Discussiones Mathematicae
Graph Theory 44 (2024) 297-315
https://doi.org/10.7151/dmgt. 2448

ON s-HAMILTONIAN-CONNECTED LINE GRAPHS

Xiaoling Ma
College of Mathematics and System Sciences Xinjiang University, Urumqi, Xinjiang 830046, China
e-mail: mxlmath@sina.com
Hong-Jian Lai
Department of Mathematics
West Virginia University, Morgantown, WV 26506, USA
e-mail: hjlai@math.wvu.edu
Mingquan Zhan
Department of Mathematics
Millersville University of Pennsylvania, Millersville, PA 17551, USA
e-mail: Mingquan.Zhan@millersville.edu

Taoye Zhang
Department of Mathematics
Penn State Worthington Scranton, Dunmore, PA 18512, USA
e-mail: taoyezhang@gmail.com

AND

Ju Zhou
Department of Mathematics
Kutztown University of Pennsylvania, Kutztown, PA 19530, USA
e-mail: Zhou@kutztown.edu

Abstract

For an integer $s \geq 0, G$ is s-hamiltonian-connected if for any vertex subset $S \subseteq V(G)$ with $|S| \leq s, G-S$ is hamiltonian-connected. Thomassen in 1984 conjectured that every 4 -connected line graph is hamiltonian (see [Reflections on graph theory, J. Graph Theory 10 (1986) 309-324]), and Kužel

and Xiong in 2004 conjectured that every 4-connected line graph is hamil-tonian-connected (see [Z. Ryjáček and P. Vrána, Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011) 152-173]). In this paper we prove the following.
(i) For $s \geq 3$, every $(s+4)$-connected line graph is s-hamiltonian-connected.
(ii) For $s \geq 0$, every $(s+4)$-connected line graph of a claw-free graph is s-hamiltonian-connected.
Keywords: line graph, claw-free graph, s-hamiltonian-connected, collapsible graphs, reductions.
2020 Mathematics Subject Classification: 05C75, 05C45.

1. Introduction

Graphs considered here are finite and loopless. Unless otherwise noted, we follow [1] for notation and terms. As in [1], $\kappa(G)$ and $\kappa^{\prime}(G)$ denote the connectivity and the edge-connectivity of a graph G, respectively. A graph is nontrivial if it contains edges. An edge cut X is essential if $G-X$ has at least two nontrivial components. For an integer $k>0$, a graph G is essentially k-edge-connected if G does not have an essential edge cut X with $|X|<k$. For a connected graph G, let $\operatorname{ess}^{\prime}(G)=\max \{k: G$ is essentially k-edge-connected $\}$, and for an integer $i \geq 0$, let $D_{i}(G)=\left\{u \in V(G): d_{G}(u)=i\right\}$. Throughout this paper, for an integer $n \geq 2, C_{n}$ denotes a cycle on n vertices (called an n-cycle), W_{n} denotes the graph obtained from an n-cycle by adding a new vertex and connecting it to every vertex of the n-cycle. If $S \subseteq V(G)$ or $S \subseteq E(G)$, then $G[S]$ is the subgraph induced in G by S. We use $H \subseteq G$ to denote the fact that H is a subgraph of G. For $H \subseteq G, x \in V(G), A \subseteq V(G), X \subseteq E(G)$, and $Y \subseteq E(G)-E(H)$, define $E_{G}(x)=\{e: e$ is incident to $x\}, N_{H}(x)=N_{G}(x) \cap V(H), d_{H}(x)=\left|N_{H}(x)\right|$, $G-A=G[V(G)-A], G-X=G[E(G)-X]$, and $H+Y=G[E(H) \cup Y]$. When $A=\{v\}$ and $X=\{e\}$, we use $G-v$ for $G-\{v\}$ and $G-e$ for $G-\{e\}$.

Let $O(G)$ denote the set of odd degree vertices of G. A graph G is eulerian if $O(G)=\emptyset$ and G is connected. A graph G is supereulerian if G has a spanning eulerian subgraph. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph. The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent. From the definition of a line graph, if $L(G)$ is not a complete graph, then $L(G)$ is k-connected if and only if G is essentially k-edge-connected. The following are several fascinating conjectures in the literature.

Conjecture 1. (i) (Thomassen [20]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [16]) Every 4-connected claw-free graph is hamiltonian.
(iii) (Kužel and Xiong [11]) Every 4-connected line graph is hamiltonian-connected.
(iv) (Ryjáček and Vrána [17]) Every 4-connected claw-free graph is hamiltonianconnected.

Ryjáček and Vrána in [17] indicated that the statements in Conjecture 1 are mutually equivalent. There have been many studies on these conjectures in the literature. Among them are the following.

Theorem 2 (Zhan [21]). Every 7 -connected line graph is hamiltonian-connected.
Theorem 3 (Kaiser and Vrána [9]). Every 5-connected line graph with minimum degree at least 6 is hamiltonian.

Theorem 4 (Kriesell [10]). Every 4-connected line graph of a claw-free graph is hamiltonian-connected.

For an integer $s \geq 0$, a graph G is s-hamiltonian (or s-hamiltonian-connected, respectively) if for any vertex subset $S \subseteq V(G)$ with $|S| \leq s, G-S$ is hamiltonian (or hamiltonian-connected, respectively). It is routine to observe that every s hamiltonian graph is $(s+2)$-connected, and every s-hamiltonian-connected graph is $(s+3)$-connected. The converse, on the other hand, is not true, as $K_{m, m+1}$ is m-connected but nonhamiltonian.

Theorem 5 (Kaiser, Ryjáček, and Vrána [8]). Every 5-connected claw-free graph with minimum degree 6 is 1-hamiltonian-connected.

Theorem 6. Let s be an integer.
(i) (Theorem 1.4 of [12]) For $s \geq 3$, every ($s+4$)-connected line graph is $(s-1)$ -hamiltonian-connected.
(ii) (Theorem 1.3 of [13]) For $s \geq 5$, every $(s+2)$-connected line graph is s hamiltonian.
(iii) (Theorem 1.6 of [15])) For $s \geq 0$, every $(s+2)$-connected line graph of a claw-free graph is s-hamiltonian.
(iv) (Theorem 1.6 of [15])) Every 4-connected line graph of a claw-free graph is 1-hamiltonian-connected.

Motivated by Conjecture 1 as well as the results in [5, 12] and [13], the following conjecture was proposed.

Conjecture 7 [15]. Let s be an integer.
(i) For $s \geq 2$, a line graph is s-hamiltonian if and only if it is $(s+2)$-connected.
(ii) For $s \geq 2$, a claw-free graph is s-hamiltonian if and only if it is $(s+2)$ connected.
(iii) For $s \geq 1$, a line graph is s-hamiltonian-connected if and only if it is $(s+3)$ connected.
(iv) For $s \geq 1$, a claw-free graph is s-hamiltonian-connected if and only if it is $(s+3)$-connected.
In [18], Ryjáček and Vrána showed that when $s=1$, Conjecture 7(iii) is equivalent to Conjecture 1(i). The main results in this paper are presented below.

Theorem 8. For $s \geq 3$, every $(s+4)$-connected line graph is s-hamiltonianconnected.

Theorem 9. For $s \geq 0$, every $(s+4)$-connected line graph of a claw-free graph is s-hamiltonian-connected.

Catlin's reduction method will be refreshed in Section 2, together with other useful tools developed in this paper for our proofs of the main results. The proof of Theorem 8 is presented in Section 3, and the proof of Theorem 9 is presented in Section 4. We would like to point out that some of the mechanisms developed in [15] will be utilized in the proof arguments of Theorem 9, as shown in Section 4.

