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Abstract

Let G be a graph and C a finite set of colours. A vertex colouring
f : V (G) → C is complete if for any pair of distinct colours c1, c2 ∈ C one can
find an edge {v1, v2} ∈ E(G) such that f(vi) = ci, i = 1, 2. The achromatic
number of G is defined to be the maximum number achr(G) of colours in
a proper complete vertex colouring of G. In the paper achr(K6�Kq) is
determined for any integer q such that either 8 ≤ q ≤ 40 or q ≥ 42 is even.
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1. Introduction

Let G be a finite simple graph and C a finite set of colours. A vertex colouring
f : V (G) → C is complete provided that for any pair {c1, c2} ∈

(

C
2

)

(of distinct
colours of C) there exists an edge {v1, v2} (usually shortened to v1v2) of G such
that f(vi) = ci, i = 1, 2. The achromatic number of G, in symbols achr(G), is the
maximum cardinality of the colour set in a proper complete vertex colouring of
G. The achromatic number was introduced in Harary, Hedetniemi, and Prins [3],
where among other things the following interpolation result was proved.

Theorem 1. If G is a graph, and an integer k satisfies χ(G) ≤ k ≤ achr(G),
there exists a proper complete vertex colouring of G using k colours.

In the present paper the achromatic number of K6�Kq, the Cartesian prod-
uct of K6 and Kq (the notation following Imrich and Klavžar [8] is adopted), is
determined for all q satisfying either 8 ≤ q ≤ 40 or q ≥ 42 and q ≡ 0(mod 2).
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This is the third in a series of three papers, in which the problem of finding
achr(K6�Kq) is completely solved. Some historical remarks concerning the achro-
matic number, a motivation of the problem and basic facts on proper complete
colourings of Cartesian products of two complete graphs are available in the pa-
per Horňák [4], where achr(K6�Kq) has been determined for odd q ≥ 41. Maybe
a bit surprisingly, proving that achr(K6�K7) = 18 has required quite a long
analysis contained in the paper Horňák [5].

For m,n ∈ Z we work with integer intervals defined by

[m,n] = {z ∈ Z : m ≤ z ≤ n}, [m,∞) = {z ∈ Z : m ≤ z}.

If p, q ∈ [1,∞) and V (Kr) = [1, r], r = p, q, then V (Kp�Kq) = [1, p]× [1, q], and
E(Kp�Kq) consists of edges (i1, j1)(i2, j2), where i1, i2 ∈ [1, p] and j1, j2 ∈ [1, q]
satisfy either i1 = i2 and j1 6= j2 or i1 6= i2 and j1 = j2.

Let M(p, q, C) denote the set of p× q matrices M with entries from C such
that all lines (rows and columns) of M have pairwise distinct entries, and any pair
{α, β} ∈

(

C
2

)

is good in M , which means that there is a line of M containing both
α and β; the pair {α, β} is either row-based or column-based (in M) depending
on whether the involved line is a row or a column. In other words, the number
of lines witnessing the fact that the pair {α, β} is good, is positive, and it may
happen that the pair {α, β} is simultaneously row-based and column-based as
well. For a matrix M we denote by (M)i,j the entry of M appearing in the ith
row and the jth column.

Proposition 2 [4]. If p, q ∈ [1,∞) and C is a finite set, then the following

statements are equivalent.

(1) There is a proper complete vertex colouring of Kp�Kq using as colours ele-

ments of C.

(2) M(p, q, C) 6= ∅.

The implication (2) ⇒ (1) of Proposition 2 is based on a straightforward
observation that if M ∈ M(p, q, C), then the vertex colouring fM of Kp�Kq

defined by fM (i, j) = (M)i,j is proper and complete as well.

Proposition 3 [4]. If p, q ∈ [1,∞), C,D are finite sets, M ∈ M(p, q, C), map-

pings ρ : [1, p] → [1, p], σ : [1, q] → [1, q], π : C → D are bijections, and Mρ,σ, Mπ

are p × q matrices defined by (Mρ,σ)i,j = (M)ρ(i),σ(j) and (Mπ)i,j = π((M)i,j),
then Mρ,σ ∈ M(p, q, C) and Mπ ∈ M(p, q,D).

Let M ∈ M(p, q, C). The frequency of a colour γ ∈ C is the number frq(γ)
of times γ appears in M , while frq(M), the frequency of M , is the minimum
of frequencies of colours in C. A colour of frequency l is an l-colour, Cl is the
set of l-colours and cl = |Cl|. Cl+ is the set of colours of frequency at least
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l and cl+ = |Cl+|. For the (complete) colouring fM mentioned above denote
Vγ = f−1

M (γ) ⊆ [1, p] × [1, q], and let N(Vγ) be the neighbourhood of Vγ (the
union of neighborhoods of vertices in Vγ). The excess of γ is defined to be the
maximum number exc(γ) of vertices in a set S ⊆ N(Vγ) such that the restriction
of fM formed by uncolouring the vertices of S is still complete with respect to
pairs of colours containing γ. The excess ofM is the minimum exc(M) of excesses
of colours in C.

We denote by R(i) the set of colours in the ith row of M and by C(j) the set
of colours in the jth column of M . Further, let

Rl(i) = Cl ∩ R(i), rl(i) = |Rl(i)|,

Cl(j) = Cl ∩ C(j), cl(j) = |Cl(j)|,

so that Rl(i) and Cl(j) is the set of l-colours appearing in the row i and those
appearing in the column j, respectively. For i, j, k ∈ [1, p] let

R(i, j) = C2 ∩ R(i) ∩ R(j), r(i, j) = |R(i, j)|,

R(i, j, k) = C3 ∩ R(i) ∩ R(j) ∩ R(k), r(i, j, k) = |R(i, j, k)|,

and for m,n ∈ [1, q] let

C(m,n) = C2 ∩ C(m) ∩ C(n), c(m,n) = |C(m,n)|.

Thus R(i, j) and C(m,n) are respectively the sets of colours which appear exactly
in rows i and j or columns m and n, while R(i, j, k) is the set of colours which
appear exactly in the rows i, j and k. For γ ∈ C define

R(γ) = {i ∈ [1, p] : γ ∈ R(i)}

as the set of numbers of rows containing the colour γ. To avoid a possible confu-
sion coming from the double usage of R(·) in R(γ) and R(i) note that whenever
R(·) is used with a Greek alphabet letter argument, then the argument points to
a colour in C, and not to a row of the matrix M .

If S ⊆ [1, p] × [1, q], we say that a colour γ ∈ C occupies a position in S
(appears in S or simply is in S) if there exists (i, j) ∈ S with (M)i,j = γ. For a
nonempty set of colours A ⊆ C, the set of columns covered by A is

Cov(A) = {j ∈ [1, q] : C(j) ∩A 6= ∅},

i.e., the set of (numbers of) columns containing a colour of A. We put cov(A) =
|Cov(A)|, and for A = {α}, {α, β}, {α, β, γ} we use a simplified notation Cov(α),
Cov(α, β), Cov(α, β, γ) and cov(α), cov(α, β), cov(α, β, γ) instead of Cov(A) and
cov(A).
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2. Matrix Constructions

Proposition 4. achr(K6�K4) ≥ 12, achr(K6�K6) ≥ 18 and achr(K6�K8)
≥ 21.

Proof. Let Mq be the 6× q matrix below, q = 4, 6, 8, where n̄ stands for 10 + n
and ¯̄n for 20 + n.

















1 2 3 4
5 6 7 8
9 0̄ 1̄ 2̄
2 1 4 3
7 8 5 6
2̄ 1̄ 0̄ 9

































1 2 3 4 5 6
7 8 9 0̄ 1̄ 2̄
3̄ 4̄ 5̄ 6̄ 7̄ 8̄
2 1 7̄ 2̄ 5̄ 0̄
1̄ 8̄ 4 3 7 4̄
6̄ 9 8 3̄ 6 5

































1 2 3 4 5 6̄ 7̄ 8̄
6 7 8 9 0̄ 8̄ 6̄ 7̄
1̄ 2̄ 3̄ 4̄ 5̄ 7̄ 8̄ 6̄

4 8 7 1 9̄ 5̄ ¯̄0 ¯̄1

3̄ 5 1̄ ¯̄1 2 9 9̄ ¯̄0

0̄ 4̄ ¯̄0 2̄ 6 3 ¯̄1 9̄

















One can check easily that M4 ∈ M(6, 4, [1, 12]), M6 ∈ M(6, 6, [1, 18]) and M8 ∈
M(6, 8, [1, 21]). Therefore, we are done by Proposition 2.

For r ∈ [3, 9] consider r-element colour sets

Vr = {vr(k) : k ∈ [1, r]}, Wr = {wr(k) : k ∈ [1, r]}

such that Vr, Wr and [1, 18] are pairwise disjoint. Further, let Nr be the 6 × r
matrix below.

















