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Abstract

The 2-domination number γ2(G) of a graph G is the minimum cardinality
of a set D ⊆ V (G) for which every vertex outside D is adjacent to at least
two vertices in D. Clearly, γ2(G) cannot be smaller than the domination
number γ(G). We consider a large class of graphs and characterize those
members which satisfy γ2 = γ. For the general case, we prove that it is
NP-hard to decide whether γ2 = γ holds. We also give a necessary and
sufficient condition for a graph to satisfy the equality hereditarily.
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1. Introduction

In this paper, we continue to expand on the study of graphs that satisfy the
equality γ(G) = γ2(G), where γ(G) and γ2(G) stand for the domination number
and the 2-domination number of a graph G, respectively. If γ(G) = γ2(G) holds
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for a graph G, then we call it a (γ, γ2)-graph. We prove that the corresponding
recognition problem is NP-hard and there is no forbidden subgraph characteriza-
tion for (γ, γ2)-graphs in general. On the other hand, in one of our main results,
we consider a large graph class H and give a special type of forbidden subgraph
characterization for (γ, γ2)-graphs over H. Although the number of these for-
bidden subgraphs is infinite, we prove that the recognition problem is solvable
in polynomial time on H. Putting the question into another setting, we give a
complete characterization for (γ, γ2)-perfect graphs, that is, we characterize the
graphs for which all induced subgraphs with minimum degree at least two satisfy
the equality of domination number and 2-domination number.

1.1. Terminology and notation

Let G be a simple undirected graph, where V (G) and E(G) denote the set of
vertices and the set of edges of G, respectively. The (open) neighborhood of a
vertex v is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)} and its closed neighborhood
is NG[v] = NG(v)∪{v}. The degree of v is given by the cardinality of NG(v), that
is, degG(v) = |NG(v)|. We will write N(v), N [v] and deg(v) instead of NG(v),
NG[v] and degG(v), if G is clear from the context. An edge uv is a pendant edge
if deg(u) = 1 or deg(v) = 1, otherwise the edge is non-pendant. The minimum
and maximum vertex degrees of G are denoted by δ(G) and ∆(G), respectively.
For a subset S ⊆ V (G), let G[S] denote the subgraph induced by S. We say
that S is independent if G[S] does not contain any edges. For disjoint subsets
U,W ⊆ V (G), we let E[U,W ] denote the set of edges between U and W .

For a positive integer k, the kth power of a graph G, denoted by Gk, is the
graph on the same vertex set as G such that uv is an edge if and only if the
distance between u and v is at most k in G. An edge uv ∈ E(G) is subdivided
by deleting the edge uv, then adding a new vertex x and two new edges ux and
xv. Let Kn, Cn and Pn denote the complete graph, the cycle and the path, all of
order n, respectively; and let Sn denote the star of order n+ 1. For any positive
integer n, let [n] be the set of positive integers not exceeding n. For notation and
terminology not defined here, we refer the reader to [31].

For a positive integer k, a subset D ⊆ V (G) is a k-dominating set of the
graph G if |NG(v) ∩D| ≥ k for every v ∈ V (G) \D. The k-domination number
of G, denoted by γk(G), is the minimum cardinality among the k-dominating
sets of G. Note that the 1-domination number, γ1(G), is the classical domination
number γ(G).

A graph G is called F -free if it does not contain any induced subgraph iso-
morphic to F . More generally, let F be a (finite or infinite) class of graphs, then
G is F-free if it is F -free for all F ∈ F . On the other hand, let GD denote a
graph G with a specified subset D ⊆ V (G). Then, FD′

is an (induced) subgraph
of GD if F is an (induced) subgraph of G and D′ = V (F )∩D. We say that FD1

1
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is isomorphic to FD2
2 if there is an edge-preserving bijection between V (F1) and

V (F2) which maps D1 onto D2. Analogously, we may define the FD′
-freeness of

GD and forbidden (induced) subgraph characterization with a specified vertex
subset D.

1.2. Preliminary results

The concept of k-domination in graphs was introduced by Fink and Jacobson
[15,16] and it has been studied extensively by many researchers (see for example
[5–8,10,13,14,18,19,26,30,32]). For more details, we refer the reader to the books
on domination by Haynes, Hedetniemi and Slater [23, 24] and to the survey on
k-domination and k-independence by Chellali et al. [9].

Fink and Jacobson [15] established the following basic theorem.

Theorem 1 [15]. For any graph G with ∆(G) ≥ k ≥ 2, γk(G) ≥ γ(G) + k − 2.

Although it is proved that the above inequality is sharp for every k ≥ 2, the
characterization of graphs attaining the equality is still open, even for the case
when k = 2. The corresponding characterization problem was studied in [18,
20, 21], while similar problems involving different domination-type graph and
hypergraph invariants were considered for example in [3, 4, 22,26,29].

In this paper, we study (γ, γ2)-graphs, that is, graphs for which Theorem 1
holds with equality if k = 2. Note that G is a (γ, γ2)-graph, that is γ2(G) = γ(G),
if and only if every component of G is a (γ, γ2)-graph. Thus, we only deal with
connected graphs in the rest of the paper.

Hansberg and Volkmann [21] characterized the cactus graphs (i.e., graphs in
which no two cycles share an edge) which are (γ, γ2)-graphs and they also gave
some general properties of the graphs attaining the equality. In 2016, the claw-
free (i.e., S3-free) (γ, γ2)-graphs and the line graphs which are (γ, γ2)-graphs were
characterized by Hansberg et al. [20]. We will refer to the following basic lemmas
proved in these papers.

Lemma 1 [21]. If G is a connected nontrivial graph with γ2(G) = γ(G), then
δ(G) ≥ 2.

Lemma 2 [20]. Let D be a minimum 2-dominating set of a graph G. If γ2(G) =
γ(G), then D is independent.

Lemma 3 [20]. Let G be a connected nontrivial graph with γ2(G) = γ(G) and
let D be a minimum 2-dominating set of G. Then, for each vertex u′ ∈ V \ D
and u, v ∈ D∩N(u′), there is a vertex v′ ∈ V \D such that u, u′, v and v′ induce
a C4.

