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Abstract

LetG be a planar graph of n vertices. The paper shows that the decycling
number of G is at most n−1

2
if G has not any K4-minor. If the maximum

degree of G is at most four and G is not 4-regular, the paper proves that
the decycling number of G is n

2
if and only if G is covered by K4-subgraphs.

In addition, the decycling number of G covered by octahedron-subgraphs or
icosahedron-subgraphs is studied.
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1. Introduction

All graphs in the paper are simple. Let G be a graph. A subset S of V (G) is
said to be a decycling set of G if G− S is acyclic. The cardinality of a minimum
decycling set of G is said to be the decycling number of G, which is denoted by
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∇(G). A decycling set is also called a feedback vertex set. It has application in
areas such as circuit design and deadlock prevention [6].

Determining the decycling number of a graph is not an easy work. It has
been proved that the problem of determining the decycling number of a graph is
NP-hard [8]. So an upper bound for the decycling number of a graph, especially a
planar graph, attracts people’s attention. The decycling number of every planar
graph of n vertices is at most 3n

5 , which follows from the result that planar graphs
are acyclically 5-colorable shown by Borodin [4]. For an outerplanar graph of n
vertices, Hosono [7] proved that its decycling number is at most n

3 . However, the
following conjecture is challenging, which is still open now.

Conjecture 1 [1, 5]. If G is a planar graph of n vertices, then ∇(G) ≤ n
2 .

In the paper we firstly study the decycling number of a planar graph without
K4-minor, and then we obtain the following result.

Theorem 2. If G is a planar graph of order n without K4-minor, then ∇(G) ≤
n−1
2 .

For a graph H of n vertices with maximum degree at most four, Ren et al.

[13] showed that ∇(H) ≤ n+1
2 if H is 4-regular, or ∇(G) ≤ n

2 , otherwise. Punnim
[12] proved the following result.

Theorem 3 [12]. Let H be a graph of n vertices with maximum degree at most

four. If H is K5-free graph, then ∇(H) ≤ n
2 .

By Theorem 3, the decycling number of a planar graph G of n vertices with
maximum degree at most four is at most n

2 . What is the structure of G if
∇(G) = n

2 ? We will show the theorem below in the paper.

Theorem 4. Let G be a planar graph of n vertices with maximum degree at

most four which is not 4-regular. Then ∇(G) = n
2 if and only if G is covered by

K4-subgraphs.

The arrangement of the paper is as follows. Section 2 gives the proof of
Theorem 2. In Section 3 we mainly study the decycling number of a planar
graph with maximum degree at most four covered by K4-subgraphs. In the end
of the section Theorem 4 is proved. In Section 4 we show that the decycling
number of a planar graph G of order n is n

2 if it is covered by O6-subgraphs, or
I12-subgraphs such that the outer degree of each of O6 and I12 is at most five,
where O6 and I12 denote the octahedron and the icosahedron, respectively.

The remainder of the section is contributed for some terminologies of graphs.
The other undefined can be found in [3].

The complete graph of n vertices is denoted by Kn. Let G be a graph. The
number of vertices of G is called its order. The maximum degree and minimum
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degree of G are denoted by ∆(G) and δ(G), respectively. For a vertex v in G, a
vertex being adjacent to v in G is called a neighbor of v. The set of all neighbors
of v is denoted by N(v). Let X be a vertex subset of G with k elements. If G−X

has more components than that in G, then X is called a k-vertex cut of G. If X
contains only one vertex, say v, then we call v a cut-vertex of G. An edge e of G
is called a cut-edge if G − e has more components than that in G. A connected
graph H is said to be k-connected if the order of H is at least k + 1 and H − Y

is connected for every Y ⊆ V (G) with at most k − 1 elements.

Let F and F ′ be two graphs. If F ′ is obtained from a subgraph of F by
contracting several edges, then F ′ is called a minor of F , or we say F has an F ′-

minor. Let Q be a graph other than F and F ′. If a subgraph of F is isomorphic
to Q, then we say that F has a Q-subgraph. A k-tree is either the complete graph
Kk+1 or a graph obtained from a k-tree G by adding one vertex such that it joins
to k pairwise adjacent vertices in G. The tree-width of a graph is the minimum
k such that the graph is a subgraph of a k-tree. Obviously, every graph with
tree-width k has a vertex of degree at most k.

