THE ACHROMATIC NUMBER OF THE CARTESIAN PRODUCT OF \boldsymbol{K}_{6} AND \boldsymbol{K}_{q}

Mirko Horñák
Institute of Mathematics, P.J. Šafárik University
Jesenná 5, 04001 Košice, Slovakia
e-mail: mirko.hornak@upjs.sk

Abstract

Let G be a graph and C a finite set of colours. A vertex colouring $f: V(G) \rightarrow C$ is complete if for any pair of distinct colours $c_{1}, c_{2} \in C$ one can find an edge $\left\{v_{1}, v_{2}\right\} \in E(G)$ such that $f\left(v_{i}\right)=c_{i}, i=1,2$. The achromatic number of G is defined to be the maximum number $\operatorname{achr}(G)$ of colours in a proper complete vertex colouring of G. In the paper $\operatorname{achr}\left(K_{6} \square K_{q}\right)$ is determined for any integer q such that either $8 \leq q \leq 40$ or $q \geq 42$ is even.

Keywords: complete vertex colouring, achromatic number, Cartesian product, complete graph.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

Let G be a finite simple graph and C a finite set of colours. A vertex colouring $f: V(G) \rightarrow C$ is complete provided that for any pair $\left\{c_{1}, c_{2}\right\} \in\binom{C}{2}$ (of distinct colours of C) there exists an edge $\left\{v_{1}, v_{2}\right\}$ (usually shortened to $v_{1} v_{2}$) of G such that $f\left(v_{i}\right)=c_{i}, i=1,2$. The achromatic number of G, in symbols $\operatorname{achr}(G)$, is the maximum cardinality of the colour set in a proper complete vertex colouring of G. The achromatic number was introduced in Harary, Hedetniemi, and Prins [3], where among other things the following interpolation result was proved.

Theorem 1. If G is a graph, and an integer k satisfies $\chi(G) \leq k \leq \operatorname{achr}(G)$, there exists a proper complete vertex colouring of G using k colours.

In the present paper the achromatic number of $K_{6} \square K_{q}$, the Cartesian product of K_{6} and K_{q} (the notation following Imrich and Klavžar [8] is adopted), is determined for all q satisfying either $8 \leq q \leq 40$ or $q \geq 42$ and $q \equiv 0(\bmod 2)$.

This is the third in a series of three papers, in which the problem of finding $\operatorname{achr}\left(K_{6} \square K_{q}\right)$ is completely solved. Some historical remarks concerning the achromatic number, a motivation of the problem and basic facts on proper complete colourings of Cartesian products of two complete graphs are available in the paper Horñák [4], where $\operatorname{achr}\left(K_{6} \square K_{q}\right)$ has been determined for odd $q \geq 41$. Maybe a bit surprisingly, proving that $\operatorname{achr}\left(K_{6} \square K_{7}\right)=18$ has required quite a long analysis contained in the paper Horňák [5].

For $m, n \in \mathbb{Z}$ we work with integer intervals defined by

$$
[m, n]=\{z \in \mathbb{Z}: m \leq z \leq n\}, \quad[m, \infty)=\{z \in \mathbb{Z}: m \leq z\}
$$

If $p, q \in[1, \infty)$ and $V\left(K_{r}\right)=[1, r], r=p, q$, then $V\left(K_{p} \square K_{q}\right)=[1, p] \times[1, q]$, and $E\left(K_{p} \square K_{q}\right)$ consists of edges $\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right)$, where $i_{1}, i_{2} \in[1, p]$ and $j_{1}, j_{2} \in[1, q]$ satisfy either $i_{1}=i_{2}$ and $j_{1} \neq j_{2}$ or $i_{1} \neq i_{2}$ and $j_{1}=j_{2}$.

Let $\mathcal{M}(p, q, C)$ denote the set of $p \times q$ matrices M with entries from C such that all lines (rows and columns) of M have pairwise distinct entries, and any pair $\{\alpha, \beta\} \in\binom{C}{2}$ is good in M, which means that there is a line of M containing both α and β; the pair $\{\alpha, \beta\}$ is either row-based or column-based (in M) depending on whether the involved line is a row or a column. In other words, the number of lines witnessing the fact that the pair $\{\alpha, \beta\}$ is good, is positive, and it may happen that the pair $\{\alpha, \beta\}$ is simultaneously row-based and column-based as well. For a matrix M we denote by $(M)_{i, j}$ the entry of M appearing in the i th row and the j th column.

Proposition 2 [4]. If $p, q \in[1, \infty)$ and C is a finite set, then the following statements are equivalent.
(1) There is a proper complete vertex colouring of $K_{p} \square K_{q}$ using as colours elements of C.
(2) $\mathcal{M}(p, q, C) \neq \emptyset$.

The implication $(2) \Rightarrow(1)$ of Proposition 2 is based on a straightforward observation that if $M \in \mathcal{M}(p, q, C)$, then the vertex colouring f_{M} of $K_{p} \square K_{q}$ defined by $f_{M}(i, j)=(M)_{i, j}$ is proper and complete as well.

Proposition 3 [4]. If $p, q \in[1, \infty)$, C, D are finite sets, $M \in \mathcal{M}(p, q, C)$, mappings $\rho:[1, p] \rightarrow[1, p], \sigma:[1, q] \rightarrow[1, q], \pi: C \rightarrow D$ are bijections, and $M_{\rho, \sigma}, M_{\pi}$ are $p \times q$ matrices defined by $\left(M_{\rho, \sigma}\right)_{i, j}=(M)_{\rho(i), \sigma(j)}$ and $\left(M_{\pi}\right)_{i, j}=\pi\left((M)_{i, j}\right)$, then $M_{\rho, \sigma} \in \mathcal{M}(p, q, C)$ and $M_{\pi} \in \mathcal{M}(p, q, D)$.

Let $M \in \mathcal{M}(p, q, C)$. The frequency of a colour $\gamma \in C$ is the number $\operatorname{frq}(\gamma)$ of times γ appears in M, while $\operatorname{frq}(M)$, the frequency of M, is the minimum of frequencies of colours in C. A colour of frequency l is an l-colour, C_{l} is the set of l-colours and $c_{l}=\left|C_{l}\right| . \quad C_{l+}$ is the set of colours of frequency at least
l and $c_{l+}=\left|C_{l+}\right|$. For the (complete) colouring f_{M} mentioned above denote $V_{\gamma}=f_{M}^{-1}(\gamma) \subseteq[1, p] \times[1, q]$, and let $N\left(V_{\gamma}\right)$ be the neighbourhood of V_{γ} (the union of neighborhoods of vertices in V_{γ}). The excess of γ is defined to be the maximum number $\operatorname{exc}(\gamma)$ of vertices in a set $S \subseteq N\left(V_{\gamma}\right)$ such that the restriction of f_{M} formed by uncolouring the vertices of S is still complete with respect to pairs of colours containing γ. The excess of M is the minimum $\operatorname{exc}(M)$ of excesses of colours in C.

We denote by $\mathbb{R}(i)$ the set of colours in the i th row of M and by $\mathbb{C}(j)$ the set of colours in the j th column of M. Further, let

$$
\begin{array}{ll}
\mathbb{R}_{l}(i)=C_{l} \cap \mathbb{R}(i), & r_{l}(i)=\left|\mathbb{R}_{l}(i)\right|, \\
\mathbb{C}_{l}(j)=C_{l} \cap \mathbb{C}(j), & c_{l}(j)=\left|\mathbb{C}_{l}(j)\right|,
\end{array}
$$

so that $\mathbb{R}_{l}(i)$ and $\mathbb{C}_{l}(j)$ is the set of l-colours appearing in the row i and those appearing in the column j, respectively. For $i, j, k \in[1, p]$ let

$$
\begin{aligned}
\mathbb{R}(i, j) & =C_{2} \cap \mathbb{R}(i) \cap \mathbb{R}(j), & r(i, j) & =|\mathbb{R}(i, j)|, \\
\mathbb{R}(i, j, k) & =C_{3} \cap \mathbb{R}(i) \cap \mathbb{R}(j) \cap \mathbb{R}(k), & r(i, j, k) & =|\mathbb{R}(i, j, k)|,
\end{aligned}
$$

and for $m, n \in[1, q]$ let

$$
\mathbb{C}(m, n)=C_{2} \cap \mathbb{C}(m) \cap \mathbb{C}(n), \quad c(m, n)=|\mathbb{C}(m, n)|
$$

Thus $\mathbb{R}(i, j)$ and $\mathbb{C}(m, n)$ are respectively the sets of colours which appear exactly in rows i and j or columns m and n, while $\mathbb{R}(i, j, k)$ is the set of colours which appear exactly in the rows i, j and k. For $\gamma \in C$ define

$$
\mathbb{R}(\gamma)=\{i \in[1, p]: \gamma \in \mathbb{R}(i)\}
$$

as the set of numbers of rows containing the colour γ. To avoid a possible confusion coming from the double usage of $\mathbb{R}(\cdot)$ in $\mathbb{R}(\gamma)$ and $\mathbb{R}(i)$ note that whenever $\mathbb{R}(\cdot)$ is used with a Greek alphabet letter argument, then the argument points to a colour in C, and not to a row of the matrix M.

If $S \subseteq[1, p] \times[1, q]$, we say that a colour $\gamma \in C$ occupies a position in S (appears in S or simply is in S) if there exists $(i, j) \in S$ with $(M)_{i, j}=\gamma$. For a nonempty set of colours $A \subseteq C$, the set of columns covered by A is

$$
\operatorname{Cov}(A)=\{j \in[1, q]: \mathbb{C}(j) \cap A \neq \emptyset\},
$$

i.e., the set of (numbers of) columns containing a colour of A. We put $\operatorname{cov}(A)=$ $|\operatorname{Cov}(A)|$, and for $A=\{\alpha\},\{\alpha, \beta\},\{\alpha, \beta, \gamma\}$ we use a simplified notation $\operatorname{Cov}(\alpha)$, $\operatorname{Cov}(\alpha, \beta), \operatorname{Cov}(\alpha, \beta, \gamma)$ and $\operatorname{cov}(\alpha), \operatorname{cov}(\alpha, \beta), \operatorname{cov}(\alpha, \beta, \gamma)$ instead of $\operatorname{Cov}(A)$ and $\operatorname{cov}(A)$.

2. Matrix Constructions

Proposition 4. $\operatorname{achr}\left(K_{6} \square K_{4}\right) \geq 12$, $\operatorname{achr}\left(K_{6} \square K_{6}\right) \geq 18$ and $\operatorname{achr}\left(K_{6} \square K_{8}\right)$ ≥ 21.
Proof. Let M_{q} be the $6 \times q$ matrix below, $q=4,6,8$, where \bar{n} stands for $10+n$ and $\overline{\bar{n}}$ for $20+n$.

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & \overline{0} & \overline{1} & \overline{2} \\
2 & 1 & 4 & 3 \\
7 & 8 & 5 & 6 \\
\overline{2} & \overline{1} & \overline{0} & 9
\end{array}\right) \quad\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & \overline{0} & \overline{1} & \overline{2} \\
\overline{3} & \overline{4} & \overline{5} & \overline{6} & \overline{7} & \overline{8} \\
2 & 1 & \overline{7} & \overline{2} & \overline{5} & \overline{0} \\
\overline{1} & \overline{8} & 4 & 3 & 7 & \overline{4} \\
\overline{6} & 9 & 8 & \overline{3} & 6 & 5
\end{array}\right) \quad\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & \overline{6} & \overline{7} & \overline{8} \\
6 & 7 & 8 & 9 & \overline{0} & \overline{8} & \overline{6} & \overline{7} \\
\overline{1} & \overline{2} & \overline{3} & \overline{4} & \overline{5} & \overline{7} & \overline{8} & \overline{6} \\
4 & 8 & 7 & 1 & \overline{9} & \overline{5} & \overline{\overline{0}} & \overline{\overline{1}} \\
\overline{3} & 5 & \overline{1} & \overline{\overline{1}} & 2 & 9 & \overline{9} & \overline{\overline{0}} \\
\overline{0} & \overline{4} & \overline{\overline{0}} & \overline{2} & 6 & 3 & \overline{1} & \overline{9}
\end{array}\right)
$$

One can check easily that $M_{4} \in \mathcal{M}(6,4,[1,12]), M_{6} \in \mathcal{M}(6,6,[1,18])$ and $M_{8} \in$ $\mathcal{M}(6,8,[1,21])$. Therefore, we are done by Proposition 2.

For $r \in[3,9]$ consider r-element colour sets

$$
V_{r}=\left\{v_{r}(k): k \in[1, r]\right\}, W_{r}=\left\{w_{r}(k): k \in[1, r]\right\}
$$

such that V_{r}, W_{r} and $[1,18]$ are pairwise disjoint. Further, let N_{r} be the $6 \times r$ matrix below.