We strengthen Lemma 3 by proving the following statement.
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Lemma 4. Let G be a connected nontrivial graph with γ2(G) = γ(G) and let D be
a minimum 2-dominating set of G. For every pair u, v ∈ D, if NG(u)∩NG(v) 6= ∅,
then there exists a nonadjacent pair u′, v′ ∈ V \ D such that NG(u′) ∩ D =
NG(v′) ∩D = {u, v}.

Proof. For every vertex x ∈ NG(u)∩NG(v), there is a vertex y different from x
such that NG(y) ∩D = {u, v} and xy /∈ E(G), since otherwise (D \ {u, v}) ∪ {x}
would be a dominating set of G, a contradiction. This proves that we have at least
two non-adjacent vertices u′ and v′ with the property NG(u′)∩D = NG(v′)∩D =
{u, v}.

The following simple proposition demonstrates that (γ, γ2)-graphs form a rich
class and it indicates the possible difficulties in a general characterization.

Proposition 5. There is no forbidden (induced) subgraph for the graphs satisfy-
ing the equality of domination number and 2-domination number.

Proof. Consider an arbitrary graph F and a four-cycle C4, which is vertex-
disjoint to F . Let u and v be two non-adjacent vertices of C4. Construct the
graph GF by joining each vertex of F to both u and v. Since, for any F , the graph
GF contains F as an induced subgraph and it satisfies the equality γ2(GF ) =
γ(GF ) = 2, there is no forbidden induced subgraph for (γ, γ2)-graphs.

As a consequence of Lemmas 1–4, we will prove that all (γ, γ2)-graphs belong
to the following graph class G that we define together with its subclasses G1 and
G2.

Definition 1. Given an arbitrary simple graph F with vertex set V (F ) = D =
{v1, . . . , vd}, a graph G belongs to the class G(F ) if G can be obtained from F
by the following rules.

(i) Define a pair of vertices Xi,j = {x1i,j , x2i,j} for every edge vivj of F , and
further, let Y be an arbitrary (possibly empty) set of vertices, such that
D, Y and all the pairs Xi,j are mutually disjoint sets of vertices. Define
V (G) = D ∪X ∪ Y , where X =

⋃
vivj∈E(F )Xi,j .

(ii) The edges between D and X∪Y are defined such that NG(xsi,j)∩D = {vi, vj}
for every vertex xsi,j ∈ X, and the set NG(u)∩D contains at least two vertices
and induces a complete subgraph in F for any u ∈ Y . The induced subgraph
G[D] cannot contain edges.

(iii) The edges inside X ∪Y can be chosen arbitrarily, but each Xi,j must remain
independent.

Moreover, G belongs to G1(F ) if |NG(y) ∩D| = 2 for each y ∈ Y ; and G belongs
to G2(F ) if Y = ∅. The graph classes G, G1, G2 contain those graphs G for which
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there exists a graph F such that G belongs to G(F ), G1(F ), G2(F ), respectively
(see Figure 1 for an example).

We will prove in Section 2 that if a graph G ∈ G1 is obtained by starting
with the underlying graph F , then D = V (F ) is a minimum 2-dominating set of
G. The vertices in X make sure that the necessary condition from Lemma 4 is
satisfied.

Figure 1. (a) Graph F which is the underlying graph of G and G′. (b) A graph G from
G(F ). (c) A graph G′ from G2(F ).

For G ∈ G(F ) with the fixed partition V (G) = D ∪ X ∪ Y as per above
definition, a vertex v is a D-vertex (or original vertex) if v ∈ D; v is a subdivision
vertex if v ∈ X; and v is a supplementary vertex if v ∈ Y . The edges inside G[X∪
Y ] are called supplementary edges, and F is said to be the underlying graph of G.
In Section 5, we will show that the underlying graph is not necessarily unique by
presenting a (γ, γ2)-graph having two non-isomorphic underlying graphs. Note
that the construction in the proof of Proposition 5 always belongs to the class G1.
Hence, Proposition 5 remains true under the condition G ∈ G1. This motivates
us to focus on the smaller class G2.

In Figure 1, two different graphs obtained from the same underlying graph
F are illustrated, namely G ∈ G(F ) and G′ ∈ G2(F ). The supplementary edges
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are shown by the dashed lines. It is worth to note that Y = {u1, u2} in Figure
1(a) and Y = ∅ in Figure 1(c).

Alternatively, we may define the graph class G2(F ) in the following construc-
tive way. Let F be a simple graph with vertex set V (F ) and edge set E(F ).
Consider the double subdivision graph F ∗ obtained by substituting each edge
vivj by two parallel edges and subdividing each edge once by adding the vertices
x1i,j and x2i,j . Let Xi,j = {x1i,j , x2i,j} and define the set of subdivision vertices
X =

⋃
vivj∈E(F )Xi,j . The graph class G2(F ) consists of the graphs obtained by

adding some (maybe zero) supplementary edges between subdivision vertices of
F ∗ such that each Xi,j remains independent (see Figure 2 for an example).

Figure 2. (a) The underlying graph F . (b) The double subdivision graph F ∗. (c) The
graph G ∈ G2(F ) obtained by adding three supplementary edges between subdivision
vertices of F ∗.

Proposition 6. If G is a graph with γ2(G) = γ(G), then G ∈ G.

Proof. Assuming γ2(G) = γ(G), choose a minimum 2-dominating set D of G
and define the graph F = G2[D]; i.e., we take the 2nd power of G (as defined
in the Introduction) and then consider the subgraph induced by D in G2. We
first note that, by Lemma 2, D is independent in G. Since D is a 2-dominating
set, every u ∈ V (G) \ D has at least two neighbors in D and, by the definition
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of F , the set NG(u) ∩ D induces a complete subgraph in F . By Lemma 4, for
every edge vivj of F , there exist at least two different and non-adjacent vertices
u, u′ ∈ V (G)\D such that NG(u)∩D = NG(u′)∩D = {vi, vj}. If we select such a
pair and define Xi,j = {u, u′} for every vivj ∈ E(F ), and let Y = V (G)\ (D∪X),
then G can be obtained from the underlying graph F with the vertex partition
V (G) = D ∪X ∪ Y , proving that G ∈ G(F ).