Let H be a graph. For i = 1, 2, . . . , k, let Vi be a subset of V (H), and let
Hi be the subgraph of H induced by Vi. If V1, V2, . . . , Vk are pairwise disjoint
sets such that ∪k

i=1Vi = V (H), then H is said to be covered by H1-subgraph,
H2-subgraph, . . ., Hk-subgraph. In particular, if Hi is isomorphic to the graph
R for i = 1, 2, . . . , k, then we say that H is covered by R-subgraphs. For a vertex
x in Vi, the number of all edges incident with x which are not in Hi is said to be
the outer degree of x in Hi. The sum of the outer degrees of all vertices in Vi is
called the outer degree of Hi.

An embedding of a planar graph G in the plane is a drawing of G in the
plane which has no edge-crossings. By the stereographic projection, a graph is
embeddable in the plane if and only if it can be embedded in the sphere. By
a well-known result of Whitney [15], a 3-connected planar graph has a unique
embedding in the plane (or the sphere). Let H be a connected planar graph
with at least four vertices which has an embedding Π in the sphere Σ. Then a
connected component in Σ − Π is a face of Π. If the boundary of a face f is a
cycle C, then C is called a facial cycle. Sometimes, f is said to be the interior

of C.

2. The Proof of Theorem 2

We now give the proof of Theorem 2.

Proof of Theorem 2. We use the induction on n to show the theorem. If n ≤ 3,
then the theorem is true. If n = 4, then G is a proper subgraph of K4. It can
be checked that ∇(G) ≤ 1. Assume that the theorem holds for n ≤ k − 1, where
k ≥ 5. We now consider the case that n = k.
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It is well-known that every graph that has no K4-minor is planar and has
tree-width at most two. In addition, every graph with tree-width k has a vertex
of degree at most k. So δ(G) = 1 or 2.

If δ(G) = 1, let x be a vertex of degree one in G. Let G′ be the graph obtained
from G by deleting x. Clearly, G′ has not any K4-minor. So ∇(G′) ≤ n−2

2 by the
inductional assumption. Since ∇(G) = ∇(G′), we have that ∇(G) ≤ n−2

2 .

If δ(G) = 2, let y be a vertex of degree two in G. Let y1 and y2 be two
neighbors of y. We now delete y1 from G. Then the degree of y is one in the
present graph. Next, y is deleted. Let H be the obtained graph, which has not
any K4-minor. Then ∇(G) ≤ ∇(H)+1. By the inductional assumption, we have
that ∇(H) ≤ n−3

2 . So ∇(G) ≤ n−1
2 .

The result below follows from Theorem 2 directly.

Corollary 5. Let G be a planar graph with n ≥ 3 vertices. If ∇(G) ≥ n
2 , then

G has a K4-minor.

3. The Proof of Theorem 4

In the section we will prove Theorem 4.

Lemma 6. Let G be a planar graph of order n with ∆(G) ≤ 4. If δ(G) ≤ 2, then
∇(G) ≤ n−1

2 .

Proof. Let G be a minimal counterexample with respect to the number of ver-
tices. Let x be a vertex of degree at most two in G. If dG(x) = 1, then
∇(G) = ∇(G − x). Since ∆(G − x) ≤ 4, we have that ∇(G − x) ≤ n−1

2 by
Theorem 3. So ∇(G) ≤ n−1

2 , a contradiction. If dG(x) = 2, let N(x) = {x1, x2}.
If x1 is not adjacent to x2, then the path x1xx2 is replaced with x1x2. Let G

′ be
the obtained graph. Then ∇(G) = ∇(G′) ≤ n−1

2 by Theorem 3, a contradiction.
If x1 is adjacent to x2, then we delete x1, then x. Let G′′ be the obtained graph
in which the degree of x2 is at most two. Then ∇(G′′) ≤ n−2

2 by Theorem 3.
If ∇(G′′) = n−2

2 , then it violates the minimality of G. If ∇(G′′) ≤ n−3
2 , then

∇(G) ≤ ∇(G′′) + 1 ≤ n−1
2 , a contradiction. So ∇(G) ≤ n−1

2 .

