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Abstract

In this paper we present a brief survey of bounds on selected domination
parameters. We focus primarily on bounds on domination parameters in
terms of the order and minimum degree of the graph. We present a list of
open problems and conjectures that have yet to be solved in the hope of
attracting future researchers to the field.
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1. Introduction

In this paper, we present a survey of upper bounds for various domination pa-
rameters, including the domination number, the total domination number, the
independent domination number, the connected domination number, the paired
domination number, the restrained domination number, the total restrained dom-
ination number, the semitotal domination number, and the semipaired domina-
tion number. For recent books on domination in graphs, we refer the reader
to [33–35].

For notation and graph theory terminology, we in general follow [50]. Speci-
fically, let G be a graph with vertex set V (G) and edge set E(G), and of order
n(G) = |V (G)| and size m(G) = |E(G)|. For a set of vertices S ⊆ V (G), the
subgraph induced by S is denoted by G[S]. Two vertices in G are neighbors if
they are adjacent. The open neighborhood NG(v) of a vertex v in G is the set of
neighbors of v, while the closed neighborhood of v is the set NG[v] = {v} ∪N(v).
We denote the degree of v in G by dG(v) = |NG(v)|. The minimum and maximum
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degree in G is denoted by δ(G) and ∆(G), respectively. An isolated vertex is a
vertex of degree 0. A graph is isolate-free if it contains no isolated vertex. For
a set S ⊆ V (G), its open neighborhood is the set NG(S) = ∪v∈SNG(v), and its
closed neighborhood is the set NG[S] = NG(S) ∪ S. If the graph G is clear from
the context, we omit writing it in the above expressions. For example, we simply
write V , E, n, m, N(v) and N(S) rather than V (G), E(G), n(G), m(G), NG(v)
and NG(S), respectively.

A set D is a packing in G if the closed neighborhoods of vertices in D are
pairwise disjoint. The packing number ρ(G) is the maximum cardinality of a
packing in G. A perfect packing in G is a packing that is also a dominating set
of G, and so the closed neighborhoods of vertices in a perfect packing partition
V (G).

An open packing in a graph G is a set of vertices whose open neighborhoods
are pairwise disjoint. The open packing number ρo(G) is the maximum cardinality
of an open packing in G. A perfect open packing in G is an open packing that is
also a TD-set of G, and so the open neighborhoods of vertices in a perfect open
packing partition V (G).

2. The Domination Number

A set D of vertices is a dominating set of a graph G if every vertex in V \D has
a neighbor in D. The domination number γ(G) of G is the minimum cardinality
of a dominating set of G. A γ-set of G is a dominating set of G of cardinality
γ(G). A dominating vertex of G is a vertex adjacent to every vertex of G. The
packing number is a trivial lower bound on the domination number of a graph.

Observation 1. If G is a graph, then γ(G) ≥ ρ(G).

Lower bounds on the domination number can also readily be established in
terms of the diameter and radius.

Theorem 2. If G is a connected graph, then γ(G) ≥ 1
3(diam(G)+1) and γ(G) ≥

2
3rad(G).

The matching number α′(G) of G, which is the maximum cardinality of a
matching in G, is an upper bound on the domination number of an isolate-free
graph as first shown in 1979 by Bollobás and Cockayne [7].

Theorem 3 [7]. If G is an isolate-free graph, then γ(G) ≤ α′(G).

Upper and lower bounds on the domination number of a graph in terms of
its maximum degree were presented in 1973 by Berge [4] and in 1979 by Walikar,
Acharya, and Sampathkumar [73], respectively.
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Theorem 4 [4, 73]. If G is a graph of order n, then

n

1 + ∆(G)
≤ γ(G) ≤ n−∆(G).

We remark that the bounds presented in Observation 1 and Theorems 2,
3, and 4 are all tight. However, we will not discuss the extremal graphs that
achieve these bounds since in this brief survey we will focus primarily on bounds
on domination parameters in terms of the order and minimum degree of the
graph, and the associated extremal graphs. The first such bound, referred to as
Ore’s Theorem, is a classical result in domination theory due to Ore [63] in 1962.

Theorem 5 [63]. If G is an isolate-free graph of order n, then γ(G) ≤ 1
2n.

The corona G ◦K1 of a graph G, also denoted cor(G) in the literature, is the
graph obtained from G by adding for each vertex v ∈ V (G) a new vertex v′ and
the edge vv′, called a pendant edge. For example, the corona G = K1,4 ◦K1 of a
star K1,4, shown in Figure 1, has order n = 10 and γ(G) = 5 = 1

2n, and the five
black vertices form a γ-set of G.

Figure 1. The corona K1,4 ◦ P1 of a star K1,4.

In 1982 Payan and Xuong [65] characterized the connected graphs achieving
equality in Theorem 5, and showed that the class of coronas of connected graphs
form the extremal graphs, with the 4-cycle as the only exception.

Theorem 6 [65]. If G is a connected graph of order n ≥ 2, then γ(G) = 1
2n if

and only if G is a 4-cycle or G is a corona F ◦K1 for some connected graph F .

In 1973 Blank [5] showed that if the minimum degree of a connected graph is
at least 2, then the 1

2n-bound on the domination number given in Ore’s Theorem
can be improved to a 2

5n-bound, provided the order n ≥ 8.

Theorem 7 [5]. If G is a connected graph of order n with δ(G) ≥ 2, then

γ(G) ≤ max
{

n+2
3 , 25n

}

.

As an immediate consequence of Theorem 7, we have the following result.

Theorem 8 [5]. If G is a connected graph of order n ≥ 8 with δ(G) ≥ 2, then
γ(G) ≤ 2

5n.
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In 1989 McCuaig and Shepherd [62] provided a new insightful proof of Theo-
rem 8. Their proof identified the exceptional graphs of small order n ≤ 7 that do
not achieve the 2

5n-bound. Let Bdom = {B1, B2, . . . , B7} be the family of seven
graphs (one of order four and six of order seven) shown in Figure 2. Each of
the seven graphs G ∈ Bdom of order n satisfies δ(G) = 2 and γ(G) > 2

5n. The
following result, referred to as the McCuaig-Shepherd Theorem, shows that these
seven graphs are the only exceptional graphs to the 2

5n-bound for the domination
number of a connected graph with minimum degree at least 2.

B1 B2 B3

B4 B5 B6 B7

Figure 2. The family Bdom.

Theorem 9 [62]. If G is a connected graph of order n with δ(G) ≥ 2, then

γ(G) ≤ 2
5n, unless G is one of the seven exceptional graphs in the family Bdom.

Moreover, the proof due to McCuaig and Shepherd [62] provided sufficient
structure to characterize the extremal graphs of large order, namely n > 10, that
achieve equality in the 2

5n-bound. The family of extremal graphs they constructed
partitioned the vertex set into sets, each of which induces a subgraph isomorphic
to a 5-cycle or to a 5-key, which is a graph of order 5 obtained from a 4-cycle by
adding a new vertex and joining this vertex to exactly one vertex of the cycle.
The resulting subgraphs are called units. From each 5-cycle unit two non-adjacent
vertices are selected and designated as the link vertices of the unit, while in each
key unit the vertex of degree 1 is designated as the (unique) link vertex of the
unit. Let Gdom,≥2 be the family of all graphs G that can be obtained from the
disjoint union of at least three units, by adding edges between link vertices so
that the resulting graph is connected. A graph G in the family Gdom,≥2 with five
units is shown in Figure 3 with the link vertices of G given by the black vertices.
Every graph G ∈ Gdom,≥2 of order n satisfies δ(G) = 2 and γ(G) = 2

5n.

Theorem 10 [5]. If G is a connected graph of order n > 10 with δ(G) ≥ 2, then
γ(G) ≤ 2

5n, with equality if and only if G ∈ Gdom,≥2.
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Figure 3. A graph G ∈ Gdom,≥2 with five units.

In 1996 Reed [66] provided an elegant proof that the domination number of
a graph with minimum degree at least 3 is at most three-eights its order.

Theorem 11 [66]. If G is a graph of order n with δ(G) ≥ 3, then γ(G) ≤ 3
8n.

If G is one of the two non-planar cubic graphs G8.1 and G8.2 of order n = 8
shown in Figure 4(a) and (b), respectively, then γ(G) = 3 = 3

8n. We remark that
the graph G8.1 is the Möbius ladder M8.

(a) G8.1 (b) G8.2

Figure 4. The two non-planar cubic graphs of order n = 8.

In 2009 Kostochka and Stocker [60] proved that if G /∈ {G8.1, G8.2} is a
connected cubic graph of order n, then γ(G) ≤ 5

14n. Hence, the two cubic graphs
G8.1 and G8.2 are the only connected cubic graphs that achieve the three-eights
bound in Reed’s Theorem 11.

Reed [66] constructed a family of extremal graphs that achieve the 3
8n-bound

in Theorem 11. The vertex set of such graphs are partitioned into so-called units,
where the subgraph induced by each unit is isomorphic to the nonplanar cubic
graph G8.2, illustrated in Figure 4(b), of order 8 that contains a triangle. In his
construction, from each unit a vertex that belongs to a triangle is selected and
designated as the (unique) link vertex of the unit. Let Gdom,≥3 be the family
of all graphs that can be obtained from the disjoint union of k ≥ 1 such units,
by adding edges between link vertices so that the resulting graph is connected.
Every graph G ∈ Gdom,≥3 with k units has order n = 8k and satisfies δ(G) = 3
and γ(G) = k = 3

8n. A graph G in the family Gdom,≥3 with k = 4 units is shown
in Figure 5 with the link vertices of G given by the black vertices.
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Figure 5. A graph G in the family Gdom,≥3.

