THE DECYCLING NUMBER OF A PLANAR GRAPH COVERED BY K_{4}-SUBGRAPHS

Denguu Ma
School of Sciences
Nantong University
Jiangsu Province, China, 226019
e-mail: madengju@ntu.edu.cn
Mingyuan Ma
AND
Han Ren
Department of Mathematics
East China Normal University
Shanghai, China, 200062
e-mail: ming623@163.com
hren@math.ecnu.edu.cn

Abstract

Let G be a planar graph of n vertices. The paper shows that the decycling number of G is at most $\frac{n-1}{2}$ if G has not any K_{4}-minor. If the maximum degree of G is at most four and G is not 4-regular, the paper proves that the decycling number of G is $\frac{n}{2}$ if and only if G is covered by K_{4}-subgraphs. In addition, the decycling number of G covered by octahedron-subgraphs or icosahedron-subgraphs is studied.

Keywords: decycling number, planar graph, K_{4}-minor.
2020 Mathematics Subject Classification: 05C10, 05C38.

1. Introduction

All graphs in the paper are simple. Let G be a graph. A subset S of $V(G)$ is said to be a decycling set of G if $G-S$ is acyclic. The cardinality of a minimum decycling set of G is said to be the decycling number of G, which is denoted by
$\nabla(G)$. A decycling set is also called a feedback vertex set. It has application in areas such as circuit design and deadlock prevention [6].

Determining the decycling number of a graph is not an easy work. It has been proved that the problem of determining the decycling number of a graph is NP-hard [8]. So an upper bound for the decycling number of a graph, especially a planar graph, attracts people's attention. The decycling number of every planar graph of n vertices is at most $\frac{3 n}{5}$, which follows from the result that planar graphs are acyclically 5 -colorable shown by Borodin [4]. For an outerplanar graph of n vertices, Hosono [7] proved that its decycling number is at most $\frac{n}{3}$. However, the following conjecture is challenging, which is still open now.
Conjecture $1[1,5]$. If G is a planar graph of n vertices, then $\nabla(G) \leq \frac{n}{2}$.
In the paper we firstly study the decycling number of a planar graph without K_{4}-minor, and then we obtain the following result.

Theorem 2. If G is a planar graph of order n without K_{4}-minor, then $\nabla(G) \leq$ $\frac{n-1}{2}$.

For a graph H of n vertices with maximum degree at most four, Ren et al. [13] showed that $\nabla(H) \leq \frac{n+1}{2}$ if H is 4-regular, or $\nabla(G) \leq \frac{n}{2}$, otherwise. Punnim [12] proved the following result.

Theorem 3 [12]. Let H be a graph of n vertices with maximum degree at most four. If H is K_{5}-free graph, then $\nabla(H) \leq \frac{n}{2}$.

By Theorem 3, the decycling number of a planar graph G of n vertices with maximum degree at most four is at most $\frac{n}{2}$. What is the structure of G if $\nabla(G)=\frac{n}{2}$? We will show the theorem below in the paper.
Theorem 4. Let G be a planar graph of n vertices with maximum degree at most four which is not 4 -regular. Then $\nabla(G)=\frac{n}{2}$ if and only if G is covered by K_{4}-subgraphs.

The arrangement of the paper is as follows. Section 2 gives the proof of Theorem 2. In Section 3 we mainly study the decycling number of a planar graph with maximum degree at most four covered by K_{4}-subgraphs. In the end of the section Theorem 4 is proved. In Section 4 we show that the decycling number of a planar graph G of order n is $\frac{n}{2}$ if it is covered by O_{6}-subgraphs, or I_{12}-subgraphs such that the outer degree of each of O_{6} and I_{12} is at most five, where O_{6} and I_{12} denote the octahedron and the icosahedron, respectively.

The remainder of the section is contributed for some terminologies of graphs. The other undefined can be found in [3].

The complete graph of n vertices is denoted by K_{n}. Let G be a graph. The number of vertices of G is called its order. The maximum degree and minimum
degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. For a vertex v in G, a vertex being adjacent to v in G is called a neighbor of v. The set of all neighbors of v is denoted by $N(v)$. Let X be a vertex subset of G with k elements. If $G-X$ has more components than that in G, then X is called a k-vertex cut of G. If X contains only one vertex, say v, then we call v a cut-vertex of G. An edge e of G is called a cut-edge if $G-e$ has more components than that in G. A connected graph H is said to be k-connected if the order of H is at least $k+1$ and $H-Y$ is connected for every $Y \subseteq V(G)$ with at most $k-1$ elements.

Let F and F^{\prime} be two graphs. If F^{\prime} is obtained from a subgraph of F by contracting several edges, then F^{\prime} is called a minor of F, or we say F has an F^{\prime} minor. Let Q be a graph other than F and F^{\prime}. If a subgraph of F is isomorphic to Q, then we say that F has a Q-subgraph. A k-tree is either the complete graph K_{k+1} or a graph obtained from a k-tree G by adding one vertex such that it joins to k pairwise adjacent vertices in G. The tree-width of a graph is the minimum k such that the graph is a subgraph of a k-tree. Obviously, every graph with tree-width k has a vertex of degree at most k.

Let H be a graph. For $i=1,2, \ldots, k$, let V_{i} be a subset of $V(H)$, and let H_{i} be the subgraph of H induced by V_{i}. If $V_{1}, V_{2}, \ldots, V_{k}$ are pairwise disjoint sets such that $\cup_{i=1}^{k} V_{i}=V(H)$, then H is said to be covered by H_{1}-subgraph, H_{2}-subgraph, \ldots, H_{k}-subgraph. In particular, if H_{i} is isomorphic to the graph R for $i=1,2, \ldots, k$, then we say that H is covered by R-subgraphs. For a vertex x in V_{i}, the number of all edges incident with x which are not in H_{i} is said to be the outer degree of x in H_{i}. The sum of the outer degrees of all vertices in V_{i} is called the outer degree of H_{i}.