In a follow-up paper of the present work [12], we studied the analogous prob-
lem for each k ≥ 3. There we gave a characterization for connected bipartite
graphs satisfying γk(G) = γ(G) + k − 2 and ∆(G) ≥ k. This result is based
on the notion of the k-uniform “underlying hypergraph” that corresponds to the
underlying graph, as defined here, if k = 2.

1.3. Structure of the paper

In Section 2, we define the class H of those graphs which are contained in G2 with
an underlying graph of girth at least 5 and we give a characterization for (γ, γ2)-
graphs over H. Then, in Section 3, we discuss algorithmic complexity questions.
First, we prove that the recognition problem of (γ, γ2)-graphs is NP-hard on G1
(even if a minimum 2-dominating set is given together with the problem instance).
Then, on the positive side, we show that there is a polynomial-time algorithm
which recognizes (γ, γ2)-graphs over the class H if the instance is given together
with the minimum 2-dominating set D = V (F ). The algorithm is based on our
characterization theorem and Edmond’s Blossom Algorithm. In Section 4, we
consider the hereditary version of the property and characterize (γ, γ2)-perfect
graphs. As a direct consequence, we get that (γ, γ2)-perfect graphs are easy to
recognize. In the concluding section, we put remarks on the underlying graphs
and discuss some open problems.

2. Characterization of (γ, γ2)-Graphs Over H

To formulate the main result of this section, we will refer to the following defini-
tions.

Definition 2. Let H be the union of those graph classes G2(F ) where the un-
derlying graph F is (C3, C4)-free.

When we consider a graph G ∈ H, we will always assume that a fixed
(C3, C4)-free underlying graph F and a corresponding partition V (G) = D ∪X
are given. In order to indicate this structure, we will use the notation GD.
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Definition 3. For a positive integer k ≥ 2, let AWk
k be the graph on the vertex

set
V (Ak) =

{
v, w1, . . . , wk, x

1
1, . . . , x

1
k, x

2
1, . . . , x

2
k

}
and with the edge set

E(Ak) =
{
vx1i , vx

2
i , wix

1
i , wix

2
i : 1 ≤ i ≤ k

}
∪
{
x1ix

2
i+1 : 1 ≤ i ≤ k

}
∪
{
x1kx

2
1

}
.

The specified vertex set is Wk = {v} ∪ {wi : 1 ≤ i ≤ k} (for illustration see
Figure 3).

Figure 3. The graph A4.

Figure 4. The graph B.

Definition 4. Let BW be the graph of order 8 with

V (B) =
{
v1, u1, v2, u2, x

1
1, x

2
1, x

1
2, x

2
2

}
,

E(B) =
{
vix

1
i , vix

2
i , uix

1
i , uix

2
i : 1 ≤ i ≤ 2

}
∪
{
x11x

1
2

}
.

The specified vertex set is W = {v1, u1, v2, u2} (for illustration see Figure 4).

Note that Ak ∈ G2(Sk) and B ∈ G2(2K2).
We first prove a lemma which will be referred to in the proof of our main

theorem and also in later sections.
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Lemma 7. If GD ∈ G1(F ), then D is a minimum 2-dominating set of G.

Proof. By definition, every vertex from X has two neighbors in D. Thus, D
is a 2-dominating set in G. Suppose to the contrary that D′ is a 2-dominating
set of G such that |D′| < |D|. Let D1 = D ∩ D′ and D2 = D \ D′. Since D is
independent in G, the vertices in D2 have to be 2-dominated by the vertices of
D′ \ D, that is, every vertex in D2 has at least two neighbors in D′. Then we
have

|E[D′, D2]| ≥ 2|D2|.

Moreover, by the definition of G1(F ), every vertex in D′ \ D has exactly two
neighbors in D, so we have

2|D′ \D| ≥ |E[D′, D2]|.

Thus, |D′\D| ≥ |D2|. Since D′ = (D′\D)∪D1, we conclude |D′| ≥ |D2|+ |D1| =
|D|, a contradiction.

Theorem 2. Let GD be a graph from H. Then γ(G) = γ2(G) holds if and only if
GD contains no subgraph isomorphic to BW and no subgraph isomorphic to AWk

k

for any k ≥ 2.

Proof. Throughout the proof, we assume that G ∈ H and hence there exists a
(C3, C4)-free underlying graph F such that G ∈ G2(F ). By Lemma 7, D = V (F )
is a minimum 2-dominating set of G.

First assume that GD contains a (not necessarily induced) subgraph which is
isomorphic to BW . We may assume, without loss of generality, that this subgraph
contains the vertices S = {v1, u1, v2, u2, x11, x21, x12, x22}, the edges correspond to
those in Figure 4, and S ∩ D = {v1, u1, v2, u2}. Since F is {C3, C4}-free, the
induced subgraph F [S ∩ D] is {C3, C4}-free as well. Therefore, as |S ∩ D| = 4,
F [S∩D] is a forest. It contains at least two edges, namely v1u1 and v2u2. Hence,
F [S ∩ D] contains a leaf, say v1. Consider the set D′ = (D \ S) ∪ {u1, x11, x22}.
Observe that D′ dominates all the vertices in D; the vertex x11 ∈ D′ dominates
x12; the vertex u1 dominates x21. By the choice of v1 and u1, F [{v1, v2, u2}]
contains only the edge v2u2. Hence, all the subdivision vertices different from
{x11, x21, x12, x22} are dominated either by D \ S or u1. Hence, D′ is a dominating
set in G and |D′| < |D|. These imply γ(G) < γ2(G).