In 2009 Sohn and Yuan [68] established the best upper bound to date on the
domination number of a graph with minimum degree at least 4.

Theorem 12 [68]. If G is a graph of order n with δ(G) ≥ 4, then γ(G) ≤ 4
11n.

In 2006 Xing, Sun, and Chen [74] proved that if G is a graph of order n
with δ(G) ≥ 5, then γ(G) ≤ 5

14n < 0.3572n. In 2016 Bujtás and Klavžar [12]
improved this bound to γ(G) ≤ 2671

7766n < 0.343935n. In 2021 Bujtás [9] proved a
magnificent result that the bound can be improved to the magical threshold of
γ(G) ≤ 1

3n.

Theorem 13 [9]. If G is a graph of order n with δ(G) ≥ 5, then γ(G) ≤ 1
3n.

In 2016 Bujtás and Klavžar [12] proved that if G is a graph of order n
with δ(G) ≥ 6, then γ(G) ≤ 1702

5389 n ≈ 0.315829n. In 2021 Bujtás and Henning
[10] improved this result, and established the best upper bound to date on the
domination number of a graph with minimum degree at least 6.

Theorem 14 [10]. If G is a graph of order n with δ(G) ≥ 6, then γ(G) ≤ 127
418 n ≈

0.30382775n.

In 2016 Bujtás and Klavžar [12] proved a powerful result that enabled them
to compute best known upper bounds to date on the domination number of a
graph when the minimum degree is in the integer range [7, 50]. However, it is
unlikely that their bounds, which as mentioned are currently the best known
bounds, are achievable. We mention here only a small sample of their bounds,
namely when the minimum degree is in the integer range [7, 12]. The associated
upper bounds on the domination number in these cases are given in Table 1.

One of the earliest bounds on the domination number was due to Arnautov [3]
in 1974 and Payan [64] in 1975.

Theorem 15 [3,64]. If G is a graph of order n with minimum degree δ ≥ 1, then

γ(G) ≤ n

δ + 1

δ+1
∑

j=1

1

j
.
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δ(G) 7 8 9 10 11 12

γ(G) ≤ 0.292678n ≤ 0.273213n ≤ 0.256566n ≤ 0.242128n ≤ 0.229463n ≤ 0.218244n

Table 1. Upper bounds on γ(G) in terms of its order n with given minimum degree δ(G).

Since the kth harmonic number, Hk =
∑k

j=1
1
j
, of the first k natural numbers

is approximately γ + ln(k) + 1
2k , where γ = 0.57721 . . . is the Euler-Mascheroni

constant, as an immediate consequence of Theorem 15 we have the following
upper bound on the domination number.

Theorem 16 [3,64]. If G is a graph of order n with minimum degree δ ≥ 1, then

γ(G) ≤
(

1 + ln(δ + 1)

δ + 1

)

n.

The bound on the domination number in Theorem 16 is not very good for
small values of δ. Indeed, the bounds presented earlier for small δ ≤ 50 are much
better bounds. However as δ increases, the bound in Theorem 16 gets increasingly
sharp. In 1990 Alon provided a probabilistic proof in [1] that shows that the
bound in Theorem 16 is asymptotically optimal, that is, when δ → ∞. Many
probabilistic bounds on the domination number of a graph have been established
over the past few decades. The best probabilistic bound to date on the domination
number of a graph is due to Rad [55] in 2019.

Theorem 17 [55]. If G is a graph of order n with minimum degree δ > 1 and

maximum degree ∆, then for every integer k ≥ 1,

γ(G) ≤
(

1 + ln(δ + 1)

δ + 1

)

n−
(

(δ − ln(1 + δ))
k
∑

i=1

(

ln(1 + δ)

1 + δ

)i(1+∆)
)

· n

δ + 1
.

Let Gn,m denote the class of all connected graphs of order n ≥ 3 and size m.
As a special case of a more general hypergraph result, in 2012 Bujtás, Henning and
Tuza [11] proved the following general upper bound on the domination number
that involves both the order and size.

Theorem 18 [11]. All upper bounds on the domination number of a graph G ∈
Gn,m in terms of its order n and size m can be written in the unified form

γ(G) ≤ an+ bm

2a+ b

for constants a, b ∈ R where b ≥ 0 and a > − b
2 .
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An equivalent formulation of Theorem 18 gives us the following general upper
bound on the domination number of a graph.

Theorem 19 [11]. The bound γ(G) ≤ an+nm is valid for every graph G ∈ Gn,m

if and only if both 2a+ b ≥ 1 and b ≥ 0 hold.

For example, to illustrate Theorem 19, taking (a, b) =
(

1
2 , 0
)

, yields Ore’s
Theorem 5. Taking (a, b) =

(

1
3 ,

1
3

)

, we have γ(G) ≤ 1
3(n + m). Taking (a, b) =

(

1
4 ,

1
2

)

, we have γ(G) ≤ 1
4n+ 1

2m.

3. The Total Domination Number

A set D of vertices is a total dominating set, abbreviated TD-set, of a graph G if
every vertex has a neighbor inD. Equivalently, D is a TD-set ifD is a dominating
set and the subgraph G[D] induced by D has no isolates. The total domination

number γt(G) of G is the minimum cardinality of a TD-set of G. A γt-set of G
is a TD-set of G of cardinality γt(G). In 1979 Bollobás and Cockayne [7] were
the first to observe that the total domination number of an isolate-free graph is
squeezed between the domination number and twice the domination number.

Theorem 20 [7]. If G is an isolate-free graph, then γ(G) ≤ γt(G) ≤ 2γ(G).

The open packing number is a trivial lower bound on the total domination
number of a graph.

Theorem 21. If G is an isolate-free graph, then γt(G) ≥ ρ0(G).

DeLaViña, Liu, Pepper, Waller, and West [20] established lower bounds on
the total domination number in terms of the diameter and radius.

Theorem 22 [20]. If G is a nontrivial connected graph, then γt(G) ≥ 1
2(diam(G)

+1) and γt(G) ≥ rad(G).

The total domination number and matching number are not related in the
sense that there exist graphs G and H such that the difference γt(G) − α′(G)
and the difference α′(H) − γt(H) can be made arbitrarily large. Since the ends
of the edges in a maximum matching in a graph form a TD-set in the graph, if
G is an isolate-free graph, then γt(G) ≤ 2α′(G). A path covering of a graph G
is a collection of vertex disjoint paths of G that partition V (G). The minimum
cardinality of a path covering of G is the path covering number of G, denoted
pc(G). In 2007 DeLaViña, Liu, Pepper, Waller, and West [20] showed that the
total domination number of an isolate-free graph is at most the matching number
plus the path covering number.
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Theorem 23 [20]. If G is a nontrivial connected graph, then γt(G) ≤ α′(G) +
pc(G).

Upper and lower bounds on the total domination number of a graph in terms
of its maximum degree were presented in 1980 by Cockayne, Dawes, and Hedet-
niemi [18] and in 1979 by Walikar, Acharya, and Sampathkumar [73], respectively.

Theorem 24 [18,73]. If G is a connected graph of order n, then following hold.

(a) γt(G) ≥ n
∆(G) .

(b) If G does not contain a dominating vertex, then γt(G) ≤ n−∆(G).

As mentioned in the previous section, in this brief survey we will focus pri-
marily on bounds on domination parameters in terms of the order and minimum
degree of the graph, and the associated extremal graphs. The first such bound
on the total domination number is a classical result in domination theory due to
Cockayne, Dawes, and Hedetniemi [18] in 1980.

Theorem 25 [18]. If G is a connected graph of order n ≥ 3, then γt(G) ≤ 2
3n.

The 2-corona F ◦ P2 of a connected graph F is the graph of order 3|V (F )|
obtained from F by attaching a path of length 2 to each vertex of F so that the
resulting paths are vertex-disjoint. For example, the 2-corona G = K1,4 ◦ P2 of
a star K1,4, shown in Figure 6, has order n = 15 and γt(G) = 10 = 2

3n, and the
ten black vertices form a γt-set of G.

Figure 6. The 2-corona K1,4 ◦ P2 of a star K1,4.

In 2000 Brigham, Carrington, and Vitray [8] characterized the connected
graphs that achieve equality in the upper bound of Theorem 25.

Theorem 26 [8]. If G is a connected graph of order n ≥ 3, then γt(G) = 2
3n if

and only if G is a 3-cycle C3, a 6-cycle C6, or the 2-corona of a connected graph,

that is, F ◦ P2 for some connected graph F .

The upper bound in Theorem 25 is also best possible for graphs of minimum
degree 2, as may be seen by considering a 3-cycle or a 6-cycle. In 1995 Sun
[69] showed that if G is a connected graph of order n with δ(G) ≥ 2, then
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γt(G) ≤ 4
7(n + 1). This upper bound can be improved slightly if we forbid six

graphs of small orders. Let C ′
10 and C ′′

10 be the two graphs that are obtained
from a 10-cycle by adding one or two chords as shown in Figure 7(a) and 7(b),
respectively, and let Btdom =

{

C3, C5, C6, C10, C
′
10, C

′′
10

}

.

(a) C ′
10 (b) C ′′

10

Figure 7. The graphs C ′
10 and C ′′

10.

Theorem 27 [42]. If G is a connected graph of order n with δ(G) ≥ 2, then

γt(G) ≤ 4
7n, unless G is one of the six exceptional graphs in the family Btdom.