An embedding of a planar graph G in the plane is a drawing of G in the plane which has no edge-crossings. By the stereographic projection, a graph is embeddable in the plane if and only if it can be embedded in the sphere. By a well-known result of Whitney [15], a 3 -connected planar graph has a unique embedding in the plane (or the sphere). Let H be a connected planar graph with at least four vertices which has an embedding Π in the sphere Σ. Then a connected component in $\Sigma-\Pi$ is a face of Π. If the boundary of a face f is a cycle C, then C is called a facial cycle. Sometimes, f is said to be the interior of C.

2. The Proof of Theorem 2

We now give the proof of Theorem 2 .
Proof of Theorem 2. We use the induction on n to show the theorem. If $n \leq 3$, then the theorem is true. If $n=4$, then G is a proper subgraph of K_{4}. It can be checked that $\nabla(G) \leq 1$. Assume that the theorem holds for $n \leq k-1$, where $k \geq 5$. We now consider the case that $n=k$.

It is well-known that every graph that has no K_{4}-minor is planar and has tree-width at most two. In addition, every graph with tree-width k has a vertex of degree at most k. So $\delta(G)=1$ or 2 .

If $\delta(G)=1$, let x be a vertex of degree one in G. Let G^{\prime} be the graph obtained from G by deleting x. Clearly, G^{\prime} has not any K_{4}-minor. So $\nabla\left(G^{\prime}\right) \leq \frac{n-2}{2}$ by the inductional assumption. Since $\nabla(G)=\nabla\left(G^{\prime}\right)$, we have that $\nabla(G) \leq \frac{n-2}{2}$.

If $\delta(G)=2$, let y be a vertex of degree two in G. Let y_{1} and y_{2} be two neighbors of y. We now delete y_{1} from G. Then the degree of y is one in the present graph. Next, y is deleted. Let H be the obtained graph, which has not any K_{4}-minor. Then $\nabla(G) \leq \nabla(H)+1$. By the inductional assumption, we have that $\nabla(H) \leq \frac{n-3}{2}$. So $\nabla(G) \leq \frac{n-1}{2}$.

The result below follows from Theorem 2 directly.
Corollary 5. Let G be a planar graph with $n \geq 3$ vertices. If $\nabla(G) \geq \frac{n}{2}$, then G has a K_{4}-minor.

3. The Proof of Theorem 4

In the section we will prove Theorem 4.
Lemma 6. Let G be a planar graph of order n with $\Delta(G) \leq 4$. If $\delta(G) \leq 2$, then $\nabla(G) \leq \frac{n-1}{2}$.

Proof. Let G be a minimal counterexample with respect to the number of vertices. Let x be a vertex of degree at most two in G. If $d_{G}(x)=1$, then $\nabla(G)=\nabla(G-x)$. Since $\Delta(G-x) \leq 4$, we have that $\nabla(G-x) \leq \frac{n-1}{2}$ by Theorem 3. So $\nabla(G) \leq \frac{n-1}{2}$, a contradiction. If $d_{G}(x)=2$, let $N(x)=\left\{x_{1}, x_{2}\right\}$. If x_{1} is not adjacent to x_{2}, then the path $x_{1} x x_{2}$ is replaced with $x_{1} x_{2}$. Let G^{\prime} be the obtained graph. Then $\nabla(G)=\nabla\left(G^{\prime}\right) \leq \frac{n-1}{2}$ by Theorem 3, a contradiction. If x_{1} is adjacent to x_{2}, then we delete x_{1}, then x. Let $G^{\prime \prime}$ be the obtained graph in which the degree of x_{2} is at most two. Then $\nabla\left(G^{\prime \prime}\right) \leq \frac{n-2}{2}$ by Theorem 3 . If $\nabla\left(G^{\prime \prime}\right)=\frac{n-2}{2}$, then it violates the minimality of G. If $\nabla\left(G^{\prime \prime}\right) \leq \frac{n-3}{2}$, then $\nabla(G) \leq \nabla\left(G^{\prime \prime}\right)+1 \leq \frac{n-1}{2}$, a contradiction. So $\nabla(G) \leq \frac{n-1}{2}$.

Theorem 7. Let G be a planar graph of order $n \geq 4$ with $\Delta(G) \leq 4$. If G is not a 4 -regular graph and if $\nabla(G)=\frac{n}{2}$, then G is covered by K_{4}-subgraphs.

Proof. Suppose that G is a minimal counterexample with respect to the number of vertices. We now suppose that G has been embedded in the plane.
Claim 1. G has not any cut-edge.

Proof. Otherwise, let $e=u v$ be a cut-edge in G. Suppose that e is an edge in a component G_{1}^{\prime} of G. Let $G_{1,1}^{\prime}$ and $G_{1,2}^{\prime}$ be two components of $G_{1}^{\prime}-e$. Let $G_{1}=G_{1,1}^{\prime}$, and let G_{2} be the union of all other components in $G-e$. Then $\nabla\left(G_{1}\right) \leq \frac{\left|V\left(G_{1}\right)\right|}{2}$ and $\nabla\left(G_{2}\right) \leq \frac{\left|V\left(G_{2}\right)\right|}{2}$ by Theorem 3 . If one of G_{1} and G_{2}, say G_{1}, is such that $\nabla\left(G_{1}\right)<\frac{\left|V\left(G_{1}\right)\right|}{2}$, then $\nabla(G)=\nabla\left(G_{1}\right)+\nabla\left(G_{2}\right)<\frac{n}{2}$, a contradiction. So $\nabla\left(G_{1}\right)=\frac{\left|V\left(G_{1}\right)\right|}{2}$ and $\nabla\left(G_{2}\right)=\frac{\left|V\left(G_{2}\right)\right|}{2}$. Thus both G_{1} and G_{2} are covered by K_{4}-subgraphs. Hence G is covered by K_{4}-subgraphs, a contradiction.