2. Preliminaries

We view a trail of G as a vertex-edge alternating sequence $v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{k}, v_{k}$ such that all the e_{i} 's are distinct and for each $i=1,2, \ldots, k, e_{i}$ is incident with both v_{i-1} and v_{i}. The vertices in $v_{1}, v_{2}, \ldots, v_{k-1}$ are internal vertices of the trail. For edges $e^{\prime}, e^{\prime \prime} \in E(G)$, an $\left(e^{\prime}, e^{\prime \prime}\right)$-trail of G is a trail T of G whose first edge is e^{\prime} and whose last edge is $e^{\prime \prime}$. An internally dominating ($e^{\prime}, e^{\prime \prime}$)-trail of G is an ($e^{\prime}, e^{\prime \prime}$)-trail T of G such that every edge of G is incident with an internal vertex of T, and a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail of G is an internally dominating $\left(e^{\prime}, e^{\prime \prime}\right)$-trail T of G such that $V(T)=V(G)$. Harary and Nash-Williams [6] first showed the relationship between eulerian subgraphs in G and hamiltonicity in $L(G)$. Theorem 10(ii) below is observed in [14].

Theorem 10. Let G be a graph with $|E(G)| \geq 3$. Each of the following holds.
(i) (Harary and Nash-Williams [6]) $L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.
(ii) ([14]) $L(G)$ is hamiltonian-connected if and only if for any pair of edges $e^{\prime}, e^{\prime \prime} \in E(G), G$ has an internally dominating $\left(e^{\prime}, e^{\prime \prime}\right)$-trail.
Theorem 11. Let G be a connected graph with at least three edges and $s>0$ an integer. The line graph $L(G)$ is s-hamiltonian-connected if and only if $G-S$ has an internally dominating $\left(e^{\prime}, e^{\prime \prime}\right)$-trail for any $S \subset E(G)$ with $|S| \leq s$, and for any pair of edges $e^{\prime}, e^{\prime \prime} \in E(G-S)$.

We say that an edge $e \in E(G)$ is subdivided when it is replaced by a path of length 2 whose internal vertex, denoted by $v(e)$, has degree 2 in the resulting graph. The process of taking an edge e and replacing it by the path of length 2 is called subdividing e. For a graph G and edges $e^{\prime}, e^{\prime \prime} \in E(G)$, let $G\left(e^{\prime}\right)$ denote the graph obtained from G by subdividing e^{\prime}, and let $G\left(e^{\prime}, e^{\prime \prime}\right)$ denote the graph obtained from G by subdividing both e^{\prime} and $e^{\prime \prime}$. Then $V\left(G\left(e^{\prime}, e^{\prime \prime}\right)\right)-V(G)=$ $\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$.

Proposition 12. For a graph G and edges $e^{\prime}, e^{\prime \prime} \in E(G)$, if $G\left(e^{\prime}, e^{\prime \prime}\right)$ has a dominating (spanning, respectively) $\left(v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right)$-trail, then G has an internally dominating (spanning, respectively) $\left(e^{\prime}, e^{\prime \prime}\right)$-trail.

Let $X \subseteq E(G)$ be an edge subset of G. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. If H is a subgraph of G, then we write G / H for $G / E(H)$. If v_{K} is the vertex in G / H onto which the connected subgraph K is contracted, then K is called the preimage of v_{K}, and denoted by $P I\left(v_{K}\right)$. In [2] Catlin defined collapsible graphs. Given an even subset R of $V(G)$, a subgraph Γ of G is called an R-subgraph if $O(\Gamma)=R$ and $G-E(\Gamma)$ is connected. A graph G is collapsible if for any even subset R of $V(G), G$ has an R-subgraph. In particular, K_{1} is collapsible. Catlin [2] showed that for any graph G, one can obtain the reduction G^{\prime} of G by contracting all maximal collapsible subgraphs of G. A graph G^{\prime} is reduced if G^{\prime} has no nontrivial collapsible subgraphs. A vertex x in G^{\prime} is c-nontrivial (or c-trivial) if $|V(P I(x))| \geq 2$ (or $|V(P I(x))|=1$). By definition, every collapsible graph is supereulerian. We summarize some results on Catlin's reduction method and other related facts below.

Theorem 13. Let G be a graph and let H be a collapsible connected subgraph of G. Let v_{H} denote the vertex onto which H is contracted in G / H. Each of the following holds.
(i) (Catlin, Theorem 3 of [2]) G is collapsible if and only if G / H is collapsible. Therefore, G is collapsible if and only if the reduction of G is K_{1}.
(ii) (Catlin, implied by definition and Theorem 3 of [2]) C_{2}, C_{3} are collapsible, and when $n \geq 4$, for any $e \in E\left(W_{n}\right), W_{n}(e)$ is collapsible.
(iii) (Theorem 2.3(iii) of [14]) If G is collapsible, then for any pair of vertices $u, v \in V(G), G$ has a spanning (u, v)-trail.
(iv) (Theorem 2.3(iv) of [14]) For vertices $u, v \in V(G / H)-\left\{v_{H}\right\}$, if G / H has a spanning (u, v)-trail, then G has a spanning (u, v)-trail.
(v) (Theorem 3.3 of [14]) Let G be a 3-edge-connected graph. If every 3-edge-cut X has at least one edge in a 2-cycle or 3 -cycle of G, then, for any two edges $e^{\prime}, e^{\prime \prime} \in E(G), G\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible.

Let $\tau(G)$ denote the maximum number of edge-disjoint spanning trees of G. Let $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following theorem summarizes results related to $F(G)$ and supereulerian properties.

Theorem 14. Let G be a connected graph and let G^{\prime} be the reduction of G. Then each of the following holds.
(i) (Jaeger [7]) If $F(G)=0$, then G is collapsible.
(ii) (Catlin [2]) If $F(G) \leq 1$, then $G^{\prime} \in\left\{K_{1}, K_{2}\right\}$. Therefore, G is supereulerian if and only if $G^{\prime} \neq K_{2}$.
(iii) (Catlin et al. [3]) If $F(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2}, K_{2, t}\right\}$ for some integer $t \geq 1$. Therefore, G is supereulerian if and only if $G^{\prime} \notin\left\{K_{2}, K_{2, t}\right\}$ for some odd integer t.
(iv) (Theorem 1.1 of [4]) Let $k \geq 1$ be an integer. Then $\kappa^{\prime}(G) \geq 2 k$ if and only if for any edge subset $X \subseteq E(G)$ with $|X| \leq k, \tau(G-X) \geq k$.

Lemma 15 ([15]). Assume that $K=v_{1} v_{2} v_{3} v_{1}$ is a triangle in a connected graph G with $d_{G}\left(v_{1}\right)=3$. Also assume that $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{3}, x\right\}$ and $e \in\left\{v_{1} v_{2}, v_{2} v_{3}\right\}$. Let w be the new vertex in G / K on which K is contracted, and let $u(\neq w) \in$ $V(G / K)$. Let T be a spanning (u, w)-trail in G / K. Then each of the following holds.
(i) For $e=v_{1} v_{2}, G(e)$ has a dominating $(u, v(e))$-trail T_{1} such that $V(G(e))-$ $V\left(T_{1}\right) \subseteq\left\{v_{1}\right\}$.
(ii) For $e=v_{2} v_{3}$, if $x v_{1} \notin E(T)$, then $G(e)$ has a spanning $(u, v(e))$-trail T_{2}.