Let Gtdom be the family of graphs G that can be constructed from a connected
graph F of order at least 2 as follows. For each vertex v of F , add a 6-cycle Cv

and join v either to exactly one vertex of Cv or to two vertices at distance 2 apart
on the cycle Cv. The graph F is called the underlying graph of G. An example of
a graph G in the family Gtdom whose underlying graph F is a star K1,4 is shown
in Figure 9. In this example, G has order n = 35 and γt(G) = 4× 5 = 4

7n.

Figure 8. A graph in the family Gtdom.

In 2004 Archdeacon, et al. [2] provided an elegant graph theory proof using
Brooks’ Coloring Theorem that the total domination number of a graph with
minimum degree at least 3 is at most one-half its order. This result can also be
proven as an application of a hypergraph result due to Tuza [72] and Chvátal
and McDiarmid [16].

Theorem 28 [2, 16, 72]. If G is a graph of order n with δ(G) ≥ 3, then γt(G) ≤
1
2n.



Bounds on Domination Parameters in Graphs: A Brief Survey 675

Let GP16 be the generalized Petersen graph shown in Figure 9(a). For k ≥ 1,
let Gk be the graph constructed as follows. Consider two copies of the path P2k

with respective vertex sequences a1b1a2b2 · · · akbk and c1d1c2d2 · · · ckdk. For each
i ∈ [k], join ai to di and bi to ci. To complete the construction of the graph
Gk join a1 to c1 and bk to dk. Let Gcubic = {Gk : k ≥ 1}. For k ≥ 2, let Hk

be obtained from Gk by deleting the two edges a1c1 and bkdk and adding the
two edges a1bk and c1dk. Let Hcubic = {Hk : k ≥ 2}. The graphs G4 ∈ Gcubic

and H4 ∈ Hcubic are illustrated in Figure 9(b) and 9(c), respectively. In 2008
Henning and Yeo [49] characterized the extremal graphs that achieve equality in
the bound of Theorem 28. In particular, we note that every extremal graph G is
a cubic graph of order n where n ≡ 0 (mod 4).

(a) GP16 (b) G4 (c) H4

Figure 9. The graph GP16, and the graphs G4 ∈ Gcubic and H4 ∈ Hcubic.

Theorem 29 [49]. If G is a connected graph of order n with δ(G) ≥ 3, then

γt(G) = 1
2n if and only if G ∈ Gcubic ∪ Hcubic or G is the generalized Petersen

graph GP16.

In 2007 Thomassé and Yeo [71] established a best possible upper bound on
the total domination number of a graph with minimum degree at least 4.

Theorem 30 [71]. If G is a graph of order n with δ(G) ≥ 4, then γt(G) ≤ 3
7n.

The bound of Theorem 30 is best possible, but is only achieved by the bipar-
tite complement of the Heawood graph, shown in Figure 10, which is the bipartite
graph formed by taking the two partite sets of the Heawood graph and joining
a vertex from one partite set to a vertex from the other partite set by an edge
whenever they are not joined in the Heawood graph. A proof of this result can
be found in [50, Theorem 5.18]. We remark that the bipartite complement of the
Heawood graph is the incidence bipartite graph of the complement of the Fano
plane.
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Figure 10. The bipartite complement of the Heawood graph.

Theorem 31 [50, Theorem 5.18]. If G is a connected graph of order n with

δ(G) ≥ 4, then γt(G) ≤ 3
7n, with equality if and only if G is the bipartite comple-

ment of the Heawood graph.

In 2016 Eustis, Henning, and Yeo [24] established the best known upper
bound to date on the total domination number of a graph with minimum degree
at least 5.

Theorem 32 [24]. If G is a graph of order n with δ(G) ≥ 5, then γt(G) ≤
2453
6500n ≈ 0.3773846n.

In 2021 Henning and Yeo [52] proved that if G is a graph of order n with
δ(G) ≥ 6, then γt(G) ≤ 5138

14145n ≈ 0.363238n. This upper bound was recently
improved slightly by the same authors in [53].

Theorem 33 [53]. If G is a graph of order n with δ(G) ≥ 6, then γt(G) ≤
4549
13299n ≈ 0.342056n.

In 2007 Henning and Yeo [48] presented a heuristic algorithm that yields
an upper bound on the total domination of a graph in terms of its order and
minimum degree.

Theorem 34 [48]. If G is a graph of order n with minimum degree δ ≥ 1, then

γt(G) ≤
(

1 + ln δ

δ

)

n.

Further, using a greedy algorithm we can in time complexity O(n + δ n) find a

total dominating set T in the graph G such that |T | ≤
(

1+ln δ
δ

)

n.

Although the bound on the total domination in Theorem 34 is not very good
for small values of δ, it is asymptotically (that is, when δ → ∞) optimal as shown
by Alon [1] and Thomasse and Yeo [71]. In 2019 Henning and Rad [45] gave the
following slightly improved probabilistic upper bound on the total domination
number.
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Theorem 35 [45]. If G is a graph with minimum degree δ ≥ 2 and maximum

degree ∆, then

γt(G) ≤ n

(

1 + ln δ

δ

)

− n

(

1− 1

δ

)(

1

∆

)
1

δ−1
(

ln δ

δ

)1+∆(∆−1)

.

In 2013 Henning and Yeo [51] showed that the domination and total dom-
ination numbers enjoy a tight concentration in the Erdős-Rényi random graph
G(n, p). In this model for a positive integer n and real number p with 0 < p < 1,
G(n, p) denotes the probability space whose elements G are all possible graphs of
order n where an edge is chosen to be in G with probability p and independently
of the choice for any other edge. An element G ∈ G(n, p) is called a random

graph.

Theorem 36 [51]. Let G ∈ G(n, p) be a random graph on n vertices with

p = (1 + ǫ′)

√

2 lnn

n
.

For every 0 < ǫ′ < ǫ, asymptotically almost surely the graph G has diameter two

and
(

1

2
√
2
− ǫ

)

√

n ln(n) < γ(G) ≤ γt(G) <

(

1√
2
+ ǫ

)

√

n ln(n).

Recall that Gn,m denote the class of all connected graphs of order n ≥ 3
and size m. In 2018 Henning [44] proved that all the upper bounds on the total
domination number of a graph in the family Gn,m in terms of its order and size
can be written in the following unified form.

Theorem 37 [44]. All upper bounds on the total domination number of a graph

G ∈ Gn,m in terms of its order n and size m can be written in the unified form

γt(G) ≤ 2an+ 2bm

3a+ 2b

for constants a, b ∈ R where b ≥ 0 and a > −2
3b.

An equivalent formulation of Theorem 37 gives us the following general upper
bound on the total domination number of a graph in terms of its order and size.

Theorem 38 [44]. Let a, b ∈ R. Then, the bound γt(G) ≤ an + bm is valid for

every graph G ∈ Gn,m if and only if both 3a+ 2b ≥ 2 and b ≥ 0 hold.

For example, to illustrate Theorem 38, taking (a, b) =
(

2
3 , 0
)

yields Theorem
25. Taking (a, b) =

(

1
2 ,

1
4

)

, yields the upper bound γt(G) ≤ 1
4(2n + m), while

taking (a, b) =
(

1
3 ,

1
2

)

, yields the upper bound γt(G) ≤ 1
6(2n+ 3m).
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More generally, for k ≥ 2 let Gn,m,k denote the class of all connected graphs
of order n and size m with minimum degree at least k. The following unified
forms of upper bounds for the total domination number of a graph in the family
Gn,m,k for small k ∈ {2, 3, 4} are given in [44]

Theorem 39 [44]. For a, b ∈ R, the following hold.

(a) The bound γt(G) ≤ an+ bm is valid for every graph G ∈ Gn,m,2 if and only

if both b ≥ 0 and a ≥ 2
3 − b hold.

(b) The bound γt(G) ≤ an+ bm is valid for every graph G ∈ Gn,m,3 if and only

if both b ≥ 0 and a ≥ 1
2(1− 3b) hold.

(c) The bound γt(G) ≤ an+ bm is valid for every graph G ∈ Gn,m,4 if and only

if both b ≥ 0 and a ≥ 3
7 − 2b hold.

For example, taking (a, b) = (13 ,
1
3) in Theorem 39(a) we have that γt(G) ≤

1
3(n + m) for every graph G ∈ Gn,m,2. Taking (a, b) =

(

1
2 , 0
)

in Theorem 39(b)
yields Theorem 28. Taking (a, b) =

(

3
7 , 0
)

in Theorem 39(c) yields Theorem 30.

4. The Independent Domination Number

A set D of vertices is an independent dominating set, abbreviated ID-set, of a
graph G if D is both a dominating set and an independent set. Equivalently,
an ID-set of G is a maximal independent set in G. The independent domination

number i(G) of G is the minimum cardinality of an ID-set of G. An i-set of G
is an ID-set of G of cardinality i(G). A trivial upper bound on the independent
domination number in terms of the order and maximum degree is given by the
following observation.

Observation 40. If G is a graph of order n, then i(G) ≤ n−∆(G).

The following observation is immediate from the definition of an ID-set.

Observation 41. If G is a graph, then γ(G) ≤ i(G).

In 1979 Bollobás and Cockayne [7] proved the following upper bound on the
independent domination number.

Theorem 42 [7]. If G is an isolate-free graph of order n with domination number

γ, then i(G) ≤ n+ 2− γ − n
γ
.

Treating n as fixed, the function f(γ) = n + 2 − γ − n
γ

is maximized at

γ =
√
n. Thus since f(

√
n ) = n+ 2− 2

√
n, Favaron [25] was the first to observe

the following upper bound on the independent domination number of a graph in
terms of its order.
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Theorem 43 [25]. If G is an isolate-free graph of order n, then i(G) ≤ n+ 2−
2
√
n.