We now consider $\delta(G)$. If $\delta(G) \leq 2$, then $\nabla(G) \leq \frac{n-1}{2}$ by Lemma 6 , a contradiction. So $\delta(G) \geq 3$. Since G is not a 4-regular graph, we have that $\delta(G)=3$. Let x be a vertex of degree three in G, and let $N(x)=\left\{x_{1}, x_{2}, x_{3}\right\}$. Let Q_{1} be the subgraph of G induced by x_{1}, x_{2} and x_{3}.

If Q_{1} is a cycle, then the subgraph of G induced by vertices in $V\left(Q_{1}\right) \cup\{x\}$ is isomorphic to K_{4}. We now delete x_{1} and x_{2} from G. Then x is of degree one and x_{3} is of degree at most two in the present graph. Next, x is deleted, then x_{3}. Let G^{\prime} be the obtained graph, which has $n-4$ vertices. So $\nabla\left(G^{\prime}\right) \leq \frac{n-4}{2}$ by Theorem 3. If $\nabla\left(G^{\prime}\right)<\frac{n-4}{2}$, then $\nabla(G) \leq \nabla\left(G^{\prime}\right)+2<\frac{n}{2}$, a contradiction. If $\nabla\left(G^{\prime}\right)=\frac{n-4}{2}$, then G^{\prime} is covered by K_{4}-subgraphs. Hence G is covered by K_{4}-subgraphs, a contradiction.

If Q_{1} is not a cycle, then there are two vertices in $N(x)$, say x_{1} and x_{2}, such that they are not adjacent to each other in G.

Claim 2. x_{1} is not any vertex in any K_{4}-subgraph of G.
Proof. Otherwise, suppose that x_{1} is in some K_{4}-subgraph Q_{2} of G. Let $V\left(Q_{2}\right)=$ $\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}$. Obviously, x is not in $V\left(Q_{2}\right)$. Otherwise, both x_{2} and x_{3} are in $V\left(Q_{2}\right)$, a contradiction.

If there is some vertex in $\left\{y_{1}, y_{2}, y_{3}\right\}$, say y_{1}, such that its degree is three in G, then we delete y_{2} and y_{3} from G. So y_{1} is of degree one and x_{1} is of degree at most two in the present graph. Next, y_{1} is deleted, then x_{1}. Let H_{1} be the obtained graph in which the degree of x is two. So $\nabla\left(H_{1}\right) \leq \frac{n-5}{2}$ by Lemma 6 . Since $\nabla(G) \leq \nabla\left(H_{1}\right)+2$, we have that $\nabla(G) \leq \frac{n-1}{2}$, a contradiction. Hence the degree of each of y_{1}, y_{2}, and y_{3} is four in G.

Let y_{i}^{\prime} be the neighbor of y_{i} which is not in $V\left(Q_{2}\right)$ for $i=1,2,3$. Since K_{4} is 3 -connected planar graph, it has a unique embedding in the plane, say Π. Without loss of generality, suppose that $C=x_{1} y_{1} y_{2} x_{1}$ is the boundary of the outer face of Π. We claim that $y_{1}^{\prime}, y_{2}^{\prime}$ and y_{3}^{\prime} are not in the exterior of the cycle C. If not, then the edge $y_{3} y_{3}^{\prime}$ crosses some edge of C by Jordan's curve theorem, since y_{3} is not in the exterior of C. Thus there is a contradiction. Similarly, $y_{1}^{\prime}, y_{2}^{\prime}$ and y_{3}^{\prime} are not in the interior of the same inner face of Π. Without loss of generality, suppose that y_{1}^{\prime} and y_{2}^{\prime} are in the interior of two distinct inner faces of Π. So y_{1}^{\prime} is not adjacent to y_{2}^{\prime}. We now delete x_{1} and y_{3} from G. Then the
degree of y_{i} is two in the present graph for $i=1,2$. The path $y_{1}^{\prime} y_{1} y_{2} y_{2}^{\prime}$ is now replaced with $y_{1}^{\prime} y_{2}^{\prime}$. Let H_{2} be the obtained graph in which the degree of x is two. So $\nabla\left(H_{2}\right) \leq \frac{n-5}{2}$ by Lemma 6 . Since $\nabla(G) \leq \nabla\left(H_{2}\right)+2$, we have that $\nabla(G) \leq \frac{n-1}{2}$, a contradiction.