Lemma 16 ([15]). Let $s \geq 3$ be an integer and G be a graph with $\kappa^{\prime}(G) \geq 3$ and $\operatorname{ess}^{\prime}(G) \geq s+2$. If $v \in D_{3}(G)$, then $\kappa^{\prime}(G-v) \geq 3$ and ess $^{\prime}(G-v) \geq s+1$.

3. Proof of Theorem 8.

Let $s \geq 3$ be an integer, and let G be a connected, essentially s-edge-connected graph such that $L(G)$ is not a complete graph. Then for any edge $v x \in E(G)$ with $d_{G}(v) \in\{1,2\}$, we have $d_{G}(x) \geq s+2-d_{G}(v)$. Following [19], the core of the graph G, written as G_{0}, is obtained by the following two operations repeatedly.

Operation 1. Delete each vertex of degree 1.
Operation 2. For each vertex y of degree 2 with $E_{G}(y)=\{x y, y z\}$, contract exactly one edge in $E_{G}(y)$. This amounts to deleting vertex y in G with $d_{G}(y)=2$ and replacing $x y$ and $y z$ with a new edge $x z$.

Figure 1. The core graph.
Let $\mathcal{O}_{1}(G)$ denote the graph obtained from G by applying Operation 1 to each vertex of degree 1, and $\mathcal{O}_{2}(G)$ the graph obtained from G by applying Operation 2 to each vertex of degree 2 . Thus $G_{0}=\mathcal{O}_{2}\left(\mathcal{O}_{1}(G)\right)$. As shown in [19], we observe that G_{0} is well-defined, and is 3-edge-connected and essentially s-edge-connected. By the definitions of these operations, any trail in G is contracted to a trail in G_{0}. Conversely, for any trail T^{\prime} in G_{0}, there is a trail T in G such that T^{\prime} is the contraction image of T. We call T a lift of T^{\prime}, or say that T^{\prime} can be lifted to T.

In the rest of this section, we assume that G is a connected, essentially s -edge-connected graph, where $s \geq 6$ is an integer, and let $X \subseteq E(G)$ with $|X| \leq 3$. Let $H=G_{0}-\left(E\left(G_{0}\right) \cap X\right)$. If H is not connected, then H contains an isolated vertex v with $E_{G}(v)=X=E_{G_{0}}(v)$ and $|X|=3$, and $H-v$ is essentially s-edgeconnected. If H is connected, then H is essentially ($s-3$)-edge-connected since G is essentially s-edge-connected. Let $G_{X}= \begin{cases}H, & \text { if } H \text { is connected, } \\ H-v, & \text { if } H \text { is not connected. }\end{cases}$ Then we have

$$
\begin{equation*}
G_{X} \text { is essentially }(s-3) \text {-connected. } \tag{1}
\end{equation*}
$$

Let $\left(G_{X}\right)_{0}$ be the core of G_{X}. Then
(2) $\quad\left(G_{X}\right)_{0}$ is 3-edge-connected and essentially $(s-3)$-edge-connected.

Theorem 17 (Theorem 4.1 of [13]). Let G be an essentially 7-edge-connected graph. If $X \subseteq E(G)$ with $|X| \leq 3$, then $\tau\left(\left(G_{X}\right)_{0}\right) \geq 2$.

Lemma 18. Let G be an essentially 7-edge-connected graph. Let $X \subseteq E(G)$ be a subset with $|X| \leq 3$ and $\left\{e_{1}, e_{2}\right\} \subseteq E(G)-X$. Then $G-X$ has an internally dominating $\left(e_{1}, e_{2}\right)$-trail.

Proof. Let G_{0} be the core of G. Notice that G is essentially 7-edge-connected. By (2),
(3) $\quad\left(G_{X}\right)_{0}$ is 3-edge-connected and essentially 4-edge-connected.

Claim 1. Let $e=x y \in E(G)$. We assume that $d_{G_{X}}(y) \geq d_{G_{X}}(x)$ if $e \in E\left(G_{0}\right)$ but e $\notin E\left(\left(G_{X}\right)_{0}\right)$; otherwise, we assume that $d_{G}(y) \geq d_{G}(x)$. Then $y \in V\left(\left(G_{X}\right)_{0}\right)$. Therefore, $d_{\left(G_{X}\right)_{0}}(y) \geq 3$.

Proof. Notice that there are three possibilities for the location of $e: e \in E\left(\left(G_{X}\right)_{0}\right)$, $e \notin E\left(G_{0}\right)$, or $e \in E\left(G_{0}\right)$ and $e \notin E\left(\left(G_{X}\right)_{0}\right)$. If $e \in E\left(\left(G_{X}\right)_{0}\right)$, then both x and y are in $V\left(\left(G_{X}\right)_{0}\right)$.

If $e \notin E\left(G_{0}\right)$, then since $d_{G}(y) \geq d_{G}(x), d_{G}(x) \in\{1,2\}$. As G is essentially 7 -edge-connected, $d_{G}(x)+d_{G}(y) \geq 9$, and so $d_{G}(y) \geq 9-d_{G}(x)$. Therefore, $d_{G_{0}}(y) \geq 7$ and $d_{G_{X}}(y) \geq 7-3=4$. This implies that $y \in V\left(\left(G_{X}\right)_{0}\right)$.

If $e \in E\left(G_{0}\right)$ and $e \notin E\left(\left(G_{X}\right)_{0}\right)$, then since $d_{G_{X}}(y) \geq d_{G_{X}}(x)$, we have $d_{G_{X}}(x) \in\{1,2\}$. By (1), G_{X} is essentially 4-edge-connected. Then $d_{G_{X}}(x)+$ $d_{G_{X}}(y) \geq 6$. Thus, $d_{G_{X}}(y) \geq 6-d_{G_{X}}(x) \geq 4$. So $y \in V\left(\left(G_{X}\right)_{0}\right)$. Claim 1 holds.

For $i=1,2$, denote $e_{i}=x_{i} y_{i}$ in such a way that if $e_{i} \in E\left(G_{0}\right)$ but $e_{i} \notin$ $E\left(\left(G_{X}\right)_{0}\right)$, then the labeling of x_{i} and y_{i} satisfies $d_{G_{X}}\left(y_{i}\right) \geq d_{G_{X}}\left(x_{i}\right)$; otherwise we label x_{i} and y_{i} so that $d_{G}\left(y_{i}\right) \geq d_{G}\left(x_{i}\right)$. Let

$$
Q= \begin{cases}\left(G_{X}\right)_{0}\left(e_{1}, e_{2}\right), & \text { if } e_{1}, e_{2} \in E\left(\left(G_{X}\right)_{0}\right), \\ \left(G_{X}\right)_{0}\left(e_{i}\right), & \text { if }\left\{e_{1}, e_{2}\right\} \cap E\left(\left(G_{X}\right)_{0}\right)=\left\{e_{i}\right\} \\ \left(G_{X}\right)_{0}, & \text { otherwise }\end{cases}
$$

and

$$
v_{i}= \begin{cases}v\left(e_{i}\right), & \text { if } e_{i} \in E\left(\left(G_{X}\right)_{0}\right), \\ y_{i}, & \text { otherwise }\end{cases}
$$

By Theorem 17, $\tau\left(\left(G_{X}\right)_{0}\right) \geq 2$ and so $F(Q) \leq 2$. By Theorem 14(iii) and (3), Q is collapsible. By Theorem 13(iii),
Q has a spanning $\left(v_{1}, v_{2}\right)$-trail T_{1}.
Let T_{2} be the lift of T_{1} in G_{X} and let T_{3} be the lift of T_{2} in $(G-X)\left(e_{1}, e_{2}\right)$. Let T be a trail obtained from T_{3} by replacing v_{i} by e_{i}. Then T is an $\left(e_{1}, e_{2}\right)$-trail of $G-X$. Let $T=w_{1} f_{1} w_{2} f_{2} \cdots f_{k} w_{k}$, where $f_{1}=e_{1}$ and $f_{k}=e_{2}$, and let $\mathcal{I}=\left\{w_{2}, w_{3}, \ldots, w_{k-1}\right\}$. Then $V\left(T_{1}\right)-\left\{v\left(e_{1}\right), v\left(e_{2}\right)\right\} \subseteq \mathcal{I}$. To show that T is an internally dominating $\left(e_{1}, e_{2}\right)$-trail in $G-X$, it suffices to show that every edge $e=x y$ of $G-X$ is incident with an internal vertex of T, i.e., either $x \in \mathcal{I}$ or $y \in \mathcal{I}$.