Moreover, in 1988 Favaron [25] conjectured a more general upper bound
on the independent domination number of a graph in terms of its order n and
minimum degree δ. Her conjecture was proven for δ = 2 in 1998 by Glebov and
Kostochka [26], and finally proven in 1999 for all δ by Sun and Wang [70].

Theorem 44 [70]. If G is a graph of order n with minimum degree δ, then

i(G) ≤ n+ 2δ − 2
√
δn.

Theorem 43 is a special case of Theorem 44 when δ ≥ 1. Favaron [25] showed
that for every positive integer δ, the bound in Theorem 44 is attained for infinitely
many graphs as follows. For δ ≥ 1 and ℓ ≥ 2, let Gi be the complete bipartite
graph Kδ,δ(ℓ−1) with partite sets Xi and Yi where |Xi| = δ and |Yi| = δ(ℓ − 1)
for i ∈ [ℓ]. Let Gδ,ℓ be the graph obtained from the disjoint union of the graphs
G1, G2, . . . , Gℓ by adding all edges between the sets Xi and Xj for all i and j,
where i, j ∈ [ℓ] and i 6= j. The resulting graph G = Gδ,ℓ has order n = δℓ2 and
satisfies i(G) = δ + δ(ℓ − 1)2 = n + 2δ − 2

√
δn. Thus the bound in Theorem 44

is tight.
We remark that this infinite class of graphs constructed by Favaron are far

from regular. If we impose a regularity requirement, then the upper bound in
Theorem 44 can be significantly improved. In 1964 Rosenfeld [67] showed that
every maximal independent set in a regular graph has cardinality at most one-
half its order, implying that if G is a regular graph of order n, then i(G) ≤
1
2n. Goddard et al. [29] showed that equality only holds for graphs with every
component a balanced complete bipartite graph.

Theorem 45 [29]. For r ≥ 1, if G is a connected r-regular graph of order n,
then i(G) ≤ 1

2n, with equality if and only if G = Kr,r.

A natural question is to improve the upper bound in Theorem 45 for r-regular
graphs different from Kr,r. If G is a connected 2-regular graph of order n different
from K2,2, then G is a cycle Cn where n = 3 or n ≥ 5. Since i(Cn) =

⌈

1
3n
⌉

, this
yields the following observation.

Observation 46. If G 6= K2,2 is a connected 2-regular graph of order n, then
i(G) ≤ 3

7n, with equality if and only if G = C7.

In 1999 Lam, Shiu, and Sun [61] provided a best possible upper bound on
the independent domination number of a 3-regular (cubic) graph different from
K3,3.

Theorem 47 [61]. If G 6= K3,3 is a connected 3-regular graph of order n, then
i(G) ≤ 2

5n, and this bound is best possible.
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The bound in Theorem 47 is achieved by the 5-prism, G = C5�K2, namely
the Cartesian product of a 5-cycle with a copy of K2 shown in Figure 11. In this
case, G is a connected 3-regular graph of order n = 10 satisfying i(G) = 4 = 2

5n.

Figure 11. The 5-prism C5 �K2.

In 2013 Goddard and Henning [28] posed the conjecture that if G 6= K4,4 is
a connected 4-regular graph of order n, then i(G) ≤ 3

7n. In 2021 Cho, Choi and
Park [15] announced they had settled this conjecture in the affirmative. For this
purpose, they proved a much stronger result.

Theorem 48 [15]. For r ≥ 3, if G 6= Kr,r is a connected r-regular graph of order

n, then i(G) ≤
(

r−1
2r−1

)

n.

As a special case of Theorem 48 when r = 3 we have the result of Theorem
47, and when r = 4 we have the 3

7n-bound conjectured in [28].
The bound in Theorem 48 in the case when r = 4 is achieved by the so-called

expansion G = exp(C7, 2) of a 7-cycle shown in Figure 12. In this case, G is a
connected 4-regular graph of order n = 14 satisfying i(G) = 6 = 3

7n. However, it
is not yet known if the bound in Theorem 48 is achievable for any r ≥ 5.

Figure 12. The expansion exp(C7, 2).

5. The Connected Domination Number

A set D of vertices is a connected dominating set, abbreviated CD-set, of a con-
nected graph G if D is a dominating set of G with the additional property that
the induced subgraph G[D] is connected. The connected domination number of
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G, denoted by γc(G), is the minimum cardinality of a CD-set of G. A γc-set of G
is a CD-set of G of cardinality γc(G). In 1984 Hedetniemi and Laskar [40] proved
that D is a minimal CD-set of G if and only if D is the set of non-leaf vertices of
a spanning tree of G. Thus if ǫT (G) denotes the number of leaves of a spanning
tree T of G, then this yields the following result.

Theorem 49 [40]. If G is a connected graph of order n, then

γc(G) = n− max
T∈TG

ǫT (G),

where TG is the set of all spanning trees of G.

By Theorem 49, n−γc(G) is the maximum number of leaves in a spanning tree
of a graph G of order n. Thus to determine the connected domination number of a
graph, it suffices to determine the maximum number of leaves among all spanning
trees of G. The problem of finding a spanning tree with maximum number of
leaves is NP-complete, even for 4-regular graphs. Since ǫT (G) ≥ ∆(G), this yields
the following trivial upper bound on the connected domination number.

Observation 50. If G is a connected graph of order n, then γc(G) ≤ n−∆(G).

By definition every CD-set is a TD-set, yielding the following lower bound
on the connected domination number.

Observation 51. If G is a connected isolate-free graph with γ(G) > 1, then

γt(G) ≤ γc(G).

We construct next a class of graphs with large connected domination number.
For integers k ≥ 3 and d ≥ 2, take d disjoint copies D1, D2, . . . , Dd of a clique
Kk+1 − e with an edge removed, where aibi is the missing edge in Di. Let
Nk,d be obtained from the disjoint union of these d graphs by adding the edges
{aibi+1 : i ∈ [d−1]} and adding the edge adb1. We call Nk,d a k-diamond-necklace

with d diamonds. Let Nk = {Nk,d : d ≥ 2}. A 3-diamond-necklace G = N3,6 ∈ N3

with six diamonds is illustrated in Figure 13, where the 16 black vertices form a
γc-set of G. More generally, if G = Nk,d ∈ Nk, then G has order n = (k + 1)d
and γc(G) = 3(d− 1) + 1 =

(

3
k+1

)

n− 2.

Proposition 52. For k ≥ 3, if G ∈ Nk has order n, then G is a connected

k-regular graph satisfying γc(G) =
(

3
k+1

)

n− 2.

Let Gn,k denote the collection of connected graphs of order n ≥ 3 with mini-
mum degree at least k. Let ℓ(n, k) denote the maximum ℓ such that every graph
in Gn,k contains a spanning tree with at least ℓ leaves.

Observation 53. If G ∈ Gn,k, then γc(G) ≤ n− ℓ(n, k).
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Figure 13. A 3-diamond-necklace N3,6 with six diamonds.

We observe that ℓ(n, 1) = ℓ(n, 2) = 2. Thus by Observation 53, we have the
following result.

Observation 54. If G is a connected graph of order n ≥ 3 with δ(G) = 1 or

δ(G) = 2, then γc(G) ≤ n− 2.

In 1991 Kleitman and West [58] showed that ℓ(n, 3) ≥ 1
4n+ 2 and ℓ(n, 4) ≥

2
5n+

8
5 , yielding the following upper bounds on the connected domination number

of a graph.

Theorem 55 [58]. If G is a connected graph of order n with δ(G) ≥ 3, then

γc(G) ≤ 3
4n− 2.

Theorem 56 [58]. If G is a connected graph of order n with δ(G) ≥ 4, then

γc(G) ≤ 3
5n− 8

5 .

The case when the minimum degree is at least 5 was settled by Griggs and
Lu [31].

Theorem 57 [31]. If G is a connected graph of order n with δ(G) ≥ 5, then

γc(G) ≤ 1
2n− 2.

The bounds of Theorem 55 and 57 are tight, as shown by the family of graphs
N3 and N5 (see, Proposition 52). The only known graph that achieves equality
in the bound of Theorem 56 is the circulant C6〈1, 2〉, illustrated in Figure 14(a),
of order n = 6 with jumps 1 and 2. The circulant G = C8〈1, 2〉, illustrated in
Figure 14(b), of order n = 8 with jumps 1 and 2 satisfies γc(G) = 3

5n− 9
5 .

Kleitman and West [58] conjectured that if we exclude the circulants C6〈1, 2〉
and C8〈1, 2〉, then the bound in Theorem 56 can be improved slightly to γc(G) ≤
3
5n−2, which as shown by the family of graphs N4 (see Proposition 52) is achieved
by infinitely many graphs.

In 2000 Caro, West, and Yuster [13] proved the following result.
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(a) C6〈1, 2〉 (b) C8〈1, 2〉

Figure 14. The circulants C6〈1, 2〉 and C8〈1, 2〉.

Theorem 58 [13]. If G is a connected graph of order n with δ = δ(G), then

γc(G) ≤
(

100 + 0.5
√

ln(δ + 1) + ln(δ + 1)

δ + 1

)

n.

As a consequence of Theorem 58, we have the following result, where by oδ(1)
we mean some quantity that tends to 0 as δ gets large.

Theorem 59 [13]. If G is a connected graph of order n with δ = δ(G), then

γc(G) ≤ (1 + oδ(1))

(

ln(δ + 1)

δ + 1

)

n.

By Observation 51, and by a result of Thomasse and Yeo [71] on total dom-
ination in graphs, we have the following result.