v3(1) v3(2) v3(3)
v3(2) v3(3) v3(1)
v3(3) v3(1) v3(2)
w3(1) w3(2) w3(3)
w3(2) w3(3) w3(1)
w3(3) w3(1) w3(2)

































v6(1) v6(2) v6(3) v6(4) v6(5) v6(6)
v6(2) v6(3) v6(4) v6(5) v6(6) v6(1)
v6(3) v6(4) v6(5) v6(6) v6(1) v6(2)
w6(1) w6(2) w6(3) w6(4) w6(5) w6(6)
w6(3) w6(4) w6(5) w6(6) w6(1) w6(2)
w6(5) w6(6) w6(1) w6(2) w6(3) w6(4)

































v4(1) v4(2) v4(3) v4(4)
v4(2) v4(3) v4(4) v4(1)
v4(3) v4(4) v4(1) v4(2)
w4(1) w4(2) w4(3) w4(4)
w4(2) w4(3) w4(4) w4(1)
w4(3) w4(4) w4(1) w4(2)

































v5(1) v5(2) v5(3) v5(4) v5(5)
v5(2) v5(3) v5(4) v5(5) v5(1)
v5(3) v5(4) v5(5) v5(1) v5(2)
w5(1) w5(2) w5(3) w5(4) w5(5)
w5(3) w5(4) w5(5) w5(1) w5(2)
w5(5) w5(1) w5(2) w5(3) w5(4)

































v7(1) v7(2) v7(3) v7(4) v7(5) v7(6) v7(7)
v7(2) v7(3) v7(4) v7(5) v7(6) v7(7) v7(1)
v7(3) v7(4) v7(5) v7(6) v7(7) v7(1) v7(2)
w7(1) w7(2) w7(3) w7(4) w7(5) w7(6) w7(7)
w7(3) w7(4) w7(5) w7(6) w7(7) w7(1) w7(2)
w7(5) w7(6) w7(7) w7(1) w7(2) w7(3) w7(4)
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v8(1) v8(2) v8(3) v8(4) v8(5) v8(6) v8(7) v8(8)
v8(2) v8(3) v8(4) v8(5) v8(6) v8(7) v8(8) v8(1)
v8(3) v8(4) v8(5) v8(6) v8(7) v8(8) v8(1) v8(2)
w8(1) w8(2) w8(3) w8(4) w8(5) w8(6) w8(7) w8(8)
w8(4) w8(5) w8(6) w8(7) w8(8) w8(1) w8(2) w8(3)
w8(7) w8(8) w8(1) w8(2) w8(3) w8(4) w8(5) w8(6)

































v9(1) v9(2) v9(3) v9(4) v9(5) v9(6) v9(7) v9(8) v9(9)
v9(2) v9(3) v9(4) v9(5) v9(6) v9(7) v9(8) v9(9) v9(1)
v9(3) v9(4) v9(5) v9(6) v9(7) v9(8) v9(9) v9(1) v9(2)
w9(1) w9(2) w9(3) w9(4) w9(5) w9(6) w9(7) w9(8) w9(9)
w9(4) w9(5) w9(6) w9(7) w9(8) w9(9) w9(1) w9(2) w9(3)
w9(7) w9(8) w9(9) w9(1) w9(2) w9(3) w9(4) w9(5) w9(6)

















Lemma 5. If r ∈ [3, 9], then Nr ∈ M(6, r, Vr ∪Wr).

Proof. By inspection of the matrix Nr.

Proposition 6. If q ∈ [9, 15], then achr(K6�Kq) ≥ 2q + 6.

Proof. The block matrix Mq = (M6Nq−6) belongs to M(6, q, C) with C =
[1, 18] ∪ Vq−6 ∪ Wq−6. To see it first realise that since the colourings fM6

and
fNq−6

are proper (Proposition 4, Lemma 5), and [1, 18] ∩ (Vq−6 ∪Wq−6) = ∅, the
colouring fMq

is proper, too.

Next, we have to show that each pair {α, β} ∈
(

C
2

)

is good in Mq. The
colourings fM6

and fNq−6
are complete, hence it suffices to restrict our attention

to α ∈ [1, 18] and β ∈ Vq−6∪Wq−6. In such a case |R(α)∩[1, 3]| = 1 = |R(α)∩[4, 6]|
and R(β) ∈ {[1, 3], [4, 6]} so that R(α) ∩ R(β) 6= ∅, and the pair {α, β} is row-
based.

So, Proposition 2 yields achr(K6�Kq) ≥ |C| = 18 + 2(q − 6) = 2q + 6.

For l = 0, 1, 2, 3, let rl ∈ [3, 9], and let N l
rl

be the 6 × rl matrix obtained

from Nrl in such a way that vrl(k) is replaced with vlrl(k) and wrl(k) is replaced

with wl
rl
(k) for each k ∈ [1, rl]; here we suppose that, given a fixed quadruple

(r0, r1, r2, r3), the sets [1, 12] and

V l
rl
=

{

vlrl(k) : k ∈ [1, rl]
}

, W l
rl
=

{

wl
rl
(k) : k ∈ [1, rl]

}

, l = 0, 1, 2, 3,

are pairwise disjoint. Further, let Ñ l
rl
be the 6× rl matrix obtained from N l

rl
by

interchanging its rows l and l + 3, l = 1, 2, 3.

Proposition 7. If q ∈ [16, 40], then achr(K6�Kq) ≥ 2q + 4.
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Proof. Since 4 · 3 = 12 ≤ q − 4 ≤ 36 = 4 · 9, there are integers rl ∈ [3, 9],
l = 0, 1, 2, 3, such that

∑3
l=0 rl = q− 4. Let us show that the block matrix Mq =

(M4N
0
r0
Ñ1

r1
Ñ2

r2
Ñ3

r3
) belongs to M(6, q, C) with C = [1, 12] ∪

⋃3
l=0(V

l
rl
∪W l

rl
).

By Lemma 5 and Proposition 3 we have Nrl ∈ M(6, rl, Vrl ∪Wrl) and N l
rl
∈

M(6, rl, V
l
rl
∪W l

rl
), l = 0, 1, 2, 3, as well as Ñ l

rl
∈ M(6, rl, V

l
rl
∪W l

rl
), l = 1, 2, 3.

The colouring fM with M ∈ {M4, N
0
r0
Ñ1

r1
Ñ2

r2
Ñ3

r3
} is proper, and the sets [1, 12],

V l
rl
∪W l

rl
, l = 0, 1, 2, 3, are pairwise disjoint, hence the colouring fMq

is proper.

Now consider a pair {α, β} ∈
(

C
2

)

. If both α, β are either in [1, 12] or in V l
rl
∪

W l
rl
with l ∈ [0, 3], then the pair {α, β} is good in Mq, because the colourings fM4

and fM withM ∈ {N0
r0
, Ñ1

r1
, Ñ2

r2
, Ñ3

r3
} are complete (Propositions 3, 4, Lemma 5).

In all remaining cases we show that R(α) ∩ R(β) 6= ∅, which means that the
pair {α, β} is row-based.

If α ∈ [1, 12] and β ∈
⋃3

l=0(V
l
rl
∪W l

rl
), then R(α) ∈ {{1, 4}, {2, 5}, {3, 6}} and

R(β) ∈ {{1, 2, 3}, {1, 2, 6}, {1, 3, 5}, {1, 5, 6}, {2, 3, 4}, {2, 4, 6}, {3, 4, 5}, {4, 5, 6}}
so that R(α) ∩ R(β) 6= ∅ follows immediately.

If α ∈ V 0
r0

and β ∈
⋃3

l=1 V
l
rl
, then R(α) ∩ R(β) = [1, 3] \ {l}; similarly, with

α ∈ W 0
r0

and β ∈
⋃3

l=1W
l
rl
we have R(α) ∩ R(β) = [4, 6] \ {l}.

If {i, j, k} = [1, 3], α ∈ V i
ri

and β ∈ V j
rj , then R(α) ∩ R(β) = {k}; the same

conclusion holds provided that {i, j, k} = [4, 6], α ∈ W i
ri

and β ∈ W j
rj .

If there is l ∈ [1, 3] such that either α ∈ V 0
r0

and β ∈ W l
rl

or α ∈ W 0
r0

and

β ∈ V l
rl
, then R(α) ∩ R(β) = {l}.

Finally, α ∈ V i
ri

with i ∈ [1, 3] and β ∈ W j
rj with j ∈ [1, 3] \ {i} leads to

R(α) ∩ R(β) = {i+ 3}.
Thus the colouring fMq

is complete and Mq ∈ M(6, q, C). Since |C| =

12 +
∑3

l=0 2rl = 2q + 4, by Proposition 2 we get achr(K6�Kq) ≥ 2q + 4.

For a given s ∈ [2,∞) consider colour sets Us = {uk : k ∈ [1, s]} with
U ∈ {X,Y, Z, T} such that the sets [1, 12], Xs, Ys, Zs and Ts are pairwise disjoint.

Proposition 8. If q ∈ [42,∞) and q ≡ 0 (mod 2), then achr(K6�Kq) ≥ 2q+ 4.

Proof. Let s = q−4
2 , and let Mq be the 6 × q matrix below. We show that

Mq ∈ M(6, q, C) for C = [1, 12]∪Xs ∪ Ys ∪Zs ∪ Ts. Obviously, since s ≥ 19 ≥ 2,
the colouring fMq

is proper.

















1 2 3 4 x1 x2 · · · xs−1 xs y1 y2 · · · ys−1 ys
5 6 7 8 xs x1 · · · xs−2 xs−1 z1 z2 · · · zs−1 zs
9 10 11 12 t1 t2 · · · ts−1 ts x1 x2 · · · xs−1 xs
2 1 4 3 z1 z2 · · · zs−1 zs t1 t2 · · · ts−1 ts
7 8 5 6 ts t1 · · · ts−2 ts−1 ys y1 · · · ys−2 ys−1

12 11 10 9 y1 y2 · · · ys−1 ys zs z1 · · · zs−2 zs−1
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Notice that Mq has a submatrix M4 (formed by the first four columns of Mq).
The colouring fM4

is complete (Proposition 4), hence a pair {α, β} ∈
(

C
2

)

is good
inMq provided that α, β ∈ [1, 12]. So, it remains to consider pairs {α, β} with α ∈
C and β ∈ Xs∪Ys∪Zs∪Ts. Realise that R(α) ∈ R1∪R2 and R(β) ∈ R2, where
R1 = {{1, 4}, {2, 5}, {3, 6}} and R2 = {{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5}}. As
R ∩R2 6= ∅ for any R ∈ R1 ∪R2 and any R2 ∈ R2, the pair {α, β} is row-based.

Thus, by Proposition 2 we see that achr(K6�Kq) ≥ 4s+ 12 = 2q + 4.

3. Some Basic Facts Concerning Matrices in M(p, q, C)

In this section we first reproduce those facts from [4] that are necessary for our
paper.

Lemma 9 [4]. If p, q ∈ [1,∞), C is a finite set, M ∈ M(p, q, C) and γ ∈ C,

then the following hold.

1. frq(γ) ≤ min(p, q).

2. frq(γ) = l implies exc(γ) = l(p+ q − l − 1)− (|C| − 1) ≥ 0.

3. frq(M) = l implies |C| ≤
⌊

pq
l

⌋

.