We assume that $d_{G_{X}}(y) \geq d_{G_{X}}(x)$ if $e \in E\left(G_{0}\right)$ but $e \notin\left(G_{X}\right)_{0}$; otherwise, we assume that $d_{G}(y) \geq d_{G}(x)$. By Claim $1, y \in V\left(\left(G_{X}\right)_{0}\right)$. By (4), $y \in V\left(T_{1}\right)$. As $d_{\left(G_{X}\right)_{0}}(y) \geq 3, y \notin\left\{v\left(e_{1}\right), v\left(e_{2}\right)\right\}$ and so $y \in V\left(T_{1}\right)-\left\{v\left(e_{1}\right), v\left(e_{2}\right)\right\} \subseteq \mathcal{I}$.

Lemma 19. Every 7 -connected line graph is 3 -hamiltonian-connected.
Proof. Lemma 19 follows from Lemma 18 and Theorem 11.
Proof of Theorem 8. By Lemma 19, Theorem 8 holds when $s=3$. We assume that $s \geq 4$ and that Theorem 8 holds for smaller values of s. Let G be a graph
with $\kappa(L(G)) \geq s+4$. For any $S \subseteq V(L(G))$ with $|S| \leq s$, pick $v_{e_{0}} \in S$. Assume that the edge in G corresponding to $v_{e_{0}}$ in $L(G)$ is e_{0}. Let $G^{*}=G-e_{0}$. Since $\kappa(L(G)) \geq s+4, \kappa\left(L\left(G^{*}\right)\right)=\kappa\left(L(G)-v_{e_{0}}\right) \geq s+3$. It follows by induction that as $L\left(G^{*}\right)$ is $(s+3)$-connected, $L\left(G^{*}\right)$ is $(s-1)$-hamiltonian-connected, and so $L(G)-S=L\left(G^{*}\right)-\left(S-\left\{v_{e_{0}}\right\}\right)$ must be hamiltonian-connected. It follows by definition that $L(G)$ is s-hamiltonian-connected.

4. Graphs with Property $\mathcal{K}(s)$ and Proof of Theorem 9

Throughout this section, we assume that $s \geq 0$ is an integer. Following [15], we shall introduce a property of graphs which will play an important role in our arguments.
([15]) Let \mathcal{K} denote the graph family such that a (connected) graph G is in \mathcal{K} if and only if G satisfies each of the following.
(KS1) For any $w \in D_{3}(G)$, the subgraph induced by $N_{G}(w)$ contains at least one edge.
(KS2) Let $w \in N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)$, where $x_{1}, x_{2} \in D_{3}(G)$ and $x_{1} x_{2} \notin E(G)$. If $N_{G}(w)=\left\{x_{1}, x_{2}, v\right\}$, then either $v x_{1} \notin E(G)$ or $v x_{2} \notin E(G)$.
(KS3) Let $w_{1}, w_{2} \in N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)$, where $x_{1}, x_{2} \in D_{3}(G)$ and $x_{1} x_{2} \notin$ $E(G)$. If $w_{1} w_{2} \in E(G)$, then $N_{G}\left(w_{1}\right) \cup N_{G}\left(w_{2}\right) \subseteq N_{G}\left(x_{1}\right) \cup N_{G}\left(x_{2}\right) \cup\left\{x_{1}, x_{2}\right\}$.

By definition, $K_{4} \in \mathcal{K}$ and every claw-free graph satisfies (KS1) and (KS3). Since (KS2) is violated for the graphs W_{4} and W_{5}, we have $W_{4}, W_{5} \notin \mathcal{K}$. For an integer $s \geq 0$, a graph G is said to have Property $\mathcal{K}(s)$ if G is in $\mathcal{K}-\left\{K_{4}\right\}$ and satisfies both $\kappa^{\prime}(G) \geq 3$ and $\operatorname{ess}^{\prime}(G) \geq s+4$.

Lemma 20 [15]. If the graph G has Property $\mathcal{K}(s)$, then there is a set $\triangle(G)$ of edge-disjoint triangles in G such that $D_{3}(G) \subseteq V(L)$, where L is the subgraph induced by $\bigcup_{K \in \triangle(G)} E(K)$, and $D_{3}(G) \cap V(K) \neq \emptyset$ for each $K \in \triangle(G)$.

Let G have Property $\mathcal{K}(s)$ and $v \in D_{3}(G)$. By Lemma 20, there is a triangle in $\triangle(G)$ that contains v. We denote this triangle by \triangle_{v}. Thus, for $v, u \in D_{3}(G)$, we have either $E\left(\triangle_{v}\right)=E\left(\triangle_{u}\right)$ or $E\left(\triangle_{v}\right) \cap E\left(\triangle_{u}\right)=\emptyset$. Fix a given subset $E^{\prime} \subseteq E(G)$. Define $\triangle^{\prime}(G)=\left\{\triangle_{v} \in \triangle(G): v \in D_{3}(G)\right.$ and $\left.E\left(\triangle_{v}\right) \cap E^{\prime}=\emptyset\right\}$ and $\triangle^{*}(G)=\triangle(G)-\triangle^{\prime}(G)$. Then $\triangle(G)=\triangle^{\prime}(G)$ if $E^{\prime} \cap E(\triangle(G))=\emptyset$. Let $G_{1}=G / \triangle(G)$ and $G_{1}^{*}=G / \Delta^{\prime}(G)$ be the graphs obtained from G by contracting the edges in $\triangle(G)$ and $\triangle^{\prime}(G)$, respectively. Thus if $E^{\prime} \cap E(\triangle(G))=\emptyset$, then $G_{1}=G_{1}^{*}$. We call G_{1} a \triangle-contraction of G and G_{1}^{*} a \triangle-contraction of G with respect to E^{\prime}. Since G is 3 -edge-connected and essentially ($s+4$)-edge-connected, we have
(5) $\kappa^{\prime}\left(G_{1}\right) \geq 4$ and $e s s^{\prime}\left(G_{1}\right) \geq s+4$, and $\kappa^{\prime}\left(G_{1}^{*}\right) \geq 3$ and $e s s^{\prime}\left(G_{1}^{*}\right) \geq s+4$.