Theorem 60 [71]. For every ǫ > 0 and for δ sufficiently large, there exists a

bipartite δ-regular graph G of order n satisfying

γc(G) > (1− ǫ)

(

ln(δ)

δ

)

n.

Using a deterministic algorithm, Caro, West, and Yuster [13] proved the
following result.

Theorem 61 [13]. For every ǫ > 0 and δ sufficiently large, if G is a connected

graph of order n with δ = δ(G), then

γc(G) ≤ (1 + ǫ)

(

ln(δ)

δ

)

n.
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6. The Paired Domination Number

A set D of vertices is a paired dominating set, abbreviated PD-set, of a graph
G if D is a dominating set of G with the additional property that the induced
subgraph G[D] contains a perfect matching M (not necessarily induced). The
paired domination number of G, denoted by γpr(G), is the minimum cardinality
of a PD-set of G. As with total domination in graphs, paired domination is
defined only for isolate-free graphs. Necessarily, the paired domination number
of a graph is an even integer. The set of vertices that are incident with the edges
of a maximal matching in an isolate-free graph G is a PD-set of G, which yields
the following trivial upper bound on the paired domination number.

Observation 62. If G is an isolate-free graph, then γpr(G) ≤ 2α′(G).

By definition every PD-set is a TD-set, yielding the following lower bound
on the paired domination number.

Observation 63. If G is an isolate-free graph, then γt(G) ≤ γpr(G).

In 1998 Haynes and Slater [39] were the first to observe that using properties
of a γ-set of a graph due to Bollobás and Cockayne [7], the paired domination
number is at most twice the domination number.

Theorem 64 [39]. If G is an isolate-free graph, then γpr(G) ≤ 2γ(G).

Haynes and Slater [39] established the following lower bound on the paired
domination number of a graph in terms of its order and maximum degree.

Theorem 65 [39]. If G is an isolate-free graph of order n, then γpr(G) ≥ n
∆(G) .

As in the previous section, we will focus on bounds on the paired domination
number in terms of the order and minimum degree of the graph. Haynes and
Slater [39] obtained the following upper bound on the paired domination number
of a connected graph of order at least 3. For k ≥ 2 the subdivided star G =
S(K1,k) is obtained from a star K1,k by subdividing every edge exactly once.

Theorem 66 [39]. If G is a connected graph of order n ≥ 3, then γpr(G) ≤ n−1
with equality if and only if G is the cycle C3, the cycle C5 or a subdivided star

S(K1,k) for k ≥ 1.

If we exclude the 3-cycle and the 5-cycle, then the trivial bound of one less
than the order in Theorem 66 can be improved if the minimum degree is at least
2, as shown by Huang and Shan [54].

Theorem 67 [54]. If G is a connected graph of order n ≥ 6 with minimum degree

δ(G) ≥ 2, then γpr(G) ≤ 2
3n.
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The extremal graphs achieving equality in Theorem 67 were characterized by
Henning [43], where Fpdom = {F1, F2, . . . , F10} is the family of ten graphs shown
in Figure 15.

Theorem 68 [43]. If G is a connected graph of order n ≥ 6 with δ(G) ≥ 2, then
γpr(G) ≤ 2

3n, with equality if and only if G ∈ Fpdom.

F1 F2 F3 F4

F5 F6 F7

F8 F9 F10

Figure 15. The ten graphs in the family Fpdom.

Every graph in the family Fpdom has order equal to 6 or 9. If we restrict
the order of a graph to at least 10, then the upper bound in Theorem 68 can
only be improved slightly as shown by the bound in Theorem 69, which is tight
in the sense that the bound is achieved for connected graphs of arbitrarily large
order. The extremal graphs achieving equality in the bound of Theorem 69 were
characterized in [43].

Theorem 69 [43]. If G is a connected graph of order n ≥ 10 with δ(G) ≥ 2,
then γpr(G) ≤ 2

3(n− 1), and this bound is tight.

Chen, Sun, and Xing [14] established a best possible upper bound on the
paired domination number of a cubic graph.

Theorem 70 [14]. If G is a cubic graph of order n, then γpr(G) ≤ 3
5n.

Subsequently, Goddard and Henning [27] showed that the only connected
graph achieving equality in Theorem 70 is the Petersen graph G10, shown in
Figure 16. In this case, if G = G10, then G is a cubic graph of order n = 10 and
γpr(G) = 6 = 3

5n.
Henning, Piĺsniak, and Tumidajewicz [47] provided the best known upper

bound to date on the paired domination of a graph with minimum degree at least
3. However, it is unlikely that their bound (given in Theorem 71) is achievable.



686 M.A. Henning

Figure 16. The Petersen graph G10.

Theorem 71 [47]. If G is a graph of order n with δ(G) ≥ 3, then γpr(G) ≤
19037
30000n < 0.634567n.

7. The Restrained Domination Number

A set D of vertices is a restrained dominating set, abbreviated RD-set, of a graph
G if D is a dominating set of G with the additional property that the induced
subgraph G[V (G) \ D] is isolate-free. The restrained domination number of G,
denoted by γr(G), is the minimum cardinality of an RD-set of G. An upper
bound on the restrained domination number of a graph in terms of its maximum
degree was presented in 2007 by Dankelmann, Day, Hattingh, Henning, Markus,
and Swart [19].

Theorem 72 [19]. If G is a connected graph of order n with δ(G) ≥ 2, then

γr(G) ≤ n−∆(G).

In 1999 Domke, Hattingh, Hedetniemi, Laskar, and Markus [22] established
the following upper bound on the restrained domination number of a connected
graph.

Theorem 73 [22]. If G is a connected graph of order n ≥ 2, then γr(G) ≤ n−2,
unless G is a star K1,n−1, in which case γr(G) = n.

The infinite family of connected graphs of order n ≥ 2 satisfying γr(G) = n−2
is characterized in [22].

Theorem 74 [22]. If G is a connected graph of order n ≥ 3 satisfying γr(G) =
n− 2, then one of the following hold.

(a) G ∈ {P4, P5, C4, C5}.
(b) G is obtained from P6 by adding leaf neighbors, including the possibility of

none, to the support vertices of the path.

(c) G is obtained from C3 by adding leaf neighbors, including the possibility of

none, to at most two of the vertices of the cycle.
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Graphs with properties in the statement of Theorem 74(b) and (c) are illus-
trated in Figures 17(a) and (b), respectively. In these two examples, the black
vertices are examples of γr-sets of the respective graphs.

(a) (b)

Figure 17. Examples of graphs G of order n with γr(G) = n− 2.

Let Brdom = {R1, R2, . . . , R8} be the family of eight graphs shown in Fig-
ure 18.

R1 R2 R3 R4

R5 R6 R7 R8

Figure 18. The family Brdom.

In 2000 Domke, Hattingh, Henning, and Markus [23] established the following
upper bound on the restrained domination number of a graph with minimum
degree at least 2.

Theorem 75 [23]. If G is a connected graph of order n with δ(G) ≥ 2, then

γr(G) ≤ 1
2(n − 1), unless G is one of the eight exceptional graphs in the family

Brdom.

The graphs achieving equality in the upper bound in Theorem 75 were char-
acterized in [41]. We observe that if G ∈ Brdom has order n, then γr(G) = 1

2n,
unless G is the 5-cycle R2, in which case γr(G) = 3 = 1

2(n + 1). Thus as an
immediate consequence of Theorem 75, we have the following result.

Theorem 76 [23]. If G 6= C5 is a connected graph of order n with δ(G) ≥ 2,
then γr(G) ≤ 1

2n.
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In 2011 Hattingh and Joubert [32] established the best upper bound to date
in the restrained domination number of a cubic graph.

Theorem 77 [32]. If G is a cubic graph of order n, then γr(G) ≤ 5
11n.

In an unpublished manuscript in the last 1990s, Cockayne gave the following
probabilistic upper bounds on the restrained domination number.

Theorem 78. If G is a graph of order n and minimum degree δ = 3, then

γr(G) ≤ 0.668n.

Theorem 79. If G is a graph of order n and minimum degree δ ≥ 4, then

γr(G) ≤
(

1− 2δ

(2δ + 2)1+
1
δ

)

n.

8. The Total Restrained Domination Number

A set D of vertices is a total restrained dominating set, abbreviated TRD-set, of
an isolate-free graph G if D is a TD-set of G with the additional property that the
induced subgraph G[V (G) \ D] is isolate-free. The total restrained domination

number of G, denoted by γtr(G), is the minimum cardinality of a TRD-set of
G. A best possible upper bound on the total restrained domination number of
a graph in terms of its maximum degree was presented in 2008 by Henning and
Maritz [46].

Theorem 80 [46]. If G is a connected graph of order n ≥ 4 with δ(G) ≥ 2 and

∆(G) ≤ n− 2, then γtr(G) ≤ n− 1
2∆(G)− 1.

We note that if G is a star K1,n−1, then γtr(G) = n. This yields the following
trivial sharp upper bound on the total restrained domination number.

Observation 81. If G is a connected graph of order n ≥ 2, then γtr(G) ≤ n,
and this bound is tight.

If G is a graph of order n and every component of G is a copy of K3, then
γtr(G) = n. In view of this observation, together with Observation 81, it is only
of interest to determine upper bounds on the total restrained domination number
of a connected graph of order n ≥ 4 with minimum degree at least 2. For this
class of graphs, in 2019 Joubert [56] proved the following upper bound.