Theorem 7. Let G be a planar graph of order n ≥ 4 with ∆(G) ≤ 4. If G is not

a 4-regular graph and if ∇(G) = n
2 , then G is covered by K4-subgraphs.

Proof. Suppose that G is a minimal counterexample with respect to the number
of vertices. We now suppose that G has been embedded in the plane.

Claim 1. G has not any cut-edge.
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Proof. Otherwise, let e = uv be a cut-edge in G. Suppose that e is an edge
in a component G′

1 of G. Let G′
1,1 and G′

1,2 be two components of G′
1 − e.

Let G1 = G′
1,1, and let G2 be the union of all other components in G− e. Then

∇(G1) ≤
|V (G1)|

2 and ∇(G2) ≤
|V (G2)|

2 by Theorem 3. If one of G1 and G2, say G1,

is such that ∇(G1) <
|V (G1)|

2 , then ∇(G) = ∇(G1)+∇(G2) <
n
2 , a contradiction.

So ∇(G1) =
|V (G1)|

2 and ∇(G2) =
|V (G2)|

2 . Thus both G1 and G2 are covered by
K4-subgraphs. Hence G is covered by K4-subgraphs, a contradiction. �

We now consider δ(G). If δ(G) ≤ 2, then ∇(G) ≤ n−1
2 by Lemma 6, a

contradiction. So δ(G) ≥ 3. Since G is not a 4-regular graph, we have that
δ(G) = 3. Let x be a vertex of degree three in G, and let N(x) = {x1, x2, x3}.
Let Q1 be the subgraph of G induced by x1, x2 and x3.

If Q1 is a cycle, then the subgraph of G induced by vertices in V (Q1) ∪ {x}
is isomorphic to K4. We now delete x1 and x2 from G. Then x is of degree one
and x3 is of degree at most two in the present graph. Next, x is deleted, then
x3. Let G′ be the obtained graph, which has n − 4 vertices. So ∇(G′) ≤ n−4

2
by Theorem 3. If ∇(G′) < n−4

2 , then ∇(G) ≤ ∇(G′) + 2 < n
2 , a contradiction.

If ∇(G′) = n−4
2 , then G′ is covered by K4-subgraphs. Hence G is covered by

K4-subgraphs, a contradiction.

If Q1 is not a cycle, then there are two vertices in N(x), say x1 and x2, such
that they are not adjacent to each other in G.

Claim 2. x1 is not any vertex in any K4-subgraph of G.

Proof. Otherwise, suppose that x1 is in someK4-subgraphQ2 ofG. Let V (Q2) =
{x1, y1, y2, y3}. Obviously, x is not in V (Q2). Otherwise, both x2 and x3 are in
V (Q2), a contradiction.

If there is some vertex in {y1, y2, y3}, say y1, such that its degree is three in
G, then we delete y2 and y3 from G. So y1 is of degree one and x1 is of degree
at most two in the present graph. Next, y1 is deleted, then x1. Let H1 be the
obtained graph in which the degree of x is two. So ∇(H1) ≤

n−5
2 by Lemma 6.

Since ∇(G) ≤ ∇(H1) + 2, we have that ∇(G) ≤ n−1
2 , a contradiction. Hence the

degree of each of y1, y2, and y3 is four in G.

Let y′i be the neighbor of yi which is not in V (Q2) for i = 1, 2, 3. Since
K4 is 3-connected planar graph, it has a unique embedding in the plane, say Π.
Without loss of generality, suppose that C = x1y1y2x1 is the boundary of the
outer face of Π. We claim that y′1, y

′
2 and y′3 are not in the exterior of the cycle

C. If not, then the edge y3y
′
3 crosses some edge of C by Jordan’s curve theorem,

since y3 is not in the exterior of C. Thus there is a contradiction. Similarly,
y′1, y

′
2 and y′3 are not in the interior of the same inner face of Π. Without loss of

generality, suppose that y′1 and y′2 are in the interior of two distinct inner faces
of Π. So y′1 is not adjacent to y′2. We now delete x1 and y3 from G. Then the
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degree of yi is two in the present graph for i = 1, 2. The path y′1y1y2y
′
2 is now

replaced with y′1y
′
2. Let H2 be the obtained graph in which the degree of x is

two. So ∇(H2) ≤ n−5
2 by Lemma 6. Since ∇(G) ≤ ∇(H2) + 2, we have that

∇(G) ≤ n−1
2 , a contradiction. �

Similarly, we have the following claim.