Lemma 10 [4]. If p, q ∈ [1,∞), C is a finite set and M ∈ M(p, q, C), then

exc(M) = exc(γ), where γ ∈ C satisfies frq(γ) = frq(M).

Lemma 11 [4]. If q ∈ [7,∞), s ∈ [0, 7], C is a set of cardinality 2q + s and

M ∈ M(6, q, C), then the following hold.

1. c1 = 0.

2. cl = 0 for l ∈ [7,∞).

3. c2 ≥ 3s.

4. c3+ ≤ 2q − 2s.

5.
∑6

i=3 ici ≤ 6q − 6s.

6. frq(M) = 2.

7. exc(M) = 7− s.

8. c4+ ≤ c2 − 3s.

9. {i, k} ∈
(

[1,6]
2

)

implies r(i, k) ≤ 8− s.

Lemma 12. If q ∈ [7,∞), then achr(K6�Kq) ≤ 2q + 6.

Proof. If our lemma is false, according to Theorem 1 and Proposition 2 there
is a (2q + 7)-element set C and M ∈ M(6, q, C). By Lemma 11.3 and 11.7 then
c2 ≥ 3 · 7 = 21 and exc(M) = 0. Further, by Proposition 3 we may suppose
without loss of generality that r2(1) ≥ r2(i) for i ∈ [2, 6], which implies 6r2(1) ≥
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∑6
i=1 r2(i) = 2c2 and r2(1) ≥

⌈

2c2
6

⌉

≥ 7; we shall use on similar occasions (w)
to indicate that it is Proposition 3, which is behind the fact that the generality

is not lost. As a consequence there is i ∈ [2, 6] such that r(1, i) ≥
⌈

r2(1)
5

⌉

≥ 2.

With γ ∈ R(1, i) then each colour of R(1, i) \ {γ} contributes one to the excess
of γ, hence we have 0 = exc(M) = exc(γ) ≥ r(1, i)− 1 ≥ 1, a contradiction.

4. Solution

It turns out that the matrix constructions given by Propositions 4 and 6–8 are
optimum from the point of view of achr(K6�Kq). The optimality was already
known for q = 4 (Horňák and Puntigán [7]) and q = 6 (Bouchet [1]), while the
rest of the present paper is devoted to the analysis of remaining q’s.

Theorem 13. achr(K6�K8) = 21.

Proof. By Proposition 4 and Lemma 12 we know that 21 ≤ achr(K6�K8) ≤ 22.
Suppose that achr(K6�K8) = 22; because of Proposition 2 there is a 22-element
set of colours C and a matrix M ∈ M(6, 8, C). With q = 8 and s = 6 Lemma 11
yields c2 ≥ 18, c3+ ≤ 4, frq(M) = 2, exc(M) = 1, c4+ ≤ c2 − 18 and r(i, k) ≤ 2
for {i, k} ∈

(

[1,6]
2

)

. We are going to strengthen step by step the requirements on
M to finally reach a conclusion that M cannot exist at all.

Claim 14. If i ∈ [1, 6] and j ∈ [1, 8], then |R2(i) ∩ C(j)| ≤ 2.

Proof. Suppose that |C ′
2| ≥ 3 for C ′

2 = R2(i) ∩ C(j). If α = (M)i,j ∈ C2, then
each colour of C ′

2 \ {α} contributes one to the excess of α so that, by Lemma 10,
1 = exc(M) = exc(α) ≥ |C ′

2 \ {α}| ≥ 2, a contradiction. On the other hand, if
α ∈ C3+, then for any β ∈ C ′

2 we have 1 = exc(M) = exc(β) ≥ |C ′
2 \ {β}| ≥ 2, a

contradiction again.

Claim 15. If {i, k} ∈
(

[1,6]
2

)

and α, β ∈ R2(i, k), α 6= β, then cov(α, β) = 2, so
that {α, β} ⊆ C(j) for both j ∈ Cov(α, β).

Proof. Suppose (w) i = 1, k = 2 and (M)1,1 = (M)2,2 = α. If cov(α, β) = 4,
(w) (M)1,3 = (M)2,4 = β. Denote A = R(1) ∪ R(2). From exc(α) = exc(β) = 1
it is clear that |A| = 14, |C \ A| = 8, and that, for both l ∈ [1, 2], each colour
of C \ A occupies a position in the set [3, 6] × [2l − 1, 2l] (the colouring fM is
complete). Since |(C \A)∩C2| = |C \A|− |(C \A)∩C3+| ≥ 8− c3+ ≥ 4, there is
a colour γ ∈ (C \A)∩C2. The neighbourhood of the 2-element vertex set f−1

M (γ)
contains ten vertices belonging to [3, 6]× [1, 4], all coloured with seven colours of
(C \A) \ {γ}. As a consequence we obtain 1 = exc(M) = exc(γ) ≥ 10− 7 = 3, a
contradiction.
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If cov(α, β) = 3, (w) (M)1,2 = (M)2,3 = β. With B = R(1) ∪ R(2) ∪ C(2)
then exc(α) = 1 implies |B| = 18 and |C \ B| = 4. Each colour γ ∈ C \ B
belongs to C(1)∩C(3) (both pairs {γ, α} and {γ, β} are good in M) and satisfies
exc(γ) ≥ |(C \B) \ {γ}| = 3, hence γ /∈ C2 and γ ∈ C3+. Consequently, c3+ ≥ 4,
c3+ = 4, C\B = C3+, B = C2, δ = (M)1,3 ∈ C2, and the second copy of δ appears
in [3, 6]× [4, 8] so that exc(δ) ≥ 2 (if δ = (M)m,n with (m,n) ∈ [3, 6]× [4, 8], then
both β and (M)m,1 ∈ C3+ contribute to the excess of δ), a contradiction.

If Cov(α, β) = {j, l} for the 2-colours α, β of Claim 15, then (w) α = (M)i,j =
(M)k,l and β = (M)i,l = (M)k,j ; we say that the set of 2-colours {α, β} forms an
X-configuration (in M): both copies of a colour γ ∈ {α, β} are diagonal to each
other in the “rectangle” of the matrix M with corners (i, j), (i, l), (k, j), (k, l), and
this fact will be in the sequel for simplicity denoted by {α, β} → X.

Claim 16. If i ∈ [1, 6], then r2(i) = 6 and r3(i) = 2.

Proof. Let (w) r2(1) ≥ r2(i) for each i ∈ [2, 6] and r(1, i) ≥ r(1, i + 1) for each

i ∈ [2, 5]. Suppose that r2(1) ≥ 7. Then 2 ≥ r(1, 2) ≥
⌈

r2(1)
5

⌉

= 2 so that

r(1, 2) = 2. Moreover, r(1, 6) ≤
⌊

r2(1)
5

⌋

= 1, and there is p ∈ [2, 5] such that

r(1, p) = 2 and r(1, p + 1) ≤ 1 (which implies r(1, i) ≤ 1 for any i ∈ [p + 1, 6]).
As r2(6) = 8− r3+(6) ≥ 8− c3+ ≥ 4, we have |R2(6)\R2(1)| = |R2(6)\R(1, 6)| =
r2(6)−r(1, 6) = [8−r3+(6)]−r(1, 6) ≥ 4−1 = 3, and there exists α ∈ R2(6)\R2(1).

Consider a colour β ∈ R(i, k), where 1 < i < k. When counting the number
of pairs {β, γ} with γ ∈ R2(1), that are good in M because of the copy of β in
the mth row of M , m ∈ {i, k}, we see that r(1,m) of them are row-based, and,
by Claim 14, at most two of them are column-based. There is i ∈ [2, 5] such that
α ∈ R(i, 6). Proceeding as above we obtain that the number of pairs {α, γ} with
γ ∈ R2(1), that are good inM , is at most ρ = [r(1, i)+2]+[r(1, 6)+2] ≤ 6+r(1, 6).
Observe that we cannot have r(1, 6) ≤ r2(1)−7, because then ρ ≤ 6+[r2(1)−7] <
r2(1), a contradiction. Therefore, 1 ≥ r(1, 6) ≥ r2(1) − 6 ≥ 1, r(1, 6) = 1 and
r2(1) = 7. Now p ≤ 3, because p ≥ 4 would mean 7 = r2(1) =

∑6
i=2 r(1, i) ≥

2(p − 1) + (6 − p) = p + 4 ≥ 8, a contradiction. Consequently, any colour
δ ∈ C2 \ R(1) needs a copy in a row k ∈ [2, p]; to see it realise that, under the
assumption δ ∈ R(a, b) with a, b ∈ [p+1, 6], the number of pairs {δ, γ}, γ ∈ R2(1),
that are good in M , is at most [r(1, a)+2]+ [r(1, b)+2] ≤ 2 ·1+4 < r2(1), which
is impossible. Thus 18 ≤ c2 ≤ 7 +

∑p
i=2[r2(i) − r(1, i)] ≤ 7 + (p − 1)(7 − 2) =

5p+ 2 ≤ 17, a contradiction.

Since the assumption r2(1) ≥ 7 was false, we have 36 ≥
∑6

i=1 r2(i) = 2c2 ≥
36. Therefore, r2(i) = 6 for each i ∈ [1, 6], c2 = 18, c4+ = 0, C = C2 ∪ C3, and
the proof follows.
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By Claim 16, c2 = 6·6
2 = 18 and c3 = 6·2

3 = 4; moreover, for every i ∈ [1, 6]
there is (at least one) pi ∈ [1, 6] \ {i} such that r(i, pi) =

⌈

6
5

⌉

= 2. Then, by

Claim 15, R(i, pi) → X for i ∈ [1, 6]. Let C̃2 = {α, β, γ, δ} ⊆ C2 be such that
{α, β} → X and {γ, δ} → X, where {α, β} 6= {γ, δ} (which immediately yields
{α, β} ∩ {γ, δ} = ∅). We have cov(C̃2) ∈ [3, 4], since with cov(C̃2) = 2 each of
β, γ, δ contributes one to the excess of α so that exc(α) ≥ 3, a contradiction.