$$
\begin{aligned}
& \left(\begin{array}{lll}
v_{3}(1) & v_{3}(2) & v_{3}(3) \\
v_{3}(2) & v_{3}(3) & v_{3}(1) \\
v_{3}(3) & v_{3}(1) & v_{3}(2) \\
w_{3}(1) & w_{3}(2) & w_{3}(3) \\
w_{3}(2) & w_{3}(3) & w_{3}(1) \\
w_{3}(3) & w_{3}(1) & w_{3}(2)
\end{array}\right) \quad\left(\begin{array}{llllll}
v_{6}(1) & v_{6}(2) & v_{6}(3) & v_{6}(4) & v_{6}(5) & v_{6}(6) \\
v_{6}(2) & v_{6}(3) & v_{6}(4) & v_{6}(5) & v_{6}(6) & v_{6}(1) \\
v_{6}(3) & v_{6}(4) & v_{6}(5) & v_{6}(6) & v_{6}(1) & v_{6}(2) \\
w_{6}(1) & w_{6}(2) & w_{6}(3) & w_{6}(4) & w_{6}(5) & w_{6}(6) \\
w_{6}(3) & w_{6}(4) & w_{6}(5) & w_{6}(6) & w_{6}(1) & w_{6}(2) \\
w_{6}(5) & w_{6}(6) & w_{6}(1) & w_{6}(2) & w_{6}(3) & w_{6}(4)
\end{array}\right) \\
& \left(\begin{array}{llll}
v_{4}(1) & v_{4}(2) & v_{4}(3) & v_{4}(4) \\
v_{4}(2) & v_{4}(3) & v_{4}(4) & v_{4}(1) \\
v_{4}(3) & v_{4}(4) & v_{4}(1) & v_{4}(2) \\
w_{4}(1) & w_{4}(2) & w_{4}(3) & w_{4}(4) \\
w_{4}(2) & w_{4}(3) & w_{4}(4) & w_{4}(1) \\
w_{4}(3) & w_{4}(4) & w_{4}(1) & w_{4}(2)
\end{array}\right) \quad\left(\begin{array}{lllll}
v_{5}(1) & v_{5}(2) & v_{5}(3) & v_{5}(4) & v_{5}(5) \\
v_{5}(2) & v_{5}(3) & v_{5}(4) & v_{5}(5) & v_{5}(1) \\
v_{5}(3) & v_{5}(4) & v_{5}(5) & v_{5}(1) & v_{5}(2) \\
w_{5}(1) & w_{5}(2) & w_{5}(3) & w_{5}(4) & w_{5}(5) \\
w_{5}(3) & w_{5}(4) & w_{5}(5) & w_{5}(1) & w_{5}(2) \\
w_{5}(5) & w_{5}(1) & w_{5}(2) & w_{5}(3) & w_{5}(4)
\end{array}\right) \\
& \left(\begin{array}{ccccccc}
v_{7}(1) & v_{7}(2) & v_{7}(3) & v_{7}(4) & v_{7}(5) & v_{7}(6) & v_{7}(7) \\
v_{7}(2) & v_{7}(3) & v_{7}(4) & v_{7}(5) & v_{7}(6) & v_{7}(7) & v_{7}(1) \\
v_{7}(3) & v_{7}(4) & v_{7}(5) & v_{7}(6) & v_{7}(7) & v_{7}(1) & v_{7}(2) \\
w_{7}(1) & w_{7}(2) & w_{7}(3) & w_{7}(4) & w_{7}(5) & w_{7}(6) & w_{7}(7) \\
w_{7}(3) & w_{7}(4) & w_{7}(5) & w_{7}(6) & w_{7}(7) & w_{7}(1) & w_{7}(2) \\
w_{7}(5) & w_{7}(6) & w_{7}(7) & w_{7}(1) & w_{7}(2) & w_{7}(3) & w_{7}(4)
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{cccccccc}
v_{8}(1) & v_{8}(2) & v_{8}(3) & v_{8}(4) & v_{8}(5) & v_{8}(6) & v_{8}(7) & v_{8}(8) \\
v_{8}(2) & v_{8}(3) & v_{8}(4) & v_{8}(5) & v_{8}(6) & v_{8}(7) & v_{8}(8) & v_{8}(1) \\
v_{8}(3) & v_{8}(4) & v_{8}(5) & v_{8}(6) & v_{8}(7) & v_{8}(8) & v_{8}(1) & v_{8}(2) \\
w_{8}(1) & w_{8}(2) & w_{8}(3) & w_{8}(4) & w_{8}(5) & w_{8}(6) & w_{8}(7) & w_{8}(8) \\
w_{8}(4) & w_{8}(5) & w_{8}(6) & w_{8}(7) & w_{8}(8) & w_{8}(1) & w_{8}(2) & w_{8}(3) \\
w_{8}(7) & w_{8}(8) & w_{8}(1) & w_{8}(2) & w_{8}(3) & w_{8}(4) & w_{8}(5) & w_{8}(6)
\end{array}\right) \\
\left(\begin{array}{ccccccccc}
v_{9}(1) & v_{9}(2) & v_{9}(3) & v_{9}(4) & v_{9}(5) & v_{9}(6) & v_{9}(7) & v_{9}(8) & v_{9}(9) \\
v_{9}(2) & v_{9}(3) & v_{9}(4) & v_{9}(5) & v_{9}(6) & v_{9}(7) & v_{9}(8) & v_{9}(9) & v_{9}(1) \\
v_{9}(3) & v_{9}(4) & v_{9}(5) & v_{9}(6) & v_{9}(7) & v_{9}(8) & v_{9}(9) & v_{9}(1) & v_{9}(2) \\
w_{9}(1) & w_{9}(2) & w_{9}(3) & w_{9}(4) & w_{9}(5) & w_{9}(6) & w_{9}(7) & w_{9}(8) & w_{9}(9) \\
w_{9}(4) & w_{9}(5) & w_{9}(6) & w_{9}(7) & w_{9}(8) & w_{9}(9) & w_{9}(1) & w_{9}(2) & w_{9}(3) \\
w_{9}(7) & w_{9}(8) & w_{9}(9) & w_{9}(1) & w_{9}(2) & w_{9}(3) & w_{9}(4) & w_{9}(5) & w_{9}(6)
\end{array}\right)
\end{gathered}
$$

Lemma 5. If $r \in[3,9]$, then $N_{r} \in \mathcal{M}\left(6, r, V_{r} \cup W_{r}\right)$.
Proof. By inspection of the matrix N_{r}.
Proposition 6. If $q \in[9,15]$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+6$.
Proof. The block matrix $M_{q}=\left(M_{6} N_{q-6}\right)$ belongs to $\mathcal{M}(6, q, C)$ with $C=$ $[1,18] \cup V_{q-6} \cup W_{q-6}$. To see it first realise that since the colourings $f_{M_{6}}$ and $f_{N_{q-6}}$ are proper (Proposition 4, Lemma 5), and $[1,18] \cap\left(V_{q-6} \cup W_{q-6}\right)=\emptyset$, the colouring $f_{M_{q}}$ is proper, too.

Next, we have to show that each pair $\{\alpha, \beta\} \in\binom{C}{2}$ is good in M_{q}. The colourings $f_{M_{6}}$ and $f_{N_{q-6}}$ are complete, hence it suffices to restrict our attention to $\alpha \in[1,18]$ and $\beta \in V_{q-6} \cup W_{q-6}$. In such a case $|\mathbb{R}(\alpha) \cap[1,3]|=1=|\mathbb{R}(\alpha) \cap[4,6]|$ and $\mathbb{R}(\beta) \in\{[1,3],[4,6]\}$ so that $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta) \neq \emptyset$, and the pair $\{\alpha, \beta\}$ is rowbased.

So, Proposition 2 yields $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq|C|=18+2(q-6)=2 q+6$.
For $l=0,1,2,3$, let $r_{l} \in[3,9]$, and let $N_{r_{l}}^{l}$ be the $6 \times r_{l}$ matrix obtained from $N_{r_{l}}$ in such a way that $v_{r_{l}}(k)$ is replaced with $v_{r_{l}}^{l}(k)$ and $w_{r_{l}}(k)$ is replaced with $w_{r_{l}}^{l}(k)$ for each $k \in\left[1, r_{l}\right]$; here we suppose that, given a fixed quadruple $\left(r_{0}, r_{1}, r_{2}, r_{3}\right)$, the sets $[1,12]$ and

$$
V_{r_{l}}^{l}=\left\{v_{r_{l}}^{l}(k): k \in\left[1, r_{l}\right]\right\}, W_{r_{l}}^{l}=\left\{w_{r_{l}}^{l}(k): k \in\left[1, r_{l}\right]\right\}, l=0,1,2,3,
$$

are pairwise disjoint. Further, let $\tilde{N}_{r_{l}}^{l}$ be the $6 \times r_{l}$ matrix obtained from $N_{r_{l}}^{l}$ by interchanging its rows l and $l+3, l=1,2,3$.

Proposition 7. If $q \in[16,40]$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+4$.

Proof. Since $4 \cdot 3=12 \leq q-4 \leq 36=4 \cdot 9$, there are integers $r_{l} \in[3,9]$, $l=0,1,2,3$, such that $\sum_{l=0}^{3} r_{l}=q-4$. Let us show that the block matrix $M_{q}=$ $\left(M_{4} N_{r_{0}}^{0} \tilde{N}_{r_{1}}^{1} \tilde{N}_{r_{2}}^{2} \tilde{N}_{r_{3}}^{3}\right)$ belongs to $\mathcal{M}(6, q, C)$ with $C=[1,12] \cup \bigcup_{l=0}^{3}\left(V_{r_{l}}^{l} \cup W_{r_{l}}^{l}\right)$.

By Lemma 5 and Proposition 3 we have $N_{r_{l}} \in \mathcal{M}\left(6, r_{l}, V_{r_{l}} \cup W_{r_{l}}\right)$ and $N_{r_{l}}^{l} \in$ $\mathcal{M}\left(6, r_{l}, V_{r_{l}}^{l} \cup W_{r_{l}}^{l}\right), l=0,1,2,3$, as well as $\tilde{N}_{r_{l}}^{l} \in \mathcal{M}\left(6, r_{l}, V_{r_{l}}^{l} \cup W_{r_{l}}^{l}\right), l=1,2,3$. The colouring f_{M} with $M \in\left\{M_{4}, N_{r_{0}}^{0} \tilde{N}_{r_{1}}^{1} \tilde{N}_{r_{2}}^{2} \tilde{N}_{r_{3}}^{3}\right\}$ is proper, and the sets [1, 12], $V_{r_{l}}^{l} \cup W_{r_{l}}^{l}, l=0,1,2,3$, are pairwise disjoint, hence the colouring $f_{M_{q}}$ is proper.

Now consider a pair $\{\alpha, \beta\} \in\binom{C}{2}$. If both α, β are either in $[1,12]$ or in $V_{r_{l}}^{l} \cup$ $W_{r_{l}}^{l}$ with $l \in[0,3]$, then the pair $\{\alpha, \beta\}$ is good in M_{q}, because the colourings $f_{M_{4}}$ and f_{M} with $M \in\left\{N_{r_{0}}^{0}, \tilde{N}_{r_{1}}^{1}, \tilde{N}_{r_{2}}^{2}, \tilde{N}_{r_{3}}^{3}\right\}$ are complete (Propositions 3, 4, Lemma 5).

In all remaining cases we show that $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta) \neq \emptyset$, which means that the pair $\{\alpha, \beta\}$ is row-based.

If $\alpha \in[1,12]$ and $\beta \in \bigcup_{l=0}^{3}\left(V_{r_{l}}^{l} \cup W_{r_{l}}^{l}\right)$, then $\mathbb{R}(\alpha) \in\{\{1,4\},\{2,5\},\{3,6\}\}$ and $\mathbb{R}(\beta) \in\{\{1,2,3\},\{1,2,6\},\{1,3,5\},\{1,5,6\},\{2,3,4\},\{2,4,6\},\{3,4,5\},\{4,5,6\}\}$ so that $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta) \neq \emptyset$ follows immediately.

If $\alpha \in V_{r_{0}}^{0}$ and $\beta \in \bigcup_{l=1}^{3} V_{r_{l}}^{l}$, then $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta)=[1,3] \backslash\{l\}$; similarly, with $\alpha \in W_{r_{0}}^{0}$ and $\beta \in \bigcup_{l=1}^{3} W_{r_{l}}^{l}$ we have $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta)=[4,6] \backslash\{l\}$.

If $\{i, j, k\}=[1,3], \alpha \in V_{r_{i}}^{i}$ and $\beta \in V_{r_{j}}^{j}$, then $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta)=\{k\}$; the same conclusion holds provided that $\{i, j, k\}=[4,6], \alpha \in W_{r_{i}}^{i}$ and $\beta \in W_{r_{j}}^{j}$.

If there is $l \in[1,3]$ such that either $\alpha \in V_{r_{0}}^{0}$ and $\beta \in W_{r_{l}}^{l}$ or $\alpha \in W_{r_{0}}^{0}$ and $\beta \in V_{r_{l}}^{l}$, then $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta)=\{l\}$.

Finally, $\alpha \in V_{r_{i}}^{i}$ with $i \in[1,3]$ and $\beta \in W_{r_{j}}^{j}$ with $j \in[1,3] \backslash\{i\}$ leads to $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta)=\{i+3\}$.

Thus the colouring $f_{M_{q}}$ is complete and $M_{q} \in \mathcal{M}(6, q, C)$. Since $|C|=$ $12+\sum_{l=0}^{3} 2 r_{l}=2 q+4$, by Proposition 2 we get $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+4$.

For a given $s \in[2, \infty)$ consider colour sets $U_{s}=\left\{u_{k}: k \in[1, s]\right\}$ with $U \in\{X, Y, Z, T\}$ such that the sets $[1,12], X_{s}, Y_{s}, Z_{s}$ and T_{s} are pairwise disjoint.

Proposition 8. If $q \in[42, \infty)$ and $q \equiv 0(\bmod 2)$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+4$. Proof. Let $s=\frac{q-4}{2}$, and let M_{q} be the $6 \times q$ matrix below. We show that $M_{q} \in \mathcal{M}(6, q, C)$ for $C=[1,12] \cup X_{s} \cup Y_{s} \cup Z_{s} \cup T_{s}$. Obviously, since $s \geq 19 \geq 2$, the colouring $f_{M_{q}}$ is proper.

$$
\left(\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & x_{1} & x_{2} & \cdots & x_{s-1} & x_{s} & y_{1} & y_{2} & \cdots & y_{s-1} & y_{s} \\
5 & 6 & 7 & 8 & x_{s} & x_{1} & \cdots & x_{s-2} & x_{s-1} & z_{1} & z_{2} & \cdots & z_{s-1} & z_{s} \\
9 & 10 & 11 & 12 & t_{1} & t_{2} & \cdots & t_{s-1} & t_{s} & x_{1} & x_{2} & \cdots & x_{s-1} & x_{s} \\
2 & 1 & 4 & 3 & z_{1} & z_{2} & \cdots & z_{s-1} & z_{s} & t_{1} & t_{2} & \cdots & t_{s-1} & t_{s} \\
7 & 8 & 5 & 6 & t_{s} & t_{1} & \cdots & t_{s-2} & t_{s-1} & y_{s} & y_{1} & \cdots & y_{s-2} & y_{s-1} \\
12 & 11 & 10 & 9 & y_{1} & y_{2} & \cdots & y_{s-1} & y_{s} & z_{s} & z_{1} & \cdots & z_{s-2} & z_{s-1}
\end{array}\right)
$$

Notice that M_{q} has a submatrix M_{4} (formed by the first four columns of M_{q}). The colouring $f_{M_{4}}$ is complete (Proposition 4), hence a pair $\{\alpha, \beta\} \in\binom{C}{2}$ is good in M_{q} provided that $\alpha, \beta \in[1,12]$. So, it remains to consider pairs $\{\alpha, \beta\}$ with $\alpha \in$ C and $\beta \in X_{s} \cup Y_{s} \cup Z_{s} \cup T_{s}$. Realise that $\mathbb{R}(\alpha) \in \mathcal{R}_{1} \cup \mathcal{R}_{2}$ and $\mathbb{R}(\beta) \in \mathcal{R}_{2}$, where $\mathcal{R}_{1}=\{\{1,4\},\{2,5\},\{3,6\}\}$ and $\mathcal{R}_{2}=\{\{1,2,3\},\{1,5,6\},\{2,4,6\},\{3,4,5\}\}$. As $R \cap R_{2} \neq \emptyset$ for any $R \in \mathcal{R}_{1} \cup \mathcal{R}_{2}$ and any $R_{2} \in \mathcal{R}_{2}$, the pair $\{\alpha, \beta\}$ is row-based.

Thus, by Proposition 2 we see that $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 4 s+12=2 q+4$.

