 \geq 9$ and we can get that $\left|W \backslash\left\{w^{*}\right\}\right|=m \geq 5$. Assume that $W=\left\{w^{*}, w_{1}, \ldots, w_{m}\right\}$. If $\left|W^{\prime}\right| \geq 4$, without loss of generality, assume that $\varphi\left(x w_{3}\right), \varphi\left(x w_{4}\right) \notin\{1,2\}$. It is easy to see that $2 \in C_{\varphi}^{2}\left(w_{3}\right)$. For otherwise, we can recolor $x w_{3}$ with 2 and color $w^{*} x$ with $\varphi\left(x w_{3}\right)$, a contradiction. Similarly, $2 \in C_{\varphi}^{2}\left(w_{4}\right)$. Thus $n_{2} \geq 9$, a contradiction. If $\left|W^{\prime}\right|=3$, since $|U| \leq 5$ and $t \geq 5$, there must exist an edge $x w_{i}$ which colored by 1 . Without loss of generality, assume that $\varphi\left(x w_{3}\right) \notin\{1,2\}$ and $\varphi\left(x w_{4}\right)=1$. Then $2 \in C_{\varphi}^{2}\left(w_{i}\right), i=1,2,3$. If $2 \notin C_{\varphi}^{2}\left(w_{4}\right)$, first we can recolor $x w_{4}$ with 2 . Next, if $(x, 1) \leftrightarrow\left(w_{1}, 1\right)$, we can recolor $x w_{2}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{2}\right)$ to obtain a t-linear coloring of G. Otherwise, we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. Thus $2 \in C_{\varphi}^{2}\left(w_{4}\right)$. We have $n_{2} \geq 9$, a contradiction. If $\left|W^{\prime}\right|=2$, then we can assume that $\varphi\left(x w_{3}\right)=\varphi\left(x w_{4}\right)=1$. If $2 \notin C_{\varphi}^{2}\left(w_{3}\right)$, first we can recolor $x w_{3}$ with 2 . Next, if $(x, 1) \leftrightarrow\left(w_{1}, 1\right)$, we can recolor $x w_{2}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{2}\right)$ to obtain a t-linear coloring of G. Otherwise, we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. Thus $2 \in C_{\varphi}^{2}\left(w_{3}\right)$. Similarly $2 \in C_{\varphi}^{2}\left(w_{4}\right)$. Then $n_{2} \geq 9$, a contradiction.

Subcase 3.1.2. $2 \in C_{\varphi}^{2}(x)$. Then $1 \in C_{\varphi}^{0}(x)$ or $1 \in C_{\varphi}^{1}(x)$ and $d_{G^{\prime}}(x) \geq$ $2(t-1) \geq 8$. Since $|U| \leq 5$, we have $\left|W \backslash\left\{w^{*}\right\}\right|=m \geq 4$. Assume that $W=$ $\left\{w^{*}, w_{1}, \ldots, w_{m}\right\}$ and $\varphi\left(x w_{3}\right) \neq 1, \varphi\left(x w_{4}\right) \neq 1$.

Suppose $1 \in C_{\varphi}^{0}(x)$. Then $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. For otherwise, we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. Similarly, $1 \in C_{\varphi}^{2}\left(w_{2}\right)$. If
$\varphi\left(x w_{3}\right) \neq 2$, similarly $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. If $\varphi\left(x w_{3}\right)=2$, we also have $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. For otherwise, we can recolor $x w_{3}$ with 1 to obtain a new t-linear coloring φ^{\prime} of G^{\prime}, where $2 \in C_{\varphi^{\prime}}^{1}(x)$, which satisfies Subcase 3.1.1, a contradiction. Thus $1 \in$ $C_{\varphi}^{2}\left(w_{3}\right)$. In the same way, we have $1 \in C_{\varphi}^{2}\left(w_{4}\right)$. Then $n_{1} \geq 10$, a contradiction.