Claim 3. x2 is not any vertex in any K4-subgraph of G.

We now delete x3 from G. Then the degree of x is two in the present graph.
Next, the path x1xx2 is replaced with the edge x1x2. Let H3 be the obtained
graph, whose maximum degree is at most four. By Theorem 3, ∇(H3) ≤

n−2
2 . If

∇(H3) <
n−2
2 , then ∇(G) ≤ ∇(H3) + 1 < n

2 , a contradiction. If ∇(H3) =
n−2
2 ,

then it is covered by K4-subgraphs. Hence xi must be a vertex in some K4-
subgraph, say Ri, for i = 1, 2. Since the maximum degree of G is at most four,
x1x2 can not be a common edge of R1 and R2. If R1 and R2 are two different
subgraphs, then one of R1 and R2, say R1, does not contain the edge x1x2. Thus
R1 is a K4-subgraph of G which contains x1, which violates Claim 2. So both x1
and x2 are two vertices in the same K4-subgraph, say Q3, in H3. Suppose that
V (Q3) = {x1, x2, z1, z2}.

If the degree of one of z1 and z2, say z1, is three, then we delete x1 and x2
instead of x3 from G. Then the degree of z1 is one and the degree of z2 is at most
two in the present graph. Next, z1 is deleted, then z2. Let H4 be the obtained
graph in which the degree of x is one. So ∇(H4) ≤ n−5

2 by Lemma 6. Since
∇(G) ≤ ∇(H4)+2, we have that ∇(G) ≤ n−1

2 , a contradiction. Hence each of z1
and z2 is of degree four in G. Suppose that wi is the neighbor of zi which is not
in V (Q3) for i = 1, 2.

It is clear that x3 is neither z1 nor z2 in G. We observe that x3, w1 and w2 are
not the same vertex. Otherwise, the subgraph of G induced by {x, x1, x2, x3} ∪
{z1, z2, w1, w2} has a K3,3-minor, a contradiction. Similarly, x3 is not adjacent
to both w1 and w2, or x3 is one of w1 and w2 but x3 is adjacent to the other
vertex. So x3 is not adjacent to one of w1 and w2. We now suppose that x3 is
not adjacent to w2 in G.

Claim 4. The degree of each of x1 and x2 is four in G.

Proof. Without loss of generality, suppose on the contrary that the degree of x1
is three in G. We now delete x2 and z1 instead of x3 from G. Then the degree
of each of x, x1 and z2 is two in the present graph. Next, the path x3xx1z2w2

is replaced with x3w2. Let H5 be the obtained graph. Then ∇(H5) ≤ n−5
2 by

Lemma 6. Since ∇(G) ≤ ∇(H5) + 2, we have that ∇(G) ≤ n−1
2 , a contradiction.

�

Suppose that the neighbor of xi which is not in {x} ∪ V (Q3) is ui in G for
i = 1, 2. A local structure of G is shown in Figure 1. Need to say that several
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vertices in u1, u2, w1, w2 may be the same vertex. Let F be the subgraph of
G induced by the vertices x, x1, x2, z1, z2. Suppose that F is a subgraph of a
component of G, say B. Then x3, u1, u2, w1 and w2 are vertices of B. Let F ′ be
the graph obtained from B by deleting all vertices in F . We claim that F ′ is not
connected (a graph with one vertex is viewed as a connected one). Otherwise,
all vertices in F ′ are contracted into a vertex. Then G has a K5-minor, since F

is isomorphic to a subdivision of K4. Thus there is a contradiction. If F ′ has
at least three components, then there is a component which contains only one
vertex in x3, u1, u2, w1 and w2, say w1. In this case, the edge z1w1 is a cut-edge
of G, which violates Claim 1. So F ′ has exactly two components, say F ′

1 and F ′
2.