3. Some Basic Facts Concerning Matrices in $\mathcal{M}(p, q, C)$

In this section we first reproduce those facts from [4] that are necessary for our paper.

Lemma 9 [4]. If $p, q \in[1, \infty), C$ is a finite set, $M \in \mathcal{M}(p, q, C)$ and $\gamma \in C$, then the following hold.

1. $\operatorname{frq}(\gamma) \leq \min (p, q)$.
2. $\operatorname{frq}(\gamma)=l$ implies $\operatorname{exc}(\gamma)=l(p+q-l-1)-(|C|-1) \geq 0$.
3. $\operatorname{frq}(M)=l$ implies $|C| \leq\left\lfloor\frac{p q}{l}\right\rfloor$.

Lemma 10 [4]. If $p, q \in[1, \infty), C$ is a finite set and $M \in \mathcal{M}(p, q, C)$, then $\operatorname{exc}(M)=\operatorname{exc}(\gamma)$, where $\gamma \in C$ satisfies $\operatorname{frq}(\gamma)=\operatorname{frq}(M)$.

Lemma 11 [4]. If $q \in[7, \infty), s \in[0,7], C$ is a set of cardinality $2 q+s$ and $M \in \mathcal{M}(6, q, C)$, then the following hold.

1. $c_{1}=0$.
2. $c_{l}=0$ for $l \in[7, \infty)$.
3. $c_{2} \geq 3 s$.
4. $c_{3+} \leq 2 q-2 s$.
5. $\sum_{i=3}^{6} i c_{i} \leq 6 q-6 s$.
6. $\operatorname{frq}(M)=2$.
7. $\operatorname{exc}(M)=7-s$.
8. $c_{4+} \leq c_{2}-3 s$.
9. $\{i, k\} \in\binom{[1,6]}{2}$ implies $r(i, k) \leq 8-s$.

Lemma 12. If $q \in[7, \infty)$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right) \leq 2 q+6$.
Proof. If our lemma is false, according to Theorem 1 and Proposition 2 there is a $(2 q+7)$-element set C and $M \in \mathcal{M}(6, q, C)$. By Lemma 11.3 and 11.7 then $c_{2} \geq 3 \cdot 7=21$ and $\operatorname{exc}(M)=0$. Further, by Proposition 3 we may suppose without loss of generality that $r_{2}(1) \geq r_{2}(i)$ for $i \in[2,6]$, which implies $6 r_{2}(1) \geq$
$\sum_{i=1}^{6} r_{2}(i)=2 c_{2}$ and $r_{2}(1) \geq\left\lceil\frac{2 c_{2}}{6}\right\rceil \geq 7$; we shall use on similar occasions (w) to indicate that it is Proposition 3, which is behind the fact that the generality is not lost. As a consequence there is $i \in[2,6]$ such that $r(1, i) \geq\left\lceil\frac{r_{2}(1)}{5}\right\rceil \geq 2$. With $\gamma \in \mathbb{R}(1, i)$ then each colour of $\mathbb{R}(1, i) \backslash\{\gamma\}$ contributes one to the excess of γ, hence we have $0=\operatorname{exc}(M)=\operatorname{exc}(\gamma) \geq r(1, i)-1 \geq 1$, a contradiction.

4. Solution

It turns out that the matrix constructions given by Propositions 4 and 6-8 are optimum from the point of view of $\operatorname{achr}\left(K_{6} \square K_{q}\right)$. The optimality was already known for $q=4$ (Horňák and Puntigán [7]) and $q=6$ (Bouchet [1]), while the rest of the present paper is devoted to the analysis of remaining q 's.

Theorem 13. $\operatorname{achr}\left(K_{6} \square K_{8}\right)=21$.
Proof. By Proposition 4 and Lemma 12 we know that $21 \leq \operatorname{achr}\left(K_{6} \square K_{8}\right) \leq 22$. Suppose that $\operatorname{achr}\left(K_{6} \square K_{8}\right)=22$; because of Proposition 2 there is a 22 -element set of colours C and a matrix $M \in \mathcal{M}(6,8, C)$. With $q=8$ and $s=6$ Lemma 11 yields $c_{2} \geq 18, c_{3+} \leq 4, \operatorname{frq}(M)=2, \operatorname{exc}(M)=1, c_{4+} \leq c_{2}-18$ and $r(i, k) \leq 2$ for $\{i, k\} \in\binom{[1,6]}{2}$. We are going to strengthen step by step the requirements on M to finally reach a conclusion that M cannot exist at all.

Claim 14. If $i \in[1,6]$ and $j \in[1,8]$, then $\left|\mathbb{R}_{2}(i) \cap \mathbb{C}(j)\right| \leq 2$.
Proof. Suppose that $\left|C_{2}^{\prime}\right| \geq 3$ for $C_{2}^{\prime}=\mathbb{R}_{2}(i) \cap \mathbb{C}(j)$. If $\alpha=(M)_{i, j} \in C_{2}$, then each colour of $C_{2}^{\prime} \backslash\{\alpha\}$ contributes one to the excess of α so that, by Lemma 10, $1=\operatorname{exc}(M)=\operatorname{exc}(\alpha) \geq\left|C_{2}^{\prime} \backslash\{\alpha\}\right| \geq 2$, a contradiction. On the other hand, if $\alpha \in C_{3+}$, then for any $\beta \in C_{2}^{\prime}$ we have $1=\operatorname{exc}(M)=\operatorname{exc}(\beta) \geq\left|C_{2}^{\prime} \backslash\{\beta\}\right| \geq 2$, a contradiction again.

Claim 15. If $\{i, k\} \in\binom{[1,6]}{2}$ and $\alpha, \beta \in \mathbb{R}_{2}(i, k), \alpha \neq \beta$, then $\operatorname{cov}(\alpha, \beta)=2$, so that $\{\alpha, \beta\} \subseteq \mathbb{C}(j)$ for both $j \in \operatorname{Cov}(\alpha, \beta)$.

Proof. Suppose (w) $i=1, k=2$ and $(M)_{1,1}=(M)_{2,2}=\alpha$. If $\operatorname{cov}(\alpha, \beta)=4$, $(\mathrm{w})(M)_{1,3}=(M)_{2,4}=\beta$. Denote $A=\mathbb{R}(1) \cup \mathbb{R}(2)$. From $\operatorname{exc}(\alpha)=\operatorname{exc}(\beta)=1$ it is clear that $|A|=14,|C \backslash A|=8$, and that, for both $l \in[1,2]$, each colour of $C \backslash A$ occupies a position in the set $[3,6] \times[2 l-1,2 l]$ (the colouring f_{M} is complete). Since $\left|(C \backslash A) \cap C_{2}\right|=|C \backslash A|-\left|(C \backslash A) \cap C_{3+}\right| \geq 8-c_{3+} \geq 4$, there is a colour $\gamma \in(C \backslash A) \cap C_{2}$. The neighbourhood of the 2-element vertex set $f_{M}^{-1}(\gamma)$ contains ten vertices belonging to $[3,6] \times[1,4]$, all coloured with seven colours of $(C \backslash A) \backslash\{\gamma\}$. As a consequence we obtain $1=\operatorname{exc}(M)=\operatorname{exc}(\gamma) \geq 10-7=3$, a contradiction.

If $\operatorname{cov}(\alpha, \beta)=3$, (w) $(M)_{1,2}=(M)_{2,3}=\beta$. With $B=\mathbb{R}(1) \cup \mathbb{R}(2) \cup \mathbb{C}(2)$ then $\operatorname{exc}(\alpha)=1$ implies $|B|=18$ and $|C \backslash B|=4$. Each colour $\gamma \in C \backslash B$ belongs to $\mathbb{C}(1) \cap \mathbb{C}(3)$ (both pairs $\{\gamma, \alpha\}$ and $\{\gamma, \beta\}$ are good in M) and satisfies $\operatorname{exc}(\gamma) \geq|(C \backslash B) \backslash\{\gamma\}|=3$, hence $\gamma \notin C_{2}$ and $\gamma \in C_{3+}$. Consequently, $c_{3+} \geq 4$, $c_{3+}=4, C \backslash B=C_{3+}, B=C_{2}, \delta=(M)_{1,3} \in C_{2}$, and the second copy of δ appears in $[3,6] \times[4,8]$ so that $\operatorname{exc}(\delta) \geq 2\left(\right.$ if $\delta=(M)_{m, n}$ with $(m, n) \in[3,6] \times[4,8]$, then both β and $(M)_{m, 1} \in C_{3+}$ contribute to the excess of δ), a contradiction.

If $\operatorname{Cov}(\alpha, \beta)=\{j, l\}$ for the 2-colours α, β of Claim 15, then (w) $\alpha=(M)_{i, j}=$ $(M)_{k, l}$ and $\beta=(M)_{i, l}=(M)_{k, j}$; we say that the set of 2-colours $\{\alpha, \beta\}$ forms an \mathbb{X}-configuration (in M): both copies of a colour $\gamma \in\{\alpha, \beta\}$ are diagonal to each other in the "rectangle" of the matrix M with corners $(i, j),(i, l),(k, j),(k, l)$, and this fact will be in the sequel for simplicity denoted by $\{\alpha, \beta\} \rightarrow \mathbb{X}$.

Claim 16. If $i \in[1,6]$, then $r_{2}(i)=6$ and $r_{3}(i)=2$.

Proof. Let (w) $r_{2}(1) \geq r_{2}(i)$ for each $i \in[2,6]$ and $r(1, i) \geq r(1, i+1)$ for each $i \in[2,5]$. Suppose that $r_{2}(1) \geq 7$. Then $2 \geq r(1,2) \geq\left\lceil\frac{r_{2}(1)}{5}\right\rceil=2$ so that $r(1,2)=2$. Moreover, $r(1,6) \leq\left\lfloor\frac{r_{2}(1)}{5}\right\rfloor=1$, and there is $p \in[2,5]$ such that $r(1, p)=2$ and $r(1, p+1) \leq 1$ (which implies $r(1, i) \leq 1$ for any $i \in[p+1,6])$. As $r_{2}(6)=8-r_{3+}(6) \geq 8-c_{3+} \geq 4$, we have $\left|\mathbb{R}_{2}(6) \backslash \mathbb{R}_{2}(1)\right|=\left|\mathbb{R}_{2}(6) \backslash \mathbb{R}(1,6)\right|=$ $r_{2}(6)-r(1,6)=\left[8-r_{3+}(6)\right]-r(1,6) \geq 4-1=3$, and there exists $\alpha \in \mathbb{R}_{2}(6) \backslash \mathbb{R}_{2}(1)$.

Consider a colour $\beta \in \mathbb{R}(i, k)$, where $1<i<k$. When counting the number of pairs $\{\beta, \gamma\}$ with $\gamma \in \mathbb{R}_{2}(1)$, that are good in M because of the copy of β in the m th row of $M, m \in\{i, k\}$, we see that $r(1, m)$ of them are row-based, and, by Claim 14, at most two of them are column-based. There is $i \in[2,5]$ such that $\alpha \in \mathbb{R}(i, 6)$. Proceeding as above we obtain that the number of pairs $\{\alpha, \gamma\}$ with $\gamma \in \mathbb{R}_{2}(1)$, that are good in M, is at most $\rho=[r(1, i)+2]+[r(1,6)+2] \leq 6+r(1,6)$. Observe that we cannot have $r(1,6) \leq r_{2}(1)-7$, because then $\rho \leq 6+\left[r_{2}(1)-7\right]<$ $r_{2}(1)$, a contradiction. Therefore, $1 \geq r(1,6) \geq r_{2}(1)-6 \geq 1, r(1,6)=1$ and $r_{2}(1)=7$. Now $p \leq 3$, because $p \geq 4$ would mean $7=r_{2}(1)=\sum_{i=2}^{6} r(1, i) \geq$ $2(p-1)+(6-p)=p+4 \geq 8$, a contradiction. Consequently, any colour $\delta \in C_{2} \backslash \mathbb{R}(1)$ needs a copy in a row $k \in[2, p]$; to see it realise that, under the assumption $\delta \in \mathbb{R}(a, b)$ with $a, b \in[p+1,6]$, the number of pairs $\{\delta, \gamma\}, \gamma \in \mathbb{R}_{2}(1)$, that are good in M, is at most $[r(1, a)+2]+[r(1, b)+2] \leq 2 \cdot 1+4<r_{2}(1)$, which is impossible. Thus $18 \leq c_{2} \leq 7+\sum_{i=2}^{p}\left[r_{2}(i)-r(1, i)\right] \leq 7+(p-1)(7-2)=$ $5 p+2 \leq 17$, a contradiction.

Since the assumption $r_{2}(1) \geq 7$ was false, we have $36 \geq \sum_{i=1}^{6} r_{2}(i)=2 c_{2} \geq$ 36. Therefore, $r_{2}(i)=6$ for each $i \in[1,6], c_{2}=18, c_{4+}=0, C=C_{2} \cup C_{3}$, and the proof follows.

By Claim 16, $c_{2}=\frac{6 \cdot 6}{2}=18$ and $c_{3}=\frac{6 \cdot 2}{3}=4$; moreover, for every $i \in[1,6]$ there is (at least one) $p_{i} \in[1,6] \backslash\{i\}$ such that $r\left(i, p_{i}\right)=\left\lceil\frac{6}{5}\right\rceil=2$. Then, by Claim $15, \mathbb{R}\left(i, p_{i}\right) \rightarrow \mathbb{X}$ for $i \in[1,6]$. Let $\tilde{C}_{2}=\{\alpha, \beta, \gamma, \delta\} \subseteq C_{2}$ be such that $\{\alpha, \beta\} \rightarrow \mathbb{X}$ and $\{\gamma, \delta\} \rightarrow \mathbb{X}$, where $\{\alpha, \beta\} \neq\{\gamma, \delta\}$ (which immediately yields $\{\alpha, \beta\} \cap\{\gamma, \delta\}=\emptyset)$. We have $\operatorname{cov}\left(\tilde{C}_{2}\right) \in[3,4]$, since with $\operatorname{cov}\left(\tilde{C}_{2}\right)=2$ each of β, γ, δ contributes one to the excess of α so that $\operatorname{exc}(\alpha) \geq 3$, a contradiction.