Now suppose $1 \in C_{\varphi}^{1}(x)$.
First we consider the case that $\left|W^{\prime}\right| \geq 4$. Without loss of generality, assume that $\varphi\left(x w_{3}\right) \notin\{1,2\}$ and $\varphi\left(x w_{4}\right) \notin\{1,2\}$. Then $1 \in C_{\varphi}^{1}\left(w_{1}\right)$ and $(x, 1) \leftrightarrow$ $\left(w_{1}, 1\right)$, or $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. For otherwise, we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. If $1 \in C_{\varphi}^{1}\left(w_{1}\right)$ and $(x, 1) \leftrightarrow\left(w_{1}, 1\right)$, then $1 \in C_{\varphi}^{2}\left(w_{2}\right)$. For otherwise, we can recolor $x w_{2}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{2}\right)$, a contradiction. Similarly, $1 \in C_{\varphi}^{2}\left(w_{3}\right), 1 \in C_{\varphi}^{2}\left(w_{4}\right)$. Then $n_{1} \geq 9$, a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. Similarly, we have $1 \in C_{\varphi}^{2}\left(w_{i}\right), i=2,3,4$. Then $n_{1} \geq 10$, a contradiction.

Secondly, we consider the case that $\left|W^{\prime}\right|=3$. Without loss of generality, assume that $\varphi\left(x w_{3}\right) \neq 2, \varphi\left(x w_{4}\right)=2$. Then $1 \in C_{\varphi}^{1}\left(w_{1}\right)$ and $(x, 1) \leftrightarrow\left(w_{1}, 1\right)$, or $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. If $1 \in C_{\varphi}^{1}\left(w_{1}\right)$ and $(x, 1) \leftrightarrow\left(w_{1}, 1\right)$, then $1 \in C_{\varphi}^{2}\left(w_{2}\right)$ and $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. If $1 \notin C_{\varphi}^{2}\left(w_{4}\right)$, we can recolor $x w_{4}$ with 1 to obtain a new t-linear coloring φ^{\prime} of G^{\prime} which satisfies $2 \in C_{\varphi^{\prime}}^{1}(x)$, by Subcase 3.1.1, a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{4}\right)$. We have $n_{1} \geq 9$, a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. Similarly, $1 \in C_{\varphi}^{2}\left(w_{2}\right)$ and $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. If $1 \in C_{\varphi}^{0}\left(w_{4}\right)$, we can recolor $x w_{4}$ with 1 to get a new t-linear coloring φ^{\prime} of G^{\prime} which satisfies $2 \in C_{\varphi^{\prime}}^{1}(x)$, a contradiction. Thus $1 \notin C_{\varphi}^{0}\left(w_{4}\right)$. We have $n_{1} \geq 9$, a contradiction.

Finally, we consider the case that $\left|W^{\prime}\right|=2$. Without loss of generality, assume that $\varphi\left(x w_{3}\right)=\varphi\left(x w_{4}\right)=2$. Then $1 \notin C_{\varphi}^{0}\left(w_{1}\right)$. If $1 \in C_{\varphi}^{1}\left(w_{1}\right)$, then $(x, 1) \leftrightarrow\left(w_{1}, 1\right)$. We can get $1 \in C_{\varphi}^{2}\left(w_{2}\right)$. If $1 \notin C_{\varphi}^{2}\left(w_{3}\right)$, we can recolor $x w_{3}$ with 1 to get a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. Similarly, $1 \in C_{\varphi}^{2}\left(w_{4}\right)$. Then $n_{1} \geq 9$, a contradiction. Therefore $1 \in C_{\varphi}^{2}\left(w_{1}\right)$ and $1 \in C_{\varphi}^{2}\left(w_{2}\right)$. If $1 \in C_{\varphi}^{0}\left(w_{3}\right)$, or $1 \in C_{\varphi}^{1}\left(w_{3}\right)$ and $(x, 1) \not \leftrightarrow\left(w_{3}, 1\right)$, we can recolor $x w_{3}$ with 1 to get a new t-linear coloring φ^{\prime} of G^{\prime} such that $2 \in C_{\varphi^{\prime}}^{1}(x)$, a contradiction. If $1 \in C_{\varphi}^{1}\left(w_{3}\right)$ and $(x, 1) \leftrightarrow\left(w_{3}, 1\right)$, then $1 \in C_{\varphi}^{2}\left(w_{4}\right)$. For otherwise, we can recolor $x w_{4}$ with 1 to get a contradiction. We have $n_{1} \geq 9$, a contradiction. If $1 \in C_{\varphi}^{2}\left(w_{3}\right)$, since $1 \notin C_{\varphi}^{0}\left(w_{4}\right)$, we also have $n_{1} \geq 9$, a contradiction.