Theorem 82 [56]. If G is a connected graph of order n ≥ 4 with δ(G) ≥ 2, then

γtr(G) ≤ n−
√

n

2
.
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As remarked in [46], for any integer k ≥ 2, there exists an infinite family
of connected graphs G with δ(G) = k such that γtr(G)/n(G) tends to one when
n(G) goes to infinity. For integers r and k where r ≥ 2k and k ≥ 2, let G = Gr,k

be the bipartite graph formed by taking as one partite set a set A of r elements,
and as the other partite set B all the k-element subsets of A, and joining each
element of A to those subsets in B it is a member of. The resulting graph G has
order n = |A| + |B| = r +

(

r
k

)

. Each vertex in B has degree k, and each vertex

in A has degree
(

r−1
k−1

)

> k, and so δ(G) = k. Let D be a TRD-set of G. In
order to totally dominate the vertices in B, the set D contains at least r− k + 1
vertices in A. Let A1 = A ∩D. Let B1 be the set of vertices of B all of whose k
neighbors belong to A1, and so |B1| =

(|A1|
k

)

≥
(

r−k+1
k

)

. Further if |A1| < r, then
to totally dominate the vertices in A \A1, the set D contains at least one vertex
of B \ B1. These observations imply that γtr(G) ≥ (r − k + 1) + 1 +

(

r−k+1
k

)

=

r − k + 2 +
(

r−k+1
k

)

. Moreover, choosing A1 to be an arbitrary set of r − k + 1
vertices in A, and letting B1 be defined as before, and letting v be a vertex in
B that is adjacent to all k − 1 vertices in A \ A1, we produce a TRD-set of G,
implying that γtr(G) ≤ r − k + 2 +

(

r−k+1
k

)

. Consequently,

γtr(G) = r − k + 2 +

(

r − k + 1

k

)

.

Thus,

γtr(G)

n(G)
=

r − k + 2 +
(

r−k+1
k

)

r +
(

r
k

) ,

which tends to one when r tends to infinity (treating k as fixed). In the special
case when k = 2, we have n = r+

(

r
2

)

and γtr(G) = r+
(

r−1
2

)

= n− r+1, and so

γtr(G) = n+
3

2
−
√

n

2
+

1

4
.

Thus, the bound of Theorem 82 is asymptotically sharp.

9. The Semitotal Domination Number

A set D of vertices is a semitotal dominating set, abbreviated semi-TD-set, of an
isolate-free graph G if it is a dominating set of G and every vertex in D is within
distance 2 of another vertex of D. The semitotal domination number, denoted
by γt2(G), is the minimum cardinality of a semi-TD-set of G. A γt2-set of G is a
semi-TD-set of G of cardinality γt2(G). Since every TD-set is a semi-TD-set, and
since every semi-TD-set is a dominating set, we have the following statement/fact
first observed by Goddard, Henning and McPillan [30].
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Observation 83 [30]. For every graph G with no isolated vertex, γ(G) ≤ γt2(G)
≤ γt(G).

An upper bound on the semitotal domination number was established in [30].

Theorem 84 [30]. If G is a connected graph of order n ≥ 4, then γt2(G) ≤ 1
2n.

Equality is, for example, obtained in Theorem 84 for any connected graph G
of order n ≥ 4 satisfying γ(G) = 1

2n, that is, by Theorem 6, if G is a 4-cycle or
G is a corona F ◦K1 for some connected graph F of order at least 2.

The generalized corona F ⊛ H of a graph F with a graph H is the graph
obtained from F by adding for each vertex v ∈ V (F ) a copy of H and identifying
one vertex in the copy of H with the vertex v in F . For example, the generalized
corona F ⊛H when F = K1,4 is a star and H is a 4-cycle is illustrated in Figure
19. The resulting graph G has order n = 20 and γt2(G) = 10 = 1

2n, and the
ten black vertices are an example of a γt2-set of G. For this graph G every
semi-TD-set must contain at least two vertices from each copy of C4.

Figure 19. The corona K1,4 ⊛ C4.

The upper bound of Theorem 84 is therefore also sharp for graphs with
minimum degree at least 2.

Theorem 85 [30]. If G is a connected graph of order n ≥ 4 with δ(G) ≥ 2, then
γt2(G) ≤ 1

2n, with equality if and only if G is C6, C8, a subgraph of K4, or a

generalized corona F ⊛ C4 where F is an arbitrary connected graph.

For graphs with minimum degree δ ≥ 3, we have the same upper bound on
the semitotal domination number as the domination number, and this bound is
essentially best possible.

Theorem 86 [30]. If G is a connected graph with order n and minimum degree

δ, then

γt2(G) ≤ (1 + oδ(1))

(

ln(δ + 1)

δ + 1

)

n.
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10. The Semipaired Domination Number

A set D of vertices is a semipaired dominating set, abbreviated semi-PD-set, of an
isolate-free graph G if it is a dominating set of G and every vertex in D is paired
with exactly one other vertex in D that is within distance 2 from it in G. In
other words, the vertices in the dominating set D can be partitioned into 2-sets
such that if {u, v} is a 2-set, then uv ∈ E(G) or the distance between u and v is
2. We say that u and v are paired. We call such a pairing a semi-matching. The
semipaired domination number, denoted by γpr2(G), is the minimum cardinality
of a semi-PD-set of G. A γpr2-set of G is a semi-PD-set of G of cardinality
γpr2(G). An example of a graph G with γpr2(G) = 6 is illustrated in Figure 20,
where the black vertices form a γpr2-set of G and where vertices with the same
label are paired.

1
1

2
2 3

3

Figure 20. A graph G with γpr2(G) = 6.

The semipaired domination number is squeezed between the domination num-
ber and the paired domination number.

Observation 87. If G is an isolate-free graph, then γ(G) ≤ γpr2(G) ≤ γpr(G) ≤
2γ(G).

In 2018 Haynes and Henning [36] established lower and upper bounds on
the semipaired domination number of a graph in terms of its total domination
number.

Theorem 88 [36]. If G is an isolate-free graph, then

2

3
γt(G) ≤ γpr2(T ) ≤

4

3
γt(G),

and these bounds are sharp.

The graph illustrated in Figure 21 that is obtained from a cycle C4 by at-
taching a path of length 2 to one of its vertices is called the stingray, or just SR
for short. The black vertices in Figure 21 form a γpr2-set of G and vertices with
the same label are paired.

In 2019 Haynes and Henning [37] showed that if G is a connected graph G
of order n ≥ 3, then γpr2(G) ≤ 2

3n, and they characterized the extremal graphs
achieving equality in the bound.
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1

1

2 2

Figure 21. The stingray SR.

Theorem 89 [37]. If G is a connected graph of order n ≥ 3, then γpr2(G) ≤ 2
3n,

with equality if and only if one of the following hold.

(a) G is a cycle C3 or a cycle C6.

(b) G is the corona P3 ◦ P1 of a path P3.

(c) G is the corona C3 ◦ P1 of a cycle C3.

(d) G is the stingray SR.

(e) G is the 2-corona of a connected graph.

As an immediate consequence of Theorem 89 we have the following result.

Corollary 90 [37]. If G is a connected graph of order n with δ(G) ≥ 2, then

γpr2(G) ≤ 2
3n, with equality if and only if G = C3 or G = C6.

In 2021 Haynes and Henning [38] improved the bound in Corollary 90.

Theorem 91 [37]. If G 6= C6 is a connected graph of order n with δ(G) ≥ 2,
then

γpr2(G) ≤
{

n+1
2 if n ≡ 3 (mod 4),

n
2 if n 6≡ 3 (mod 4).

Further, for every value of n ≥ 3 where n ≡ 3 (mod 4), there exists a connected

graph G of order n with δ(G) ≥ 2 satisfying γpr2(G) = 1
2(n+ 1).

Theorem 92 [37]. If G is a graph of order n with δ(G) ≥ 3, then γpr2(G) ≤ 1
2n.

The upper bound in Theorem 92 is best possible. For example, all connected
cubic graphs G of order n = 8 satisfy γpr2(G) = 4 = 1

2n.

11. Open Problems and Conjectures

We close with a list of open problems and conjectures that, to the author’s best
knowledge, have yet to be solved. Throughout this section, for k ≥ 1, let Gk de-
note the class of all connected graphs with minimum degree at least k containing
no isolated edge. We note that G1 is the class of all connected graphs of order at
least 3.
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11.1. The domination number

In this section, we list open problems and conjectures pertaining to the domina-
tion number.

Problem 93. Characterize the connected graphs of order n with δ(G) ≥ 3 that
satisfy γ(G) = 3

8n.

Perhaps in Problem 93 it is even true that the extremal graphs that achieve
equality in Reed’s Theorem 11 all belong to the family Gdom,≥3 constructed in
Section 2, except for a finite exceptional family (which must include the graph
G8.1 in Figure 4(a)).

Problem 94. If Gn
cubic denotes the family of all connected cubic graphs of order

n, then determine limit of the supremum

Φn
cubic = lim

G∈Gn
cubic

(

sup
n→∞

γ(G)

n

)

.

It is known (see, [57, 59, 60]) that the supremum Φn
cubic in Problem 94 is

sandwiched between the following values:

1

3
+

1

60
≤ Φn

cubic ≤
1

3
+

1

42
.

It would be very interesting to determine precisely the value of the supremum,
which would resolve a 25-year old problem in domination theory.

Problem 95. Determine or estimate the best possible constants cdom,k (which
depends only on k) such that γ(G) ≤ cdom,k ·n(G) for all G ∈ Gk. These constants
are given by

cdom,k = sup
G∈Gk

γ(G)

n(G)
.

The constants cdom,k for small k ∈ [3] are known. By Ore’s Theorem 5,
cdom,1 = 1

2 . By the McCuaig-Shepherd Theorem 9, cdom,2 = 1
2 , noting that if

G = B1 ∈ Bdom ⊂ G2, then G has order n = 4 and satisfies γ(G) = 2 = 1
2n, while

if G ∈ Bdom \ {B1} ⊂ G2, then G has order n = 7 and satisfies γ(G) = 3 = 3
7n.