Next assume that GD contains a subgraph which is isomorphic to AWk
k . We

may assume, without loss of generality, that the vertices of this subgraph are
named as given in the definition of AWk

k . Let W = Wk. Consider the set D′ =
(D \W ) ∪ {x11, . . . , x1k}. Observe that D′ dominates all the vertices in D; the
set {x11, . . . , x1k} ⊆ D′ dominates all the vertices of the form xsi (i ∈ [k], s ∈ [2]).
Since F is assumed to be C3-free, for any further subdivision vertex xsi,j of G, at
least one of its neighbors which is a D-vertex, namely at least one of vi and vj ,
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is not included in W . Thus, xsi,j is dominated by a vertex in D \W . We may
conclude that D′ is a dominating set in G. Since |W | = k+ 1, we have |D′| < |D|
from which γ(G) < γ2(G) follows. This finishes the proof of one direction of our
theorem.

For the converse, we assume that G contains no subgraph isomorphic to
BW and no subgraph isomorphic to AWk

k for any k ≥ 2, and then prove that
γ(G) = γ2(G). In particular, having no subgraph isomorphic to BW means that
every supplementary edge is inside a neighborhood of a D-vertex and, therefore,
N [xsi,j ] ⊆ N [vi] ∪ N [vj ] holds for each supplementary vertex xsi,j . Now, suppose
for a contradiction that γ(G) < γ2(G). Let D′ be a minimum dominating set of
G such that |D′ ∩ D| is maximum under this condition. It is clear that |D′| =
γ(G) < γ2(G) = |D|.

We first prove that no pair x1i,j , x
2
i,j are contained together in D′. Suppose, to

the contrary, that {x1i,j , x2i,j} ⊆ D′. Then, since N [x1i,j ]∪N [x2i,j ] ⊆ N [vi]∪N [vj ],

the set D′′ = (D′ \ {x1i,j , x2i,j}) ∪ {vi, vj} would be a dominating set of G. This
contradicts either the minimality of |D′| or the maximality of |D′ ∩D|.

If we have some edges vivj ∈ E(F ) such that |Xi,j ∩D′| = 0, then we delete
all these Xi,j pairs from G, delete all the associated edges from F and obtain
G′ and F ′. Note that, by definition, G′ ∈ G2(F ′) and F ′ is still (C3, C4)-free.
As D′ contains exactly one vertex from each remaining pair Xi,j , we infer that
|E(F ′)| ≤ |D′|. By Lemma 7, γ2(G

′) remains |D| (we did not delete the possibly
arising isolated vertices). We deleted only subdivision vertices not contained in
D ∪D′ and D′ contains exactly one vertex from each pair Xi,j corresponding to
an edge vivj ∈ E(F ′). Therefore,

(1) |E(F ′)| ≤ |D′ ∩ V (G′)| < |D ∩ V (G′)|

holds and D′∩V (G′) is a dominating set in G′. By Lemma 7, D∩V (G′) remains
a minimum 2-dominating set in G′.

G′ might contain several components. By the inequality (1), there is a com-
ponent, say G′′, such that |D′ ∩ V (G′′)| < |D ∩ V (G′′)| = γ2(G

′′). It is clear
that G′′ is not an isolated vertex. Recall that NG[xsi,j ] ⊆ NG[vi] ∪ NG[vj ] holds
for each supplementary vertex xsi,j in G and hence, by construction, the anal-
ogous statement remains true in G′′. Thus, the connectivity of the underly-
ing graph F ′′ of G′′ follows from the connectivity of G′′. It also holds that
V (F ′′) = D∩V (G′′). Moreover, as D′∩V (G′′) intersects each pair Xi,j from G′′,
we have |E(F ′′)| ≤ |D′ ∩ V (G′′)|. We may conclude

(2) |E(F ′′)| ≤ |D′ ∩ V (G′′)| < |V (F ′′)|.

The underlying graph F ′′ is therefore a tree and

(3) |E(F ′′)| = |D′ ∩ V (G′′)| = |V (F ′′)| − 1
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holds. By the first equality in (3), D′ ∩ D ∩ V (G′′) = ∅. Note that F ′′ is not
necessarily an induced subgraph of F but, as F is C3-free, all the star-subgraphs
of F ′′ are induced stars in F .

Consider a non-pendant edge vivj in F ′′ (if there exists). We know that
D′ ∩ V (G′′) is a dominating set in G′′ and it contains exactly one vertex from
Xij . Renaming the vertices if necessary, we may suppose x1i,j ∈ D′. Then the

vertex x2i,j must be dominated by a vertex from D′, which is a neighbor of either

vi or vj . Without loss of generality, assume that x2i,j is dominated by a neighbor
of vi. Let S = V (G′′)\ (NG′′(vj)\Xij) and consider the induced subgraph G′′[S].
Let H be the component of the resulting graph, which contains both vi and vj .

Recall that D′ ∩ V (G′′) dominates all vertices in G′′. By construction,
NG′′ [vp] ⊆ V (H) is true for every vertex vp 6= vj from D′ ∩ V (H) and

NG′′
[
xsp,q

]
⊆ NG′′ [vp] ∪NG′′ [vq] ⊆ V (H)

holds for every xsp,q ∈ X ∩ V (H) if p 6= j 6= q. The set D′ ∩ V (H) therefore
dominates all vertices from V (H) \NH [vj ]. As NH [vj ] = {vj , x1i,j , x2i,j}, it can be
readily seen that D′ ∩ V (H) is a dominating set in H.

Repeate sequentially this procedure of deleting non-pendant edges in the
underlying graph. At the end we obtain a graph Hr with an underlying graph Fr

such that Fr is isomorphic to a star graph K1,m. Then the set Dr = V (Hr) ∩D′
is a dominating set of Hr and it contains exactly one vertex from each pair Xi,j

of subdivision vertices.

We will construct a directed graph R as follows. We create a vertex xi,j
corresponding to each pair Xi,j ⊂ V (Hr) of subdivision vertices. Then, we add
a directed edge from xi,j to xk,` in R, if the vertex in Xi,j \Dr is dominated by
the vertex in Xk,` ∩ Dr. As Dr has exactly one vertex from each pair Xi,j , the
outdegree of each vertex xi,j ∈ V (R) is at least one. Thus, there is a directed
cycle of order at least t ≥ 2, which corresponds to a subgraph isomorphic to AWt

t

in H
D∩V (Hr)
r ⊆ GD. This contradicts our assumption and finishes the proof of

the theorem.