If w1 and w2 are in V (F ′
1) and V (F ′

2), respectively, then we delete both x1
and x2 instead of x3 from G. Let H6 be the obtained graph in which the degree
of x is one and the degree of each of z1 and z2 is two. The path w1z1z2w2 is now
replaced with the edge w1w2. Let H

′
6 be the obtained graph. Then ∇(H ′

6) ≤
n−5
2

by Lemma 6. So ∇(G) ≤ ∇(H ′
6) + 2 ≤ n−1

2 , a contradiction. So both w1 and w2

are in one of V (F ′
1) and V (F ′

2), say V (F ′
1). In this case, there are at least two

vertices in {x3, u1, u2} which are in V (F ′
2). We claim that x3 must be in V (F ′

2).
Otherwise, x3 is in V (F ′

1). So the graph F ′
1 ∪ F has a minor isomorphic to K3,3

if all vertices in V (F ′
1) are contracted into a vertex, a contradiction.

z2

z1

x1 u1
w1

x3

x

w2

x2

u2

Figure 1. A local structure of G.

If u1 is in V (F ′
1), then it is not adjacent to x3. We now delete x2 instead

of x3 from G. Let H7 be the obtained graph in which the degree of x is two.
Let H ′

7 be the graph obtained from H7 by replacing the path x3xx1 with the
edge x3x1. Then ∇(H ′

7) ≤ n−2
2 by Theorem 3. If ∇(H ′

7) ≤ n−3
2 , then ∇(G) ≤

∇(H7)+2 ≤ n−1
2 , a contradiction. So ∇(H ′

7) =
n−2
2 . Considering that the degree

of z1 is three in H ′
7 and the order of H ′

7 is less than that of G, we have that H ′
7

is covered by K4-subgraphs. Thus x1 is a vertex in some K4-subgraph. Hence
there are three vertices in N(x1) such that they are adjacent to each other. Since
N(x1) = {x3, u1, z1, z2} and x3 is not adjacent to u1, we have that either u1, z1, z2
are adjacent to each other or x3, z1, z2 are adjacent to each other. If the former
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occurs, then x1 is a vertex in some K4-subgraph in G, which violates Claim 2.
If the latter occurs, then G has a subgraph isomorphic to K3,3, whose vertex set
is {x, z1, z2} ∪ {x1, x2, x3}, a contradiction. So u1 is not in V (F ′

1). Similarly, u2
is not in V (F ′

1). In other words, both u1 and u2 are in V (F ′
2). Thus u1 is not

adjacent to w1 in G.

Claim 5. x3, u1 and u2 are not the same vertex in G.

Proof. Otherwise, we delete x1 and x2 instead of x3 from G. So the degree of
x is one, the degree of x3 is at most two, and degree of each of z1 and z2 is two
in the present graph. Next, x is deleted, then x3. Let H8 be the obtained graph
whose minimum degree is at most two. Then ∇(H8) ≤

n−5
2 by Lemma 6. Since

∇(G) ≤ ∇(H8) + 2, we have that ∇(G) ≤ n−1
2 , a contradiction. �

By Claim 5, without loss of generality, suppose that x3 and u1 are not the
same vertex in G. We now delete the two vertices x2 and z2 instead of x3 from G.
Then the degree of each of x and z1 is two in the present graph. Next, the path
x1xx3 is replaced with x1x3, and the path x1z1w1 is replaced with x1w1. Let H9

be the obtained graph whose maximum degree is at most four. If ∇(H9) ≤
n−5
2 ,

then ∇(G) ≤ n−1
2 , a contradiction. If ∇(H9) =

n−4
2 , then H9 is covered by K4-

subgraphs. In this case, x1 is a vertex in a unique K4-subgraph, say Q4. So Q4

contains x1, x3, w1 and u1. Hence u1 must be adjacent to w1 in G, a contradiction.
Thus, the proof is completed.

Theorem 8. Let G be a planar graph of order n ≥ 4. If G is covered by K4-

subgraphs and the outer degree of each K4-subgraph is at most five, then ∇(G)= n
2 .

Proof. Suppose that G is covered by K4-subgraphs Q1, Q2, . . . , Qk. So n = 4k.
Since ∇(K4) = 2, we have that ∇(G) ≥ 2k, i.e., ∇(G) ≥ n

2 . We can suppose that
G is connected. Otherwise, each component of G is considered in the similar way.