Thus (w) cov(α, β) = [1, 2] and cov(γ, δ) = [l, l + 1], where l ∈ [2, 3]. Then
C(1) ∪ C(2) ⊆ C2 (because of r3(1) = r3(2) = 2 and exc(α) = 1, colours of
C3 occupy four positions in R(1) ∪ R(2) and neither position in C(1) ∪ C(2)),
and, similarly, C(l) ∪ C(l + 1) ⊆ C2. So, all 3-colours appear exclusively in
7 − l columns of M numbered from l + 2 to 8. There is j ∈ [l + 2, 8] such that

c3(j) ≥
⌈

3c3
7−l

⌉

≥
⌈

12
5

⌉

= 3, while c2(j) ≥ 6−c3 = 2. If ε ∈ C2(j)∩R(m,n), then 3-

colours occupy at least r3(m)+r3(n)+[c3(j)−1] = c3(j)+3 ≥ 6 positions inN(Vε)
(since ε ∈ {(M)m,j , (M)n,j}, at least c3(j)−1 positions in [1, 6]×{j} occupied by
3-colours are positions that are not in {m,n})× [1, 8]), hence exc(ε) ≥ 6−c3 = 2,
a final contradiction for the proof of Theorem 13.

Theorem 17. If q ∈ [9, 15], then achr(K6�Kq) = 2q + 6.

Proof. See Proposition 6 and Lemma 12.

Theorem 18. If either q ∈ [42,∞) and q ≡ 0 (mod 2) or q ∈ [16, 40], then

achr(K6�Kq) = 2q + 4.

Proof. We proceed by the way of contradiction. Since achr(K6�Kq) ≥ 2q + 4
(Propositions 7 and 8), the assumption achr(K6�Kq) ≥ 2q + 5 by Theorem 1
and Proposition 2 means that there is a colour set C with |C| = 2q + 5 = 2q + s
and a matrix M ∈ M(6, q, C). By Lemma 11 then C =

⋃6
l=2Cl, c2 ≥ 15,

c3+ ≤ 2q − 10,
∑6

i=3 ici ≤ 6q − 30, frq(M) = 2 = exc(M), c4+ ≤ c2 − 15, and

{i, k} ∈
(

[1,6]
2

)

implies r(i, k) ≤ 3. A contradiction is reached first for q ≥ 19, then
for q ∈ [17, 18], and finally for q = 16.

Let G be an auxiliary graph G associated with M , in which V (G) = [1, 6]
and {i, k} ∈ E(G) if and only if r(i, k) ≥ 1.

Claim 19. ∆(G) ≤ 3.

Proof. In [4] it has been proved that ∆(G) ≥ 4 together with achr(K6�Kq) =
2q + s implies q ≤ 40− 5s = 15, a contradiction.

In [4] one can find also proofs of the following two claims.

Claim 20. If {i, j, k, l,m, n} = [1, 6] and r(i, j, k) ≥ 1, then r(l,m, n) ≤ 9.

Claim 21. If {i, j, k, l,m, n} = [1, 6], r(i, l) ≥ 1, r(j, l) ≥ 1 and r(k, l) ≥ 1, then
r(l,m, n) ≥ q + 3s− 24 = q − 9.
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Claim 22. If {i, j, k, l,m, n} = [1, 6], r(i, l) ≥ 1, r(j, l) ≥ 1 and r(k, l) ≥ 1,
{a, b} ∈

(

[1,6]
2

)

and r(a, b) ≥ 1, then |{i, j, k} ∩ {a, b}| = 1 = |{l,m, n} ∩ {a, b}|.

Proof. The assumptions of Claim 22 imply that r(l,m, n) ≥ q − 9 ≥ 7 (see
Claim 21). Consider a colour α ∈ R(a, b).

If {a, b} ⊆ {i, j, k}, the number of pairs {α, β}, β ∈ R(l,m, n), that are good
in M (and necessarily column-based), is at most 3 cov(α) = 6 < r(l,m, n), a
contradiction.

On the other hand, with {a, b} ⊆ {l,m, n} each colour of R(l,m, n) con-
tributes one to the excess of α so that 2 = exc(M) = exc(α) ≥ r(l,m, n) ≥ 7, a
contradiction again.

Therefore, 2 = |{i, j, k, l,m, n} ∩ {a, b}| = |{i, j, k} ∩ {a, b}| + |{l,m, n} ∩
{a, b}| ≤ 1 + 1 = 2, and then |{i, j, k} ∩ {a, b}| = 1 = |{l,m, n} ∩ {a, b}|.

Claim 23. If {i, k} ∈
(

[1,6]
2

)

, then r(i, k) ≤ 2.

Proof. Let (w) i = 1, k = 2, Cov(R(1, 2)) = [1, n], and assume (for a proof by
contradiction) that r(1, 2) = 3 (see Lemma 11.9), which implies n ∈ [3, 6].

We are going to show that A = C \ (R(1) ∪ R(2)) ⊆ C3+. First observe that
each colour α ∈ A occupies at least two positions in Sn = [3, 6]× [1, n] (all pairs
{α, β}, β ∈ R(1, 2), are good in M), hence |A| ≤

⌊

4n
2

⌋

= 2n. Moreover, from
|R(1) ∩ R(2)| ≥ r(1, 2) we get |R(1) ∪ R(2)| ≤ 2q − 3. Consequently, 2q + 5 =
|C| = |A|+ |R(1) ∪ R(2)| ≤ |A|+ (2q − 3) leads to 8 ≤ |A| ≤ 2n and n ∈ [4, 6].

If n = 4, then |A| = 8, and any colour of A occupies exactly two positions
in S4. Suppose there is a colour α ∈ A ∩ C2. If a vertex (i, j) ∈ S4 belongs to
N(Vα), then (M)i,j ∈ A \ {α}, hence 2 = exc(M) = exc(α) ≥ 10− |A \ {α}| = 3
(the set N(Vα) has 10 vertices in S4), a contradiction. Therefore, A ⊆ C3+.

If n = 5, there is j ∈ [1, 5] such that |C(j)∩R(1, 2)| = 2 and |C(l)∩R(1, 2)| = 1
for l ∈ [1, 5] \ {j}. Then A = A2 ∪ A3 ∪ A4, where Al consists of colours of A
occupying l positions in S5. With al = |Al| we obtain a2 ≤ 4 (if α ∈ A2 \C(j), at
least one of three pairs {α, β} with β ∈ R(1, 2) is not good in M , a contradiction),
a3 + a4 = |A| − a2 ≥ 8− 4 = 4, 16 + a3 + a4 ≤ 16 + a3 + 2a4 ≤ 2(a2 + a3 + a4) +
a3+2a4 =

∑4
l=2 lal = 4 · 5 = 20, a3+ a4 ≤ 20− 16 = 4, a3+ a4 = 4, all six above

expressions are 20, which implies a4 = 0, a3 = 4 = a2, and then all positions in
S5 are occupied by colours of A2∪A3. If Cov(R(1, 2)\C(j)) = {s, t} ⊆ [1, 5]\{j},
then A2 ⊆ C(j)∪C(s)∪C(t). For the set B of colours in C2 \A2 that are not in
[1, 2]× [1, 5] we have |B| ≥ c2 − [(2|[1, 5]| − 3) + a2] ≥ 15− 11 = 4. However, the
number of pairs {α, β} with α ∈ A2 and β ∈ B, that are good in M , is at most
three (if β ∈ R(u), u ∈ [3, 6], only (M)u,j , (M)u,s and (M)u,t are available as α),
a contradiction.

If n = 6, the frequency of each colour in α ∈ A is at least three, since all
pairs {α, β} with β ∈ R(1, 2) are column-based, and at most one of them satisfies
the implication α ∈ C(j) ⇒ β ∈ C(j).
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Thus A ⊆ C3+ and C2 ⊆ R(1) ∪ R(2). For l ∈ [1, 6] let

K(l) =
{

m ∈ [1, 6] \ {l} : r(l,m) ≥ 1
}

,

so that ∆(G) ≤ 3 (Claim 19) implies |K(l)| ≤ 3. Further, for l,m ∈ [1, 6], l 6= m,
let r−2 (l,m) = |R2(l) \ R2(m)| be the number of 2-colours which occur in row l
but not row m. Observe that if m ∈ K(l), then r−2 (l,m) =

∑

p∈K(l)\{m} r(l, p) ≤
2 · 3 = 6.

The inclusion C2 ⊆ R(1)∪R(2) implies c2 = r−2 (1, 2)+r−2 (2, 1)+r(1, 2). Then
15 ≤ c2 = r−2 (1, 2) + r−2 (2, 1) + r(1, 2) ≤ 2 · 6 + 3 = 15, hence c2 = 15, r−2 (1, 2) =
r−2 (2, 1) = 6, r(1, 2) = 3, r2(1) = r−2 (1, 2)+r(1, 2) = 9 = r−2 (2, 1)+r(2, 1) = r2(2),
|K(l)| = 3 and r(l, p) = 3 for each p ∈ K(l), l = 1, 2.

The last two facts imply in particular that |K(1)\{2}| = 2 and that r1(m) = 3
for both m ∈ K(1) \ {2}. This means that we can repeat the entire reasoning
from the start of the proof of Claim 23 with the pair (1,m) instead of the pair
(1, 2). Among other things we obtain r2(m) = 9 for both m ∈ K(1)\{2} ⊆ [3, 6].
Together with r2(1) = r2(2) = 9 we then have

15 = c2 =
1

2

6
∑

m=1

r2(m) ≥
4 · 9

2
= 18,

a contradiction.

Claim 24. If i ∈ [1, 6], then r2(i) ≤ 6.

Proof. Since ∆(G) ≤ 3, the claim is a direct consequence of Claim 23.

Claim 25. The following statements are true.

1. ∆(G) = 3.

2. G is a subgraph of K3,3.

3. c2 ≤ 18.

Proof. 1. The assumption ∆(G) ≤ 2 would mean, by Claim 23, r2(i) ≤ 2 · 2 = 4
for i ∈ [1, 6] and 15 ≤ c2 =

1
2

∑6
i=1 r2(i) ≤

6·4
2 = 12, a contradiction.