3. Algorithmic Complexity

Since there are infinitely many forbidden subgraphs, Theorem 2 does not give
directly a polynomial time recognition algorithm for (γ, γ2)-graphs on H. How-
ever, based on this characterization, we can design a polynomial time algorithm
to check whether γ(G) = γ2(G) holds for a general instance GD ∈ H.

Theorem 3. Let GD ∈ H be given. It can be decided in polynomial time whether
the graph GD satisfies the equality γ(G) = γ2(G).
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Proof. By Theorem 2, γ(G) = γ2(G) holds if and only if GD contains no sub-
graph isomorphic to BW and no subgraph isomorphic to AWk

k for any k ≥ 2.

The algorithm below, first, determines whether BW ⊆ GD. If it holds, then
the algorithm halts. It can be readily checked that this part of the algorithm
requires polynomial time.

Input: A graph GD ∈ H
Output: If γ(G) = γ2(G), then true; else false.

for each supplementary edge uv in G
if D ∩ (NG(u) ∩NG(v)) = ∅, then return false

for each vertex x in D
X ← NG(x) and G′ ← G[X]
k = (degG x)/2
for i← 1 to k do

E ← E(G′)
for j ← 1 to k do

if j 6= i, then E ← E ∪ {x1jx2j}
µ ← the order of the maximum matching in E
if µ = k, then return false

end-for
end-for
return true

end.

Then, in the next steps of the algorithm, the existence of subgraphs isomorphic
to AW`

` is tested. In order to find such a subgraph (if it exists), the algorithm
searches for an appropriate matching in G[NG(vi)] for every vertex vi from D.
Since a subgraph AW`

` does not necessarily contain all the neighbors of vi, it is not
enough to check the existence of a perfect matching in G[NG(vi)]. Instead, we
define the edge set Ei = {x1i,jx2i,j : vj ∈ NF (vi)}. Let G∗i be the graph G[NG(vi)]
extended by the edges from Ei. Clearly, G∗i contains a perfect matching which
is Ei. On the other hand, G∗i contains a perfect matching different from Ei if

and only if G[NG(vi)] has a subgraph isomorphic to AW`
` . Hence, the algorithm

checks all possible G∗i − e graphs, where e ∈ Ei, and if any of them has a perfect

matching, then there exists a subgraph isomorphic to AW`
` .

In order to find a maximum matching inG∗i−e, we can use Edmond’s Blossom
Algorithm [11], which was improved by Micali and Vazirani in [28] to run in time
O(
√
nm) for any graph of order n and size m. The procedure will be repeated

(degG(x)/2) = degF (x) times for every vertex x ∈ D, that is, Σv∈V (F ) deg(v) =
2|E(F )|, in total. Thus, the second part of the algorithm requires polynomial-
time. This finishes the proof.
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We now show that the same problem is NP-hard even on the graph class GD1 .

Theorem 4. Consider every graph G ∈ G1 together with a specified set D such
that G2[D] ∼= F and G ∈ G1(F ). Then, it is NP-complete to decide whether the
inequality γ(G) < γ2(G) holds for a general instance G ∈ G1.

Proof. By Lemma 7, we have γ2(G) = |D| and it can be checked in polynomial
time whether a given set D′ with |D′| < |D| is a dominating set of G. Thus, the
decision problem belongs to NP.

In order to prove the NP-hardness, we present a polynomial-time reduction
from the well-known 3-SAT problem, which is proved to be NP-complete [17].

Let X = {x1, x2, . . . , xk} be a set of Boolean variables. A truth assignment
for X is a function ϕ : X → {t, f}. If ϕ(xi) = t holds, then the variable xi is
called true; else if ϕ(xi) = f holds, then xi is called false. If xi is a variable
in X, then xi and ¬xi are literals over X. The literal xi is true under ϕ if and
only if the variable xi is true under ϕ; the literal ¬xi is true if and only if the
variable xi is false. A clause over X is a set of three literals over X, represents the
disjunction of those literals and it is satisfied by a truth assignment if and only
if at least one of its members is true under that assignment. A collection C of
clauses over X is satisfiable if and only if there exists some truth assignment for
X that satisfies all the clauses in C. Such a truth assignment is called a satisfying
truth assignment for C. The 3-SAT problem is specified as follows.

3-SATISFIABILITY (3-SAT) PROBLEM

Instance: A collection C = {C1, C2, . . . , C`} of clauses over a finite set X of
variables such that |Cj | = 3, for 1 ≤ j ≤ `}.

Question: Is there a truth assignment for X that satisfies all the clauses in C?

Let C be a 3-SAT instance with clauses C1, C2, . . . , C` over the Boolean
variables X = {x1, x2, . . . , xk}. We may assume that for every three variables
xi1 , xi2 , xi3 there exists a clause Cj , where j ∈ [`], such that Cj does not contain
any of the variables xi1 , xi2 , xi3(neither in positive form, nor in negative form).
Otherwise, the problem could be reduced to at most eight (separated) 2-SAT
problems, which are solvable in polynomial time.

We now construct a graph G ∈ G1(F ), where F ∼= Sk+1, such that the given
instance C of 3-SAT problem is satisfiable if and only if γ(G) < γ2(G). The
construction is as follows.

For every variable xi, we create three vertices {xti, x
f
i , vi} and then we add

the edges xtivi and xfi vi. For every clause Cj ∈ C, we create a vertex cj , and if xi
is a literal in Cj , then xticj ∈ E(G); if ¬xi is a literal in Cj , then xfi cj ∈ E(G).

Moreover, we add a vertex c∗ and the edges c∗xti and c∗xfi for every i ∈ [k]. We
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also add a vertex vk+1 and the edge set {civk+1 : 1 ≤ i ≤ `}∪{c∗vk+1}. Finally, we
add a new vertex v0, which is adjacent to every vertex in V (G)\{v1, v2, . . . , vk+1}
(for an illustration of the construction see Figure 5). The order of G is obviously
3k + ` + 3 and this construction can be done in polynomial time. Note that
G ∈ G1(F ), where F is a star with center v0 and leaves v1, . . . , vk+1. Thus, we
have γ2(G) = k + 2, by Lemma 7.