We now use the induction on k to show that ∇(G) ≤ 2k. If k = 1, then G

is exactly K4. So ∇(G) = 2. Assume that the inequality is true for k ≤ l − 1,
where l ≥ 2. We now consider the case that k = l. For i = 1, 2, . . . , l, suppose
that V (Qi) = {vi,1, vi,2, vi,3, vi,4}.

Suppose that G has been embedded in the sphere. We claim that there is
some K4-subgraph Qj which contains some 3-cycle C such that any vertex in
V (Qj) − V (C) is not adjacent to any vertex in V (G) − V (Qj). In fact, Qi is a
3-connected planar graph for i = 1, 2, . . . , l. Then Qi has a unique embedding in
the sphere in which each facial cycle is a 3-cycle. We consider Q1 at first. If Q1

has a facial cycle such that all vertices in V (G) − V (Q1) are in the interior of
the cycle, then it is the desired. Otherwise, there are two facial cycles in Q1, say
C1 and C2, such that at least one vertex in V (G) − V (Q1) is adjacent to some
vertex of Ci for i = 1, 2. We now select one of C1 and C2, say C1. We observe
that if some vertex of Qs (s 6= 1) is in the interior of C1, then all other vertices
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in Qs are in the interior of C1. Otherwise, there is at least one edge-crossing, a
contradiction. Without loss of generality, suppose that all vertices of Q2 are in
the interior of C1. Next, we argue Q2 in a similar way used for Q1, and so on.
Since l is a finite number, there is some j in {1, 2, . . . , l} such that Qj has some
cycle C satisfying the desired condition. Suppose that C = vj,1vj,2vj,3vj,1.

Since the outer degree of Qj is at most five, there is some vertex in V (C), say
vj,3, such that its outer degree is at most one. We now delete vj,1 and vj,2 from G.
Then the degree of vj,4 is one and the degree of vj,3 is at most two in the present
graph. Next, vj,4 is deleted, then vj,3. Let G′ be the obtained graph. Then G′

is covered by (l − 1) K4-subgraphs and ∇(G) ≤ ∇(G′) + 2. By the inductional
assumption, ∇(G′) ≤ 2l − 2. So ∇(G) ≤ 2l. Hence the proof is completed.

Proof of Theorem 4. The theorem follows from Theorem 7 and Theorem 8
directly.

4. Planar Graphs with Minimum Degree at Least Four

The decycling number of a planar graph with minimum degree at least four will
be studied in the section. Let us start with a definition. A regular polyhedron
is a convex one which satisfies the following conditions: (1) the polygons are
congruent ones, and (2) each vertex is incident with the same number of polygons.
It has been known that there are exactly five regular polyhedra which contains
the tetrahedron, the hexahedron, the octahedron, the dodecahedron, and the
icosahedron. (One can refer to [14] for the proof.) Let O6 and I12 denote the
octahedron and the icosahedron, respectively, which are shown in Figures 2 and
3, respectively.

Let G be a planar graph with δ(G) ≥ 4. Then G has at least five vertices.
If G has exactly five vertices, then it is the complete graph K5 which is not a
planar graph. So G has at least six vertices. If G has six vertices and δ(G) ≥ 4,
we have a result below.

Theorem 9. If G is a planar graph with six vertices and δ(G) ≥ 4, then G is

the graph O6.

Proof. We firstly claim that each vertex is of degree four in G . Otherwise, let
x be a vertex in G of degree five. Then there is another vertex y of degree five
in G. Otherwise, G has only one vertex of degree five and any other vertex has
degree four, a contradiction. Since G has six vertices, x is adjacent to y. We now
delete x and y from G. Let G′ be the obtained graph. Then any vertex in G′ is
of degree at least two. So G′ has a 4-cycle. Considering that each of x and y is
adjacent to each vertex in G′, G has a minor isomorphic to K5, a contradiction.
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Since the degree of each vertex in G is four, there are two vertices, say v1
and v5, in G, such that v1 is not adjacent to v5. Let H be the graph obtained
from G by deleting v1 and v5 from G. Then each vertex in H is of degree two.
So H is a 4-cycle. Since each of v1 and v5 is adjacent to each vertex in H, G is
the graph shown in Figure 2, which is exactly O6.

v6 v2 v3 v4

v5

v1

Figure 2. The graph O6 (the vertices depicted by solid circles form a decycling set).