Thus $(\mathrm{w}) \operatorname{cov}(\alpha, \beta)=[1,2]$ and $\operatorname{cov}(\gamma, \delta)=[l, l+1]$, where $l \in[2,3]$. Then $\mathbb{C}(1) \cup \mathbb{C}(2) \subseteq C_{2}$ (because of $r_{3}(1)=r_{3}(2)=2$ and $\operatorname{exc}(\alpha)=1$, colours of C_{3} occupy four positions in $\mathbb{R}(1) \cup \mathbb{R}(2)$ and neither position in $\left.\mathbb{C}(1) \cup \mathbb{C}(2)\right)$, and, similarly, $\mathbb{C}(l) \cup \mathbb{C}(l+1) \subseteq C_{2}$. So, all 3-colours appear exclusively in $7-l$ columns of M numbered from $l+2$ to 8 . There is $j \in[l+2,8]$ such that $c_{3}(j) \geq\left\lceil\frac{3 c_{3}}{7-l}\right\rceil \geq\left\lceil\frac{12}{5}\right\rceil=3$, while $c_{2}(j) \geq 6-c_{3}=2$. If $\varepsilon \in \mathbb{C}_{2}(j) \cap \mathbb{R}(m, n)$, then 3colours occupy at least $r_{3}(m)+r_{3}(n)+\left[c_{3}(j)-1\right]=c_{3}(j)+3 \geq 6$ positions in $N\left(V_{\varepsilon}\right)$ (since $\varepsilon \in\left\{(M)_{m, j},(M)_{n, j}\right\}$, at least $c_{3}(j)-1$ positions in $[1,6] \times\{j\}$ occupied by 3 -colours are positions that are not in $\{m, n\}) \times[1,8])$, hence $\operatorname{exc}(\varepsilon) \geq 6-c_{3}=2$, a final contradiction for the proof of Theorem 13.

Theorem 17. If $q \in[9,15]$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right)=2 q+6$.
Proof. See Proposition 6 and Lemma 12.
Theorem 18. If either $q \in[42, \infty)$ and $q \equiv 0(\bmod 2)$ or $q \in[16,40]$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right)=2 q+4$.

Proof. We proceed by the way of contradiction. Since $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+4$ (Propositions 7 and 8), the assumption $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+5$ by Theorem 1 and Proposition 2 means that there is a colour set C with $|C|=2 q+5=2 q+s$ and a matrix $M \in \mathcal{M}(6, q, C)$. By Lemma 11 then $C=\bigcup_{l=2}^{6} C_{l}, c_{2} \geq 15$, $c_{3+} \leq 2 q-10, \sum_{i=3}^{6} i c_{i} \leq 6 q-30, \operatorname{frq}(M)=2=\operatorname{exc}(M), c_{4+} \leq c_{2}-15$, and $\{i, k\} \in\binom{[1,6]}{2}$ implies $r(i, k) \leq 3$. A contradiction is reached first for $q \geq 19$, then for $q \in[17,18]$, and finally for $q=16$.

Let G be an auxiliary graph G associated with M, in which $V(G)=[1,6]$ and $\{i, k\} \in E(G)$ if and only if $r(i, k) \geq 1$.
Claim 19. $\Delta(G) \leq 3$.
Proof. In [4] it has been proved that $\Delta(G) \geq 4$ together with $\operatorname{achr}\left(K_{6} \square K_{q}\right)=$ $2 q+s$ implies $q \leq 40-5 s=15$, a contradiction.

In [4] one can find also proofs of the following two claims.
Claim 20. If $\{i, j, k, l, m, n\}=[1,6]$ and $r(i, j, k) \geq 1$, then $r(l, m, n) \leq 9$.
Claim 21. If $\{i, j, k, l, m, n\}=[1,6], r(i, l) \geq 1, r(j, l) \geq 1$ and $r(k, l) \geq 1$, then $r(l, m, n) \geq q+3 s-24=q-9$.

Claim 22. If $\{i, j, k, l, m, n\}=[1,6], r(i, l) \geq 1, r(j, l) \geq 1$ and $r(k, l) \geq 1$, $\{a, b\} \in\binom{[1,6]}{2}$ and $r(a, b) \geq 1$, then $|\{i, j, k\} \cap\{a, b\}|=1=|\{l, m, n\} \cap\{a, b\}|$.

Proof. The assumptions of Claim 22 imply that $r(l, m, n) \geq q-9 \geq 7$ (see Claim 21). Consider a colour $\alpha \in \mathbb{R}(a, b)$.

If $\{a, b\} \subseteq\{i, j, k\}$, the number of pairs $\{\alpha, \beta\}, \beta \in \mathbb{R}(l, m, n)$, that are good in M (and necessarily column-based), is at most $3 \operatorname{cov}(\alpha)=6<r(l, m, n)$, a contradiction.

On the other hand, with $\{a, b\} \subseteq\{l, m, n\}$ each colour of $\mathbb{R}(l, m, n)$ contributes one to the excess of α so that $2=\operatorname{exc}(M)=\operatorname{exc}(\alpha) \geq r(l, m, n) \geq 7$, a contradiction again.

Therefore, $2=|\{i, j, k, l, m, n\} \cap\{a, b\}|=|\{i, j, k\} \cap\{a, b\}|+\mid\{l, m, n\} \cap$ $\{a, b\} \mid \leq 1+1=2$, and then $|\{i, j, k\} \cap\{a, b\}|=1=|\{l, m, n\} \cap\{a, b\}|$.

Claim 23. If $\{i, k\} \in\binom{[1,6]}{2}$, then $r(i, k) \leq 2$.
Proof. Let (w) $i=1, k=2, \operatorname{Cov}(\mathbb{R}(1,2))=[1, n]$, and assume (for a proof by contradiction) that $r(1,2)=3$ (see Lemma 11.9), which implies $n \in[3,6]$.

We are going to show that $A=C \backslash(\mathbb{R}(1) \cup \mathbb{R}(2)) \subseteq C_{3+}$. First observe that each colour $\alpha \in A$ occupies at least two positions in $S_{n}=[3,6] \times[1, n]$ (all pairs $\{\alpha, \beta\}, \beta \in \mathbb{R}(1,2)$, are good in $M)$, hence $|A| \leq\left\lfloor\frac{4 n}{2}\right\rfloor=2 n$. Moreover, from $|\mathbb{R}(1) \cap \mathbb{R}(2)| \geq r(1,2)$ we get $|\mathbb{R}(1) \cup \mathbb{R}(2)| \leq 2 q-3$. Consequently, $2 q+5=$ $|C|=|A|+|\mathbb{R}(1) \cup \mathbb{R}(2)| \leq|A|+(2 q-3)$ leads to $8 \leq|A| \leq 2 n$ and $n \in[4,6]$.

If $n=4$, then $|A|=8$, and any colour of A occupies exactly two positions in S_{4}. Suppose there is a colour $\alpha \in A \cap C_{2}$. If a vertex $(i, j) \in S_{4}$ belongs to $N\left(V_{\alpha}\right)$, then $(M)_{i, j} \in A \backslash\{\alpha\}$, hence $2=\operatorname{exc}(M)=\operatorname{exc}(\alpha) \geq 10-|A \backslash\{\alpha\}|=3$ (the set $N\left(V_{\alpha}\right)$ has 10 vertices in S_{4}), a contradiction. Therefore, $A \subseteq C_{3+}$.

If $n=5$, there is $j \in[1,5]$ such that $|\mathbb{C}(j) \cap \mathbb{R}(1,2)|=2$ and $|\mathbb{C}(l) \cap \mathbb{R}(1,2)|=1$ for $l \in[1,5] \backslash\{j\}$. Then $A=A_{2} \cup A_{3} \cup A_{4}$, where A_{l} consists of colours of A occupying l positions in S_{5}. With $a_{l}=\left|A_{l}\right|$ we obtain $a_{2} \leq 4$ (if $\alpha \in A_{2} \backslash \mathbb{C}(j)$, at least one of three pairs $\{\alpha, \beta\}$ with $\beta \in \mathbb{R}(1,2)$ is not good in M, a contradiction), $a_{3}+a_{4}=|A|-a_{2} \geq 8-4=4,16+a_{3}+a_{4} \leq 16+a_{3}+2 a_{4} \leq 2\left(a_{2}+a_{3}+a_{4}\right)+$ $a_{3}+2 a_{4}=\sum_{l=2}^{4} l a_{l}=4 \cdot 5=20, a_{3}+a_{4} \leq 20-16=4, a_{3}+a_{4}=4$, all six above expressions are 20, which implies $a_{4}=0, a_{3}=4=a_{2}$, and then all positions in S_{5} are occupied by colours of $A_{2} \cup A_{3}$. If $\operatorname{Cov}(\mathbb{R}(1,2) \backslash \mathbb{C}(j))=\{s, t\} \subseteq[1,5] \backslash\{j\}$, then $A_{2} \subseteq \mathbb{C}(j) \cup \mathbb{C}(s) \cup \mathbb{C}(t)$. For the set B of colours in $C_{2} \backslash A_{2}$ that are not in $[1,2] \times[1,5]$ we have $|B| \geq c_{2}-\left[(2|[1,5]|-3)+a_{2}\right] \geq 15-11=4$. However, the number of pairs $\{\alpha, \beta\}$ with $\alpha \in A_{2}$ and $\beta \in B$, that are good in M, is at most three (if $\beta \in \mathbb{R}(u), u \in[3,6]$, only $(M)_{u, j},(M)_{u, s}$ and $(M)_{u, t}$ are available as α), a contradiction.

If $n=6$, the frequency of each colour in $\alpha \in A$ is at least three, since all pairs $\{\alpha, \beta\}$ with $\beta \in \mathbb{R}(1,2)$ are column-based, and at most one of them satisfies the implication $\alpha \in \mathbb{C}(j) \Rightarrow \beta \in \mathbb{C}(j)$.

Thus $A \subseteq C_{3+}$ and $C_{2} \subseteq \mathbb{R}(1) \cup \mathbb{R}(2)$. For $l \in[1,6]$ let

$$
K(l)=\{m \in[1,6] \backslash\{l\}: r(l, m) \geq 1\}
$$

so that $\Delta(G) \leq 3$ (Claim 19) implies $|K(l)| \leq 3$. Further, for $l, m \in[1,6], l \neq m$, let $r_{2}^{-}(l, m)=\left|\mathbb{R}_{2}(l) \backslash \mathbb{R}_{2}(m)\right|$ be the number of 2 -colours which occur in row l but not row m. Observe that if $m \in K(l)$, then $r_{2}^{-}(l, m)=\sum_{p \in K(l) \backslash\{m\}} r(l, p) \leq$ $2 \cdot 3=6$.

The inclusion $C_{2} \subseteq \mathbb{R}(1) \cup \mathbb{R}(2)$ implies $c_{2}=r_{2}^{-}(1,2)+r_{2}^{-}(2,1)+r(1,2)$. Then $15 \leq c_{2}=r_{2}^{-}(1,2)+r_{2}^{-}(2,1)+r(1,2) \leq 2 \cdot 6+3=15$, hence $c_{2}=15, r_{2}^{-}(1,2)=$ $r_{2}^{-}(2,1)=6, r(1,2)=3, r_{2}(1)=r_{2}^{-}(1,2)+r(1,2)=9=r_{2}^{-}(2,1)+r(2,1)=r_{2}(2)$, $|K(l)|=3$ and $r(l, p)=3$ for each $p \in K(l), l=1,2$.

The last two facts imply in particular that $|K(1) \backslash\{2\}|=2$ and that $r_{1}(m)=3$ for both $m \in K(1) \backslash\{2\}$. This means that we can repeat the entire reasoning from the start of the proof of Claim 23 with the pair $(1, m)$ instead of the pair $(1,2)$. Among other things we obtain $r_{2}(m)=9$ for both $m \in K(1) \backslash\{2\} \subseteq[3,6]$. Together with $r_{2}(1)=r_{2}(2)=9$ we then have

$$
15=c_{2}=\frac{1}{2} \sum_{m=1}^{6} r_{2}(m) \geq \frac{4 \cdot 9}{2}=18
$$

a contradiction.
Claim 24. If $i \in[1,6]$, then $r_{2}(i) \leq 6$.
Proof. Since $\Delta(G) \leq 3$, the claim is a direct consequence of Claim 23.
Claim 25. The following statements are true.

1. $\Delta(G)=3$.
2. G is a subgraph of $K_{3,3}$.
3. $c_{2} \leq 18$.

Proof. 1. The assumption $\Delta(G) \leq 2$ would mean, by Claim 23, $r_{2}(i) \leq 2 \cdot 2=4$ for $i \in[1,6]$ and $15 \leq c_{2}=\frac{1}{2} \sum_{i=1}^{6} r_{2}(i) \leq \frac{6 \cdot 4}{2}=12$, a contradiction.
2. From Claims 25.1 and 22 it follows that there is a partition $\{I, K\}$ of $[1,6]$ satisfying $|I|=|K|=3$ such that $r(i, k) \geq 1$ with $\{i, k\} \in\binom{[1,6]}{2}$ implies $|\{i, k\} \cap I|=1=|\{i, k\} \cap K|$. Thus, G is a subgraph of $K_{3,3}$ with the bipartition $\{I, K\}$.
3. Finally, by Claim 23, $c_{2}=\sum_{i \in I} \sum_{k \in K} r(i, k) \leq 9 \cdot 2=18$.

Henceforth we suppose (w) that the bipartition of the graph $K_{3,3}$ from Claim 25.2 is $\{[1,3],[4,6]\}$, which leads to

$$
C_{2}=\bigcup_{i=1}^{3} \bigcup_{k=4}^{6} \mathbb{R}(i, k)
$$

Note that this assumption somehow restricts the meaning of (w) in the subsequent analysis, namely the bijection $\rho:[1,6] \rightarrow[1,6]$ in Proposition 3 should satisfy $\rho([1,3]) \in\{[1,3],[4,6]\}$.

Claim 26. There is at most one pair $(i, k) \in[1,3] \times[4,6]$ with $r(i, k)=0$.
Proof. If $|\{(i, k) \in[1,3] \times[4,6]: r(i, k)=0\}| \geq 2$, Claim 23 yields $15 \leq c_{2} \leq$ $7 \cdot 2=14$, a contradiction.

Claim 27. If $(i, j, k) \in\{(1,2,3),(4,5,6)\}$, then $7 \leq q-9 \leq r(i, j, k) \leq 9$.
Proof. From Claim 26 it immediately follows that $\max \left(\operatorname{deg}_{G}(p): p \in[1,3]\right)=$ $3=\max \left(\operatorname{deg}_{G}(p): p \in[4,6]\right)$. So, by Claims 21 and $20, q-9 \leq r(i, j, k) \leq 9$.