Figure 5. An illustration of the construction for 3-SAT reduction. The clauses C1 and
C` corresponding to the vertices c1 and c`, respectively, are C1 = (x1 ∨ ¬x3 ∨ ¬xk) and
C` = (x1 ∨ ¬x2 ∨ xk).

We now prove that C is satisfiable if and only if γ(G) < γ2(G). First, consider
a truth assignment ϕ : xi → {t, f} which satisfies C. Let D1 =

⋃
i∈[k]{xti : ϕ(xi) =

t} and let D2 =
⋃

i∈[k]{x
f
i : ϕ(xi) = f}. Consider the set D′ = D1 ∪D2 ∪{c∗}. It

can be readily checked that D′ is a dominating set of cardinality k + 1. Hence,
γ(G) < γ2(G) follows.

Conversely, assume that γ(G) < γ2(G) and consider a minimum dominating
set D′ of cardinality at most k+1. In order to dominate vi, the set D′ contains at
least one vertex from the set {xti, x

f
i , vi}, for each i ∈ [k]. Similarly, to dominate

vk+1, the set D′ contains at least one vertex from the set {c1, c2, . . . , c`, c∗, vk+1}.
Since |D′| ≤ k + 1, we have |D′ ∩ {xti, x

f
i , vi}| = 1 for every i ∈ [k]. Moreover,

|D′ ∩ {c1, c2, . . . , c`, c∗, vk+1}| = 1 and v0 /∈ D′.
Suppose that vk+1 ∈ D′. In order to dominate the vertices xti and xfi , the

set D′ contains the vertex vi for all i ∈ [k]. Hence, NG(v0) ∩D′ = ∅. From the
discussion above, we know that v0 /∈ D′. Thus, v0 is not dominated by a vertex
from D′, a contradiction.

Suppose that cj ∈ D′ for some j ∈ [`]. Let Cj be the corresponding clause
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containing the variables xi1 , xi2 , xi3 . Consider any variable xs ∈ X\{xi1 , xi2 , xi3}.
Since |D′ ∩ {xti, x

f
i , vi}| = 1 for each i ∈ [k], D′ contains vs in order to dominate

both of the vertices xts and xfs . By our assumption, there exists a clause Cq

not containing the variables xi1 , xi2 , xi3 neither in positive nor in negative form.
Thus, cq is not dominated by a vertex from D′, a contradiction.

Since |D′∩{c1, c2, . . . , c`, c∗}| = 1, the only remaining case is c∗ ∈ D′. Under
this assumption, every vertex ci must be dominated by the vertices corresponding
to the literals in Ci. Thus, the truth assignment

ϕ(xi) =

{
t, if xti ∈ D′,
f, if xfi ∈ D′ or if vi ∈ D′

satisfies C. This finishes the proof.

Theorem 4 implies that it is coNP-complete to decide whether the equality
γ(G) = γ2(G) holds for a general instance G from G1. On the other hand,
we cannot prove that the problem belongs to NP. Instead, we will consider the
complexity class Θp

2, which consists of those problems solvable by a polynomial-
time deterministic algorithm using NP-oracle asked for only O(log n) times. (For
a detailed introduction, please, see [27].)

Proposition 8. The complexity of deciding whether γ(G) = γ2(G) holds for a
general instance G is in the class Θp

2.

Proof. Using binary search, the parameters γ(G) and γ2(G) can be determined
by asking the NP-oracle O(log n) times whether the inequalities γ(G) ≤ k and
γ2(G) ≤ k hold. Thus, the decision problem belongs to Θp

2.

Note that in [3], a similar statement was proved for the problem of deciding
whether the transversal number τ(H) equals the domination number γ(H) for a
general instance hypergraph H.

4. Characterization of (γ, γ2)-Perfect Graphs

Recently, Alvarado, Dantas, Rautenbach [1, 2] and Henning, Jäger, Rauten-
bach [25] studied graphs for which the equality between two fixed domination-
type invariants hereditarily holds. The analogous problem for transversal and
domination numbers of graphs and hypergraphs was considered in [3].

In this section, we characterize (γ, γ2)-perfect graphs, that is, we characterize
the graphs for which the equality between the domination and the 2-domination
numbers hereditarily holds. By Lemma 1, δ(G) ≥ 2 is a necessary condition for
γ(G) = γ2(G). Hence, we define (γ, γ2)-perfect graphs as follows.
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Definition 5. Let G be a graph with δ(G) ≥ 2. Then G is a (γ, γ2)-perfect graph
if the equality γ(H) = γ2(H) holds for every induced subgraph H of minimum
degree at least two.

Note that a disconnected graph G is (γ, γ2)-perfect if and only if all of its
components are (γ, γ2)-perfect.

In order to formulate the results of this section we will define the following
class.

Definition 6. Let Sk be the star with center vertex v and end vertices {v1, v2, . . . ,
vk} such that k ≥ 1. Denote the edge vvj ∈ E(Sk) by ej for j ∈ [k]. Let
S(i1, i2, . . . , ik) be the graph obtained by substituting each edge ej of Sk by ij

parallel edges e1j , e
2
j , . . . , e

ij
j , where ij ≥ 2, and then subdividing each edge erj by

adding the vertex xrj for all r ∈ [ij ] and all j ∈ [k] (see Figure 6). A graph G
belongs to the class S if it is isomorphic to S(i1, i2, . . . , ik) for some k ≥ 1, where
ij ≥ 2 for all j ∈ [k].

Figure 6. An illustration for the graph S(3, 3, 4).

We clearly have S ⊆ G1, since any S(i1, i2, . . . , ik) ∈ G1(F ), where F ∼= Sk.
On the other hand, if G′ ∈ G(Sk), the underlying graph does not contain a clique
of order larger than two and consequently, |N(y)∩D| = 2 for every supplementary
vertex y. This implies that G′ ∈ G1(Sk). By the definitions above, we have the
following equivalence.