Theorem 10. ∇(O6) = 3.

Proof. It is not hard to see that ∇(O6) ≤ 3 (refer to Figure 2). If ∇(O6) = 2,
let S be a decycling set of O6 with two vertices. Since each vertex is of degree
four in O6, we have that each vertex is of degree at least two in O6−S. So O6−S

contains a cycle, a contradiction. Hence ∇(O6) ≥ 3. Thus ∇(O6) = 3.

Theorem 11. Let G be a planar graph with n ≥ 6 vertices. If G is covered

by O6-subgraphs and the outer degree of each O6-subgraph is at most five, then

∇(G) = n
2 .

Proof. Suppose that G is covered by k O6-subgraphs. So n = 6k. By Theorem
10, ∇(O6) = 3. So ∇(G) ≥ 3k = n

2 .
We suppose that G has been embedded in the sphere. We use the induction

on k to show that ∇(G) ≤ 3k. If k = 1, then G is exactly O6. So the inequality
holds by Theorem 10. Assume that the inequality is true for k ≤ l−1, where l ≥ 2.
We now consider the case that k = l. Since O6 is a 3-connected planar graph, it
has a unique embedding in the sphere. By a similar argument to that in the proof
of Theorem 8, there is some O6-subgraph, denoted by Q, which contains some
3-cycle C such that any vertex in V (Q)− V (C) is not adjacent to any vertex in
V (G)−V (Q). Suppose that the vertex set of Q is {vi|i = 1, 2, 3, 4, 5, 6}. Without
loss of generality, suppose the cycle C = v1v2v3v1 (one can refers to Figure 2).

Since the outer degree of Q is at most five, there is some vertex in C, say v1,
such that its outer degree is at most one. We now delete v2, v3 and v6 from G.
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Let H be the obtained graph. Then the degree of v5 is one in H, and the degrees
of v4 and v1 are two in H, respectively. We now delete v5, v4, and v1 in this order
from H. Let H ′ be the obtained graph. Then H ′ is covered by l − 1 O6-graphs,
and ∇(G) ≤ ∇(H ′) + 3. By the inductional assumption, ∇(H ′) ≤ 3(l − 1). So
∇(G) ≤ 3l. Thus ∇(G) ≤ n

2 . Hence ∇(G) = n
2 .

Next, we consider the decycling number of a planar graph with minimum
degree five. Let G be a planar graph with minimum degree five. Then G is not
covered by K4-subgraphs or O6-subgraphs. We ask that whether there is a planar
graph of order n with minimum degree five such that its decycling number is n

2 .
The following result gives a positive answer.

Theorem 12. ∇(I12) = 6.

Proof. It is easy to see that the set of vertices depicted by solid circle in Figure
3 is a decycling set of I12. So ∇(I12) ≤ 6.

We firstly claim that ∇(I12) ≥ 5. Otherwise, let S1 be a decycling set of
I12 with four vertices. Let H1 be the subgraph of I12 induced by all vertices in
V (I12) − S1. Then H1 contains eight vertices. Considering that the deletion of
any vertex in S1 destroys at most five edges and I12 has 30 edges, H1 contains at
least ten edges. So H1 has a cycle, a contradiction.

We now suppose that ∇(I12) = 5. Without loss of generality, suppose that
S2 = {v1, v2, v3, v4, v5} is a decycling set of I12 with five vertices. Let H2 be the
subgraph of I12 induced by all vertices in V (I12) − S2. Then H2 contains seven
vertices, and it has at most six edges. In this case the deletion of all vertices in
S2 must destroy at least 24 edges of G. Thus the subgraph of I12 induced by S2

has at most one edge. In other words, I12 has an independent set of four vertices.
It can be checked that any independent set of I12 has at most three vertices, a
contradiction. So ∇(I12) ≥ 6. Thus ∇(I12) = 6.

Theorem 13. Let G be a planar graph with n ≥ 12 vertices. If G is covered

by I12-subgraphs and the outer degree of each I12-subgraph is at most five, then

∇(G) = n
2 .