Similarly, we have the following claim.
Claim 3. x_{2} is not any vertex in any K_{4}-subgraph of G.
We now delete x_{3} from G. Then the degree of x is two in the present graph. Next, the path $x_{1} x x_{2}$ is replaced with the edge $x_{1} x_{2}$. Let H_{3} be the obtained graph, whose maximum degree is at most four. By Theorem $3, \nabla\left(H_{3}\right) \leq \frac{n-2}{2}$. If $\nabla\left(H_{3}\right)<\frac{n-2}{2}$, then $\nabla(G) \leq \nabla\left(H_{3}\right)+1<\frac{n}{2}$, a contradiction. If $\nabla\left(H_{3}\right)=\frac{n-2}{2}$, then it is covered by K_{4}-subgraphs. Hence x_{i} must be a vertex in some $K_{4}{ }^{-}$ subgraph, say R_{i}, for $i=1,2$. Since the maximum degree of G is at most four, $x_{1} x_{2}$ can not be a common edge of R_{1} and R_{2}. If R_{1} and R_{2} are two different subgraphs, then one of R_{1} and R_{2}, say R_{1}, does not contain the edge $x_{1} x_{2}$. Thus R_{1} is a K_{4}-subgraph of G which contains x_{1}, which violates Claim 2. So both x_{1} and x_{2} are two vertices in the same K_{4}-subgraph, say Q_{3}, in H_{3}. Suppose that $V\left(Q_{3}\right)=\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}$.

If the degree of one of z_{1} and z_{2}, say z_{1}, is three, then we delete x_{1} and x_{2} instead of x_{3} from G. Then the degree of z_{1} is one and the degree of z_{2} is at most two in the present graph. Next, z_{1} is deleted, then z_{2}. Let H_{4} be the obtained graph in which the degree of x is one. So $\nabla\left(H_{4}\right) \leq \frac{n-5}{2}$ by Lemma 6 . Since $\nabla(G) \leq \nabla\left(H_{4}\right)+2$, we have that $\nabla(G) \leq \frac{n-1}{2}$, a contradiction. Hence each of z_{1} and z_{2} is of degree four in G. Suppose that w_{i} is the neighbor of z_{i} which is not in $V\left(Q_{3}\right)$ for $i=1,2$.

It is clear that x_{3} is neither z_{1} nor z_{2} in G. We observe that x_{3}, w_{1} and w_{2} are not the same vertex. Otherwise, the subgraph of G induced by $\left\{x, x_{1}, x_{2}, x_{3}\right\} \cup$ $\left\{z_{1}, z_{2}, w_{1}, w_{2}\right\}$ has a $K_{3,3}$-minor, a contradiction. Similarly, x_{3} is not adjacent to both w_{1} and w_{2}, or x_{3} is one of w_{1} and w_{2} but x_{3} is adjacent to the other vertex. So x_{3} is not adjacent to one of w_{1} and w_{2}. We now suppose that x_{3} is not adjacent to w_{2} in G.
Claim 4. The degree of each of x_{1} and x_{2} is four in G.
Proof. Without loss of generality, suppose on the contrary that the degree of x_{1} is three in G. We now delete x_{2} and z_{1} instead of x_{3} from G. Then the degree of each of x, x_{1} and z_{2} is two in the present graph. Next, the path $x_{3} x x_{1} z_{2} w_{2}$ is replaced with $x_{3} w_{2}$. Let H_{5} be the obtained graph. Then $\nabla\left(H_{5}\right) \leq \frac{n-5}{2}$ by Lemma 6. Since $\nabla(G) \leq \nabla\left(H_{5}\right)+2$, we have that $\nabla(G) \leq \frac{n-1}{2}$, a contradiction.

Suppose that the neighbor of x_{i} which is not in $\{x\} \cup V\left(Q_{3}\right)$ is u_{i} in G for $i=1,2$. A local structure of G is shown in Figure 1. Need to say that several
vertices in $u_{1}, u_{2}, w_{1}, w_{2}$ may be the same vertex. Let F be the subgraph of G induced by the vertices $x, x_{1}, x_{2}, z_{1}, z_{2}$. Suppose that F is a subgraph of a component of G, say B. Then $x_{3}, u_{1}, u_{2}, w_{1}$ and w_{2} are vertices of B. Let F^{\prime} be the graph obtained from B by deleting all vertices in F. We claim that F^{\prime} is not connected (a graph with one vertex is viewed as a connected one). Otherwise, all vertices in F^{\prime} are contracted into a vertex. Then G has a K_{5}-minor, since F is isomorphic to a subdivision of K_{4}. Thus there is a contradiction. If F^{\prime} has at least three components, then there is a component which contains only one vertex in $x_{3}, u_{1}, u_{2}, w_{1}$ and w_{2}, say w_{1}. In this case, the edge $z_{1} w_{1}$ is a cut-edge of G, which violates Claim 1 . So F^{\prime} has exactly two components, say F_{1}^{\prime} and F_{2}^{\prime}.

If w_{1} and w_{2} are in $V\left(F_{1}^{\prime}\right)$ and $V\left(F_{2}^{\prime}\right)$, respectively, then we delete both x_{1} and x_{2} instead of x_{3} from G. Let H_{6} be the obtained graph in which the degree of x is one and the degree of each of z_{1} and z_{2} is two. The path $w_{1} z_{1} z_{2} w_{2}$ is now replaced with the edge $w_{1} w_{2}$. Let H_{6}^{\prime} be the obtained graph. Then $\nabla\left(H_{6}^{\prime}\right) \leq \frac{n-5}{2}$ by Lemma 6 . So $\nabla(G) \leq \nabla\left(H_{6}^{\prime}\right)+2 \leq \frac{n-1}{2}$, a contradiction. So both w_{1} and w_{2} are in one of $V\left(F_{1}^{\prime}\right)$ and $V\left(F_{2}^{\prime}\right)$, say $V\left(F_{1}^{\prime}\right)$. In this case, there are at least two vertices in $\left\{x_{3}, u_{1}, u_{2}\right\}$ which are in $V\left(F_{2}^{\prime}\right)$. We claim that x_{3} must be in $V\left(F_{2}^{\prime}\right)$. Otherwise, x_{3} is in $V\left(F_{1}^{\prime}\right)$. So the graph $F_{1}^{\prime} \cup F$ has a minor isomorphic to $K_{3,3}$ if all vertices in $V\left(F_{1}^{\prime}\right)$ are contracted into a vertex, a contradiction.