By Theorem 14(iv), for any $X \subseteq E\left(G_{1}\right)$ with $|X| \leq 2, \tau\left(G_{1}-X\right) \geq 2$, and so $F\left(G_{1}-X\right)=0$. Let t be the number of different triangles in $\triangle^{*}(G)$ and let $\Delta^{*}(G)=\left\{\triangle_{v_{1}}, \ldots, \triangle_{v_{t}}\right\}$ with $V\left(\triangle_{v_{i}}\right)=\left\{v_{i}, u_{i}, w_{i}\right\}$. Then $\left\{v_{1}, \ldots, v_{t}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$ and $E\left(\triangle_{v_{i}}\right) \cap E^{\prime} \neq \emptyset$ for $i=1, \ldots, t$ (Figure 2). Since G_{1}^{*} is 3-edge-connected and essentially 4 -edge-connected, we have either $d_{G_{1}^{*}}\left(u_{i}\right) \geq 4$ or $d_{G_{1}^{*}}\left(w_{i}\right) \geq 4$. Without loss of generality, we assume that

$$
\begin{equation*}
d_{G_{1}^{*}}\left(w_{i}\right) \geq 4 \tag{6}
\end{equation*}
$$

Figure 2. $G_{1}^{*}=G_{1} / \Delta^{\prime}(G)$.
Lemma 21. (i) If $t=0$, then $G_{1}^{*}=G_{1}$.
(ii) If $t=1$, then for any edge $e \in E\left(G_{1}^{*}\right), \tau\left(G_{1}^{*}-e\right) \geq 2$.
(iii) If $s=0$ and $t=2$, then $\tau\left(G_{1}^{*}\right) \geq 2$.
(iv) If $s \geq 1$ and $t=2$, then for any $e \in E\left(G_{1}^{*}\right), \tau\left(G_{1}^{*}-e\right) \geq 2$.

Proof. If $t=0$, then $\triangle^{*}(G)=\emptyset$. Thus $G_{1}^{*}=G_{1}$. If $t=1$, then $\triangle^{*}(G)=\left\{\triangle_{v_{1}}\right\}$ with $V\left(\triangle_{v_{1}}\right)=\left\{v_{1}, u_{1}, w_{1}\right\}$. By $(6), d_{G_{1}^{*}}\left(w_{1}\right) \geq 4$. Let Q_{1} be the graph obtained from G_{1}^{*} by adding the new edge $v_{1} u_{1}$. Actually this new edge and the edge $v_{1} u_{1}$ in the triangle $\triangle_{v_{1}}$ are parallel. We denote this new edge by $\left(v_{1} u_{1}\right)^{\prime}$. Then Q_{1} is 4 -edge-connected. Thus, for any edge $e \in E\left(G_{1}^{*}\right), \tau\left(G_{1}^{*}-e\right)=\tau\left(Q_{1}-\left\{e,\left(v_{1} u_{1}\right)^{\prime}\right\}\right)$ ≥ 2.

If $t=2$, then $\triangle^{*}(G)=\left\{\triangle_{v_{1}}, \triangle_{v_{2}}\right\}$ with $V\left(\triangle_{v_{i}}\right)=\left\{v_{i}, u_{i}, w_{i}\right\}(i=1,2)$. By (6), $d_{G_{1}^{*}}\left(w_{i}\right) \geq 4$. If $s=0$, then we set Q_{2} to be the graph obtained from G_{1}^{*} by adding the new edges $v_{1} v_{2}$ and $u_{1} u_{2}$. Thus, Q_{2} is 4 -edge-connected. So $\tau\left(G_{1}^{*}\right)=\tau\left(Q_{2}-\left\{v_{1} v_{2}, u_{1} u_{2}\right\}\right) \geq 2$. If $s \geq 1$, then G_{1}^{*} is essentially 5 -edgeconnected. Thus, for $x \in\left\{u_{1}, w_{1}, u_{2}, w_{2}\right\}, d_{G_{1}^{*}}(x) \geq 4$. Let Q_{3} be the graph obtained from G_{1}^{*} by adding the new edge $v_{1} v_{2}$. Then Q_{3} is 4 -edge-connected. So for any edge $e \in E\left(G_{1}^{*}\right), \tau\left(G_{1}^{*}-e\right)=\tau\left(Q_{3}-\left\{v_{1} v_{2}, e\right\}\right) \geq 2$.

The next lemma will be used in the proof of Theorem 9. For any edge subset X of G with $|X|=s$, to prove that $L(G)$ is s-hamiltonian connected, it suffices to prove that for any two edges $e_{1}, e_{2} \in G-X, G-X$ has an internally dominating $\left(e_{1}, e_{2}\right)$-trail. By Theorem 8 , we only need to consider $s \in\{0,1,2\}$.

Lemma 22. Let X be an edge subset of G, and $s=|X| \in\{0,1,2\}$. If G satisfies Property $\mathcal{K}(s)$, then for any two edges $e_{1}, e_{2} \in G-X, G-X$ has an internally dominating $\left(e_{1}, e_{2}\right)$-trail T such that $V(G)-V(T) \subseteq \bigcup_{i=3}^{s+3} D_{i}(G)$.

Proof. Let $E^{\prime}=X \cup\left\{e_{1}, e_{2}\right\}$ and let G_{1} be a \triangle-contraction of G and G_{1}^{*} be a \triangle contraction of G with respect to E^{\prime}. If $\triangle^{*}(G) \neq \emptyset$, then we assume that $\triangle^{*}(G)=$ $\left\{\triangle_{v_{1}}, \ldots, \triangle_{v_{t}}\right\}$ with $V\left(\triangle_{v_{i}}\right)=\left\{v_{i}, u_{i}, w_{i}\right\}(i=1, \ldots, t)$. Thus $E\left(\triangle_{v_{i}}\right) \cap E^{\prime} \neq \emptyset$ and $t \in\{0,1, \ldots, 2+s\}$. By (5), we have

$$
\begin{equation*}
D_{i}\left(G_{1}^{*}\right) \subseteq D_{i}(G) \text { for } i=3, \ldots, s+3 \tag{7}
\end{equation*}
$$

Since a triangle is collapsible, to prove Lemma 22, by Proposition 12 and Theorem 13 (iv), it suffices to prove that $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$ trail T such that

$$
\begin{equation*}
V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq \bigcup_{i=3}^{s+3} D_{i}\left(G_{1}^{*}\right) \tag{8}
\end{equation*}
$$

Claim 1. If $s=0$, then for any two edges $e^{\prime}, e^{\prime \prime}$ in $G_{1}^{*}, G_{1}^{*}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible. Therefore, $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T.

Proof. Since $s=0$, we have $X=\emptyset$ and $t \in\{0,1,2\}$. Thus $G_{1}^{*}-X=G_{1}^{*}$. By (5), G_{1}^{*} is 3 -edge-connected and essentially 4-edge-connected. Therefore, $G_{1}^{*}\left(e^{\prime}, e^{\prime \prime}\right)$ is 2-edge-connected. Let G^{\prime} be the reduction of $G_{1}^{*}\left(e^{\prime}, e^{\prime \prime}\right)$. By Lemma 21(i)-(iii), $\tau\left(G_{1}^{*}\right) \geq 2$. Thus $F\left(G_{1}^{*}-\left\{e^{\prime}, e^{\prime \prime}\right\}\right) \leq 2$. As $F\left(G_{1}^{*}-\left\{e^{\prime}, e^{\prime \prime}\right\}\right)=F\left(G_{1}^{*}\left(e^{\prime}, e^{\prime \prime}\right)\right)$, we have $F\left(G_{1}^{*}\left(e^{\prime}, e^{\prime \prime}\right)\right) \leq 2$. Since $G_{1}^{*}\left(e^{\prime}, e^{\prime \prime}\right)$ has only two vertices of degree two and since G_{1}^{*} is essentially 4-edge-connected, G^{\prime} has at most two vertices of degree two. By Theorem $14(\mathrm{iii}), G^{\prime}=K_{1}$. So $G_{1}^{*}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible. By Theorem 13(iii), $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T. Claim 1 holds.

Claim 2. Assume that $s=1$. Let $X=\{f\}$.
(i) If $t=0$, then $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T.
(ii) If $t \in\{1,2,3\}$, then $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T such that $\left|V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)\right| \leq 1$ and $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq$ $D_{3}\left(G_{1}^{*}\right)$. Furthermore, if $t \in\{1,2\}$ and $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\{v\}$, then $E_{G}(v)=\left\{f, e_{1}, e_{2}\right\}$.