Subcase 3.2. $C_{\varphi}^{2}\left(w^{*}\right)=\emptyset$. Without loss of generality, assume that $C_{\varphi}^{1}\left(w^{*}\right)=$ $\{1,2,3\}$. Then $i \notin C_{\varphi}^{0}(x), i=1,2,3$, and at least one of them appears exactly one time on x. Without loss of generality, assume that $1 \in C_{\varphi}^{1}(x)$. Then $(x, 1) \leftrightarrow$ $\left(w^{*}, 1\right)$.

Since $d_{G^{\prime}}(x) \geq 2 t-3 \geq 7$ and $|U| \leq 5$, we have $\left|W \backslash\left\{w^{*}\right\}\right|=m \geq 3$. Assume that $W=\left\{w^{*}, w_{1}, \ldots, w_{m}\right\}$.

Subcase 3.2.1. $2 \in C_{\varphi}^{1}(x)$ or $3 \in C_{\varphi}^{1}(x)$. Without loss of generality, assume that $2 \in C_{\varphi}^{1}(x)$. Then $(x, 2) \leftrightarrow\left(w^{*}, 2\right)$.

Suppose $\left|W^{\prime}\right| \geq 1$. Without loss of generality, assume that $\varphi\left(x w_{1}\right) \notin\{1,2,3\}$. Then $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. For otherwise, we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. Since $d\left(w_{1}\right) \leq 4$, we have $2 \notin C_{\varphi}^{2}\left(w_{1}\right)$. Thus we can recolor $x w_{1}$ with 2 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$ to obtain a t-linear coloring of G, a contradiction.

Now suppose $\left|W^{\prime}\right|=0$. Without loss of generality, assume that $\varphi\left(x w_{i}\right)=i$, $i=1,2,3$. If $1 \notin C_{\varphi}^{2}\left(w_{2}\right)$, we can recolor $x w_{2}$ with 1 and color $w^{*} x$ with 2 , a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{2}\right)$. Since $2 \in C_{\varphi}^{1}(x)$ and $(x, 2) \leftrightarrow\left(w^{*}, 2\right)$, we have $2 \in C_{\varphi}^{2}\left(w_{2}\right)$. Then $3 \in C_{\varphi}^{0}\left(w_{2}\right)$ for $d\left(w_{2}\right) \leq 4$. Similarly, $3 \in C_{\varphi}^{0}\left(w_{1}\right)$. If $1 \notin C_{\varphi}^{2}\left(w_{3}\right)$, we can recolor $x w_{3}$ with $1, x w_{1}$ with 3 and color $w^{*} x$ with 1 to obtain a t-linear coloring of G, a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. Similarly $2 \in C_{\varphi}^{2}\left(w_{3}\right)$. But it is impossible since $d\left(w_{3}\right) \leq 4$.

Subcase 3.2.2. $2 \in C_{\varphi}^{2}(x)$ and $3 \in C_{\varphi}^{2}(x)$. Since $d_{G^{\prime}}(x) \geq 2 t-1 \geq 9$ and $|U| \leq 5$, we have $\left|W \backslash\left\{w^{*}\right\}\right|=m \geq 5$.