Use for an edge $\{i, k\}$ of the graph $K_{3,3}$ with bipartition $\{[1,3],[4,6]\}$ the label $r(i, k) \in[0,2]$ (see Claim 23). A colour $\alpha \in C_{2}$ corresponds to an edge $\{i, k\} \in E\left(K_{3,3}\right)$ if $\alpha \in \mathbb{R}(i, k)$, and α corresponds to a set $E \subseteq E\left(K_{3,3}\right)$ if there is $e \in E$ such that α corresponds to e. We denote by $\operatorname{Col}(E)$ the set of colours corresponding to E. Colours $\alpha, \beta \in C_{2}, \alpha \neq \beta$, are column-related (in M) provided that $\mathbb{R}(\alpha) \cap \mathbb{R}(\beta)=\emptyset$ (and, consequently, $|\mathbb{R}(\alpha) \cup \mathbb{R}(\beta)|=4)$; then the pair $\{\alpha, \beta\}$ is not row-based, and hence it is column-based (thus if 2-colours α, β are column-related, then the pair $\{\alpha, \beta\}$ is column-based, but not necessarily vice versa). Evidently, if $\left\{\gamma_{j}: j \in[1, l]\right\}$ is a set of pairwise column-related 2-colours, where $\gamma_{j} \in \mathbb{R}\left(i_{j}, k_{j}\right)$, then $r\left(i_{j}, k_{j}\right) \geq 1,\left\{i_{j}, k_{j}\right\} \in E\left(K_{3,3}\right),\left|\bigcup_{j \in[1, l]}\left\{i_{j}, k_{j}\right\}\right|=2 l$, $\left\{\left\{i_{j}, k_{j}\right\}: j \in[1, l]\right\}$ is a matching in $K_{3,3}$, and so $l \leq 3$. For a matching \mathcal{M} in $K_{3,3}$ we denote by $\operatorname{wt}(\mathcal{M})$ the weight of \mathcal{M}, i.e., the sum of labels of edges of \mathcal{M}.
Claim 28. If \mathcal{M}^{1} is a perfect matching in $K_{3,3}$, then there are perfect matchings \mathcal{M}^{2} and \mathcal{M}^{3} in $K_{3,3}$ such that $\left\{\mathcal{M}^{1}, \mathcal{M}^{2}, \mathcal{M}^{3}\right\}$ is a partition of $E\left(K_{3,3}\right)$ and $\mathrm{wt}\left(\mathcal{M}^{2}\right) \geq \mathrm{wt}\left(\mathcal{M}^{3}\right) ;$ moreover, $\bigcup_{s=1}^{3} \operatorname{Col}\left(\mathcal{M}^{s}\right)=C_{2}$ and $\sum_{s=1}^{3} \mathrm{wt}\left(\mathcal{M}^{s}\right)=c_{2}$.

Proof. The set $E\left(K_{3,3}\right) \backslash \mathcal{M}^{1}$ induces a 6 -vertex cycle C in $K_{3,3}$. Then $E(C)$ has a partition $\left\{\mathcal{M}^{2}, \mathcal{M}^{3}\right\}$ into perfect matchings of $K_{3,3}$ so that $\left\{\mathcal{M}^{1}, \mathcal{M}^{2}, \mathcal{M}^{3}\right\}$ is a partition of $E\left(K_{3,3}\right)$; without loss of generality we may suppose $\mathrm{wt}\left(\mathcal{M}^{2}\right) \geq$ $\mathrm{wt}\left(\mathcal{M}^{3}\right)$. Notice that each colour of C_{2} is in exactly one of the sets $\operatorname{Col}\left(\mathcal{M}^{s}\right) \subseteq C_{2}$, $s=1,2,3$, hence $C_{2}=\bigcup_{s=1}^{3} \operatorname{Col}\left(\mathcal{M}^{s}\right)$ and $c_{2}=\sum_{i=1}^{3} \sum_{k=4}^{6} r(i, k)=\sum_{s=1}^{3} \operatorname{wt}\left(\mathcal{M}^{s}\right)$.

Let A be a nonempty subset of C_{2}. We say that A is of type $t_{1}^{a_{1}} \cdots t_{p}^{a_{p}}$ if $|A| \geq t_{1} \geq \cdots \geq t_{p} \geq 1$, every column of M contains either 0 or exactly t_{s} colours of A for some $s \in[1, p]$, and a_{s} is the number of columns of M that contain
exactly t_{s} colours of A. Note that $\sum_{s=1}^{p} a_{s} t_{s}=2|A|$. Clearly, the type of A is unique.

Claim 29. Under the assumptions $\{i, j, k\}=\{1,2,3\},\{l, m, n\}=\{4,5,6\}, \alpha \in$ $\mathbb{R}(i, l), \beta \in \mathbb{R}(j, m)$ and $\gamma \in \mathbb{R}(k, n)$, the following statements are true.

1. If the set $\{\alpha, \beta, \gamma\}$ is of the type $t_{1}^{a_{1}} \cdots t_{p}^{a_{p}}$, then $\sum_{s=1}^{p} a_{s}\binom{t_{s}}{2} \geq 3$.
2. If $\operatorname{cov}(\alpha, \beta, \gamma) \leq 3$, then $\operatorname{cov}(\alpha, \beta, \gamma)=3$, each colour of $C_{2} \backslash\{\alpha, \beta, \gamma\}$ appears exactly once in the set $[1,6] \times \operatorname{Cov}(\alpha, \beta, \gamma)$, and $\bigcup_{s \in \operatorname{Cov}(\alpha, \beta, \gamma)} \mathbb{C}(s)=C_{2}$.
3. The type of the set $\{\alpha, \beta, \gamma\}$ is either $3^{1} 1^{3}$ or 2^{3}.

Proof. 1. The colours α, β, γ are pairwise column-related, hence each of the pairs $\{\alpha, \beta\},\{\alpha, \gamma\}$ and $\{\beta, \gamma\}$ is column-based; colours of such a pair share a column whose number is in $\operatorname{Cov}(\alpha, \beta, \gamma)$. A column of M containing exactly t_{s} colours of $\{\alpha, \beta, \gamma\}$ hosts exactly $\binom{t_{s}}{2}$ from among the above pairs, and so $\sum_{s=1}^{p} a_{s}\binom{t_{s}}{2} \geq 3$.
2. In the set $[1,6] \times \operatorname{Cov}(\alpha, \beta, \gamma)$ there are at most eighteen positions of which six are occupied by α, β, γ. Since $c_{2} \geq 15$, there are at least twelve other colours in C_{2}, and these must all occupy one of the remaining positions, otherwise for a colour $\delta \in C_{2} \backslash\{\alpha, \beta, \gamma\}$, that is out of $[1,6] \times \operatorname{Cov}(\alpha, \beta, \gamma)$, the number of $\varepsilon \in\{\alpha, \beta, \gamma\}$ such that the pair $\{\delta, \varepsilon\}$ is good in M, is only 2 (such pairs are row-based). Thus $\operatorname{cov}(\alpha, \beta, \gamma)=3, c_{2}=15$, each colour of $C_{2} \backslash\{\alpha, \beta, \gamma\}$ occupies exactly one position in $[1,6] \times \operatorname{Cov}(\alpha, \beta, \gamma)$, and the set of colours, that appear in $[1,6] \times \operatorname{Cov}(\alpha, \beta, \gamma)$, is equal to C_{2}, i.e., $\bigcup_{s \in \operatorname{Cov}(\alpha, \beta, \gamma)} \mathbb{C}(s)=C_{2}$.
3. Possible types of the set $\{\alpha, \beta, \gamma\}$ (that must satisfy Claim 29.1) are 3^{2}, $3^{1} 2^{1} 1^{1}, 3^{1} 1^{3}$ and 2^{3}. However, the type 3^{2} has to be excluded since $\operatorname{cov}(\alpha, \beta, \gamma)=$ 3 by Claim 29.2.

Suppose the set $\{\alpha, \beta, \gamma\}$ is of the type $3^{1} 2^{1} 1^{1}$. Observe that if $b \in \operatorname{Cov}(\alpha, \beta, \gamma)$ satisfies $\{\alpha, \beta, \gamma\} \cap \mathbb{C}(b)=\{\varepsilon\}$, there is (a unique) $a \in[1,6]$ such that $\{\alpha, \beta, \gamma\} \cap$ $\mathbb{R}(a)=\{\varepsilon\}$ and $\zeta=(M)_{a, b} \neq \varepsilon$. By Claim 29.2 then $\zeta \in C_{2}$, and the second copy of ζ is in $[1,6] \times([1, q] \backslash \operatorname{Cov}(\alpha, \beta, \gamma))$; so, the number of pairs $\{\zeta, \eta\}$ with $\eta \in\{\alpha, \beta, \gamma\} \backslash\{\varepsilon\}$, that are good in M (and necessarily row-based), is one, while $|\{\alpha, \beta, \gamma\} \backslash\{\varepsilon\}|=2$, a contradiction.

Claim 30. If $\{i, j, k\}=\{1,2,3\},\{l, m, n\}=\{4,5,6\}, \mathbb{R}(i, l)=\left\{\alpha_{1}, \alpha_{2}\right\}, \mathbb{R}(j, m)$ $=\left\{\beta_{1}, \beta_{2}\right\}, \gamma_{1} \in \mathbb{R}(k, n)$ and $a, b \in[1,2]$, then the set $\left\{\alpha_{a}, \beta_{b}, \gamma_{1}\right\}$ is of the type $3^{1} 1^{3}$.

Proof. If the claim is false, then, by Claim 29.3, (w) $\left\{\alpha_{1}, \beta_{1}, \gamma_{1}\right\}$ is of the type $2^{3}, \operatorname{Cov}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=[1,3]$, and, by Claim $29.2, \alpha_{2}$ occupies exactly one position in $[1,6] \times[1,3]$. Clearly, α_{2} appears in the column of M containing both β_{1} and γ_{1} (the pair $\left\{\beta_{1}, \gamma_{1}\right\}$ is column-based), for otherwise $\left\{\alpha_{2}, \beta_{1}, \gamma_{1}\right\}$ would be of the type $2^{2} 1^{2}$, which is impossible by Claim 29.3; so, by the same claim, $\left\{\alpha_{2}, \beta_{1}, \gamma_{1}\right\}$ is of the type $3^{1} 1^{3},(\mathrm{w}) \operatorname{Cov}\left(\alpha_{2}, \beta_{1}, \gamma_{1}\right)=[1,4]$.

Proceeding similarly as above we see that β_{2} appears in the column containing α_{1}, γ_{1}, and $\left\{\alpha_{1}, \beta_{2}, \gamma_{1}\right\}$ is of the type $3^{1} 1^{3}$, so that the pair $\left\{\alpha_{2}, \beta_{2}\right\}$ can be good in M only if $\left\{\alpha_{2}, \beta_{2}\right\} \subseteq \mathbb{C}(4)$. Consequently, $\left\{\alpha_{2}, \beta_{2}, \gamma_{1}\right\}$ is of the type 2^{3}. If $\left\{\alpha_{1}, \beta_{1}\right\} \subseteq \mathbb{C}(b), b \in[1,3]$, then $\operatorname{Cov}\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right)=[1,4] \backslash\{b\}$, so that, by Claim 29.2, $\mathbb{C}(b), \mathbb{C}(4) \subseteq C_{2}$ and $\mathbb{C}(b, 4)=\mathbb{C}(b) \backslash\left\{\alpha_{1}, \beta_{1}\right\}=\mathbb{C}(4) \backslash\left\{\alpha_{2}, \beta_{2}\right\}$. In such a case any colour $\delta \in \mathbb{C}(b, 4) \subseteq C_{2}$ satisfies $2=\operatorname{exc}(\delta) \geq|\mathbb{C}(b, 4) \backslash\{\delta\}|=3$, a contradiction.

From Claim 30 we see that if \mathcal{M} is a perfect matching in $K_{3,3}$ with $\mathrm{wt}(\mathcal{M}) \geq 5$ and colours $\alpha, \beta, \gamma \in \operatorname{Col}(\mathcal{M})$ are pairwise column-related, then the set $\{\alpha, \beta, \gamma\}$ is of the type $3^{1} 1^{3}$.

Claim 31. Under the assumptions $\{i, j, k\}=[1,3],\{l, m, n\}=[4,6], \mathbb{R}(i, l)=$ $\left\{\alpha_{1}, \alpha_{2}\right\}, \mathbb{R}(j, m)=\left\{\beta_{1}, \beta_{2}\right\}, \mathbb{R}(k, n) \in\left\{\left\{\gamma_{1}\right\},\left\{\gamma_{1}, \gamma_{2}\right\}\right\}$ and $C_{2}^{1}=\mathbb{R}(i, l) \cup$ $\mathbb{R}(j, m) \cup \mathbb{R}(k, n)$, the following statements are true.

1. There is $a \in[1, q]$ such that $C_{2}^{1} \subseteq \mathbb{C}(a)$.
2. If colours $\delta, \varepsilon \in C_{2}^{1}, \delta \neq \varepsilon$, are column-related, then $\operatorname{cov}(\delta, \varepsilon)=3$.
3. If $\delta \in\{\alpha, \beta\}, C_{2}^{1} \subseteq \mathbb{C}(a)$ and $\operatorname{Cov}\left(\delta_{1}, \delta_{2}\right)=\{a, b, d\}$, then $|\mathbb{C}(b) \cap \mathbb{C}(d)|=3$ and $\mathbb{C}(b, d) \neq \emptyset$.
4. $\left\{\alpha_{1}, \alpha_{2}\right\} \rightarrow \mathbb{X}$ and $\left\{\beta_{1}, \beta_{2}\right\} \rightarrow \mathbb{X}$.
5. If $\mathbb{R}(k, n)=\left\{\gamma_{1}, \gamma_{2}\right\}$, then $\left\{\gamma_{1}, \gamma_{2}\right\} \rightarrow \mathbb{X}$.
6. $\operatorname{cov}\left(C_{2}^{1}\right)=4$.
7. If $\delta \in C_{2} \backslash C_{2}^{1}$, then δ is in $[1,6] \times \operatorname{Cov}\left(C_{2}^{1}\right)$.

Proof. Consider the perfect matching $\mathcal{M}^{1}=\{\{i, l\},\{j, m\},\{k, n\}\}$. From the assumptions of Claim 31 we get $5 \leq \operatorname{wt}\left(\mathcal{M}^{1}\right) \leq 6$.

1. By Claim 30 we know that (among others) all of the following sets are of the type $3^{1} 1^{3}$: $\left\{\alpha_{1}, \beta_{1}, \gamma_{1}\right\},\left\{\alpha_{2}, \beta_{1}, \gamma_{1}\right\},\left\{\alpha_{1}, \beta_{2}, \gamma_{1}\right\}$ and $\left\{\alpha_{1}, \beta_{1}, \gamma_{2}\right\}$ (provided that $\left.\gamma_{2} \in \mathbb{R}(k, n)\right)$. Then there is $a \in[1, q]$ with $\left\{\alpha_{1}, \beta_{1}, \gamma_{1}\right\} \subseteq \mathbb{C}(a)$. Now $\left|\left\{\alpha_{2}, \beta_{1}, \gamma_{1}\right\} \cap \mathbb{C}(a)\right| \geq 2>1$, hence $\left|\left\{\alpha_{2}, \beta_{1}, \gamma_{1}\right\} \cap \mathbb{C}(a)\right|=3$ and $\alpha_{2} \in \mathbb{C}(a)$. A similar reasoning shows that $\beta_{2} \in \mathbb{C}(a)$ as well as $\gamma_{2} \in \mathbb{C}(a)$ (under the assumption $\left.\gamma_{2} \in \mathbb{R}(k, n)\right)$.