Proof. As $s=1, G_{1}^{*}$ is 3-edge-connected and essentially 5-edge-connected. Thus, $\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)$ is 2-edge-connected and $\left|D_{2}\left(\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)\right)\right| \leq 3$. If $t=0$, then $G_{1}^{*}=G_{1}$ and so $F\left(\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)\right) \leq 1$. By Theorem $14(\mathrm{ii}),\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)$ is collapsible. So $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T.

If $t \in\{1,2\}$, then by Lemma 21(ii) and Lemma 21(iv), $F\left(\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)\right) \leq$ 2. Let G^{\prime} be the reduction of $\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)$. Since $\left|D_{2}\left(\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)\right)\right| \leq 3$
and since G_{1}^{*} is essentially 5 -edge-connected, we have $\left|D_{2}\left(G^{\prime}\right)\right| \leq 4$. By Theorem 14(iii), $G^{\prime} \in\left\{K_{1}, K_{2,2}, K_{2,3}, K_{2,4}\right\}$. If $G^{\prime}=K_{1}$, by Theorem 13(iii), $\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail. If $G^{\prime} \in\left\{K_{2,3}, K_{2,4}\right\}$, then $v\left(e_{1}\right), v\left(e_{2}\right) \in D_{2}\left(G^{\prime}\right)$. By Theorem 13(iv), $\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail. If $G^{\prime}=K_{2,2}$, then $v\left(e_{1}\right), v\left(e_{2}\right) \in D_{2}\left(G^{\prime}\right)$ such that $v\left(e_{1}\right), v\left(e_{2}\right)$ are not adjacent. Let $V\left(G^{\prime}\right)-\left\{v\left(e_{1}\right), v\left(e_{2}\right)\right\}=\left\{v, v^{\prime}\right\}$. Then either $\operatorname{PI}(v)$ or $P I\left(v^{\prime}\right)$ is trivial. Without loss of generality, we assume that $P I(v)$ is trivial. So f is incident to v, and $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T such that $V\left(\left(G_{1}^{*}-f\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\{v\}$, where $E_{G}(v)=\left\{e_{1}, e_{2}, f\right\}$.

If $t=3$, then $f \in X^{\prime}$ and $\triangle^{*}(G)=\left\{\triangle_{v_{1}}, \triangle_{v_{2}}, \triangle_{v_{3}}\right\}$, where for $1 \leq i \leq 3, v_{i} \in$ $D_{3}\left(G_{1}^{*}\right)$. Without loss of generality, we assume that $f \in E\left(\triangle_{v_{1}}\right), e_{1} \in E\left(\triangle_{v_{2}}\right)$ and $e_{2} \in E\left(\triangle_{v_{3}}\right)$. By Lemma 16, $G_{1}^{*}-v_{1}$ is 3 -edge-connected and essentially 4 -edge-connected. By Claim 1, $\left(G_{1}^{*}-v_{1}\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T^{\prime}. Let $T=\left\{\begin{array}{lc}\left(T^{\prime}-f\right)+\left\{v_{1} u_{1}, v_{1} w_{1}\right\}, & \text { if } f \in E\left(T^{\prime}\right) . \text { Then } T \text { is a dominating } \\ T^{\prime}, & \text { otherwise }\end{array}\right.$. $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ such that $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq$ $\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. Claim 2 holds.

Claim 3. If $s=2$, then $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T such that $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq \bigcup_{i=3}^{5} D_{i}\left(G_{1}^{*}\right)$.
Proof. Since $s=2, G_{1}^{*}$ is 3-edge-connected and essentially 6 -edge-connected. Let $X=\left\{f_{1}, f_{2}\right\}$. Then $G_{1}^{*}-X$ is connected and essentially 4 -edge-connected. So $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ is connected. As $s=2$, we have $t \in\{0,1,2,3,4\}$.
Claim 3.1. If $G_{1}^{*}-X$ is not 2 -edge-connected, then Claim 3 holds.
Proof. Assume that $G_{1}^{*}-X$ is not 2-edge-connected. Let e be a cut edge of $G_{1}^{*}-X$, and let H_{1} and H_{2} be components of $\left(G_{1}^{*}-X\right)-e$. Then $\left\{f_{1}, f_{2}, e\right\}$ is a 3 -edge cut of G_{1}^{*}. As G_{1}^{*} is essentially 6 -edge-connected, we may assume that $V\left(H_{1}\right)=\left\{v_{1}\right\}$. Then $E_{G_{1}^{*}}\left(v_{1}\right)=\left\{f_{1}, f_{2}, e\right\}$. Thus $t \leq 3$. Consider $G_{1}^{*}-v_{1}$. Then $d_{G_{1}^{*}-v_{1}}(x) \geq 4$ for any $x \in N_{G_{1}^{*}}\left(v_{1}\right)$. Since $t \leq 3, G_{1}^{*}-v_{1}$ contains at most two vertices of degree 3 . By Lemma $16, G_{1}^{*}-v_{1}$ is 3 -edge-connected and essentially 5 -edge-connected. Thus $\tau\left(\left(G_{1}^{*}-v\right)-e_{1}\right) \geq 2$. This implies that $F\left(\left(G_{1}^{*}-v\right)-\left\{e_{1}, e_{2}\right\}\right) \leq 1$ and so $F\left(\left(G_{1}^{*}-v_{1}\right)\left(e_{1}, e_{2}\right)\right) \leq 1$. By Theorem 14(ii), $\left(G_{1}^{*}-v_{1}\right)\left(e_{1}, e_{2}\right)$ is collapsible. Let T be a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail of $\left(G_{1}^{*}-\right.$ $\left.v_{1}\right)\left(e_{1}, e_{2}\right)$. Then T is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail of $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ with $V\left(G_{1}^{*}\right)-V(T)=\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. Claim 3.1 holds.

By Claim 3.1, we may assume that $G_{1}^{*}-X$ is 2 -edge-connected. Then ($G_{1}^{*}-$ $X)\left(e_{1}, e_{2}\right)$ is also 2-edge-connected. If $t=0$, then $f_{1}, f_{2}, e_{1}, e_{2} \in E\left(G_{1}\right)$ and $G_{1}^{*}=G_{1}$. So $\left(G_{1}-X\right)\left(e_{1}, e_{2}\right)$ has at most three vertices of degree 2 . Let G^{\prime} be the reduction of $\left(G_{1}-X\right)\left(e_{1}, e_{2}\right)$. Then $\left|D_{2}\left(G^{\prime}\right)\right| \leq 4$. By (5), G_{1} is 4-edge-connected.