2. From Claims 25.1 and 22 it follows that there is a partition {I,K} of
[1, 6] satisfying |I| = |K| = 3 such that r(i, k) ≥ 1 with {i, k} ∈

(

[1,6]
2

)

implies
|{i, k}∩ I| = 1 = |{i, k}∩K|. Thus, G is a subgraph of K3,3 with the bipartition
{I,K}.

3. Finally, by Claim 23, c2 =
∑

i∈I

∑

k∈K r(i, k) ≤ 9 · 2 = 18.

Henceforth we suppose (w) that the bipartition of the graph K3,3 from
Claim 25.2 is {[1, 3], [4, 6]}, which leads to
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C2 =
3
⋃

i=1

6
⋃

k=4

R(i, k).

Note that this assumption somehow restricts the meaning of (w) in the subsequent
analysis, namely the bijection ρ : [1, 6] → [1, 6] in Proposition 3 should satisfy
ρ([1, 3]) ∈ {[1, 3], [4, 6]}.

Claim 26. There is at most one pair (i, k) ∈ [1, 3]× [4, 6] with r(i, k) = 0.

Proof. If |{(i, k) ∈ [1, 3] × [4, 6] : r(i, k) = 0}| ≥ 2, Claim 23 yields 15 ≤ c2 ≤
7 · 2 = 14, a contradiction.

Claim 27. If (i, j, k) ∈ {(1, 2, 3), (4, 5, 6)}, then 7 ≤ q − 9 ≤ r(i, j, k) ≤ 9.

Proof. From Claim 26 it immediately follows that max(degG(p) : p ∈ [1, 3]) =
3 = max(degG(p) : p ∈ [4, 6]). So, by Claims 21 and 20, q − 9 ≤ r(i, j, k) ≤ 9.

Use for an edge {i, k} of the graph K3,3 with bipartition {[1, 3], [4, 6]} the
label r(i, k) ∈ [0, 2] (see Claim 23). A colour α ∈ C2 corresponds to an edge
{i, k} ∈ E(K3,3) if α ∈ R(i, k), and α corresponds to a set E ⊆ E(K3,3) if
there is e ∈ E such that α corresponds to e. We denote by Col(E) the set of
colours corresponding to E. Colours α, β ∈ C2, α 6= β, are column-related (in M)
provided that R(α) ∩ R(β) = ∅ (and, consequently, |R(α) ∪ R(β)| = 4); then the
pair {α, β} is not row-based, and hence it is column-based (thus if 2-colours α, β
are column-related, then the pair {α, β} is column-based, but not necessarily vice
versa). Evidently, if {γj : j ∈ [1, l]} is a set of pairwise column-related 2-colours,
where γj ∈ R(ij , kj), then r(ij , kj) ≥ 1, {ij , kj} ∈ E(K3,3), |

⋃

j∈[1,l]{ij , kj}| = 2l,
{{ij , kj} : j ∈ [1, l]} is a matching in K3,3, and so l ≤ 3. For a matching M in
K3,3 we denote by wt(M) the weight of M, i.e., the sum of labels of edges of M.

Claim 28. If M1 is a perfect matching in K3,3, then there are perfect matchings

M2 and M3 in K3,3 such that {M1,M2,M3} is a partition of E(K3,3) and

wt(M2) ≥ wt(M3); moreover,
⋃3

s=1Col(M
s) = C2 and

∑3
s=1wt(M

s) = c2.

Proof. The set E(K3,3) \ M1 induces a 6-vertex cycle C in K3,3. Then E(C)
has a partition {M2,M3} into perfect matchings of K3,3 so that {M1,M2,M3}
is a partition of E(K3,3); without loss of generality we may suppose wt(M2) ≥
wt(M3). Notice that each colour of C2 is in exactly one of the sets Col(Ms) ⊆ C2,
s = 1, 2, 3, hence C2 =

⋃3
s=1Col(M

s) and c2=
∑3

i=1

∑6
k=4 r(i, k)=

∑3
s=1wt(M

s).

Let A be a nonempty subset of C2. We say that A is of type ta11 · · · t
ap
p if

|A| ≥ t1 ≥ · · · ≥ tp ≥ 1, every column of M contains either 0 or exactly ts colours
of A for some s ∈ [1, p], and as is the number of columns of M that contain
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exactly ts colours of A. Note that
∑p

s=1 asts = 2|A|. Clearly, the type of A is
unique.

Claim 29. Under the assumptions {i, j, k} = {1, 2, 3}, {l,m, n} = {4, 5, 6}, α ∈
R(i, l), β ∈ R(j,m) and γ ∈ R(k, n), the following statements are true.

1. If the set {α, β, γ} is of the type ta11 · · · t
ap
p , then

∑p
s=1 as

(

ts
2

)

≥ 3.

2. If cov(α, β, γ) ≤ 3, then cov(α, β, γ) = 3, each colour of C2\{α, β, γ} appears

exactly once in the set [1, 6]× Cov(α, β, γ), and
⋃

s∈Cov(α,β,γ)C(s) = C2.

3. The type of the set {α, β, γ} is either 3113 or 23.

Proof. 1. The colours α, β, γ are pairwise column-related, hence each of the pairs
{α, β}, {α, γ} and {β, γ} is column-based; colours of such a pair share a column
whose number is in Cov(α, β, γ). A column of M containing exactly ts colours of
{α, β, γ} hosts exactly

(

ts
2

)

from among the above pairs, and so
∑p

s=1 as
(

ts
2

)

≥ 3.

2. In the set [1, 6]×Cov(α, β, γ) there are at most eighteen positions of which
six are occupied by α, β, γ. Since c2 ≥ 15, there are at least twelve other colours
in C2, and these must all occupy one of the remaining positions, otherwise for
a colour δ ∈ C2 \ {α, β, γ}, that is out of [1, 6] × Cov(α, β, γ), the number of
ε ∈ {α, β, γ} such that the pair {δ, ε} is good in M , is only 2 (such pairs are
row-based). Thus cov(α, β, γ) = 3, c2 = 15, each colour of C2 \ {α, β, γ} occupies
exactly one position in [1, 6] × Cov(α, β, γ), and the set of colours, that appear
in [1, 6]× Cov(α, β, γ), is equal to C2, i.e.,

⋃

s∈Cov(α,β,γ)C(s) = C2.

3. Possible types of the set {α, β, γ} (that must satisfy Claim 29.1) are 32,
312111, 3113 and 23. However, the type 32 has to be excluded since cov(α, β, γ) =
3 by Claim 29.2.

Suppose the set {α, β, γ} is of the type 312111. Observe that if b ∈ Cov(α, β, γ)
satisfies {α, β, γ} ∩C(b) = {ε}, there is (a unique) a ∈ [1, 6] such that {α, β, γ} ∩
R(a) = {ε} and ζ = (M)a,b 6= ε. By Claim 29.2 then ζ ∈ C2, and the second
copy of ζ is in [1, 6] × ([1, q] \ Cov(α, β, γ)); so, the number of pairs {ζ, η} with
η ∈ {α, β, γ} \ {ε}, that are good in M (and necessarily row-based), is one, while
|{α, β, γ} \ {ε}| = 2, a contradiction.

Claim 30. If {i, j, k} = {1, 2, 3}, {l,m, n} = {4, 5, 6}, R(i, l) = {α1, α2}, R(j,m)
= {β1, β2}, γ1 ∈ R(k, n) and a, b ∈ [1, 2], then the set {αa, βb, γ1} is of the type

3113.

Proof. If the claim is false, then, by Claim 29.3, (w) {α1, β1, γ1} is of the type
23, Cov(α1, β1, γ1) = [1, 3], and, by Claim 29.2, α2 occupies exactly one position
in [1, 6]× [1, 3]. Clearly, α2 appears in the column of M containing both β1 and
γ1 (the pair {β1, γ1} is column-based), for otherwise {α2, β1, γ1} would be of the
type 2212, which is impossible by Claim 29.3; so, by the same claim, {α2, β1, γ1}
is of the type 3113, (w) Cov(α2, β1, γ1) = [1, 4].
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Proceeding similarly as above we see that β2 appears in the column containing
α1, γ1, and {α1, β2, γ1} is of the type 3113, so that the pair {α2, β2} can be
good in M only if {α2, β2} ⊆ C(4). Consequently, {α2, β2, γ1} is of the type
23. If {α1, β1} ⊆ C(b), b ∈ [1, 3], then Cov(α2, β2, γ1) = [1, 4] \ {b}, so that, by
Claim 29.2, C(b),C(4) ⊆ C2 and C(b, 4) = C(b) \ {α1, β1} = C(4) \ {α2, β2}. In
such a case any colour δ ∈ C(b, 4) ⊆ C2 satisfies 2 = exc(δ) ≥ |C(b, 4) \ {δ}| = 3,
a contradiction.

From Claim 30 we see that ifM is a perfect matching inK3,3 with wt(M) ≥ 5
and colours α, β, γ ∈ Col(M) are pairwise column-related, then the set {α, β, γ}
is of the type 3113.

Claim 31. Under the assumptions {i, j, k} = [1, 3], {l,m, n} = [4, 6], R(i, l) =
{α1, α2}, R(j,m) = {β1, β2}, R(k, n) ∈ {{γ1}, {γ1, γ2}} and C1

2 = R(i, l) ∪
R(j,m) ∪ R(k, n), the following statements are true.

1. There is a ∈ [1, q] such that C1
2 ⊆ C(a).

2. If colours δ, ε ∈ C1
2 , δ 6= ε, are column-related, then cov(δ, ε) = 3.

3. If δ ∈ {α, β}, C1
2 ⊆ C(a) and Cov(δ1, δ2) = {a, b, d}, then |C(b) ∩ C(d)| = 3

and C(b, d) 6= ∅.

4. {α1, α2} → X and {β1, β2} → X.

5. If R(k, n) = {γ1, γ2}, then {γ1, γ2} → X.

6. cov(C1
2 ) = 4.

7. If δ ∈ C2 \ C
1
2 , then δ is in [1, 6]× Cov(C1

2 ).

Proof. Consider the perfect matching M1 = {{i, l}, {j,m}, {k, n}}. From the
assumptions of Claim 31 we get 5 ≤ wt(M1) ≤ 6.