By Reed’s Theorem 11, cdom,3 =
3
8 .

By Theorem 12, cdom,4 ≤ 4
11 . However, it is not known if there is a graph of

order n with δ(G) ≥ 4 satisfying γ(G) = 4
11n. We observe that if G is the graph

obtained from a complete graph K6 by removing the edges of a perfect matching,
then G is a 4-regular graph of order n = 6 satisfying γ(G) = 2 = 1

3n.
By Theorem 13, cdom,5 ≤ 1

3 . However, it is not known if there is a graph
of order n with δ(G) ≥ 5 satisfying γ(G) = 1

3n. We observe that if G is the
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complement of the graph 2K3 ∪ K2, then G is a graph of order n = 8 with
δ(G) = 5 satisfying γ(G) = 2 = 1

4n.

By Theorem 14, cdom,6 ≤ 127
418 . However, it is unlikely that the bound in

Theorem 14 is achievable. We observe that if G is obtained from a complete
graph K8 by removing the edges of a perfect matching, then G is a 6-regular
graph of order n = 8 satisfying γ(G) = 2 = 1

4n. As a further example, if G is the
6-regular graph of order n = 16 shown in Figure 22, then γ(G) = 4 = 1

4n, where
the four black vertices form a γ-set of G.

Figure 22. A 6-regular graph of order n = 16 with γ(G) = 4 = 1
4
n.

We summarize the above results and observations formally as follows.

Theorem 96. The following hold.

(a) cdom,1 = cdom,2 =
1
2 .

(b) cdom,3 =
3
8 .

(c) 1
3 ≤ cdom,4 ≤ 4

11 .

(d) 1
4 ≤ cdom,5 ≤ 1

3 .

(e) 1
4 ≤ cdom,6 ≤ 127

418 < 1
4 + 27

500 .

We believe the lower bounds in Theorem 96(c) and 96(e) are the correct
values for cdom,4 and cdom,6, respectively, and pose the following conjectures.

Conjecture 97. cdom,4 =
1
3 .

Conjecture 98. cdom,6 =
1
4 .

11.2. The total domination number

Problem 99. Determine or estimate the best possible constants ctdom,k (which
depends only on k) such that γt(G) ≤ ctdom,k · n(G) for all G ∈ Gk. These
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constants are given by

ctdom,k = sup
G∈Gk

γt(G)

n(G)
.

The constants ctdom,k for small k ∈ [4] are known. By Theorem 25, ctdom,1 =
2
3 . By Theorem 27, ctdom,2 = 2

3 , noting that if G ∈ {C3, C6} ⊂ Btdom ⊂ G2, then
γt(G) = 2

3n, while if G ∈ Btdom \ {C3, C6} ⊂ G2, then γt(G) = 3
5n. By Theorem

28, cdom,3 =
1
2 . By Theorem 31, ctdom,4(G) = 3

7 .
By Theorem 32, ctdom,5(G) ≤ 2453

6500 . It is not known if there is a graph G of or-
der n with δ(G) ≥ 5 satisfying γt(G) = 2453

6500n. Thomassé and Yeo [71] constructed
a 5-regular, bipartite, graph G22, illustrated in Figure 23, of order n = 22 satis-
fying γt(G22) = 8 = 4

11n. We remark that the graph G22 is constructed from the
hypergraph with vertex set V (H) = [10]0 and edge set E(H) = {e0, e1, . . . , e10},
where the edge ei = Q+ i for i ∈ [10]0 and where Q = {1, 3, 4, 5, 9} is the set of
non zero quadratic residues modulo 11.

Figure 23. A bipartite graph G22 of order n = 22 and γt(G22) = 8 = 4
11
n.

By Theorem 33, ctdom,6 ≤ 4549
13299 . It is not known if there is a graph G of order

n with δ(G) ≥ 6 satisfying γt(G) = 4549
13299n. Henning and Yeo [52] constructed a 6-

regular (bipartite) graph G26, illustrated in Figure 24, of order n = 26 satisfying
γt(G26) = 8 = 4

13n. We remark that the graph G262 is constructed from the
hypergraph with vertex set V (H) = [12]0 and edge set E(H) = {e0, e1, . . . , e12},
where the edge ei = Q+i for i ∈ [12]0 and where Q is the set of non zero quadratic
residues modulo 13, that is, Q = {1, 3, 4, 9, 10, 12}.

We summarize the above results and observations formally as follows.

Theorem 100. The following hold.

(a) ctdom,1 = ctdom,2 =
2
3 .

(b) ctdom,3 =
1
2 .

(c) ctdom,4 =
3
7 .

(d) 4
11 ≤ ctdom,5 ≤ 2453

6500 < 4
11 + 11

800 .

(e) 4
13 ≤ ctdom,6 ≤ 4549

13299 < 4
13 + 17

494 .
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Figure 24. A bipartite graph G26 of order n = 26 satisfying γt(G26) = 8 = 4
13
n.

The lower bounds in Theorem 100(d) and 100(e) are conjectured to be the
correct values for ctdom,5 and ctdom,6, respectively.

Conjecture 101 [71]. ctdom,5 =
4
11 .

Conjecture 102 [52]. ctdom,6 =
4
13 .

Recall that Gn,m,5 denotes the class of all connected graphs of order n and
size m with minimum degree at least 5. The truth of the following conjecture
would imply the truth of Conjecture 101.

Conjecture 103 [44]. For a, b ∈ R, the bound γt(G) ≤ an+bm is valid for every

graph G ∈ Gn,m,5 if and only if both b ≥ 0 and a ≥ 4
11 − 5

2b hold.

11.3. The independent domination number

For r ≥ 2, let Greg,r denote the family of all connected r-regular graphs different
from Kr,r.

Problem 104. For r ≥ 3 determine or estimate the best possible constant cidom,r

(which depends only on r) such that i(G) ≤ cidom,r ·n(G) for all G ∈ Greg,r. These
constants are given by

cidom,r = sup
G∈Greg,r

i(G)

n(G)
.

By Observation 46, and by Theorems 45, 47, and 48, and by our earlier ob-
servations, the known results on the constants cidom,r are summarized in Theorem
105. For r ≥ 5, it remains an open problem to determine the exact value of the
constant cidom,r.
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Theorem 105. The following hold.

(a) cidom,3 =
2
5 .

(b) cidom,4 =
3
7 .

(c) cidom,r ≤ r−1
2r−1 for all r ≥ 5.

Goddard and Henning [28] posed the question. Is it true that cidom,r tends
to 1

2 as r → ∞? This question was answered in the affirmative in 2020 by
Blumenthal [6] in his PhD thesis. For integers r > k ≥ 2, let Kk

r,r be the graph
obtained from a complete bipartite graph Kr,r by selecting an arbitrary vertex
of the graph, which we call the gluing vertex, and removing k − 1 edges incident
with this vertex. For such r and k with k even, Blumenthal [6] constructed a
family Gidom,k,r of connected r-regular graphs as follows. Let G be obtained from
k vertex disjoint copies of Kk

r,r by forming a clique Kk on the k gluing vertices,
and let M be an arbitrary perfect matching in this clique. For each gluing vertex
v, let Gv be the copy of Kk

r,r that contains v, and let Nv be the set of vertices
of degree r − 1 in Gv different from v. We note that |Nv| = k − 1. For each
edge uv ∈ M , we add a perfect matching between the vertices of Nu and Nv. Let
G be the resulting connected r-regular graph of order 2rk, and let Gidom,k,r be
the family of all such graphs G. A graph in the family Gidom,4,5 is illustrated in
Figure 25.

Figure 25. A graph in the family Gidom,4,5.

Blumenthal [6] proved if G ∈ Gidom,k,r, then i(G) ≥ k + (r − k − 1)(k − 1).
With a more detailed analysis, the independent domination number of a graph
in the family Gidom,k,r was determined precisely in [35].

Proposition 106 [35, Lemma 6.88]. For integers r and k where r − 1 ≥ k ≥ 2
with k even, if G ∈ Gidom,k,r, then i(G) = r(k − 1)− 1

2k(k − 3).
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To illustrate Proposition 106, if G ∈ Gidom,4,5, then i(G) = 13. An example
of an i-set (of cardinality 13) in the graph G ∈ Gidom,4,5 shown in Figure 25 is
given by the set of black vertices. For integers r and k where r−1 ≥ k ≥ 2 where
k is even, by Proposition 106 if G ∈ Gidom,k,r, then

i(G)

n(G)
=

r(k − 1)− 1
2k(k − 3)

2rk
= fr(k),

where fr(k) denote the function

fr(k) =
1

2
− 1

2k
− k

4r
+

3

4r
.

For real optimization with r ≥ 5 a fixed integer and k ∈ R a real number
satisfying 2 ≤ k ≤ r − 1, the function fr(k) is maximized when k =

√
2r and

fr(
√
2r) = 1

2 + 3
4r − 1

2
√
2r
. Thus, if

√
2r is an even integer, then this yields

(1) cidom,r ≥
1

2
+

3

4r
− 1√

2r
.

For integer optimization with r ≥ 5 a fixed integer and k an even integer
satisfying 2 ≤ k ≤ r − 1, the optimal value of the function fr(k) is max{k1, k2},
where k1 and k2 are even integers such that k1 ≤

√
2r ≤ k2 and k2 = k1+2. This

yields a lower bound of cidom,r of approximately 1
2 + 3

4r − 1√
2r
, which tends to 1

2

as r → ∞. This yields the result of Blumenthal [6].