Suppose $\left|W^{\prime}\right|=0$. Without loss of generality, assume that $\varphi\left(x w_{1}\right)=1$, $\varphi\left(x w_{2}\right)=\varphi\left(x w_{3}\right)=2$ and $\varphi\left(x w_{4}\right)=\varphi\left(x w_{5}\right)=3$. If $1 \notin C_{\varphi}^{2}\left(w_{2}\right)$, first we can recolor $x w_{2}$ with 1 . Then $x w_{3} \leftrightarrow\left(w^{*}, 2\right)$. For otherwise, we can color $w^{*} x$ with 2 to obtain a t-linear coloring of G. If $2 \notin C_{\varphi}^{2}\left(w_{1}\right)$, we can recolor $x w_{1}$ with 2 and color $w^{*} x$ with 1 . Thus $2 \in C_{\varphi}^{2}\left(w_{1}\right)$. Since $1 \in C_{\varphi}^{1}(x)$ and $(x, 1) \leftrightarrow\left(w^{*}, 1\right)$, we have $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. Thus we can get that $3 \in C_{\varphi}^{0}\left(w_{1}\right)$ for $d\left(w_{1}\right) \leq 4$. If $2 \notin C_{\varphi}^{2}\left(w_{4}\right)$, we can recolor $x w_{4}$ with $2, x w_{1}$ with 3 and color $w^{*} x$ with 1 . Thus $2 \in C_{\varphi}^{2}\left(w_{4}\right)$. Now we can recolor $x w_{4}$ with $1, x w_{2}$ with $2, x w_{1}$ with 3 and color $w^{*} x$ with 1 , a contradiction. Therefore $1 \in C_{\varphi}^{2}\left(w_{2}\right)$. Similarly we have $1 \in C_{\varphi}^{2}\left(w_{i}\right), i=3,4,5$. Then $n_{2} \geq 10$, a contradiction.

Suppose $\left|W^{\prime}\right|=1$. Without loss of generality, assume that $\varphi\left(x w_{1}\right) \notin\{1,2,3\}$, $\varphi\left(x w_{2}\right)=2$ and $\varphi\left(x w_{3}\right)=\varphi\left(x w_{4}\right)=3$. Then $1 \in C_{\varphi}^{2}\left(w_{1}\right)$. For otherwise, we can recolor $x w_{1}$ with 1 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$. If $1 \notin C_{\varphi}^{2}\left(w_{3}\right)$, first we can recolor $x w_{3}$ with 1 . We can get $x w_{4} \leftrightarrow\left(w^{*}, 3\right)$. Next we can recolor $x w_{1}$ with 3 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. Similarly $1 \in C_{\varphi}^{2}\left(w_{2}\right)$ and $1 \in C_{\varphi}^{2}\left(w_{4}\right)$. Then $n_{1} \geq 9$, a contradiction.

Suppose $\left|W^{\prime}\right|=2$. Without loss of generality, assume that $\varphi\left(x w_{1}\right), \varphi\left(x w_{2}\right) \notin$ $\{1,2,3\}, \varphi\left(x w_{3}\right)=\alpha, \varphi\left(x w_{4}\right)=\beta, \alpha, \beta \in\{2,3\}$. Then $1 \in C_{\varphi}^{2}\left(w_{1}\right) \cap C_{\varphi}^{2}\left(w_{2}\right)$. If $1 \notin C_{\varphi}^{2}\left(w_{3}\right)$, first we recolor $x w_{3}$ with 1 . If $(x, \alpha) \nleftarrow\left(w^{*}, \alpha\right)$, we can color $w^{*} x$ with α. Otherwise, we can recolor $x w_{1}$ with α and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$ to get a t-linear coloring of G. Thus $1 \in C_{\varphi}^{2}\left(w_{3}\right)$. Similarly $1 \in C_{\varphi}^{2}\left(w_{4}\right)$. Therefore $n_{1} \geq 9$, a contradiction.

Suppose $\left|W^{\prime}\right|=3$. Without loss of generality, assume that $\varphi\left(x w_{1}\right), \varphi\left(x w_{2}\right)$, $\varphi\left(x w_{3}\right) \notin\{1,2,3\}$ and $\varphi\left(x w_{4}\right)=2$. Then $1 \in C_{\varphi}^{2}\left(w_{i}\right), i=1,2,3$. If $1 \notin C_{\varphi}^{2}\left(w_{4}\right)$, first we can recolor $x w_{4}$ with 1 . Then if $(x, 2) \nleftarrow\left(w^{*}, 2\right)$, we can color $w^{*} x$ with 2 . Otherwise, we can recolor $x w_{1}$ with 2 and color $w^{*} x$ with $\varphi\left(x w_{1}\right)$, a contradiction. Thus $1 \in C_{\varphi}^{2}\left(w_{4}\right)$. We have $n_{1} \geq 9$, a contradiction.