1. By Claim 30 we know that (among others) all of the following sets are
of the type 3113: {α1, β1, γ1}, {α2, β1, γ1}, {α1, β2, γ1} and {α1, β1, γ2} (provided
that γ2 ∈ R(k, n)). Then there is a ∈ [1, q] with {α1, β1, γ1} ⊆ C(a). Now
|{α2, β1, γ1} ∩ C(a)| ≥ 2 > 1, hence |{α2, β1, γ1} ∩ C(a)| = 3 and α2 ∈ C(a). A
similar reasoning shows that β2 ∈ C(a) as well as γ2 ∈ C(a) (under the assumption
γ2 ∈ R(k, n)).

Before proceeding further let us mention that, by Claim 31.1, ifM is a perfect
matching in K3,3 with wt(M) ≥ 5, then all colours of Col(M) occur in (exactly)
one of columns of M .

2. There are s, t, u ∈ {1, 2} such that {δ, ε} ⊆ {αs, βt, γu}. Therefore, the
statement is a direct consequence of Claim 31.1 and the fact that, by Claim 30,
the set {αs, βt, γu} is of the type 3113.

3. If δ = α, Cov(α1, α2) = {a, b, d} and ε ∈ C ′ = C \ (R(i) ∪ R(l) ∪ C(a)),
then, as both pairs {ε, α1} and {ε, α2} are good in M , we get ε ∈ C(b) ∩ C(d).
Consequently, |C(b)∩C(d)| ≥ |C ′| ≥ 2q+5−(2q−2+4) = 3; further, by Claim 24,
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|(R(i)∪R(l)∪C(a))∩C2| ≤ 2 · 6− 2+4 = 14 < c2, and so C ′ contains a 2-colour
ζ. Having in mind that ζ ∈ C(b, d) and 2 = exc(ζ) ≥ |(C(b) ∩ C(d)) \ {ζ}| ≥
|C ′ \ {ζ}| ≥ 2, we obtain |C(b) ∩ C(d)| = 3.

An analogous reasoning applies in the case δ = β and Cov(β1, β2) = {a, b, d}.

4. By Claim 31.1 there is a ∈ [1, q] with C1
2 ⊆ C(a), hence 2 ≤ cov(α1, α2) ≤

3. Suppose that cov(α1, α2) = 3 (which means that {α1, α2} → X is not true)
and Cov(α1, α2) = {a, b, d}. By Claim 31.3 then |C(b) ∩ C(d)| = 3, and there is
(a 2-colour) ε ∈ C(b, d).

By Claim 28 there exists a partition {M1,M2,M3} of E(K3,3) into perfect
matchings in K3,3,

⋃3
s=1Col(M

s) = C2 and wt(M2) ≥ wt(M3). Let Cs
2 =

Col(Ms), s = 2, 3, so that {C1
2 , C

2
2 , C

3
2} is a partition of C2; then there is p ∈ [2, 3]

with ε ∈ Cp
2 . Note that {M2,M3} = {Mp,M5−p} and {C2

2 , C
3
2} = {Cp

2 , C
5−p
2 }.

Let us show that wt(Mp) ≤ 4. Indeed, with wt(Mp) = |Col(Mp)| ≥ 5,
by Claim 31.1 all colours of Cp

2 = Col(Mp) occur in one of columns of M , say
in the column e. Since ε ∈ Cp

2 , we have necessarily e ∈ {b, d}. The column
e contains exactly one of colours α1, α2 of C1

2 and all colours of Cp
2 (thus 2-

colours only), which implies C(b) ∩ C(d) = C(b) ∩ C(d) ∩ C(e) ⊆ C(e) ⊆ C2,
C(b, d) = C2 ∩ C(b) ∩ C(d) = C(b) ∩ C(d) and |C(b, d)| = 3. From among three
colours of C(b) ∩ C(d) ⊆ C(e) at least two appear in one of two “halves” of
the column e (the “upper half” and the “lower half”); more precisely, there is
I ∈ {[1, 3], [4, 6]} such that the colours of C(b, d) occupy at least two positions in
I ×{e}. Let ζ, η be distinct colours of C(b, d) occupying two positions in I ×{e}.
Then the remaining copies of ζ, η occupy two positions in ([1, 6] \ I)×{f}, where
{b, d} = {e, f}. Thus |R(ζ)∪R(η)| = 4, and so the colours ζ, η are column-related.
The colours ζ and η correspond to e1 and e2, repectively, with e1, e2 ∈ Mp,
e1 6= e2. If Mp = {e1, e2, e3}, from Claim 23 we know that the label of the edge
e3 is either 1 or 2; let ϑ be a colour of Cp

2 that corresponds to e3. The colours
ζ, η, ϑ are pairwise column-related. Therefore, by Claim 30, the set {ζ, η, ϑ}
is of the type 3113. This, however, is contradicted by the following two facts:
|{ζ, η, ϑ} ∩ C(e)| = 3 and |{ζ, η, ϑ} ∩ C(f)| ≥ |{ζ, η}| = 2 > 1.

Since wt(M1) ∈ [5, 6] and Claim 28 yields
∑3

s=1wt(M
s) = c2 ≥ 15, we have

wt(M5−p) = c2−wt(M1)−wt(Mp) ≥ 15− 6− 4 = 5. By Claim 31.1 all colours
of C5−p

2 = Col(M5−p) occur in one of columns of M , say in the column e. From

C1
2 ∩ C5−p

2 = ∅ it follows that e 6= a. Further, note that C(b) contains ε ∈ Cp
2 as

well as one of colours α1, α2 ∈ C1
2 , and the same is true for C(d); as a consequence

of |C5−p
2 | = wt(M5−p) ≥ 5 then e /∈ {b, d}. Consider e1, e2 ∈ M5−p with i ∈ e1

and l ∈ e2. Having in mind that {i, l} ∈ M1, we obtain e1 6= e2. If M5−p =
{e1, e2, e3}, then the edge e3 is labelled with either 1 or 2. Observe that there is a
colour ζ ∈ C5−p

2 corresponding to e3, which does not belong to C(a). This is clear
if wt(M1) = 6, when C(a) ∩ Col(M5−p) = Col(M1) ∩ Col(M5−p) = ∅. On the
other hand, with wt(M1) = 5 we have wt(M5−p) = 6, the edge e3 is labelled with
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2, and for the choice of ζ there are two possibilities, at least one of which satisfies
the above requirement: C(a) contains at most one colour of Col(M5−p). Now it is
clear that no pair {ζ, αs} with s ∈ [1, 2] is row-based (because R(α1) = R(α2) =
{i, l} and R(ζ) ∩ {i, l} = ∅). As a consequence both pairs {ζ, α1}, {ζ, α2} are
necessarily column-based. However, from e ∈ Cov(ζ), e /∈ Cov(α1, α2) = {a, b, d}
and a /∈ Cov(ζ) it follows that Cov(ζ) ∩ Cov(α1, α2) = Cov(ζ) ∩ {b, d} and
|Cov(ζ) ∩ {b, d}| ≤ 1; since |C(b) ∩ {α1, α2}| = 1 = |C(d) ∩ {α1, α2}|, the number
of pairs {ζ, α1}, {ζ, α2}, that are good in M , is at most 1, a contradiction.

Thus cov(α1, α2) = 2 and {α1, α2} → X.

The assumption cov(β1, β2) = 3 leads to a contradiction similarly as above,
hence cov(β1, β2) = 2 and {β1, β2} → X.

5. Use Claim 31.4 with {γ1, γ2} in the role of {α1, α2}.
6. This claim is a consequence of Claim 31.2, Claim 31.4 and Claim 31.5,

where the last one applies only if R(k, n) = {γ1, γ2}.
7. If δ ∈ C2 \ C

1
2 occupies only (two) positions in [1, 6] × ([1, q] \ Cov(C1

2 )),
then the number of pairs {δ, ε} with ε ∈ {α1, β1, γ1}, that are good in M (and
necessarily row-based), is 2 < 3 = |{α1, β1, γ1}|, a contradiction.

Let C∗
3 = C3 \ (R(1, 2, 3)∪R(4, 5, 6)), c∗3 = |C∗

3 | and ρ3 = r(1, 2, 3)+ r(4, 5, 6)
so that c3 = ρ3 + c∗3 and ρ3 ≤ 18 (see Claim 27).

Claim 32. If ρ3 ≥ 15, then cov(R(1, 2, 3) ∪ R(4, 5, 6)) ≤ 9.

Proof. Suppose r(1, 2, 3) ≥ r(4, 5, 6) and observe that if j ∈ Cov(R(1, 2, 3) ∪
R(4, 5, 6)), then R(1, 2, 3) ∩ C(j) 6= ∅ and R(4, 5, 6) ∩ C(j) 6= ∅ as well. Indeed,
if δ ∈ R(1, 2, 3) ∩ C(j) and R(4, 5, 6) ∩ C(j) = ∅, then the number of pairs {δ, ε}
with ε ∈ R(4, 5, 6), that are good in M (they must be column-based), is at most
3|Cov(δ) \ {j}| = 6 < 7 ≤ q − 9 ≤ r(4, 5, 6) (Claim 27), a contradiction. A
similar contradiction can be reached under the assumption R(4, 5, 6) ∩ C(j) 6= ∅
and R(1, 2, 3) ∩ C(j) = ∅. So, cov(R(1, 2, 3) ∪ R(4, 5, 6)) = cov(R(1, 2, 3)) =
cov(R(4, 5, 6)).

Claim 27 yields r(1, 2, 3) ≤ 9. Suppose first that r(1, 2, 3) = 9. In the case
cov(R(1, 2, 3)) ≤ 9 the claim is proved. If cov(R(1, 2, 3)) ≥ 10, there is j ∈
Cov(R(1, 2, 3)) with |R(1, 2, 3)∩C(j)| ≤ 2. In such a case for ε ∈ R(4, 5, 6)∩C(j)
the number of pairs {ε, δ} with δ ∈ R(1, 2, 3), that are good in M , is at most
2 + 3 + 3 < r(1, 2, 3), a contradiction.