Proposition 9. For any graph, G ∈ S holds if and only if G ∈ G1(Sk) (or,
equivalently, G ∈ G(Sk)) for a non-trivial star Sk and G does not contain a
supplementary edge.

The main result of this section is a characterization theorem for (γ, γ2)-perfect
graphs.
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Theorem 5. G is a connected (γ, γ2)-perfect graph if and only if G ∈ S.

Proof. We first prove that if G ∈ S, then it is (γ, γ2)-perfect graph. By Propo-
sition 9, we know that G ∈ G1(F ), where F ∼= Sk for k ≥ 1. Then, by Lemma 7,
γ2(G) = |V (F )| = k + 1. Since a minimal 2-dominating set is a dominating set,
we have the inequality γ(G) ≤ k + 1. In order to prove that γ(G) = γ2(G), it is
enough to show that γ(G) > k. Suppose to the contrary that D′ is a minimum
dominating set of G such that |D′| ≤ k.

Consider the vertices of G corresponding to the end vertices of the star Sk.
Let {v1, v2, . . . , vk} = V (F ) \ {v} ⊆ V (G), where v is the center of F ∼= Sk.
Since D′ is a dominating set, |NG[vj ] ∩ D′| ≥ 1 for each j ∈ [k]. Note that the
closed neighborhoods of any two vertices from the set {v1, v2, . . . , vk} are disjoint.
Since |D′| ≤ k by our assumption, we have v /∈ D′ and |NG[vj ] ∩ D′| = 1, for
every j ∈ [k]. Moreover, as the center v must also be dominated, there exists
some j ∈ [k] and r ∈ [ij ] such that xrj ∈ D′. Then, vj /∈ D′ and the vertices in
(Xj∪Yj)\{xrj} are not dominated by D′, which is a contradiction. Consequently,
k vertices are not enough to dominate all the vertices of G, that is, γ(G) ≥ k+ 1.
It follows that γ(G) = γ2(G) for any G ∈ S.

Next, suppose that H is an induced subgraph of G with minimum degree at
least two. If H does not contain any subdivision vertices, we have δ(H) = 0,
a contradiction. Thus, H contains a subdivision vertex. Let xqp ∈ V (H) for
some p ∈ [k] and q ∈ [ip]. Since degG(xqp) = 2, then both of the neighbors of
xqp must be in V (H), i.e., NG(xqp) = {v, vp} ⊆ V (H). Since δ(H) ≥ 2 by the
assumption, using an argument similar to the above, we have degH(vp) ≥ 2.
Thus, |(Xp∪Yp)\{xqp})∩V (H)| ≥ 1. Consequently, H ∈ S and, as it was proved
above, γ(H) = γ2(H) holds for every induced subgraph of G with minimum
degree at least two.

To prove the converse, assume that G is a connected (γ, γ2)-perfect graph.
Note that γ(Cn) =

⌈
n
3

⌉
and γ2(Cn) =

⌈
n
2

⌉
, where n ≥ 3. Thus, the (γ, γ2)-perfect

graph G does not contain an induced cycle Cn, where n = 3 or n ≥ 5.

Figure 7. The graphs H1, H2 and H3.

Now, suppose that G has a non-induced subgraph isomorphic to Cr, for some
r ≥ 5. Since all of its induced cycles are 4-cycles, G contains at least one of the
three graphs H1, H2 and H3, shown in Figure 7, as an induced subgraph. Observe
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that γ(Hi) < γ2(Hi) for all i ∈ {1, 2, 3}. This contradicts our assumption that G
is a (γ, γ2)-perfect graph. Thus, G does not contain a cycle Cr, where r 6= 4.

Since G is (γ, γ2)-perfect by the assumption, then the equality γ(G) = γ2(G)
holds. By Proposition 6, we know that G ∈ G. Thus, if D is a minimum 2-
dominating set of G, then D is independent and F = G2[D] is the underlying
graph of G.

First, note that F does not contain a cycle Cr for r ≥ 3. Otherwise, G would
contain a subgraph isomorphic to C2r, which is a contradiction. Thus, F is a forest
and G ∈ G1(F ). Then suppose that F is not connected. Since G is connected,
there is a supplementary edge e = uv, where u and v are two subdivision vertices
of G such that N(u) ∩ V (F ) and N(v) ∩ V (F ) are in different components of
F . By the definition of the graph class G1, there are two vertices u′ and v′ such
that NG(u) ∩ V (F ) = NG(u′) ∩ V (F ) and NG(v) ∩ V (F ) = NG(v′) ∩ V (F ).
Let {x1, x2} = NG(u) ∩ V (F ) and {x3, x4} = NG(v) ∩ V (F ), where the sets
{x1, x2} and {x3, x4} are contained by different components of F . Consider the
set A = {x1, x2, x3, x4, u, v, u′, v′} and the induced subgraph G[A]. It is easy to
check that δ(G[A]) ≥ 2, γ(G[A]) ≤ 3 and γ2(G[A]) = 4, which is a contradiction.
Thus, F is a tree.

Suppose that G has a supplementary edge e = uv ∈ E(G), where u, v ∈
V (G) \ V (F ). Let NG(u)∩ V (F ) = {x1, x2} and NG(v)∩ V (F ) = {x3, x4}. Note
that |{x1, x2} ∩ {x3, x4}| ≤ 1, otherwise G would contain a subgraph isomorphic
to C3. By Lemma 4, there exist two further vertices u′ and v′ satisfying NG(u′)∩
V (F ) = {x1, x2} and NG(v′)∩V (F ) = {x3, x4}. If |{x1, x2}∩ {x3, x4}| = 1, then
without loss of generality, assume that x2 = x3. Then, there is a subgraph of G
isomorphic to C3 induced by the vertices u, v and x2, a contradiction. If {x1, x2}∩
{x3, x4} = ∅, then let S = {x1, x2, x3, x4, u, v, u′, v′}. A similar argument applied
to the subgraph of G induced by the vertex set S yields the inequality γ(G[S]) ≤
3 < γ2(G[S]) = 4. Thus, G does not have any supplementary edges.