Proof. Suppose that G is covered by k I12-subgraphs. So n = 12k. By Theorem
12, ∇(I12) = 6. So ∇(G) ≥ 6k = n

2 .
We suppose that G has been embedded in the sphere. We use the induction

on k to show that ∇(G) ≤ 6k. If k = 1, then G is exactly I12. So the inequality
holds by Theorem 12. Assume that the inequality is true for k ≤ l − 1, where
l ≥ 2. We now consider the case that k = l. Since I12 is a 3-connected planar
graph, it has a unique embedding in the sphere. By a similar argument to that in
the proof of Theorem 8, there is some I12-subgraph, denoted by Q, which contains
some 3-cycle C such that any vertex in V (Q)−V (C) is not adjacent to any vertex
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v12 v11

v1

v4 v2

v3

v5 v9
v6

v7

v8

v10

Figure 3. The graph I12 (the vertices depicted by solid circles form a decycling set).

in V (G)−V (Q). We suppose that the vertex set of Q is {vi|i = 1, 2, . . . , 12}. See
Figure 3. Since I12 is a regular polyhedron, the faces have symmetry. Without
loss of generality, suppose that the cycle C = v1v2v3v1.

Let S1 = {v1, v2, v6, v8, v9, v12}, S2 = {v2, v3, v6, v9, v10, v12}, and S3 = {v1, v3,
v5, v6, v9, v11}. For i = 1, 2, 3, we observe that Si is a decycling set of Q with
six vertices, and that the graph obtained from Q by deleting all vertices in Si

is a path, say Pi. Note that P1 = v7v3v4v5v10v11, P2 = v11v1v4v5v8v7, and
P3 = v2v7v8v10v12v4.

Since the outer degree of Q is at most five, there is a vertex y in C such that
its outer degree is at most one. If y is the vertex v3, then we delete all vertices
in S1. Next, we firstly delete all vertices in V (P1) − {v3}, then x3. Let H1 be
the obtained graph, which is covered by l − 1 I12-subgraphs. By the inductional
assumption, ∇(H1) ≤ 6(l− 1). So ∇(G) ≤ 6l. Thus ∇(G) ≤ n

2 . If y is the vertex
v1 (or v2), then we delete all vertices in S2 (or S3). Subsequently, we delete all
vertices in V (P1)− {v1} (or V (P1)− {v2}), then v1 (or v2). Next, we proceed a
similar argument to that for v3. Then ∇(G) ≤ n

2 . Hence ∇(G) = n
2 .

Using the methods in the proof of Theorems 8, 11 and 13, it is not hard to
show the following result.

Theorem 14. Let G be a planar graph with n ≥ 12 vertices. If G is covered by

K4-subgraphs, O6-subgraphs, or I12-subgraphs such that the outer degree of each

of K4-subgraph, O6-subgraph, and I12-subgraph is at most five, then ∇(G) = n
2 .
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x4 x3

x1 x2

y2
y3

y4

y1

z2 z3

z4

z1

w2 w3

w4

w1

Figure 4. A graph covered by K4-subgraphs.

If a planar graph G of order n is covered by K4-subgraphs, O6-subgraphs,
or I12-subgraphs, then the decycling number of G is at least n

2 by the facts that
∇(K4) = 2, ∇(O6) = 3, and ∇(I12) = 6. In order to determine ∇(G) = n

2 ,
one needs to show that ∇(G) ≤ n

2 . We can solve it if the outer degree of each
of K4-subgraph, O6-subgraph, and I12-subgraph is restricted to be at most five.
If the condition on the outer degree is removed, it is not easy to solve it. For
example, the graph H shown in Figure 4 is covered by K4-subgraphs. Note that
the subgraph induced by x1, x2, x3, and x4 is isomorphic to K4. We observe that
any decycling set of H must contain two vertices in {x1, x2, x3, x4}, but we have
not a general method to select them. We think that the condition on the outer
degree in Theorem 14 can be removed. So we propose the following conjecture.

Conjecture 15. Let G be a planar graph with n ≥ 12 vertices which is covered

by K4-subgraphs, O6-subgraphs, or I12-subgraphs. Then ∇(G) = n
2 .
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