Before proceeding further let us mention that, by Claim 31.1, if \mathcal{M} is a perfect matching in $K_{3,3}$ with $\operatorname{wt}(\mathcal{M}) \geq 5$, then all colours of $\operatorname{Col}(\mathcal{M})$ occur in (exactly) one of columns of M.
2. There are $s, t, u \in\{1,2\}$ such that $\{\delta, \varepsilon\} \subseteq\left\{\alpha_{s}, \beta_{t}, \gamma_{u}\right\}$. Therefore, the statement is a direct consequence of Claim 31.1 and the fact that, by Claim 30, the set $\left\{\alpha_{s}, \beta_{t}, \gamma_{u}\right\}$ is of the type $3^{1} 1^{3}$.
3. If $\delta=\alpha, \operatorname{Cov}\left(\alpha_{1}, \alpha_{2}\right)=\{a, b, d\}$ and $\varepsilon \in C^{\prime}=C \backslash(\mathbb{R}(i) \cup \mathbb{R}(l) \cup \mathbb{C}(a))$, then, as both pairs $\left\{\varepsilon, \alpha_{1}\right\}$ and $\left\{\varepsilon, \alpha_{2}\right\}$ are good in M, we get $\varepsilon \in \mathbb{C}(b) \cap \mathbb{C}(d)$. Consequently, $|\mathbb{C}(b) \cap \mathbb{C}(d)| \geq\left|C^{\prime}\right| \geq 2 q+5-(2 q-2+4)=3$; further, by Claim 24,
$\left|(\mathbb{R}(i) \cup \mathbb{R}(l) \cup \mathbb{C}(a)) \cap C_{2}\right| \leq 2 \cdot 6-2+4=14<c_{2}$, and so C^{\prime} contains a 2-colour ζ. Having in mind that $\zeta \in \mathbb{C}(b, d)$ and $2=\operatorname{exc}(\zeta) \geq|(\mathbb{C}(b) \cap \mathbb{C}(d)) \backslash\{\zeta\}| \geq$ $\left|C^{\prime} \backslash\{\zeta\}\right| \geq 2$, we obtain $|\mathbb{C}(b) \cap \mathbb{C}(d)|=3$.

An analogous reasoning applies in the case $\delta=\beta$ and $\operatorname{Cov}\left(\beta_{1}, \beta_{2}\right)=\{a, b, d\}$.
4. By Claim 31.1 there is $a \in[1, q]$ with $C_{2}^{1} \subseteq \mathbb{C}(a)$, hence $2 \leq \operatorname{cov}\left(\alpha_{1}, \alpha_{2}\right) \leq$ 3. Suppose that $\operatorname{cov}\left(\alpha_{1}, \alpha_{2}\right)=3$ (which means that $\left\{\alpha_{1}, \alpha_{2}\right\} \rightarrow \mathbb{X}$ is not true) and $\operatorname{Cov}\left(\alpha_{1}, \alpha_{2}\right)=\{a, b, d\}$. By Claim 31.3 then $|\mathbb{C}(b) \cap \mathbb{C}(d)|=3$, and there is (a 2 -colour) $\varepsilon \in \mathbb{C}(b, d)$.

By Claim 28 there exists a partition $\left\{\mathcal{M}^{1}, \mathcal{M}^{2}, \mathcal{M}^{3}\right\}$ of $E\left(K_{3,3}\right)$ into perfect matchings in $K_{3,3}, \bigcup_{s=1}^{3} \operatorname{Col}\left(\mathcal{M}^{s}\right)=C_{2}$ and $\operatorname{wt}\left(\mathcal{M}^{2}\right) \geq \operatorname{wt}\left(\mathcal{M}^{3}\right)$. Let $C_{2}^{s}=$ $\operatorname{Col}\left(\mathcal{M}^{s}\right), s=2,3$, so that $\left\{C_{2}^{1}, C_{2}^{2}, C_{2}^{3}\right\}$ is a partition of C_{2}; then there is $p \in[2,3]$ with $\varepsilon \in C_{2}^{p}$. Note that $\left\{\mathcal{M}^{2}, \mathcal{M}^{3}\right\}=\left\{\mathcal{M}^{p}, \mathcal{M}^{5-p}\right\}$ and $\left\{C_{2}^{2}, C_{2}^{3}\right\}=\left\{C_{2}^{p}, C_{2}^{5-p}\right\}$.

Let us show that $\operatorname{wt}\left(\mathcal{M}^{p}\right) \leq 4$. Indeed, with $\operatorname{wt}\left(\mathcal{M}^{p}\right)=\left|\operatorname{Col}\left(\mathcal{M}^{p}\right)\right| \geq 5$, by Claim 31.1 all colours of $C_{2}^{p}=\operatorname{Col}\left(\mathcal{M}^{p}\right)$ occur in one of columns of M, say in the column e. Since $\varepsilon \in C_{2}^{p}$, we have necessarily $e \in\{b, d\}$. The column e contains exactly one of colours α_{1}, α_{2} of C_{2}^{1} and all colours of C_{2}^{p} (thus 2colours only), which implies $\mathbb{C}(b) \cap \mathbb{C}(d)=\mathbb{C}(b) \cap \mathbb{C}(d) \cap \mathbb{C}(e) \subseteq \mathbb{C}(e) \subseteq C_{2}$, $\mathbb{C}(b, d)=C_{2} \cap \mathbb{C}(b) \cap \mathbb{C}(d)=\mathbb{C}(b) \cap \mathbb{C}(d)$ and $|\mathbb{C}(b, d)|=3$. From among three colours of $\mathbb{C}(b) \cap \mathbb{C}(d) \subseteq \mathbb{C}(e)$ at least two appear in one of two "halves" of the column e (the "upper half" and the "lower half"); more precisely, there is $I \in\{[1,3],[4,6]\}$ such that the colours of $\mathbb{C}(b, d)$ occupy at least two positions in $I \times\{e\}$. Let ζ, η be distinct colours of $\mathbb{C}(b, d)$ occupying two positions in $I \times\{e\}$. Then the remaining copies of ζ, η occupy two positions in $([1,6] \backslash I) \times\{f\}$, where $\{b, d\}=\{e, f\}$. Thus $|\mathbb{R}(\zeta) \cup \mathbb{R}(\eta)|=4$, and so the colours ζ, η are column-related. The colours ζ and η correspond to e_{1} and e_{2}, repectively, with $e_{1}, e_{2} \in \mathcal{M}^{p}$, $e_{1} \neq e_{2}$. If $\mathcal{M}^{p}=\left\{e_{1}, e_{2}, e_{3}\right\}$, from Claim 23 we know that the label of the edge e_{3} is either 1 or 2 ; let ϑ be a colour of C_{2}^{p} that corresponds to e_{3}. The colours ζ, η, ϑ are pairwise column-related. Therefore, by Claim 30, the set $\{\zeta, \eta, \vartheta\}$ is of the type $3^{1} 1^{3}$. This, however, is contradicted by the following two facts: $|\{\zeta, \eta, \vartheta\} \cap \mathbb{C}(e)|=3$ and $|\{\zeta, \eta, \vartheta\} \cap \mathbb{C}(f)| \geq|\{\zeta, \eta\}|=2>1$.

Since $\operatorname{wt}\left(\mathcal{M}^{1}\right) \in[5,6]$ and Claim 28 yields $\sum_{s=1}^{3} \operatorname{wt}\left(\mathcal{M}^{s}\right)=c_{2} \geq 15$, we have $\operatorname{wt}\left(\mathcal{M}^{5-p}\right)=c_{2}-\operatorname{wt}\left(\mathcal{M}^{1}\right)-\operatorname{wt}\left(\mathcal{M}^{p}\right) \geq 15-6-4=5$. By Claim 31.1 all colours of $C_{2}^{5-p}=\operatorname{Col}\left(\mathcal{M}^{5-p}\right)$ occur in one of columns of M, say in the column e. From $C_{2}^{1} \cap C_{2}^{5-p}=\emptyset$ it follows that $e \neq a$. Further, note that $\mathbb{C}(b)$ contains $\varepsilon \in C_{2}^{p}$ as well as one of colours $\alpha_{1}, \alpha_{2} \in C_{2}^{1}$, and the same is true for $\mathbb{C}(d)$; as a consequence of $\left|C_{2}^{5-p}\right|=\operatorname{wt}\left(\mathcal{M}^{5-p}\right) \geq 5$ then $e \notin\{b, d\}$. Consider $e_{1}, e_{2} \in \mathcal{M}^{5-p}$ with $i \in e_{1}$ and $l \in e_{2}$. Having in mind that $\{i, l\} \in \mathcal{M}^{1}$, we obtain $e_{1} \neq e_{2}$. If $\mathcal{M}^{5-p}=$ $\left\{e_{1}, e_{2}, e_{3}\right\}$, then the edge e_{3} is labelled with either 1 or 2 . Observe that there is a colour $\zeta \in C_{2}^{5-p}$ corresponding to e_{3}, which does not belong to $\mathbb{C}(a)$. This is clear if $\operatorname{wt}\left(\mathcal{M}^{1}\right)=6$, when $\mathbb{C}(a) \cap \operatorname{Col}\left(\mathcal{M}^{5-p}\right)=\operatorname{Col}\left(\mathcal{M}^{1}\right) \cap \operatorname{Col}\left(\mathcal{M}^{5-p}\right)=\emptyset$. On the other hand, with $\operatorname{wt}\left(\mathcal{M}^{1}\right)=5$ we have $\operatorname{wt}\left(\mathcal{M}^{5-p}\right)=6$, the edge e_{3} is labelled with

2 , and for the choice of ζ there are two possibilities, at least one of which satisfies the above requirement: $\mathbb{C}(a)$ contains at most one colour of $\operatorname{Col}\left(\mathcal{M}^{5-p}\right)$. Now it is clear that no pair $\left\{\zeta, \alpha_{s}\right\}$ with $s \in[1,2]$ is row-based (because $\mathbb{R}\left(\alpha_{1}\right)=\mathbb{R}\left(\alpha_{2}\right)=$ $\{i, l\}$ and $\mathbb{R}(\zeta) \cap\{i, l\}=\emptyset)$. As a consequence both pairs $\left\{\zeta, \alpha_{1}\right\},\left\{\zeta, \alpha_{2}\right\}$ are necessarily column-based. However, from $e \in \operatorname{Cov}(\zeta), e \notin \operatorname{Cov}\left(\alpha_{1}, \alpha_{2}\right)=\{a, b, d\}$ and $a \notin \operatorname{Cov}(\zeta)$ it follows that $\operatorname{Cov}(\zeta) \cap \operatorname{Cov}\left(\alpha_{1}, \alpha_{2}\right)=\operatorname{Cov}(\zeta) \cap\{b, d\}$ and $|\operatorname{Cov}(\zeta) \cap\{b, d\}| \leq 1 ;$ since $\left|\mathbb{C}(b) \cap\left\{\alpha_{1}, \alpha_{2}\right\}\right|=1=\left|\mathbb{C}(d) \cap\left\{\alpha_{1}, \alpha_{2}\right\}\right|$, the number of pairs $\left\{\zeta, \alpha_{1}\right\},\left\{\zeta, \alpha_{2}\right\}$, that are good in M, is at most 1 , a contradiction.

Thus $\operatorname{cov}\left(\alpha_{1}, \alpha_{2}\right)=2$ and $\left\{\alpha_{1}, \alpha_{2}\right\} \rightarrow \mathbb{X}$.
The assumption $\operatorname{cov}\left(\beta_{1}, \beta_{2}\right)=3$ leads to a contradiction similarly as above, hence $\operatorname{cov}\left(\beta_{1}, \beta_{2}\right)=2$ and $\left\{\beta_{1}, \beta_{2}\right\} \rightarrow \mathbb{X}$.
5. Use Claim 31.4 with $\left\{\gamma_{1}, \gamma_{2}\right\}$ in the role of $\left\{\alpha_{1}, \alpha_{2}\right\}$.
6. This claim is a consequence of Claim 31.2, Claim 31.4 and Claim 31.5, where the last one applies only if $\mathbb{R}(k, n)=\left\{\gamma_{1}, \gamma_{2}\right\}$.
7. If $\delta \in C_{2} \backslash C_{2}^{1}$ occupies only (two) positions in $[1,6] \times\left([1, q] \backslash \operatorname{Cov}\left(C_{2}^{1}\right)\right.$), then the number of pairs $\{\delta, \varepsilon\}$ with $\varepsilon \in\left\{\alpha_{1}, \beta_{1}, \gamma_{1}\right\}$, that are good in M (and necessarily row-based), is $2<3=\left|\left\{\alpha_{1}, \beta_{1}, \gamma_{1}\right\}\right|$, a contradiction.

Let $C_{3}^{*}=C_{3} \backslash(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6)), c_{3}^{*}=\left|C_{3}^{*}\right|$ and $\rho_{3}=r(1,2,3)+r(4,5,6)$ so that $c_{3}=\rho_{3}+c_{3}^{*}$ and $\rho_{3} \leq 18$ (see Claim 27).

Claim 32. If $\rho_{3} \geq 15$, then $\operatorname{cov}(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6)) \leq 9$.
Proof. Suppose $r(1,2,3) \geq r(4,5,6)$ and observe that if $j \in \operatorname{Cov}(\mathbb{R}(1,2,3) \cup$ $\mathbb{R}(4,5,6))$, then $\mathbb{R}(1,2,3) \cap \mathbb{C}(j) \neq \emptyset$ and $\mathbb{R}(4,5,6) \cap \mathbb{C}(j) \neq \emptyset$ as well. Indeed, if $\delta \in \mathbb{R}(1,2,3) \cap \mathbb{C}(j)$ and $\mathbb{R}(4,5,6) \cap \mathbb{C}(j)=\emptyset$, then the number of pairs $\{\delta, \varepsilon\}$ with $\varepsilon \in \mathbb{R}(4,5,6)$, that are good in M (they must be column-based), is at most $3|\operatorname{Cov}(\delta) \backslash\{j\}|=6<7 \leq q-9 \leq r(4,5,6)$ (Claim 27), a contradiction. A similar contradiction can be reached under the assumption $\mathbb{R}(4,5,6) \cap \mathbb{C}(j) \neq \emptyset$ and $\mathbb{R}(1,2,3) \cap \mathbb{C}(j)=\emptyset . \quad$ So, $\operatorname{cov}(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6))=\operatorname{cov}(\mathbb{R}(1,2,3))=$ $\operatorname{cov}(\mathbb{R}(4,5,6))$.