Figure 1. A local structure of G.
If u_{1} is in $V\left(F_{1}^{\prime}\right)$, then it is not adjacent to x_{3}. We now delete x_{2} instead of x_{3} from G. Let H_{7} be the obtained graph in which the degree of x is two. Let H_{7}^{\prime} be the graph obtained from H_{7} by replacing the path $x_{3} x x_{1}$ with the edge $x_{3} x_{1}$. Then $\nabla\left(H_{7}^{\prime}\right) \leq \frac{n-2}{2}$ by Theorem 3. If $\nabla\left(H_{7}^{\prime}\right) \leq \frac{n-3}{2}$, then $\nabla(G) \leq$ $\nabla\left(H_{7}\right)+2 \leq \frac{n-1}{2}$, a contradiction. So $\nabla\left(H_{7}^{\prime}\right)=\frac{n-2}{2}$. Considering that the degree of z_{1} is three in H_{7}^{\prime} and the order of H_{7}^{\prime} is less than that of G, we have that H_{7}^{\prime} is covered by K_{4}-subgraphs. Thus x_{1} is a vertex in some K_{4}-subgraph. Hence there are three vertices in $N\left(x_{1}\right)$ such that they are adjacent to each other. Since $N\left(x_{1}\right)=\left\{x_{3}, u_{1}, z_{1}, z_{2}\right\}$ and x_{3} is not adjacent to u_{1}, we have that either u_{1}, z_{1}, z_{2} are adjacent to each other or x_{3}, z_{1}, z_{2} are adjacent to each other. If the former
occurs, then x_{1} is a vertex in some K_{4}-subgraph in G, which violates Claim 2. If the latter occurs, then G has a subgraph isomorphic to $K_{3,3}$, whose vertex set is $\left\{x, z_{1}, z_{2}\right\} \cup\left\{x_{1}, x_{2}, x_{3}\right\}$, a contradiction. So u_{1} is not in $V\left(F_{1}^{\prime}\right)$. Similarly, u_{2} is not in $V\left(F_{1}^{\prime}\right)$. In other words, both u_{1} and u_{2} are in $V\left(F_{2}^{\prime}\right)$. Thus u_{1} is not adjacent to w_{1} in G.

Claim 5. x_{3}, u_{1} and u_{2} are not the same vertex in G.
Proof. Otherwise, we delete x_{1} and x_{2} instead of x_{3} from G. So the degree of x is one, the degree of x_{3} is at most two, and degree of each of z_{1} and z_{2} is two in the present graph. Next, x is deleted, then x_{3}. Let H_{8} be the obtained graph whose minimum degree is at most two. Then $\nabla\left(H_{8}\right) \leq \frac{n-5}{2}$ by Lemma 6 . Since $\nabla(G) \leq \nabla\left(H_{8}\right)+2$, we have that $\nabla(G) \leq \frac{n-1}{2}$, a contradiction.

By Claim 5, without loss of generality, suppose that x_{3} and u_{1} are not the same vertex in G. We now delete the two vertices x_{2} and z_{2} instead of x_{3} from G. Then the degree of each of x and z_{1} is two in the present graph. Next, the path $x_{1} x x_{3}$ is replaced with $x_{1} x_{3}$, and the path $x_{1} z_{1} w_{1}$ is replaced with $x_{1} w_{1}$. Let H_{9} be the obtained graph whose maximum degree is at most four. If $\nabla\left(H_{9}\right) \leq \frac{n-5}{2}$, then $\nabla(G) \leq \frac{n-1}{2}$, a contradiction. If $\nabla\left(H_{9}\right)=\frac{n-4}{2}$, then H_{9} is covered by $K_{4^{-}}$ subgraphs. In this case, x_{1} is a vertex in a unique K_{4}-subgraph, say Q_{4}. So Q_{4} contains x_{1}, x_{3}, w_{1} and u_{1}. Hence u_{1} must be adjacent to w_{1} in G, a contradiction. Thus, the proof is completed.

Theorem 8. Let G be a planar graph of order $n \geq 4$. If G is covered by K_{4} subgraphs and the outer degree of each K_{4}-subgraph is at most five, then $\nabla(G)=\frac{n}{2}$.
Proof. Suppose that G is covered by K_{4}-subgraphs $Q_{1}, Q_{2}, \ldots, Q_{k}$. So $n=4 k$. Since $\nabla\left(K_{4}\right)=2$, we have that $\nabla(G) \geq 2 k$, i.e., $\nabla(G) \geq \frac{n}{2}$. We can suppose that G is connected. Otherwise, each component of G is considered in the similar way.

We now use the induction on k to show that $\nabla(G) \leq 2 k$. If $k=1$, then G is exactly K_{4}. So $\nabla(G)=2$. Assume that the inequality is true for $k \leq l-1$, where $l \geq 2$. We now consider the case that $k=l$. For $i=1,2, \ldots, l$, suppose that $V\left(Q_{i}\right)=\left\{v_{i, 1}, v_{i, 2}, v_{i, 3}, v_{i, 4}\right\}$.