Thus 9 > r(1, 2, 3) ≥ 1
2 [r(1, 2, 3) + r(4, 5, 6)] = ρ3

2 ≥ 15
2 > 7, r(1, 2, 3) = 8

and 8 ≥ r(4, 5, 6) ≥ 7. If cov(R(1, 2, 3)) ≥ 10 and j ∈ Cov(R(1, 2, 3)), then
necessarily |R(1, 2, 3)∩C(j)| ≥ 2, for otherwise r(1, 2, 3) ≤ 1+2·3 = 7 < r(1, 2, 3).
Consequently, m = |{j ∈ [1, q] : |R(1, 2, 3) ∩ C(j)| = 3}| ≤ 4, because m ≥ 5
implies that the number of positions in M occupied by colours of R(1, 2, 3) is
3m+2[cov(R(1, 2, 3))−m] = 2cov(R(1, 2, 3))+m ≥ 20+5 = 25 > 24 = 3r(1, 2, 3),
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a contradiction. For each colour ζ ∈ R(4, 5, 6) we have n(ζ) = |{j ∈ [1, q] :
|R(1, 2, 3) ∩ C(j)| = 3, ζ ∈ C(j)}| ≥ 2, since n(ζ) ≤ 1 leads to r(1, 2, 3) ≤
3n(ζ) + 2[3− n(ζ)] = 6 + n(ζ) ≤ 7 < 8 = r(1, 2, 3). Then the number of colours
ζ ∈ R(4, 5, 6), for which all pairs {ζ, δ} with δ ∈ R(1, 2, 3) are good in M , is at
most

⌊

3m
2

⌋

≤
⌊

3·4
2

⌋

= 6 < 7 ≤ r(4, 5, 6); in other words, there is ζ ∈ R(4, 5, 6)
and δ ∈ R(1, 2, 3) such that the pair {ζ, δ} is not good in M , a contradiction.

The case r(1, 2, 3) < r(4, 5, 6) can be treated analogously.

Claim 33. No perfect matching of K3,3 is of weight 6.

Proof. Suppose that wt(M1) = 6, where (w) M1 = {{i, 7− i} : i = 1, 2, 3}, and
let α ∈ R(1, 6), β ∈ R(2, 5), γ ∈ R(3, 4). By Claim 28 there exists a partition
{M1,M2,M3} of E(K3,3) into perfect matchings in K3,3,

⋃3
s=1Col(M

s) = C2,
∑3

s=1wt(M
s) = c2 ≥ 15 and wt(M2) ≥ wt(M3), hence wt(M2)+wt(M3) = c2−

6 ≥ 9 and wt(M2) ≥ 5. Let Cs
2 = Col(Ms), s = 1, 2, 3. Using Claims 31.1 and

31.4–6 we get (w) C1
2 = C(1), Cov(C1

2 ) = [1, 4] and C2
2 ⊆ C(5) (each of columns

2, 3, 4 contains two colours of C1
2 ). Further, as a consequence of Claim 31.7, and

the fact that C1
2 = C(1), any colour of C2 occupies a position in [1, 6]×(Cov(C1

2 )\
{1}) = [1, 6]× [2, 4].

Now consider an arbitrary colour ε ∈ C∗
3 . There are three distinct integers

a, b, d ∈ [1, 6] and a set I ∈ {[1, 3], [4, 6]} such that a, b ∈ I, d ∈ [1, 6] \ I and
ε ∈ R(a, b, d). Let us show that the colour ε occupies a position in [1, 6]× [2, 5].
Suppose this is not true so that every pair {ε, ζ} with ζ ∈ C1

2 ∪ C2
2 is row-

based. Then I = {a, b, 7 − d}; otherwise, if 7 − d ∈ {a, b}, then {d, 7 − d} ⊆
{a, 7−a}∪{b, 7−b}, there is ζ ∈ {α, β, γ} with R(ζ)∩({a, 7−a}∪{b, 7−b}) = ∅,
which leads to R(ε)∩R(ζ) = {a, b, d}∩R(ζ) ⊆ ({a, 7−a}∪{b, 7− b})∩R(ζ) = ∅,
and the pair {ε, ζ} is not good in M , a contradiction. Thus I = {a, b, 7− d} and
[1, 6] \ I = {d, x, y}. The set {{7 − d, d}, {7 − d, x}, {7 − d, y}} is a transversal
of the collection {M1,M2,M3} of pairwise disjoint perfect matchings of K3,3,
hence there is z ∈ {x, y} with {7− d, z} ∈ M2 and R(7− d, z) ⊆ C2

2 (recall that
{7− d, d} ∈ M1). From wt(M2) ≥ 5 we know, by Claim 23, that r(7− d, z) ≥ 1;
with η ∈ R(7− d, z) then R(ε) ∩ R(η) = {a, b, d} ∩ {7− d, z} = ∅, hence the pair
{η, ε} is not good in M , a contradiction.

From the above reasoning we see that each colour of (C2 \C
2
2 )∪C∗

3 occupies
a position in [1, 6]× [2, 5], and each colour of C2

2 occupies two positions in [1, 6]×
[2, 5]. Therefore, c2 + c∗3 + |C2

2 | ≤ |[1, 6] × [2, 5]| = 6 · 4 = 24 and c2 + c∗3 ≤
24− |C2

2 | = 24− wt(M2) ≤ 24− 5 = 19.

Thus, by Lemma 11.8, c∗3+c4+ ≤ c∗3+(c2−15) ≤ 19−15 = 4. Claim 24 yields
c2 =

1
2

∑6
i=1 r2(i) ≤

6·6
2 = 18, hence 2q+5 = |C| = (c2+c∗3)+ρ3+c4+ ≤ 19+ρ3+

(c2−15) ≤ 19+ρ3+3 = 22+ρ3, and ρ3 ≥ (2q+5)−22 ≥ 15. Consequently, using
Claim 32, cov(R(1, 2, 3)∪R(4, 5, 6)) ≤ 9, (w) Cov(R(1, 2, 3)∪R(4, 5, 6)) ⊆ [q−8, q].



Achromatic Number of the Cartesian Product of K6 and Kq 429

If wt(M3) ≥ 5, then, by Claim 31.1 applied on C3
2 , (w) C

3
2 ⊆ C(6), Cov(C3

2 ) =
{2, 3, 4, 6}, Cov(C2) = [1, 6], and, for any j ∈ [7, q − 9] ⊇ {7}, C(j) ⊆ C∗

3 ∪ C4+,
so that 6 = |C(j)| ≤ c∗3 + c4+ ≤ 4, a contradiction.

So, wt(M3) ≤ 4, c2 =
∑3

s=1wt(M
s) ≤ 6 + 6 + 4 = 16, 37 ≤ 2q + 5 =

c2 + ρ3 + c∗3 + c4+ ≤ 16 + 18 + (c∗3 + c4+) ≤ 34 + 4 = 38 and q = 16. Then 37 =
|C| = c2+c∗3+ρ3+c4+ ≤ c2+c∗3+ρ3+(c2−15) = c2+c∗3+

∑3
s=1wt(M

s)+ρ3−15 =
[c2+ c∗3+wt(M2)]+wt(M3)+6+ρ3−15 ≤ 24+4+ρ3−9 ≤ 28+(18−9) = 37,
ρ3 = 18, cov(R(1, 2, 3) ∪ R(4, 5, 6)) ≥

⌈

18·3
6

⌉

= 9, cov(R(1, 2, 3) ∪ R(4, 5, 6)) = 9,

Cov(R(1, 2, 3) ∪ R(4, 5, 6)) = [8, 16] and R(1, 2, 3) ∪ R(4, 5, 6) =
⋃16

j=8C(j). Let
C ′ = C \ (R(1, 2, 3)∪R(4, 5, 6)), and let M ′ be the 6× 7 submatrix of M formed
by the first seven columns of M . Evidently, M ′ ∈ M(6, 7, C ′), which means, by
Proposition 2, that achr(K6�K7) ≥ |C ′| = 19. This, however, contradicts the
result achr(K6�K7) = 18 proved in [5].

Claim 34. The following statements are true.

1. c2 = 15.

2. Each perfect matching of K3,3 is of weight 5.

3. c4+ = 0.

4. Each edge of K3,3 is labelled with either 1 or 2.

5. There are I,K ∈ {[1, 3], [4, 6]}, I 6= K, and k ∈ K such that for any i ∈ I
and any l ∈ K \ {k} it holds r(i, k) = 1 and r(i, l) = 2.

Proof. 1. Given a perfect matching M1 of K3,3, by Claim 28 we know that there
is a unique partition {M1,M2,M3} of E(K3,3) into perfect matchings of K3,3.
By Lemma 11.3 and Claim 33 then 15 ≤ c2 =

∑3
s=1wt(M

s) ≤
∑3

s=1 5 = 15 and
c2 = 15.

2. From the proof of Claim 34.1 we see that wt(Ms) = 5, s = 1, 2, 3. Thus
wt(M) = 5 for each perfect matching M of K3,3 (M can be chosen as M1).

3. By Lemma 11.8 and Claim 34.1 we have c4+ ≤ c2 − 15 = 0 and c4+ = 0.
4. No edge of K3,3 is labelled with 0, otherwise any perfect matching of K3,3

containing such an edge would be of weight at most 2 · 2 = 4 (Claim 23), which
contradicts Claim 34.2.

5. Denote by l(e) the label of an edge e ∈ E(K3,3), and by ln the number
of edges of K3,3 labelled with n, n = 1, 2 (see Claim 34.4); then l1 + l2 = 9,
15 = c2 = l1 + 2l2 = 9 + l2, l2 = 6 and l1 = 3. Let {e1, e2, e3} = {e ∈ E(K3,3) :
l(e) = 1}.