Claim 27 yields $r(1,2,3) \leq 9$. Suppose first that $r(1,2,3)=9$. In the case $\operatorname{cov}(\mathbb{R}(1,2,3)) \leq 9$ the claim is proved. If $\operatorname{cov}(\mathbb{R}(1,2,3)) \geq 10$, there is $j \in$ $\operatorname{Cov}(\mathbb{R}(1,2,3))$ with $|\mathbb{R}(1,2,3) \cap \mathbb{C}(j)| \leq 2$. In such a case for $\varepsilon \in \mathbb{R}(4,5,6) \cap \mathbb{C}(j)$ the number of pairs $\{\varepsilon, \delta\}$ with $\delta \in \mathbb{R}(1,2,3)$, that are good in M, is at most $2+3+3<r(1,2,3)$, a contradiction.

Thus $9>r(1,2,3) \geq \frac{1}{2}[r(1,2,3)+r(4,5,6)]=\frac{\rho_{3}}{2} \geq \frac{15}{2}>7, r(1,2,3)=8$ and $8 \geq r(4,5,6) \geq 7$. If $\operatorname{cov}(\mathbb{R}(1,2,3)) \geq 10$ and $j \in \operatorname{Cov}(\mathbb{R}(1,2,3))$, then necessarily $|\mathbb{R}(1,2,3) \cap \mathbb{C}(j)| \geq 2$, for otherwise $r(1,2,3) \leq 1+2 \cdot 3=7<r(1,2,3)$. Consequently, $m=|\{j \in[1, q]:|\mathbb{R}(1,2,3) \cap \mathbb{C}(j)|=3\}| \leq 4$, because $m \geq 5$ implies that the number of positions in M occupied by colours of $\mathbb{R}(1,2,3)$ is $3 m+2[\operatorname{cov}(\mathbb{R}(1,2,3))-m]=2 \operatorname{cov}(\mathbb{R}(1,2,3))+m \geq 20+5=25>24=3 r(1,2,3)$,
a contradiction. For each colour $\zeta \in \mathbb{R}(4,5,6)$ we have $n(\zeta)=\mid\{j \in[1, q]$: $|\mathbb{R}(1,2,3) \cap \mathbb{C}(j)|=3, \zeta \in \mathbb{C}(j)\} \mid \geq 2$, since $n(\zeta) \leq 1$ leads to $r(1,2,3) \leq$ $3 n(\zeta)+2[3-n(\zeta)]=6+n(\zeta) \leq 7<8=r(1,2,3)$. Then the number of colours $\zeta \in \mathbb{R}(4,5,6)$, for which all pairs $\{\zeta, \delta\}$ with $\delta \in \mathbb{R}(1,2,3)$ are good in M, is at most $\left\lfloor\frac{3 m}{2}\right\rfloor \leq\left\lfloor\frac{3 \cdot 4}{2}\right\rfloor=6<7 \leq r(4,5,6)$; in other words, there is $\zeta \in \mathbb{R}(4,5,6)$ and $\delta \in \mathbb{R}(1,2,3)$ such that the pair $\{\zeta, \delta\}$ is not good in M, a contradiction.

The case $r(1,2,3)<r(4,5,6)$ can be treated analogously.

Claim 33. No perfect matching of $K_{3,3}$ is of weight 6.

Proof. Suppose that $\operatorname{wt}\left(\mathcal{M}^{1}\right)=6$, where (w) $\mathcal{M}^{1}=\{\{i, 7-i\}: i=1,2,3\}$, and let $\alpha \in \mathbb{R}(1,6), \beta \in \mathbb{R}(2,5), \gamma \in \mathbb{R}(3,4)$. By Claim 28 there exists a partition $\left\{\mathcal{M}^{1}, \mathcal{M}^{2}, \mathcal{M}^{3}\right\}$ of $E\left(K_{3,3}\right)$ into perfect matchings in $K_{3,3}, \bigcup_{s=1}^{3} \operatorname{Col}\left(\mathcal{M}^{s}\right)=C_{2}$, $\sum_{s=1}^{3} \operatorname{wt}\left(\mathcal{M}^{s}\right)=c_{2} \geq 15$ and $\operatorname{wt}\left(\mathcal{M}^{2}\right) \geq \mathrm{wt}\left(\mathcal{M}^{3}\right)$, hence $\mathrm{wt}\left(\mathcal{M}^{2}\right)+\mathrm{wt}\left(\mathcal{M}^{3}\right)=c_{2}-$ $6 \geq 9$ and $\operatorname{wt}\left(\mathcal{M}^{2}\right) \geq 5$. Let $C_{2}^{s}=\operatorname{Col}\left(\mathcal{M}^{s}\right), s=1,2,3$. Using Claims 31.1 and 31.4-6 we get (w) $C_{2}^{1}=\mathbb{C}(1), \operatorname{Cov}\left(C_{2}^{1}\right)=[1,4]$ and $C_{2}^{2} \subseteq \mathbb{C}(5)$ (each of columns $2,3,4$ contains two colours of $\left.C_{2}^{1}\right)$. Further, as a consequence of Claim 31.7, and the fact that $C_{2}^{1}=\mathbb{C}(1)$, any colour of C_{2} occupies a position in $[1,6] \times\left(\operatorname{Cov}\left(C_{2}^{1}\right) \backslash\right.$ $\{1\})=[1,6] \times[2,4]$.

Now consider an arbitrary colour $\varepsilon \in C_{3}^{*}$. There are three distinct integers $a, b, d \in[1,6]$ and a set $I \in\{[1,3],[4,6]\}$ such that $a, b \in I, d \in[1,6] \backslash I$ and $\varepsilon \in \mathbb{R}(a, b, d)$. Let us show that the colour ε occupies a position in $[1,6] \times[2,5]$. Suppose this is not true so that every pair $\{\varepsilon, \zeta\}$ with $\zeta \in C_{2}^{1} \cup C_{2}^{2}$ is rowbased. Then $I=\{a, b, 7-d\}$; otherwise, if $7-d \in\{a, b\}$, then $\{d, 7-d\} \subseteq$ $\{a, 7-a\} \cup\{b, 7-b\}$, there is $\zeta \in\{\alpha, \beta, \gamma\}$ with $\mathbb{R}(\zeta) \cap(\{a, 7-a\} \cup\{b, 7-b\})=\emptyset$, which leads to $\mathbb{R}(\varepsilon) \cap \mathbb{R}(\zeta)=\{a, b, d\} \cap \mathbb{R}(\zeta) \subseteq(\{a, 7-a\} \cup\{b, 7-b\}) \cap \mathbb{R}(\zeta)=\emptyset$, and the pair $\{\varepsilon, \zeta\}$ is not good in M, a contradiction. Thus $I=\{a, b, 7-d\}$ and $[1,6] \backslash I=\{d, x, y\}$. The set $\{\{7-d, d\},\{7-d, x\},\{7-d, y\}\}$ is a transversal of the collection $\left\{\mathcal{M}^{1}, \mathcal{M}^{2}, \mathcal{M}^{3}\right\}$ of pairwise disjoint perfect matchings of $K_{3,3}$, hence there is $z \in\{x, y\}$ with $\{7-d, z\} \in \mathcal{M}^{2}$ and $\mathbb{R}(7-d, z) \subseteq C_{2}^{2}$ (recall that $\left.\{7-d, d\} \in \mathcal{M}^{1}\right)$. From $\operatorname{wt}\left(\mathcal{M}^{2}\right) \geq 5$ we know, by Claim 23 , that $r(7-d, z) \geq 1$; with $\eta \in \mathbb{R}(7-d, z)$ then $\mathbb{R}(\varepsilon) \cap \mathbb{R}(\eta)=\{a, b, d\} \cap\{7-d, z\}=\emptyset$, hence the pair $\{\eta, \varepsilon\}$ is not good in M, a contradiction.

From the above reasoning we see that each colour of $\left(C_{2} \backslash C_{2}^{2}\right) \cup C_{3}^{*}$ occupies a position in $[1,6] \times[2,5]$, and each colour of C_{2}^{2} occupies two positions in $[1,6] \times$ $[2,5]$. Therefore, $c_{2}+c_{3}^{*}+\left|C_{2}^{2}\right| \leq|[1,6] \times[2,5]|=6 \cdot 4=24$ and $c_{2}+c_{3}^{*} \leq$ $24-\left|C_{2}^{2}\right|=24-\mathrm{wt}\left(\mathcal{M}^{2}\right) \leq 24-5=19$.

Thus, by Lemma 11.8, $c_{3}^{*}+c_{4+} \leq c_{3}^{*}+\left(c_{2}-15\right) \leq 19-15=4$. Claim 24 yields $c_{2}=\frac{1}{2} \sum_{i=1}^{6} r_{2}(i) \leq \frac{6 \cdot 6}{2}=18$, hence $2 q+5=|C|=\left(c_{2}+c_{3}^{*}\right)+\rho_{3}+c_{4+} \leq 19+\rho_{3}+$ $\left(c_{2}-15\right) \leq 19+\rho_{3}+3=22+\rho_{3}$, and $\rho_{3} \geq(2 q+5)-22 \geq 15$. Consequently, using Claim 32, $\operatorname{cov}(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6)) \leq 9,(\mathrm{w}) \operatorname{Cov}(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6)) \subseteq[q-8, q]$.

If $\mathrm{wt}\left(\mathcal{M}^{3}\right) \geq 5$, then, by Claim 31.1 applied on C_{2}^{3}, (w) $C_{2}^{3} \subseteq \mathbb{C}(6), \operatorname{Cov}\left(C_{2}^{3}\right)=$ $\{2,3,4,6\}, \operatorname{Cov}\left(C_{2}\right)=[1,6]$, and, for any $j \in[7, q-9] \supseteq\{7\}, \mathbb{C}(j) \subseteq C_{3}^{*} \cup C_{4+}$, so that $6=|\mathbb{C}(j)| \leq c_{3}^{*}+c_{4+} \leq 4$, a contradiction.

So, $\operatorname{wt}\left(\mathcal{M}^{3}\right) \leq 4, c_{2}=\sum_{s=1}^{3} \operatorname{wt}\left(\mathcal{M}^{s}\right) \leq 6+6+4=16,37 \leq 2 q+5=$ $c_{2}+\rho_{3}+c_{3}^{*}+c_{4+} \leq 16+18+\left(c_{3}^{*}+c_{4+}\right) \leq 34+4=38$ and $q=16$. Then $37=$ $|C|=c_{2}+c_{3}^{*}+\rho_{3}+c_{4+} \leq c_{2}+c_{3}^{*}+\rho_{3}+\left(c_{2}-15\right)=c_{2}+c_{3}^{*}+\sum_{s=1}^{3} \mathrm{wt}\left(\mathcal{M}^{s}\right)+\rho_{3}-15=$ $\left[c_{2}+c_{3}^{*}+\operatorname{wt}\left(\mathcal{M}^{2}\right)\right]+\operatorname{wt}\left(\mathcal{M}^{3}\right)+6+\rho_{3}-15 \leq 24+4+\rho_{3}-9 \leq 28+(18-9)=37$, $\rho_{3}=18, \operatorname{cov}(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6)) \geq\left\lceil\frac{18 \cdot 3}{6}\right\rceil=9, \operatorname{cov}(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6))=9$, $\operatorname{Cov}(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6))=[8,16]$ and $\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6)=\bigcup_{j=8}^{16} \mathbb{C}(j)$. Let $C^{\prime}=C \backslash(\mathbb{R}(1,2,3) \cup \mathbb{R}(4,5,6))$, and let M^{\prime} be the 6×7 submatrix of M formed by the first seven columns of M. Evidently, $M^{\prime} \in \mathcal{M}\left(6,7, C^{\prime}\right)$, which means, by Proposition 2, that $\operatorname{achr}\left(K_{6} \square K_{7}\right) \geq\left|C^{\prime}\right|=19$. This, however, contradicts the result $\operatorname{achr}\left(K_{6} \square K_{7}\right)=18$ proved in [5].

Claim 34. The following statements are true.

1. $c_{2}=15$.
2. Each perfect matching of $K_{3,3}$ is of weight 5 .
3. $c_{4+}=0$.
4. Each edge of $K_{3,3}$ is labelled with either 1 or 2 .
5. There are $I, K \in\{[1,3],[4,6]\}, I \neq K$, and $k \in K$ such that for any $i \in I$ and any $l \in K \backslash\{k\}$ it holds $r(i, k)=1$ and $r(i, l)=2$.

Proof. 1. Given a perfect matching \mathcal{M}^{1} of $K_{3,3}$, by Claim 28 we know that there is a unique partition $\left\{\mathcal{M}^{1}, \mathcal{M}^{2}, \mathcal{M}^{3}\right\}$ of $E\left(K_{3,3}\right)$ into perfect matchings of $K_{3,3}$. By Lemma 11.3 and Claim 33 then $15 \leq c_{2}=\sum_{s=1}^{3} \operatorname{wt}\left(\mathcal{M}^{s}\right) \leq \sum_{s=1}^{3} 5=15$ and $c_{2}=15$.
2. From the proof of Claim 34.1 we see that $\operatorname{wt}\left(\mathcal{M}^{s}\right)=5, s=1,2,3$. Thus $\mathrm{wt}(\mathcal{M})=5$ for each perfect matching \mathcal{M} of $K_{3,3}\left(\mathcal{M}\right.$ can be chosen as $\left.\mathcal{M}^{1}\right)$.
3. By Lemma 11.8 and Claim 34.1 we have $c_{4+} \leq c_{2}-15=0$ and $c_{4+}=0$.
4. No edge of $K_{3,3}$ is labelled with 0 , otherwise any perfect matching of $K_{3,3}$ containing such an edge would be of weight at most $2 \cdot 2=4$ (Claim 23), which contradicts Claim 34.2.
5. Denote by $l(e)$ the label of an edge $e \in E\left(K_{3,3}\right)$, and by l_{n} the number of edges of $K_{3,3}$ labelled with $n, n=1,2$ (see Claim 34.4); then $l_{1}+l_{2}=9$, $15=c_{2}=l_{1}+2 l_{2}=9+l_{2}, l_{2}=6$ and $l_{1}=3$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{e \in E\left(K_{3,3}\right):\right.$ $l(e)=1\}$.

If $a, b \in[1,3], a \neq b$, then $e_{a} \cap e_{b} \neq \emptyset$. To see it suppose that $e_{a} \cap e_{b}=\emptyset$, and take $e \in E\left(K_{3,3}\right) \backslash\left\{e_{a}, e_{b}\right\}$ such that $\left\{e_{a}, e_{b}, e\right\}$ is a perfect matching of $K_{3,3}$. The 6 -vertex cycle in $K_{3,3}$ with the edge set $E\left(K_{3,3}\right) \backslash\left\{e_{a}, e_{b}, e\right\}$ has at least five edges labelled with 2 , hence one can find in $K_{3,3}$ a perfect matching $\mathcal{M} \subseteq E\left(K_{3,3}\right) \backslash\left\{e_{a}, e_{b}, e\right\}$ with $\operatorname{wt}(\mathcal{M})=3 \cdot 2=6$, a contradiction.