Suppose that G has been embedded in the sphere. We claim that there is some K_{4}-subgraph Q_{j} which contains some 3 -cycle C such that any vertex in $V\left(Q_{j}\right)-V(C)$ is not adjacent to any vertex in $V(G)-V\left(Q_{j}\right)$. In fact, Q_{i} is a 3 -connected planar graph for $i=1,2, \ldots, l$. Then Q_{i} has a unique embedding in the sphere in which each facial cycle is a 3 -cycle. We consider Q_{1} at first. If Q_{1} has a facial cycle such that all vertices in $V(G)-V\left(Q_{1}\right)$ are in the interior of the cycle, then it is the desired. Otherwise, there are two facial cycles in Q_{1}, say C_{1} and C_{2}, such that at least one vertex in $V(G)-V\left(Q_{1}\right)$ is adjacent to some vertex of C_{i} for $i=1,2$. We now select one of C_{1} and C_{2}, say C_{1}. We observe that if some vertex of $Q_{s}(s \neq 1)$ is in the interior of C_{1}, then all other vertices
in Q_{s} are in the interior of C_{1}. Otherwise, there is at least one edge-crossing, a contradiction. Without loss of generality, suppose that all vertices of Q_{2} are in the interior of C_{1}. Next, we argue Q_{2} in a similar way used for Q_{1}, and so on. Since l is a finite number, there is some j in $\{1,2, \ldots, l\}$ such that Q_{j} has some cycle C satisfying the desired condition. Suppose that $C=v_{j, 1} v_{j, 2} v_{j, 3} v_{j, 1}$.

Since the outer degree of Q_{j} is at most five, there is some vertex in $V(C)$, say $v_{j, 3}$, such that its outer degree is at most one. We now delete $v_{j, 1}$ and $v_{j, 2}$ from G. Then the degree of $v_{j, 4}$ is one and the degree of $v_{j, 3}$ is at most two in the present graph. Next, $v_{j, 4}$ is deleted, then $v_{j, 3}$. Let G^{\prime} be the obtained graph. Then G^{\prime} is covered by $(l-1) K_{4}$-subgraphs and $\nabla(G) \leq \nabla\left(G^{\prime}\right)+2$. By the inductional assumption, $\nabla\left(G^{\prime}\right) \leq 2 l-2$. So $\nabla(G) \leq 2 l$. Hence the proof is completed.

Proof of Theorem 4. The theorem follows from Theorem 7 and Theorem 8 directly.

4. Planar Graphs with Minimum Degree at Least Four

The decycling number of a planar graph with minimum degree at least four will be studied in the section. Let us start with a definition. A regular polyhedron is a convex one which satisfies the following conditions: (1) the polygons are congruent ones, and (2) each vertex is incident with the same number of polygons. It has been known that there are exactly five regular polyhedra which contains the tetrahedron, the hexahedron, the octahedron, the dodecahedron, and the icosahedron. (One can refer to [14] for the proof.) Let O_{6} and I_{12} denote the octahedron and the icosahedron, respectively, which are shown in Figures 2 and 3 , respectively.

Let G be a planar graph with $\delta(G) \geq 4$. Then G has at least five vertices. If G has exactly five vertices, then it is the complete graph K_{5} which is not a planar graph. So G has at least six vertices. If G has six vertices and $\delta(G) \geq 4$, we have a result below.

Theorem 9. If G is a planar graph with six vertices and $\delta(G) \geq 4$, then G is the graph O_{6}.

Proof. We firstly claim that each vertex is of degree four in G. Otherwise, let x be a vertex in G of degree five. Then there is another vertex y of degree five in G. Otherwise, G has only one vertex of degree five and any other vertex has degree four, a contradiction. Since G has six vertices, x is adjacent to y. We now delete x and y from G. Let G^{\prime} be the obtained graph. Then any vertex in G^{\prime} is of degree at least two. So G^{\prime} has a 4-cycle. Considering that each of x and y is adjacent to each vertex in G^{\prime}, G has a minor isomorphic to K_{5}, a contradiction.

Since the degree of each vertex in G is four, there are two vertices, say v_{1} and v_{5}, in G, such that v_{1} is not adjacent to v_{5}. Let H be the graph obtained from G by deleting v_{1} and v_{5} from G. Then each vertex in H is of degree two. So H is a 4 -cycle. Since each of v_{1} and v_{5} is adjacent to each vertex in H, G is the graph shown in Figure 2, which is exactly O_{6}.

Figure 2. The graph O_{6} (the vertices depicted by solid circles form a decycling set).

Theorem 10. $\nabla\left(O_{6}\right)=3$.
Proof. It is not hard to see that $\nabla\left(O_{6}\right) \leq 3$ (refer to Figure 2). If $\nabla\left(O_{6}\right)=2$, let S be a decycling set of O_{6} with two vertices. Since each vertex is of degree four in O_{6}, we have that each vertex is of degree at least two in $O_{6}-S$. So $O_{6}-S$ contains a cycle, a contradiction. Hence $\nabla\left(O_{6}\right) \geq 3$. Thus $\nabla\left(O_{6}\right)=3$.

Theorem 11. Let G be a planar graph with $n \geq 6$ vertices. If G is covered by O_{6}-subgraphs and the outer degree of each O_{6}-subgraph is at most five, then $\nabla(G)=\frac{n}{2}$.
Proof. Suppose that G is covered by $k O_{6}$-subgraphs. So $n=6 k$. By Theorem $10, \nabla\left(O_{6}\right)=3$. So $\nabla(G) \geq 3 k=\frac{n}{2}$.