By Theorem 14(iv), we have $\tau\left(G_{1}-X\right) \geq 2$ and so $F\left(\left(G_{1}-X\right)\left(e_{1}, e_{2}\right)\right) \leq 2$. Since $\left(G_{1}-X\right)\left(e_{1}, e_{2}\right)$ is 2-edge-connected and G_{1} is essentially 6 -edge-connected, $G^{\prime} \in\left\{K_{1}, K_{2,2}, K_{2,3}\right\}$. If $G^{\prime}=K_{1}$, by Theorem 13(iii), $\left(G_{1}-X\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail. If $G^{\prime}=K_{2,3}$, then $v\left(e_{1}\right), v\left(e_{2}\right) \in D_{2}\left(G^{\prime}\right)$. By Theorem 13(iv), $\left(G_{1}-X\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail. If $G^{\prime}=$ $K_{2,2}$, then $v\left(e_{1}\right), v\left(e_{2}\right) \in D_{2}\left(G^{\prime}\right)$ such that $v\left(e_{1}\right), v\left(e_{2}\right)$ are not adjacent. Let $V\left(G^{\prime}\right)-\left\{v\left(e_{1}\right), v\left(e_{2}\right)\right\}=\left\{v, v^{\prime}\right\}$. Then either $P I(v)$ or $P I\left(v^{\prime}\right)$ is trivial. Without loss of generality, we assume that $P I(v)$ is trivial. So f_{1}, f_{2} are incident to v and $\left(G_{1}-X\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T such that $V\left(\left(G_{1}-\right.\right.$ $\left.X)\left(e_{1}, e_{2}\right)\right)-V(T)=\{v\} \subseteq D_{4}\left(G_{1}\right)$, where $E_{G}(v)=\left\{e_{1}, e_{2}, f_{1}, f_{2}\right\}$. Next we just need to consider $t \in\{1,2,3,4\}$.
Claim 3.2. If $f_{1}, f_{2} \in E\left(G_{1}\right)$, then Claim 3 holds.
Proof. In this case, $\left|\left\{e_{1}, e_{2}\right\} \cap E\left(G_{1}\right)\right| \leq 1$ and $t \in\{1,2\}$. Without loss of generality, we assume that $e_{2} \notin E\left(G_{1}\right)$. We consider two cases.

Case 1. $t=1$. Then $\triangle^{*}(G)=\left\{\triangle_{v_{1}}\right\}$ with $v_{1} \in D_{3}\left(G_{1}^{*}\right)$ and $V\left(\triangle_{v_{1}}\right)=$ $\left\{v_{1}, u_{1}, w_{1}\right\}$, and $e_{2} \in E\left(\triangle_{v_{1}}\right)$. Let $E_{G_{1}^{*}}\left(v_{1}\right)=\left\{v_{1} u_{1}, v_{1} w_{1}, v_{1} z\right\}$. By Lemma 16, $G_{1}^{*}-v_{1}$ is 3 -edge-connected and essentially 5 -edge-connected. Since G_{1}^{*} is essentially 6 -edge-connected, we have $d_{G_{1}^{*}-v_{1}}(y) \geq 4$ for $y \in\left\{u_{1}, w_{1}, z\right\}$. Thus $G_{1}^{*}-v_{1}$ is 4 -edge-connected, and so $\tau\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{1}, f_{2}\right\}\right) \geq 2$.

If $e_{2} \in\left\{v_{1} u_{1}, v_{1} w_{1}\right\}$, assume that $e_{2}=v_{1} w_{1}$. Let $a= \begin{cases}z, & \text { if } e_{1}=v_{1} z, \\ u_{1}, & \text { if } e_{1}=v_{1} u_{1}, \\ v\left(e_{1}\right), & \text { otherwise }\end{cases}$ and let $H=\left\{\begin{array}{ll}\left(G_{1}^{*}-v_{1}\right)-\left\{f_{1}, f_{2}\right\}, & \text { if } e_{1} \in\left\{v_{1} z, v_{1} u_{1}\right\} . \text {. Then } F(H) \leq 1 \\ \left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{1}, f_{2}\right\}\right)\left(e_{1}\right), & \text { otherwise }\end{array}\right.$. and H is 2-edge-connected. By Theorem 14(ii), H has a spanning (w_{1}, a)-trail. This trail can be extended to a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$.

If $e_{2} \notin\left\{v_{1} u_{1}, v_{1} w_{1}\right\}$, then $e_{2}=u_{1} w_{1}$. If $e_{1} \in E_{G_{1}^{*}}\left(v_{1}\right)$, then $e_{1}=v_{1} b$, where $b \in\left\{w_{1}, u_{1}, z\right\}$. As $F\left(\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{1}, f_{2}\right\}\right)\left(e_{2}\right)\right) \leq 1,\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{1}, f_{2}\right\}\right)\left(e_{2}\right)$ has a spanning $\left(b, v\left(e_{2}\right)\right)$-trail. This trail can be extended to a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=$ $\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. If $e_{1} \notin E_{G_{1}^{*}}\left(v_{1}\right)$, then as $F\left(\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{1}, f_{2}\right\}\right)\left(e_{1}\right)\right) \leq 1$, $\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{1}, f_{2}\right\}\right)\left(e_{1}\right)$ has a spanning $\left(w_{1}, v\left(e_{1}\right)\right)$-trail T^{\prime}. If $e_{2} \notin E\left(T^{\prime}\right)$, then this trail T^{\prime} can be extended to a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T in $\left(G_{1}^{*}-\right.$ $X)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. If $e_{2} \in E\left(T^{\prime}\right)$, then $T=T^{\prime}-\left\{w_{1} u_{1}\right\}+\left\{v_{1} u_{1}, v_{1} w_{1}, w_{1} v\left(e_{2}\right)\right\}$ is a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$.

Case 2. $t=2$. Then $e_{1}, e_{2} \notin E\left(G_{1}\right)$ and $\triangle^{*}(G)=\left\{\triangle_{v_{1}}, \triangle_{v_{2}}\right\}$ with $v_{i} \in$ $D_{3}\left(G_{1}^{*}\right)$ and $V\left(\triangle_{v_{i}}\right)=\left\{v_{i}, u_{i}, w_{i}\right\}(i=1,2)$. For $i=1,2$, we assume that $e_{i} \in E\left(\triangle_{v_{i}}\right), E_{G_{1}^{*}}\left(v_{i}\right)=\left\{v_{i} u_{i}, v_{i} w_{i}, v_{i} z_{i}\right\}$, and let x_{i} be the vertex on which $\triangle_{v_{i}}$ is
contracted in G_{1}. If $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}, x_{2} z_{2}\right\}$ is not connected, then $z_{1}=z_{2}$ and $f_{1}, f_{2}, x_{1} z_{1}, x_{2} z_{2}$ are incident to z_{1} of degree 4. Thus $\left\{f_{1}, f_{2}, v_{1} z_{1}, v_{2} u_{2}, v_{2} w_{2}\right\}$ is an essential 5 -edge cut in G_{1}^{*}, a contradiction. So $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}, x_{2} z_{2}\right\}$ is connected. Similarly, $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}\right\}$ and $G_{1}-\left\{f_{1}, f_{2}, x_{2} z_{2}\right\}$ are 2-edgeconnected.

Consider $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}\right\}$. By (5), G_{1} is 4 -edge-connected. By Theorem 14(iv), $F\left(G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}\right\}\right) \leq 1$ and $F\left(G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}, x_{2} z_{2}\right\}\right) \leq 2$. By Theorem 14(ii), $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}\right\}$ is collapsible. Thus $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}\right\}$ has a spanning $\left(x_{1}, x_{2}\right)$-trail T. If $e_{2} \neq u_{2} w_{2}$, then by Lemma $15,\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T with $V\left(G_{1}^{*}\right)-V(T) \subseteq\left\{v_{1}, v_{2}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. So we may assume that $e_{2}=u_{2} w_{2}$. Similarly, we assume that $e_{1}=u_{1} w_{1}$. By Lemma 15, $\left\{f_{1}, f_{2}\right\} \cap\left\{x_{1} z_{1}, x_{2} z_{2}\right\}=\emptyset$.