Thus $e_{1} \cap e_{2} \neq \emptyset, e_{1} \cap e_{3} \neq \emptyset$ and $e_{2} \cap e_{3} \neq \emptyset$. Since the subgraph of the bipartite graph $K_{3,3}$ induced by the set of edges $\left\{e_{1}, e_{2}, e_{3}\right\}$ is bipartite (and so free of odd cycles), the above three intersections (of 2-element sets) are nonempty only if there is a vertex $k \in[1,6]=V\left(K_{3,3}\right)$ such that $e_{1} \cap e_{2} \cap e_{3}=\{k\}$. Having in mind that the bipartition of $K_{3,3}$ is $\{[1,3],[4,6]\}$, there are $I, K \in\{[1,3],[4,6]\}$ such that $I \neq K, k \in K$, and for any $i \in I$ and any $l \in K \backslash\{k\}$ it holds $r(i, k)=1$ and $r(i, l)=2$.

Based on Claim 34.5 we suppose (w) $I=[1,3], K=[4,6]$ and $k=6$ so that for any $i \in[1,3]$ and any $l \in[4,5]$ we have $r(i, 6)=1$ and $r(i, l)=2$. Then $r_{2}(1)=r_{2}(2)=r_{2}(3)=5, r_{2}(4)=r_{2}(5)=6$ and $r_{2}(6)=3$. Let $\mathbb{R}(i, 6)=\left\{\alpha_{i, 6}\right\}$, $i=1,2,3$.

If \mathcal{M} is a perfect matching in $K_{3,3}$, there is $s \in[1,6]$ such that $\mathcal{M}=\mathcal{M}^{s}$, where

$$
\begin{array}{ll}
\mathcal{M}^{1}=\{\{1,6\},\{2,4\},\{3,5\}\}, & \mathcal{M}^{2}=\{\{1,5\},\{2,6\},\{3,4\}\} \\
\mathcal{M}^{3}=\{\{1,4\},\{2,5\},\{3,6\}\}, & \mathcal{M}^{4}=\{\{1,6\},\{2,5\},\{3,4\}\} \\
\mathcal{M}^{5}=\{\{1,4\},\{2,6\},\{3,5\}\}, & \mathcal{M}^{6}=\{\{1,5\},\{2,4\},\{3,6\}\}
\end{array}
$$

We have $\left|\operatorname{Col}\left(\mathcal{M}^{s}\right)\right|=5$ for each $s \in[1,6]$. Applying Claim 31 on five colours of $\operatorname{Col}\left(\mathcal{M}^{s}\right)$ we see that there is $a^{s} \in[1, q]$ such that $\operatorname{Col}\left(\mathcal{M}^{s}\right) \subseteq \mathbb{C}\left(a^{s}\right)$. If $s, t \in[1,6]$, $s \neq t$, then $\left|\mathcal{M}^{s} \cap \mathcal{M}^{t}\right| \leq 1$, hence $\left|\operatorname{Col}\left(\mathcal{M}^{s}\right) \cap \operatorname{Col}\left(\mathcal{M}^{t}\right)\right| \leq 2$ (Claim 23), and so it is clear that $a^{s} \neq a^{t}$. From now on (w)

$$
\begin{gathered}
\left\{a^{s}: s \in[1,6]\right\}=[1,6] \\
(M)_{i, i}=\alpha_{i, 6}=(M)_{6, i+3}, \quad i=1,2,3
\end{gathered}
$$

Let us show that $\beta_{i}=(M)_{i, i+3}$ with $i \in[1,3]$ is not a 2 -colour. Indeed, suppose it is. The number of pairs $\left\{\beta_{i}, \alpha_{j, 6}\right\}, j \in[1,3]$, that are good in M, is 3 . However, each copy of β_{i} provides only one such pair (for the copy $(M)_{i, i+3}$ of β_{i} it is the pair $\left\{\beta_{i}, \alpha_{i, 6}\right\}$, while for the other copy of β_{i} in one of rows 4,5 of M it is a pair $\left\{\beta_{i}, \alpha_{j, 6}\right\}$ that is column-based), a contradiction. As a consequence of Claims 34.1 and 34.3 then all positions in the set

$$
S=\{(1,4),(2,5),(3,6),(6,1),(6,2),(6,3)\}
$$

are occupied by 3 -colours, and the same is true for the set of positions $[1,6] \times[7, q]$. Moreover, all positions in the set $([1,6] \times[1,6]) \backslash S$ are occupied by 2-colours.

Claim 35. Each position in the set S is occupied by a colour of C_{3}^{*}.
Proof. If a position $(i, i+3)$ with $i \in[1,3]$ is occupied by a colour $\beta \in \mathbb{R}(1,2,3)$, that copy of β provides no pair $\{\beta, \gamma\}$ with $\gamma \in \mathbb{R}(4,5,6)$ that is good in M.

Claim 27 yields $\min (r(1,2,3), r(4,5,6)) \geq q-9 \geq 7$. However, the number of pairs $\{\beta, \gamma\}$ with $\gamma \in \mathbb{R}(4,5,6)$, that are good in M (and necessarily columnbased), is at most $\sum_{l \in \operatorname{Cov}(\beta) \backslash\{i+3\}}|\mathbb{R}(4,5,6) \cap \mathbb{C}(l)| \leq 2 \cdot 3=6<r(4,5,6)$, a contradiction.

Similarly, if a position $(6, j)$ with $j \in[1,3]$ is occupied by a colour $\delta \in$ $\mathbb{R}(4,5,6)$, then the number of pairs $\{\delta, \varepsilon\}$ with $\varepsilon \in \mathbb{R}(1,2,3)$, that are good in M, is at most $\sum_{l \in \operatorname{Cov}(\delta) \backslash\{j\}}|\mathbb{R}(1,2,3) \cap \mathbb{C}(l)| \leq 2 \cdot 3=6<r(1,2,3)$, a contradiction.
Claim 36. $C_{3}^{*} \subseteq \mathbb{R}(6)$.
Proof. Consider a colour $\beta \in C_{3}^{*}$, and let $n_{i}, i \in \mathbb{R}(\beta)$, denote the number of pairs $\{\beta, \gamma\}$ with $\gamma \in\left\{\alpha_{1,6}, \alpha_{2,6}, \alpha_{3,6}\right\}$, that are good in M, and are provided by the copy of β in the row i of M. If $i \in[1,3]$, then $n_{i}=1$ (with $\gamma=\alpha_{i, 6}$), while $i \in[4,5]$ implies $n_{i}=0$, and $i=6$ yields $n_{i}=n_{6}=3$. Now, under the assumption $\beta \notin \mathbb{R}(6)$, from the inequalities $1 \leq|\mathbb{R}(\beta) \cap[1,3]| \leq 2$ we obtain $\sum_{i \in \mathbb{R}(\beta)} n_{i}=|\mathbb{R}(\beta) \cap[1,3]| \leq 2<3=\left|\left\{\alpha_{1,6}, \alpha_{2,6}, \alpha_{3,6}\right\}\right|$, a contradiction.
Claim 37. $q=16$, and there is a 3 -colour $\beta \in \mathbb{R}(i, m, 6)$ with $i \in[1,3]$ and $m \in[4,5]$ that occupies a position in $\{6\} \times[7,16]$.

Proof. Since $c_{4+}=0$ (Claim 34.3) and $r_{2}(6)=3$, by Claims 36 and 27 we have $q=c_{2}(6)+c_{3}(6)=3+\left[r(4,5,6)+c_{3}^{*}\right]$ and $c_{3}^{*}=q-3-r(4,5,6) \geq q-3-(q-9)=6$. On the other hand, from Claim 34.1 we get $|C|=2 q+5=c_{2}+c_{3}=15+[r(1,2,3)+$ $\left.r(4,5,6)+c_{3}^{*}\right]$ so that $q-3=r(4,5,6)+c_{3}^{*}=2 q-10-r(1,2,3), r(1,2,3)=q-7$, and then Claim 27 yields $9 \geq r(1,2,3)=q-7 \geq 16-7=9, r(1,2,3)=9$ and $q=16$. Using Claim 27 again we obtain $7=q-9 \leq r(4,5,6)=q-3-c_{3}^{*}=$ $13-c_{3}^{*} \leq 13-6=7, r(4,5,6)=7$ and $c_{3}^{*}=6$.

The number of positions in $[1,3] \times[1,16]$, that are occupied by colours of C_{3}^{*}, is equal to $3 \cdot 16-c_{2}-3 r(1,2,3)=48-15-27=6=c_{3}^{*}$, and each colour $\gamma \in C_{3}^{*}$ is involved in that counting, since $1 \leq|\mathbb{R}(\gamma) \cap[1,3]| \leq 2$. Therefore, for any $\gamma \in C_{3}^{*}$ we get $|\mathbb{R}(\gamma) \cap[1,3]|=1$ and $|\mathbb{R}(\gamma) \cap[4,6]|=2$.

Let $\beta \in C_{3}^{*}$ occupy a position in $\{6\} \times[7,16]$; the number of such colours is $c_{3}^{*}-3=3$, because $C_{3}^{*} \subseteq \mathbb{R}(6)$ (Claim 36), the positions in $\{6\} \times[1,3]$ are occupied by colours of C_{3}^{*} (Claim 35) and $(M)_{6, l}=\alpha_{l-3,6} \in C_{2}, l=4,5,6$. Then $\mathbb{R}(\beta)=\{i, m, 6\}$, where $i \in[1,3]$ and $m \in[4,5]$.

We are now ready to finish our analysis by showing that for a colour $\beta \in$ $\mathbb{R}(i, m, 6)$ of Claim 37 the number of pairs $\{\beta, \gamma\}$ with $\gamma \in C_{2}$, that are good in M, is less than $c_{2}=15$, which represents a final contradiction proving Theorem 18.

First of all, if β occupies a position in $\{i\} \times[7,16]$, then all pairs $\{\beta, \gamma\}$ with $\gamma \in C_{2}$, that are good in M, are row-based. The number of such pairs is $r_{2}(i)+r_{2}(m)+r_{2}(6)-[r(i, m)+r(i, 6)]=5+6+3-(2+1)=11<15=c_{2}, \mathrm{a}$ contradiction.

Therefore, $\beta=(M)_{i, i+3}$, and we can find explicitly a colour $\gamma \in C_{2}$ such that the pair $\{\beta, \gamma\}$ is not good in M. Indeed, in this case $\mathbb{C}(i+3) \cap C_{2}=\operatorname{Col}(\mathcal{M}) \supseteq$ $\left\{\alpha_{i, 6}\right\}$, where the perfect matching \mathcal{M} in $K_{3,3}$ satisfies $\mathcal{M}=\{\{i, 6\},\{j, m\},\{k, n\}\}$, $\{i, j, k\}=\{1,2,3\}, m \in[4,5]$ and $n=9-m$. Then $\mathbb{C}(i+3)=\{\beta\} \cup \mathbb{R}(i, 6) \cup$ $\mathbb{R}(j, m) \cup \mathbb{R}(k, n)$, and so $\mathbb{R}(j, n) \cap \mathbb{C}(i+3)=\emptyset$ (recall that $r(i, 6)=1$ and $r(j, m)=2=r(k, n))$; thus, the pair $\{\beta, \gamma\}$ with $\gamma \in \mathbb{R}(j, n)$ is not columnbased. Moreover, $\mathbb{R}(\beta) \cap \mathbb{R}(\gamma)=\{i, m, 6\} \cap\{j, n\}=\emptyset$, the pair $\{\beta, \gamma\}$ is not row-based, hence it is not good in M, a contradiction.

The solution of the problem of determining $\operatorname{achr}\left(K_{6} \square K_{q}\right)$ is now complete. It is summarised in the final theorem of the paper, where

$$
\begin{aligned}
& J_{3}=[2,3] \cup\{q \in[41, \infty): q \equiv 1(\bmod 2)\}, \\
& J_{4}=\{1,4,7\} \cup[16,40] \cup\{q \in[42, \infty): q \equiv 0(\bmod 2)\}, \\
& J_{5}=\{5,8\}, \\
& J_{6}=\{6\} \cup[9,15],
\end{aligned}
$$

and $J_{3} \cup J_{4} \cup J_{5} \cup J_{6}=[1, \infty)$.
Theorem 38. If $a \in[3,6]$ and $q \in J_{a}$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right)=2 q+a$.
Proof. The achromatic number of $K_{6} \square K_{q}$ was analysed in [7] for $q \leq 4$ (for $q \leq 3$ see also Chiang and Fu [2]), in Horñák and Pčola [6] for $q=5$, in [1] for $q=6$, in [5] for $q=7$, and in [4] for $q \in[41, \infty)$ with $q \equiv 1(\bmod 2)$. The remaining statements have been proved in the present paper, see Theorem 13 for $q=8$, Theorem 17 for $q \in[9,15]$, and Theorem 18 for q satisfying either $q \in[16,40]$ or $q \in[42, \infty)$ together with $q \equiv 0(\bmod 2)$.

Corollary 39. If $q \in[1, \infty)$, then $2 q+3 \leq \operatorname{achr}\left(K_{6} \square K_{q}\right) \leq 2 q+6$.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract APVV-19-0153 and by the grant VEGA 1/0574/21.

The author is indebted to an anonymous referee for a very careful reading of the paper, which resulted in a substantial improvement of the presentation of the manuscript.

References

[1] A. Bouchet, Indice achromatique des graphes multiparti complets et réguliers, Cahiers Centre Études Rech. Opér. 20 (1978) 331-340.
[2] N.P. Chiang and H.L. Fu, On the achromatic number of the cartesian product $G_{1} \times$ G_{2}, Australas. J. Combin. 6 (1992) 111-117.
[3] F. Harary, S. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math. 26 (1967) 453-462.
[4] M. Horňák, The achromatic number of $K_{6} \square K_{q}$ equals $2 q+3$ if $q \geq 41$ is odd, Discuss. Math. Graph Theory 43 (2023) 1103-1121. https://doi.org/10.7151/dmgt. 2420
[5] M. Horňák, The achromatic number of $K_{6} \square K_{7}$ is 18, Opuscula Math. 41 (2021) 163-185. https://doi.org/10.7494/OpMath.2021.41.2.163
[6] M. Horňák and Š. Pčola, Achromatic number of $K_{5} \times K_{n}$ for small n, Czechoslovak Math. J. 53 (2003) 963-988. https://doi.org/10.1023/B:CMAJ.0000024534.51299.08
[7] M. Horňák, J. Puntigán, On the achromatic number of $K_{m} \times K_{n}$, in: Graphs and Other Combinatorial Topics, M. Fiedler (Ed(s)), (Teubner, Leipzig, 1983) 118-123.
[8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (WileyInterscience, New York, 2000).

Received 18 July 2021
Revised 1 March 2022
Accepted 1 March 2022
Available online 12 March 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