We suppose that G has been embedded in the sphere. We use the induction on k to show that $\nabla(G) \leq 3 k$. If $k=1$, then G is exactly O_{6}. So the inequality holds by Theorem 10. Assume that the inequality is true for $k \leq l-1$, where $l \geq 2$. We now consider the case that $k=l$. Since O_{6} is a 3 -connected planar graph, it has a unique embedding in the sphere. By a similar argument to that in the proof of Theorem 8 , there is some O_{6}-subgraph, denoted by Q, which contains some 3-cycle C such that any vertex in $V(Q)-V(C)$ is not adjacent to any vertex in $V(G)-V(Q)$. Suppose that the vertex set of Q is $\left\{v_{i} \mid i=1,2,3,4,5,6\right\}$. Without loss of generality, suppose the cycle $C=v_{1} v_{2} v_{3} v_{1}$ (one can refers to Figure 2).

Since the outer degree of Q is at most five, there is some vertex in C, say v_{1}, such that its outer degree is at most one. We now delete v_{2}, v_{3} and v_{6} from G.

Let H be the obtained graph. Then the degree of v_{5} is one in H, and the degrees of v_{4} and v_{1} are two in H, respectively. We now delete v_{5}, v_{4}, and v_{1} in this order from H. Let H^{\prime} be the obtained graph. Then H^{\prime} is covered by $l-1 O_{6}$-graphs, and $\nabla(G) \leq \nabla\left(H^{\prime}\right)+3$. By the inductional assumption, $\nabla\left(H^{\prime}\right) \leq 3(l-1)$. So $\nabla(G) \leq 3 l$. Thus $\nabla(G) \leq \frac{n}{2}$. Hence $\nabla(G)=\frac{n}{2}$.

Next, we consider the decycling number of a planar graph with minimum degree five. Let G be a planar graph with minimum degree five. Then G is not covered by K_{4}-subgraphs or O_{6}-subgraphs. We ask that whether there is a planar graph of order n with minimum degree five such that its decycling number is $\frac{n}{2}$. The following result gives a positive answer.

Theorem 12. $\nabla\left(I_{12}\right)=6$.
Proof. It is easy to see that the set of vertices depicted by solid circle in Figure 3 is a decycling set of I_{12}. So $\nabla\left(I_{12}\right) \leq 6$.

We firstly claim that $\nabla\left(I_{12}\right) \geq 5$. Otherwise, let S_{1} be a decycling set of I_{12} with four vertices. Let H_{1} be the subgraph of I_{12} induced by all vertices in $V\left(I_{12}\right)-S_{1}$. Then H_{1} contains eight vertices. Considering that the deletion of any vertex in S_{1} destroys at most five edges and I_{12} has 30 edges, H_{1} contains at least ten edges. So H_{1} has a cycle, a contradiction.

We now suppose that $\nabla\left(I_{12}\right)=5$. Without loss of generality, suppose that $S_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a decycling set of I_{12} with five vertices. Let H_{2} be the subgraph of I_{12} induced by all vertices in $V\left(I_{12}\right)-S_{2}$. Then H_{2} contains seven vertices, and it has at most six edges. In this case the deletion of all vertices in S_{2} must destroy at least 24 edges of G. Thus the subgraph of I_{12} induced by S_{2} has at most one edge. In other words, I_{12} has an independent set of four vertices. It can be checked that any independent set of I_{12} has at most three vertices, a contradiction. So $\nabla\left(I_{12}\right) \geq 6$. Thus $\nabla\left(I_{12}\right)=6$.

Theorem 13. Let G be a planar graph with $n \geq 12$ vertices. If G is covered by I_{12}-subgraphs and the outer degree of each I_{12}-subgraph is at most five, then $\nabla(G)=\frac{n}{2}$.

Proof. Suppose that G is covered by $k I_{12}$-subgraphs. So $n=12 k$. By Theorem $12, \nabla\left(I_{12}\right)=6$. So $\nabla(G) \geq 6 k=\frac{n}{2}$.

We suppose that G has been embedded in the sphere. We use the induction on k to show that $\nabla(G) \leq 6 k$. If $k=1$, then G is exactly I_{12}. So the inequality holds by Theorem 12. Assume that the inequality is true for $k \leq l-1$, where $l \geq 2$. We now consider the case that $k=l$. Since I_{12} is a 3 -connected planar graph, it has a unique embedding in the sphere. By a similar argument to that in the proof of Theorem 8, there is some I_{12}-subgraph, denoted by Q, which contains some 3 -cycle C such that any vertex in $V(Q)-V(C)$ is not adjacent to any vertex

Figure 3. The graph I_{12} (the vertices depicted by solid circles form a decycling set).
in $V(G)-V(Q)$. We suppose that the vertex set of Q is $\left\{v_{i} \mid i=1,2, \ldots, 12\right\}$. See Figure 3. Since I_{12} is a regular polyhedron, the faces have symmetry. Without loss of generality, suppose that the cycle $C=v_{1} v_{2} v_{3} v_{1}$.

Let $S_{1}=\left\{v_{1}, v_{2}, v_{6}, v_{8}, v_{9}, v_{12}\right\}, S_{2}=\left\{v_{2}, v_{3}, v_{6}, v_{9}, v_{10}, v_{12}\right\}$, and $S_{3}=\left\{v_{1}, v_{3}\right.$, $\left.v_{5}, v_{6}, v_{9}, v_{11}\right\}$. For $i=1,2,3$, we observe that S_{i} is a decycling set of Q with six vertices, and that the graph obtained from Q by deleting all vertices in S_{i} is a path, say P_{i}. Note that $P_{1}=v_{7} v_{3} v_{4} v_{5} v_{10} v_{11}, P_{2}=v_{11} v_{1} v_{4} v_{5} v_{8} v_{7}$, and $P_{3}=v_{2} v_{7} v_{8} v_{10} v_{12} v_{4}$.