If a, b ∈ [1, 3], a 6= b, then ea ∩ eb 6= ∅. To see it suppose that ea ∩ eb = ∅,
and take e ∈ E(K3,3) \ {ea, eb} such that {ea, eb, e} is a perfect matching of
K3,3. The 6-vertex cycle in K3,3 with the edge set E(K3,3) \ {ea, eb, e} has at
least five edges labelled with 2, hence one can find in K3,3 a perfect matching
M ⊆ E(K3,3) \ {ea, eb, e} with wt(M) = 3 · 2 = 6, a contradiction.
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Thus e1 ∩ e2 6= ∅, e1 ∩ e3 6= ∅ and e2 ∩ e3 6= ∅. Since the subgraph of the
bipartite graph K3,3 induced by the set of edges {e1, e2, e3} is bipartite (and so
free of odd cycles), the above three intersections (of 2-element sets) are nonempty
only if there is a vertex k ∈ [1, 6] = V (K3,3) such that e1 ∩ e2 ∩ e3 = {k}. Having
in mind that the bipartition of K3,3 is {[1, 3], [4, 6]}, there are I,K ∈ {[1, 3], [4, 6]}
such that I 6= K, k ∈ K, and for any i ∈ I and any l ∈ K \{k} it holds r(i, k) = 1
and r(i, l) = 2.

Based on Claim 34.5 we suppose (w) I = [1, 3], K = [4, 6] and k = 6 so that
for any i ∈ [1, 3] and any l ∈ [4, 5] we have r(i, 6) = 1 and r(i, l) = 2. Then
r2(1) = r2(2) = r2(3) = 5, r2(4) = r2(5) = 6 and r2(6) = 3. Let R(i, 6) = {αi,6},
i = 1, 2, 3.

If M is a perfect matching in K3,3, there is s ∈ [1, 6] such that M = Ms,
where

M1 = {{1, 6}, {2, 4}, {3, 5}}, M2 = {{1, 5}, {2, 6}, {3, 4}},

M3 = {{1, 4}, {2, 5}, {3, 6}}, M4 = {{1, 6}, {2, 5}, {3, 4}},

M5 = {{1, 4}, {2, 6}, {3, 5}}, M6 = {{1, 5}, {2, 4}, {3, 6}}.

We have |Col(Ms)| = 5 for each s ∈ [1, 6]. Applying Claim 31 on five colours of
Col(Ms) we see that there is as ∈ [1, q] such that Col(Ms) ⊆ C(as). If s, t ∈ [1, 6],
s 6= t, then |Ms ∩Mt| ≤ 1, hence |Col(Ms) ∩ Col(Mt)| ≤ 2 (Claim 23), and so
it is clear that as 6= at. From now on (w)

{as : s ∈ [1, 6]} = [1, 6],

(M)i,i = αi,6 = (M)6,i+3, i = 1, 2, 3.

Let us show that βi = (M)i,i+3 with i ∈ [1, 3] is not a 2-colour. Indeed,
suppose it is. The number of pairs {βi, αj,6}, j ∈ [1, 3], that are good in M , is 3.
However, each copy of βi provides only one such pair (for the copy (M)i,i+3 of βi
it is the pair {βi, αi,6}, while for the other copy of βi in one of rows 4, 5 of M it
is a pair {βi, αj,6} that is column-based), a contradiction. As a consequence of
Claims 34.1 and 34.3 then all positions in the set

S = {(1, 4), (2, 5), (3, 6), (6, 1), (6, 2), (6, 3)}

are occupied by 3-colours, and the same is true for the set of positions [1, 6]×[7, q].
Moreover, all positions in the set ([1, 6]× [1, 6]) \ S are occupied by 2-colours.

Claim 35. Each position in the set S is occupied by a colour of C∗
3 .

Proof. If a position (i, i+3) with i ∈ [1, 3] is occupied by a colour β ∈ R(1, 2, 3),
that copy of β provides no pair {β, γ} with γ ∈ R(4, 5, 6) that is good in M .
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Claim 27 yields min(r(1, 2, 3), r(4, 5, 6)) ≥ q − 9 ≥ 7. However, the number of
pairs {β, γ} with γ ∈ R(4, 5, 6), that are good in M (and necessarily column-
based), is at most

∑

l∈Cov(β)\{i+3} |R(4, 5, 6) ∩ C(l)| ≤ 2 · 3 = 6 < r(4, 5, 6), a
contradiction.

Similarly, if a position (6, j) with j ∈ [1, 3] is occupied by a colour δ ∈
R(4, 5, 6), then the number of pairs {δ, ε} with ε ∈ R(1, 2, 3), that are good in M ,
is at most

∑

l∈Cov(δ)\{j} |R(1, 2, 3)∩C(l)| ≤ 2·3 = 6 < r(1, 2, 3), a contradiction.

Claim 36. C∗
3 ⊆ R(6).

Proof. Consider a colour β ∈ C∗
3 , and let ni, i ∈ R(β), denote the number of

pairs {β, γ} with γ ∈ {α1,6, α2,6, α3,6}, that are good in M , and are provided
by the copy of β in the row i of M . If i ∈ [1, 3], then ni = 1 (with γ = αi,6),
while i ∈ [4, 5] implies ni = 0, and i = 6 yields ni = n6 = 3. Now, under the
assumption β /∈ R(6), from the inequalities 1 ≤ |R(β) ∩ [1, 3]| ≤ 2 we obtain
∑

i∈R(β) ni = |R(β) ∩ [1, 3]| ≤ 2 < 3 = |{α1,6, α2,6, α3,6}|, a contradiction.

Claim 37. q = 16, and there is a 3-colour β ∈ R(i,m, 6) with i ∈ [1, 3] and
m ∈ [4, 5] that occupies a position in {6} × [7, 16].

Proof. Since c4+ = 0 (Claim 34.3) and r2(6) = 3, by Claims 36 and 27 we have
q = c2(6)+c3(6) = 3+[r(4, 5, 6)+c∗3] and c∗3 = q−3−r(4, 5, 6) ≥ q−3−(q−9) = 6.
On the other hand, from Claim 34.1 we get |C| = 2q+5 = c2+c3 = 15+[r(1, 2, 3)+
r(4, 5, 6)+c∗3] so that q−3 = r(4, 5, 6)+c∗3 = 2q−10−r(1, 2, 3), r(1, 2, 3) = q−7,
and then Claim 27 yields 9 ≥ r(1, 2, 3) = q − 7 ≥ 16 − 7 = 9, r(1, 2, 3) = 9 and
q = 16. Using Claim 27 again we obtain 7 = q − 9 ≤ r(4, 5, 6) = q − 3 − c∗3 =
13− c∗3 ≤ 13− 6 = 7, r(4, 5, 6) = 7 and c∗3 = 6.

The number of positions in [1, 3] × [1, 16], that are occupied by colours of
C∗
3 , is equal to 3 · 16 − c2 − 3r(1, 2, 3) = 48 − 15 − 27 = 6 = c∗3, and each colour

γ ∈ C∗
3 is involved in that counting, since 1 ≤ |R(γ) ∩ [1, 3]| ≤ 2. Therefore, for

any γ ∈ C∗
3 we get |R(γ) ∩ [1, 3]| = 1 and |R(γ) ∩ [4, 6]| = 2.

Let β ∈ C∗
3 occupy a position in {6} × [7, 16]; the number of such colours

is c∗3 − 3 = 3, because C∗
3 ⊆ R(6) (Claim 36), the positions in {6} × [1, 3] are

occupied by colours of C∗
3 (Claim 35) and (M)6,l = αl−3,6 ∈ C2, l = 4, 5, 6. Then

R(β) = {i,m, 6}, where i ∈ [1, 3] and m ∈ [4, 5].

We are now ready to finish our analysis by showing that for a colour β ∈
R(i,m, 6) of Claim 37 the number of pairs {β, γ} with γ ∈ C2, that are good inM ,
is less than c2 = 15, which represents a final contradiction proving Theorem 18.

First of all, if β occupies a position in {i} × [7, 16], then all pairs {β, γ}
with γ ∈ C2, that are good in M , are row-based. The number of such pairs is
r2(i) + r2(m) + r2(6)− [r(i,m) + r(i, 6)] = 5 + 6 + 3− (2 + 1) = 11 < 15 = c2, a
contradiction.
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Therefore, β = (M)i,i+3, and we can find explicitly a colour γ ∈ C2 such that
the pair {β, γ} is not good in M . Indeed, in this case C(i+3)∩C2 = Col(M) ⊇
{αi,6}, where the perfect matchingM inK3,3 satisfiesM={{i, 6}, {j,m}, {k, n}},
{i, j, k} = {1, 2, 3}, m ∈ [4, 5] and n = 9 −m. Then C(i + 3) = {β} ∪ R(i, 6) ∪
R(j,m) ∪ R(k, n), and so R(j, n) ∩ C(i + 3) = ∅ (recall that r(i, 6) = 1 and
r(j,m) = 2 = r(k, n)); thus, the pair {β, γ} with γ ∈ R(j, n) is not column-
based. Moreover, R(β) ∩ R(γ) = {i,m, 6} ∩ {j, n} = ∅, the pair {β, γ} is not
row-based, hence it is not good in M , a contradiction.

The solution of the problem of determining achr(K6�Kq) is now complete.
It is summarised in the final theorem of the paper, where

J3 = [2, 3] ∪ {q ∈ [41,∞) : q ≡ 1(mod 2)},

J4 = {1, 4, 7} ∪ [16, 40] ∪ {q ∈ [42,∞) : q ≡ 0 (mod 2)},

J5 = {5, 8},

J6 = {6} ∪ [9, 15],

and J3 ∪ J4 ∪ J5 ∪ J6 = [1,∞).

Theorem 38. If a ∈ [3, 6] and q ∈ Ja, then achr(K6�Kq) = 2q + a.

Proof. The achromatic number of K6�Kq was analysed in [7] for q ≤ 4 (for
q ≤ 3 see also Chiang and Fu [2]), in Horňák and Pčola [6] for q = 5, in [1] for
q = 6, in [5] for q = 7, and in [4] for q ∈ [41,∞) with q ≡ 1 (mod 2). The
remaining statements have been proved in the present paper, see Theorem 13
for q = 8, Theorem 17 for q ∈ [9, 15], and Theorem 18 for q satisfying either
q ∈ [16, 40] or q ∈ [42,∞) together with q ≡ 0 (mod 2).

Corollary 39. If q ∈ [1,∞), then 2q + 3 ≤ achr(K6�Kq) ≤ 2q + 6.
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