Suppose $\left|W^{\prime}\right| \geq 4$. Without loss of generality, assume that $\varphi\left(x w_{i}\right) \notin\{1,2,3\}$, $i=1,2,3,4$. Then it is easy to get that $1 \in C_{\varphi}^{2}\left(w_{i}\right), i=1,2,3,4$. Thus $n_{1} \geq 9$, a contradiction.

Hence, we complete the proof of Theorem 1(2).
Proof of (3). Finally, we begin to prove (3). By the minimality of $G, G^{\prime}=$ $G-w^{*} x$ has a t-linear coloring φ. $\left|W^{\prime}\right| \geq 2\left|C_{\varphi}^{0}\left(w^{*}\right)\right|-(|U|-1) \geq 2\left|C_{\varphi}^{0}\left(w^{*}\right)\right|-k \geq$ $2[2 k-1-(k-1)]-k=k$. Without loss of generality, assume that $\varphi\left(x w_{i}\right)=$ $\beta_{i} \in C_{\varphi}^{0}\left(w^{*}\right), i=1,2, \ldots, k$.

Case 1. $C_{\varphi}^{2}\left(w^{*}\right)=\emptyset$. Without loss of generality, assume that $C_{\varphi}^{1}\left(w^{*}\right)=$ $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$, where $m=d\left(w^{*}\right)-1 \leq k-1$.

Then $\alpha_{i} \in C_{\varphi}^{1}(x) \cup C_{\varphi}^{2}(x), i=1,2, \ldots, m$. Since $d_{G^{\prime}}(x) \leq 2 t-1$, there must exist a color $\alpha \in C_{\varphi}^{1}\left(w^{*}\right)$ such that $\alpha \in C_{\varphi}^{1}(x)$. Then $(x, \alpha) \leftrightarrow\left(w^{*}, \alpha\right)$. If $\alpha \notin C_{\varphi}^{2}\left(w_{1}\right)$, we can recolor $x w_{1}$ with α and color $w^{*} x$ with β_{1} to obtain a t-linear coloring of G, a contradiction. Thus $\alpha \in C_{\varphi}^{2}\left(w_{1}\right)$. Similarly, we have $\alpha \in C_{\varphi}^{2}\left(w_{i}\right)$, $i=2,3, \ldots, k$. Then $n_{\alpha} \geq 2 k+1$, a contradiction.

Case 2. $C_{\varphi}^{2}\left(w^{*}\right) \neq \emptyset$. If $\alpha \in C_{\varphi}^{1}\left(w^{*}\right)$, then $\alpha \in C_{\varphi}^{2}(x)$. For otherwise, similar to Case 1, we can get $n_{\alpha} \geq 2 k+1$, a contradiction. And since $d_{G^{\prime}}(x) \leq 2 t-1$, there must exist a color $\beta \in C_{\varphi}^{2}\left(w^{*}\right)$ such that $\beta \in C_{\varphi}^{0}(x) \cup C_{\varphi}^{1}(x)$.

Suppose $\beta \in C_{\varphi}^{0}(x)$. Then $\beta \in C_{\varphi}^{2}\left(w_{1}\right)$. For otherwise, we can recolor $x w_{1}$ with β and color $w^{*} x$ with β_{1}, a contradiction. Similarly, we have $\beta \in C_{\varphi}^{2}\left(w_{i}\right)$, $i=2,3, \ldots, k$. Then $n_{\beta} \geq 2 k+2$, a contradiction.