Since the outer degree of Q is at most five, there is a vertex y in C such that its outer degree is at most one. If y is the vertex v_{3}, then we delete all vertices in S_{1}. Next, we firstly delete all vertices in $V\left(P_{1}\right)-\left\{v_{3}\right\}$, then x_{3}. Let H_{1} be the obtained graph, which is covered by $l-1 I_{12}$-subgraphs. By the inductional assumption, $\nabla\left(H_{1}\right) \leq 6(l-1)$. So $\nabla(G) \leq 6 l$. Thus $\nabla(G) \leq \frac{n}{2}$. If y is the vertex v_{1} (or v_{2}), then we delete all vertices in S_{2} (or S_{3}). Subsequently, we delete all vertices in $V\left(P_{1}\right)-\left\{v_{1}\right\}$ (or $V\left(P_{1}\right)-\left\{v_{2}\right\}$), then v_{1} (or v_{2}). Next, we proceed a similar argument to that for v_{3}. Then $\nabla(G) \leq \frac{n}{2}$. Hence $\nabla(G)=\frac{n}{2}$.

Using the methods in the proof of Theorems 8, 11 and 13 , it is not hard to show the following result.

Theorem 14. Let G be a planar graph with $n \geq 12$ vertices. If G is covered by K_{4}-subgraphs, O_{6}-subgraphs, or I_{12}-subgraphs such that the outer degree of each of K_{4}-subgraph, O_{6}-subgraph, and I_{12}-subgraph is at most five, then $\nabla(G)=\frac{n}{2}$.

Figure 4. A graph covered by K_{4}-subgraphs.

If a planar graph G of order n is covered by K_{4}-subgraphs, O_{6}-subgraphs, or I_{12}-subgraphs, then the decycling number of G is at least $\frac{n}{2}$ by the facts that $\nabla\left(K_{4}\right)=2, \nabla\left(O_{6}\right)=3$, and $\nabla\left(I_{12}\right)=6$. In order to determine $\nabla(G)=\frac{n}{2}$, one needs to show that $\nabla(G) \leq \frac{n}{2}$. We can solve it if the outer degree of each of K_{4}-subgraph, O_{6}-subgraph, and I_{12}-subgraph is restricted to be at most five. If the condition on the outer degree is removed, it is not easy to solve it. For example, the graph H shown in Figure 4 is covered by K_{4}-subgraphs. Note that the subgraph induced by x_{1}, x_{2}, x_{3}, and x_{4} is isomorphic to K_{4}. We observe that any decycling set of H must contain two vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, but we have not a general method to select them. We think that the condition on the outer degree in Theorem 14 can be removed. So we propose the following conjecture.

Conjecture 15. Let G be a planar graph with $n \geq 12$ vertices which is covered by K_{4}-subgraphs, O_{6}-subgraphs, or I_{12}-subgraphs. Then $\nabla(G)=\frac{n}{2}$.

Acknowledgements

The authors thank the referees for careful reading of the manuscript and their helpful suggestions.

The third author is supported by NNSFC under the granted number 11171114 and Science and Technology Commission of Shanghai Municipality (STCSM 13dz2260400)

References

[1] M.O. Albertson and D.M Berman, The acyclic chromatic number, Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XVII (1976) 51-69.
[2] L.W. Beineke and R.C. Vandell, Decycling graphs, J. Graph Theory 25 (1997) 59-77.
https://doi.org/10.1002/(SICI)1097-0118(199705)25:1;59::AID-JGT4¿3.0.CO;2-H
[3] J.A. Bondy and U.S.R.Murty, Graph Theory (Springer, 2008).
[4] O.V. Borodin, A proof of Grüngaum's conjecture on the acyclic 5-colorability of planar graphs, Dokl. Akad. Nauk SSSR 231 (1976) 18-20, in Russian.
[5] P. Erdős, M. Saks and V. Sós, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1986) 61-79.
https://doi.org/10.1016/0095-8956(86)90028-6
[6] P. Festa, P.M. Pardalos and M.G.C. Reseude, Feedback set problem, in: Handbook of Combinatorial Optimization, Supplement Vol. A, (Kluwer, Dordrecht, 1999) 209-258.
[7] K. Hosono, Induced forests in trees and outerplanar graphs, Proc. Fac. Sci. Tokai Univ. 25 (1990) 27-29.
[8] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, R.E. Miller, J.W. Thatcher, J.D. Bohlinger (Ed(s)), (The IBM Research Symposia Series Springer, Boston, MA, 1972) 85-103. https://doi.org/10.1007/978-1-4684-2001-2_9
[9] J.P. Liu and C. Zhao, A new bound on the feedback vertex sets in cubic graphs, Discrete Math. 184 (1996) 119-131. https://doi.org/10.1016/0012-365X(94)00268-N
[10] S.D. Long and H. Ren, The decycling number and maximum genus of cubic graphs, J. Graph Theory 88 (2018) 375-384. https://doi.org/10.1002/jgt. 22218
[11] D.A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math. 19 (2005) 651-663. https://doi.org/10.1137/S089548010444016X
[12] N. Punnim, The decycling number of regular graphs, Thai J. Math. 4 (2006) 145161.
[13] H. Ren, C. Yang and T.-X. Zhao, A new formula for the decycling number of regular graphs, Discrete Math. 340 (2017) 3020-3031. https://doi.org/10.1016/j.disc.2017.07.011
[14] A.T. White, Graphs, Groups and Surfaces (North-Holland, 1973).
[15] H. Whitney, Two-isomorphic graphs, Trans. Amer. Math. Soc. 34 (1932) 339-362. https://doi.org/10.1090/S0002-9947-1932-1501641-2

Received 15 July 2020
Revised 10 April 2022
Accepted 10 April 2022
Available online 4 May 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