Figure 8. The graph H4.

Suppose that F contains a subgraph isomorphic to P4. Since G does not have
a supplementary edge, it contains an induced subgraph isomorphic to H4 given in
Figure 8. Note that δ(H4) ≥ 2 and 3 = γ(H4) < γ2(H4) = 4, which contradicts
the assumption that G is (γ, γ2)-perfect. Thus, F is a star, G ∈ G1(F ), and G does
not contain supplementary edges. This finishes the proof by Proposition 9.

The graph obtained from an edge by attaching two pendant edges to both of
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its ends will be called T6 (for illustration see Figure 9).

Figure 9. The graph T6.

Proposition 10. G ∈ S if and only if G is a connected graph with δ(G) ≥ 2 and
it contains no subgraph isomorphic to any of T6, P8, or Ck where k 6= 4.

Proof. If G ∈ S, then it is easy to see that G is a connected graph with δ(G) ≥ 2
and it does not contain a subgraph isomorphic to T6, P8, or Ck where k 6= 4.

Now, assume that G is a connected graph of minimum degree at least two
which does not contain a subgraph isomorphic to T6, P8, or Ck where k 6= 4. Note
that G is bipartite. We further have min{degG(u),degG(v)} = 2 for each edge
uv ∈ E(G), since δ(G) ≥ 2 and G does not contain a subgraph isomorphic to T6
or C3.

First, suppose that G contains an edge e = uv ∈ E(G), which is a bridge.
Then G−e has two components, say G1 and G2. Since δ(G) ≥ 2, both G1 and G2

are non-trivial graphs and may contain at most one vertex, namely either u or v,
which is of degree 1. Thus, both of the components contain a cycle. These cycles
must be vertex-disjoint 4-cycles with a path between them. Hence, G contains a
subgraph isomorphic to P8 and this contradicts our assumption.

Since G does not contain a bridge, every edge of G lies on a 4-cycle. If
all the vertices of G have degree two, then G is isomorphic to C4 and G ∈ S.
If G is not isomorphic to C4, then every 4-cycle contains a vertex of degree at
least three. For a vertex v of degree two, we define the function f(v) to denote
the vertex opposite to v in a 4-cycle. Let A = {v ∈ V (G) : deg(v) ≥ 3 or
deg(f(v)) ≥ 3}. Consider two vertices u, v ∈ A. If uv ∈ E(G), then uv belongs
to a 4-cycle, say uvv′u′. At least one of u and v is of degree two, without loss of
generality, say deg(u) = 2. Thus, u belongs only to this 4-cycle. Since f(u) = v′,
by the definition of A, deg(v′) ≥ 3. If deg(v) ≥ 3, then vv′ ∈ E(G), we have a
contradiction. If deg(v) = 2, then v ∈ A and v belongs only to the 4-cycle uvv′u′.
Thus, f(v) = u′, deg(u′) ≥ 3 and u′v′ ∈ E(G), which is a contradiction. Hence,
A is independent. Consider two vertices u, v ∈ V (G) \ A. If uv ∈ E(G), then at
least one of f(u) or f(v) is of degree at least three. Then, by the definition of the
function f , we have u ∈ A or v ∈ A, which is a contradiction. Hence, V (G) \ A
is independent.

Consequently, (A, V (G)\A) is a bipartition of V (G). Note that every 4-cycle
has exactly two vertices in A. Hence, GA ∈ G1(F ) where F ∼= G2[A], and there
are no supplementary edges. Since G does not have a subgraph isomorphic to Cn
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for n ≥ 6, the underlying graph is a tree. If F contains a subgraph isomorphic
to P4, then G contains a subgraph isomorphic to P8, which is a contradiction.
Thus, F is a star, and Proposition 9 implies that G ∈ S.

Thus, Proposition 10 allows us to state Theorem 5 in a different form as
follows.

Theorem 6. Let G be a connected graph with δ(G) ≥ 2. Then G is a (γ, γ2)-
perfect graph if and only if G contains no subgraph isomorphic to any of T6, P8,
or Ck where k 6= 4.

Note that for any G ∈ S, the center of the underlying star can be chosen as
a vertex v of degree ∆(G) and then, the subdivision vertices are exactly those
contained in NG(v). Therefore, the characterization given in Theorem 5 directly
yields a polynomial-time algorithm which recognizes (γ, γ2)-perfect graphs.

5. Concluding Remarks and Open Problems

In Section 1, we defined the graph class G which contains all (γ, γ2)-graphs. Then,
in Section 2, we gave a characterization for (γ, γ2)-graphs over a specified subclass
H of G. In the definition of H and in the proof of the main theorem, we referred
to the properties of the underlying graph. We noted there that the underlying
graph is not always unique when a graph G from G is given. In Figure 10, we
show a (γ, γ2)-graph having two non-isomorphic underlying graphs. Analogously,
one can construct infinitely many graphs with the same property.

In the definition of the class H, we forbid 3-cycles and 4-cycles in the underly-
ing graph. The characterization given in Theorem 2 does not hold if 3-cycles are
not forbidden in the underlying graph. This is shown by the graph A∗4 ∈ G2(F )
(see Figure 11), where the underlying graph F is a star supplemented by an
edge. One can readily check that even if A∗4 contains an induced AW

4 subgraph,
it remains a (γ, γ2)-graph as γ(A∗4) = γ2(A

∗
4) = 5. Similarly, it is possible to con-

struct graphs whose underlying graphs are C3-free but not C4-free such that the
statement of Theorem 2 does not remain valid for them. Therefore, the following
problems are still open.

Problem 1. Characterize (γ, γ2)-graphs over the following graph classes.

1. Over the subclass of G2 where the underlying graph does not contain any C4

subgraphs.

2. Over the subclass of G2 where the underlying graph is C3-free.

3. Over G2.
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Figure 10. G∗ is a graph with γ(G∗) = γ2(G∗) = 6, which has two non-isomorphic
underlying graphs and G∗ ∈ H(F1) ∩H(F2).

Figure 11. The graph A∗4.
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