Suppose $\beta \in C_{\varphi}^{1}(x)$. If $\beta \in C_{\varphi}^{0}\left(w_{1}\right)$, or $\beta \in C_{\varphi}^{1}\left(w_{1}\right)$ and $(x, \beta) \nleftarrow\left(w_{1}, \beta\right)$, we can recolor $x w_{1}$ with β and color $w^{*} x$ with β_{1}, a contradiction. If $\beta \in C_{\varphi}^{1}\left(w_{1}\right)$ and $(x, \beta) \leftrightarrow\left(w_{1}, \beta\right)$, then $\beta \in C_{\varphi}^{2}\left(w_{2}\right)$. For otherwise, we can recolor $x w_{2}$ with β and color $w^{*} x$ with β_{2}, a contradiction. Similarly, $\beta \in C_{\varphi}^{2}\left(w_{i}\right), i=3, \ldots, k$. Then $n_{\beta} \geq 2(k-1)+1+2=2 k+1$, a contradiction. Thus $\beta \in C_{\varphi}^{2}\left(w_{1}\right)$. Similarly, we have $\beta \in C_{\varphi}^{2}\left(w_{i}\right), i=2,3, \ldots, k$. Then $n_{\beta} \geq 2 k+2$, a contradiction.

This completes the proof of Theorem 1(3).

3. Conjecture and Open Question

In [5], it is proved that if G is a graph with $\Delta \geq 3 k-3$ and $k \geq 3$, then the total chromatic $\chi^{\prime \prime}(G)=\Delta+1$. In this paper, we show that if $\Delta \geq 3 k-3$ and $k=3$ or $k=4$, then the linear arboricity $l a(G)$ is $\left\lceil\frac{\Delta}{2}\right\rceil$. Thus, we give the following conjecture.

Conjecture B. If G is a graph with $\Delta \geq 3 k-3$ when k is even, $\Delta \geq 3 k-4$ when k is odd, $k \geq 3$, then the linear arboricity $\operatorname{la}(G)$ of G is $\left\lceil\frac{\Delta}{2}\right\rceil$.

We propose the following open question. Is the bound on Δ is sharp?

Acknowledgement

We thank the two anonymous referees sincerely for their valuable comments and suggestions to improve this work. This work is supported by NSFC (11971270, 11631014, 11401386) of China and Shandong Province Natural Science Foundation (ZR2018MA001, ZR2019MA047) of China.

References

[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca 30 (1980) 405-417.
[2] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks 11 (1981) 69-72. https://doi.org/10.1002/net. 3230110108
[3] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1-45. https://doi.org/10.1016/S0304-3975(97)00228-4
[4] H.L. Bodlaender, Planar Graphs with Bounded Treewidth (Tech. Rep. RUU-CS-8814, Dep. of Computer Science, Univ. of Utrecht, 1988).
[5] H. Bruhn, R. Lang and M. Stein, List edge-coloring and total coloring in graphs of low treewidth, J. Graph Theory 81 (2016) 272-282. https://doi.org/10.1002/jgt. 21874
[6] M. Cygan, J.-F. Hou, Ł. Kowalik, B. Lužar and J.L. Wu, A planar linear arboricity conjecture, J. Graph Theory 69 (2012) 403-425.
https://doi.org/10.1002/jgt. 20592
[7] R. Diestel, Graph Theory, 4th Edition (Springer-Verlag, New York, 2010).
[8] H. Enomoto and B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984) 309-324. https://doi.org/10.1002/jgt. 3190080211
[9] F. Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca 36 (1986) 225-228.
[10] N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspects of treewidth, J. Algorithms 7 (1986) 309-322. https://doi.org/10.1016/0196-6774(86)90023-4
[11] J.L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999) 129-134.
https://doi.org/10.1002/(SICI)1097-0118(199906)31:2¡129::AID-JGT5¿3.0.CO;2-A
[12] J.L. Wu, Y.W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory 58 (2008) 210-220.
https://doi.org/10.1002/jgt.20305
[13] J.L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16 (2000) 367-372. https://doi.org/10.1007/s373-000-8299-9
[14] J.L. Wu, Some path decompositions of Halin graphs, J. Shandong Min. Inst. 17 (1998) 92-96.
[15] J.L. Wu, F. Yang and H.M. Song, The linear arboricity of K_{5}-minor free graphs, submitted manuscript.

Received 2 September 2021
Revised 20 April 2022
Accepted 20 April 2022
Available online 5 May 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