Theorem 107 [6]. The constant cidom,r tends to 1
2 as r → ∞.

It would be interesting to determine the exact value of the constant cidom,r

for r ≥ 5, even for the special case when r = 5.

11.4. The connected domination number

Problem 108. Determine or estimate the best possible constants ccdom,k (which
depends only on k) such that γpr(G) ≤ ccdom,k · n(G) for all G ∈ Gk. These
constants are given by

ccdom,k = sup
G∈Gk

γc(G)

n(G)
.

The constants ccdom,k for small k ∈ [5] are known. By Observation 54,
ccdom,1 = ccdom,2 = 1. By Theorems 55, 56 and 57, and by Proposition 52, we
have ccdom,3 = 3

4 , ccdom,4 = 3
5 and ccdom,5 = 1

2 . We summarize the known results
as follows.
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Theorem 109. The following hold.

(a) ccdom,1 = ccdom,2 = 1.

(b) ccdom,3 =
3
4 .

(c) ccdom,4 =
3
5 .

(d) ccdom,5 =
1
2 .

(e) ccdom,k ≥ 3
k+1 for k ≥ 6.

(f) ccdom,k ≥ ln(k)
k

for k sufficiently large.

For k ≥ 6, the exact value of ccdom,k remains unknown, even in the special
case when k = 6. We conjecture that the lower bound in Theorem 109(e) is the
correct value for ccdom,6.

Conjecture 110. ccdom,6 =
3
7 .

11.5. The paired domination number

Problem 111. Determine or estimate the best possible constants cpdom,k (which
depends only on k) such that γpr(G) ≤ cpdom,k · n(G) for all G ∈ Gk. These
constants are given by

cpdom,k = sup
G∈Gk

γpr(G)

n(G)
.

The constants cpdom,k are surprisingly only known for k = 1 and k = 2. By
Theorem 66, cpdom,1 = 1 and by Theorem 67, cpdom,2 = 2

3 . By Theorem 71,
cpdom,3(G) ≤ 19037

30000n < 0.634567n. It is not known if there is a graph G of order
n with δ(G) ≥ 3 satisfying γpr(G) = 19037

30000n. As observed earlier, if G is the
Petersen graph, then G is a cubic graph of order n = 10 and γpr(G) = 6 = 3

5n,
implying that cpdom,3(G) ≥ 3

5 . We summarize the above results and observations
formally as follows.

Theorem 112. The following hold.

(a) cpdom,1 = 1.

(b) cpdom,2 =
2
3 .

(c) 3
5 ≤ cpdom,3 ≤ 19037

30000 < 3
5 + 13

375 .

We pose the following conjecture.

Conjecture 113. cpdom,3 =
3
5 .

Chen, Sun, and Xing [14] conjectured that if G is a connected graph of order
n ≥ 11 with δ(G) ≥ 3, then γpr(G) ≤ 4

7n. A slightly stronger conjecture was
posed by Goddard and Henning [27].
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Conjecture 114 [27]. If G is a connected graph of order n with δ(G) ≥ 3, then
γpr(G) ≤ 4

7n, unless G is the Petersen graph, in which case γpr(G) = 3
5n.

If Conjecture 114 is true, then this would imply that Conjecture 113 is true.
Conjecture 114 has yet to be settled even in the special case of the class of cubic
graphs. The following conjecture was posed by Desormeaux and Henning in [21].

Conjecture 115 [21]. If G is a bipartite cubic graph of order n, then γpr(G) ≤
1
2n.

By Theorem 64, if G is an isolate-free graph, then γpr(G) ≤ 2γ(G), implying
that cpdom,k ≤ 2cdom,k for all k ≥ 1. As an application of Theorem 14 and
the results in Table 1 due to Bujtás and Klavžar in [12], we therefore have the
following trivial upper bounds on cpdom,k for k ≥ 6. For example, the resulting
upper bounds on cpdom,k for k ∈ {6, 7, 8, 9, 10} as given in Table 2. These upper
bounds are most likely far from optimal.

k 6 7 8 9 10

cpdom,k ≤ 0.60766 ≤ 0.585356 ≤ 0.546426 ≤ 0.513131 ≤ 0.484256

Table 2. Upper bounds on cpdom,k for k ∈ {6, 7, 8, 9, 10}.

11.6. The restrained domination number

For k ≥ 1 let Grdom,k denotes the class of all connected graphs with minimum
degree at least k, where we forbid the 5-cycle C5 to belong to the family Grdom,2.

Problem 116. Determine or estimate the best possible constants crdom,k (which
depends only on k) such that γr(G) ≤ crdom,k · n(G) for all G ∈ Grdom,k. These
constants are given by

crdom,k = sup
G∈Grdom,k

γr(G)

n(G)
.

The constants crdom,k are surprisingly only known for k = 1 and k = 2. By
our earlier observations, and by Theorem 73, crdom,1 = 1 and by Theorem 76,
crdom,2 = 1

2 . The Petersen graph G, shown in Figure 16 has order n = 10 and
γr(G) = 4 = 2

5n, implying that crdom,3 ≥ 2
5 . By Theorem 78, crdom,3 ≤ 0.668. We

summarize the known results as follows.

Theorem 117. The following hold.

(a) crdom,1 = 1.
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(b) crdom,2 =
1
2 .

(c) 2
5 ≤ crdom,3 ≤ 0.668.

For k ≥ 3, the exact value of crdom,k remains unknown, even in the special
case when k = 3. We conjecture that the lower bound in Theorem 117(c) is the
correct value for crdom,3.

Conjecture 118. crdom,3 =
2
5 .

11.7. The semitotal domination number

For k ≥ 1 let Gγt2,k denotes the class of all connected graphs of order at least 4
with minimum degree at least k.

Problem 119. Determine or estimate the best possible constants cγt2,k (which
depends only on k) such that γt2(G) ≤ cγt2,k · n(G) for all G ∈ Gγt2,k. These
constants are given by

cγt2,k = sup
G∈Gγt2,k

γt2(G)

n(G)
.

The constants cγt2,k are only known for k = 1 and k = 2. By our earlier
observations, and by Theorems 84 and 85, cγt2,1 = cγt2,2 =

1
2 .

For k ≥ 2, let G be the graph obtained from a connected graph F of order
at least 2 as follows. For each vertex v ∈ V (F ) add a copy of the graph Kk+1− e
where v1 and v2 are the two vertices that are not adjacent in this added copy
(and so, the edge e = v1v2 is removed from Kk+1 − e in our construction), and
add the edges vv1 and vv2. The resulting graph G has order n = (k + 2)|V (F )|
and satisfies

γt2(G) =

(

2

k + 2

)

n.

For example, when k = 3 and F = K1,4 is a star, the resulting graph G of
order n = 25 with γt2(G) = 10 = 2

5n is illustrated in Figure 26, where the ten
black vertices are an example of a γt2-set of G.

Figure 26. A graph G with δ(G) = 3 and γt2(G) = 2
5
n.

We summarize the known results as follows.
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Theorem 120. The following hold.

(a) cγt2,1 = cγt2,2 =
1
2 .

(b) cγt2,k ≥ 2
k+2 for all k ≥ 3.

For k ≥ 3, the exact value of cγt2,k remains unknown, even in the special
case when k = 3. We conjecture that in the case when k = 3 the lower bound in
Theorem 120(b) is the correct value for cγt2,3.

Conjecture 121. cγt2,3 =
2
5 .

11.8. The semipaired domination number

Problem 122. Determine or estimate the best possible constants cγpr2,k (which
depends only on k) such that γpr2(G) ≤ cγpr2,k · n(G) for all G ∈ Gk. These
constants are given by

cγpr2,k = sup
G∈Gk

γpr2(G)

n(G)
.

The constants cγpr2,k are known for k ∈ {1, 2, 3}. By Theorem 89 and Corol-
lary 90, cγpr2,1 = cγpr2,2 = 2

3 . By Theorem 92, cγpr2,3 = 1
2 . For k ≥ 2 even,

the circulant C2k+2

〈

1, . . . , k2
〉

of order n = 2k + 2 with jumps 1, . . . , k satisfies

γpr2(G) = 4
(

2
k+1

)

n, while for k ≥ 3 odd, the circulant C2k+2

〈

1, . . . , k−1
2 , k + 1

〉

of order n = 2k + 2 with jumps 1, . . . , k−1
2 , k + 1 satisfies γpr2(G) = 4 =

(

2
k+1

)

n.

Therefore, cγpr2,k ≥ 2
k+1 for all k ≥ 2. For example, the circulant G = C8〈1, 4〉, il-

lustrated in Figure 27(a), is a 3-regular graph of order n = 8 satisfying γpr2(G) =
4 = 1

2n, and the circulant G = C10〈1, 2〉, illustrated in Figure 27(b), is a 4-regular
graph of order n = 10 satisfying γpr2(G) = 4 = 2

5n.

(a) C8〈1, 4〉 (b) C10〈1, 2〉

Figure 27. The circulants C8〈1, 4〉 and C10〈1, 2〉.

We summarize the known results as follows.

Theorem 123. The following hold.

(a) cγpr2,1 = cγpr2,2 =
2
3 .
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(b) cγpr2,3 =
1
2 .

(c) cγpr2,k ≥ 2
k+1 for all k ≥ 4.

For k ≥ 4, the exact value of cγpr2,k remains unknown, even in the special
case when k = 4. We conjecture that in the case when k = 4 the lower bound in
Theorem 123(c) is the correct value for cγpr2,4.

Conjecture 124. cγpr2,4 =
2
5 .
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