Notice that $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}, x_{2} z_{2}\right\}$ is connected and $F\left(G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}\right.\right.$, $\left.\left.x_{2} z_{2}\right\}\right) \leq 2$. Let G^{\prime} be the reduction of $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}, x_{2} z_{2}\right\}$. By Theorem $14(\mathrm{iii}), G^{\prime} \in\left\{K_{1}, K_{2}, K_{2, \ell}\right\}$. Since G_{1} is 4 -edge-connected and essentially 6 -edge-connected, and since x_{1} and x_{2} are the vertices on which $\triangle_{v_{1}}$ and $\triangle_{v_{2}}$ are contracted in G_{1}, we have $G^{\prime} \neq K_{2, \ell}$. If $G^{\prime}=K_{1}$, then $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}, x_{2} z_{2}\right\}$ has a spanning $\left(x_{1}, x_{2}\right)$-trail. By Lemma $15(\mathrm{ii}),\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail. If $G^{\prime}=K_{2}$, then we assume that $G^{\prime}=a b$. Thus either $P I(a)$ or $P I(b)$ is trivial. Without loss of generality, we assume that $P I(a)$ is trivial. Since G_{1}^{*} is essentially 6 -edge-connected, we have $a \in V\left(G_{1}^{*}\right)$. As $G_{1}-\left\{f_{1}, f_{2}, x_{1} z_{1}\right\}$ and $G_{1}-\left\{f_{1}, f_{2}, x_{2} z_{2}\right\}$ are 2-edge-connected, we have $E_{G_{1}}(a) \cap$ $\left\{x_{1} z_{1}, x_{2} z_{2}\right\} \neq \emptyset$. Without loss of generality, we assume that $a=z_{1}$. Thus $x_{1} \in V(P I(b))$. Since $E_{G_{1}^{*}}(a) \cup\left\{v_{1} u_{1}, v_{1} w_{1}\right\}-\left\{z_{1} v_{1}\right\}$ is essentially edge-cut of G_{1}^{*} and since G_{1}^{*} is essentially 6 -edge-connected, $d_{G_{1}}(a) \geq 5$. Thus $E_{G_{1}}(a)=$ $\left\{a b, z_{1} x_{1}, z_{2} x_{2}, f_{1}, f_{2}\right\}, a=z_{1}=z_{2}$ and $x_{1}, x_{2} \in P I(b)$. Let T be a spanning (x_{1}, x_{2})-trail in $P I(b)$. As $e_{1}=u_{1} w_{1}$ and $e_{2}=u_{2} w_{2}$, by Lemma 15(ii), $\left(G_{1}^{*}-X\right)$ $\left(e_{1}, e_{2}\right)-a$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T^{\prime}. This trail T^{\prime} is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\{a\} \subseteq$ $D_{5}\left(G_{1}^{*}\right)$. We finish the proof of Claim 3.2.

By Claim 3.2, we may assume that $f_{1} \notin E\left(G_{1}\right)$. In addition, we assume that $\triangle_{v_{1}} \in \triangle^{*}(G)$ such that $f_{1} \in E\left(\triangle_{v_{1}}\right)$. Let $E_{G_{1}^{*}}\left(v_{1}\right)=\left\{v_{1} u_{1}, v_{1} w_{1}, v_{1} z_{1}\right\}$, where $V\left(\triangle_{v_{1}}\right)=\left\{v_{1}, u_{1}, w_{1}\right\}$.
Claim 3.3. If $E_{G_{1}^{*}}\left(v_{1}\right) \cap\left\{e_{1}, e_{2}\right\}=\emptyset$, then Claim 3 holds.
Proof. In this case, $e_{1}, e_{2} \in E\left(G_{1}^{*}-v_{1}\right)$. By Lemma 16, $G_{1}^{*}-v_{1}$ is 3-edgeconnected and essentially 5 -edge-connected. If $f_{2} \notin E_{G_{1}^{*}}\left(v_{1}\right)$, then $f_{2} \in E\left(G_{1}^{*}-\right.$ $\left.v_{1}\right)$. By Claim 2, $\left(\left(G_{1}^{*}-v_{1}\right)-f_{2}\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T^{\prime} such that $V\left(\left(\left(G_{1}^{*}-v_{1}\right)-f_{2}\right)\left(e_{1}, e_{2}\right)\right)-V\left(T^{\prime}\right) \subseteq\{y\} \subseteq D_{3}\left(G_{1}^{*}-v_{1}\right)$. Let $T=$ $\left\{\begin{array}{l}\left(T^{\prime}-f_{1}\right)+\left\{v_{1} u_{1}, v_{1} w_{1}\right\}, \\ T^{\prime},\end{array}\right.$ if $f_{1} \in E\left(T^{\prime}\right)$
othererwise . Then T is a dominating $\left(v\left(e_{1}\right)\right.$,
$\left.v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ such that $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq\left\{v_{1}, y\right\} \subseteq$ $D_{3}\left(G_{1}^{*}\right)$. If $f_{2} \in E_{G_{1}^{*}}\left(v_{1}\right)$, then by Claim 2, $\left(\left(G_{1}^{*}-v_{1}\right)-u_{1} w_{1}\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T such that $V\left(\left(\left(G_{1}^{*}-v_{1}\right)-f_{2}\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq$ $\{y\} \subseteq D_{3}\left(G_{1}^{*}-v_{1}\right)$. This trail T is also a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ such that $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq\left\{v_{1}, y\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. Claim 3.3 holds.

By Claim 3.3, we assume that $e_{1} \in E_{G_{1}^{*}}\left(v_{1}\right)$. Let $e_{1}=v_{1} b_{1}$, where $b_{1} \in$ $\left\{w_{1}, u_{1}, z_{1}\right\}$. Consider f_{2}. If $f_{2} \in E\left(G_{1}\right)$, then $t \in\{1,2\}$; if $f_{2} \notin E\left(G_{1}\right)$, then we may assume that $f_{2} \in E\left(\triangle_{v_{i}}\right)$ for some $\triangle_{v_{i}} \in \triangle^{*}(G)$. Thus by Claim 3.3, $e_{2} \in E_{G_{1}^{*}}\left(v_{i}\right)$. So we still have $t \in\{1,2\}$.

Claim 3.4. If $t=1$, then Claim 3 holds.
Proof. In this case, $\triangle^{*}(G)=\left\{\triangle_{v_{1}}\right\}$. Since G_{1}^{*} is 3-edge-connected and essentially 6 -edge-connected and since v_{1} is only the vertex of degree three, $G_{1}^{*}-v_{1}$ is 4-edge-connected. So

$$
\begin{equation*}
\tau\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}, u_{1} w_{1}\right\}\right) \geq 2 \tag{9}
\end{equation*}
$$

If $e_{2} \in E_{G_{1}^{*}}\left(v_{1}\right)$, then we assume that $e_{2}=v_{1} b_{2}$, where $b_{2} \in\left\{u_{1}, w_{1}, z_{1}\right\}-\left\{b_{1}\right\}$. By (9), $\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}, u_{1} w_{1}\right\}$ is collapsible. Thus $\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}, u_{1} w_{1}\right\}$ has a spanning $\left(b_{1}, b_{2}\right)$-trail. This trail can be extended to a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$ trail T in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. If $e_{2} \notin E_{G_{1}^{*}}\left(v_{1}\right)$, by $(9), F\left(\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}, u_{1} w_{1}\right\}\right)\left(e_{2}\right)\right) \leq 1$. By Theorem 14(ii), $\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}, u_{1} w_{1}\right\}\right)\left(e_{2}\right)$ is collapsible. Thus $\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}, u_{1} w_{1}\right\}\right)\left(e_{2}\right)$ has a spanning $\left(b_{1}, v\left(e_{2}\right)\right)$-trail. This trail can be extended to a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=$ $\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. Claim 3.4 holds.

By Claim 3.4, we assume that $t=2$. Then $\triangle^{*}(G)=\left\{\triangle_{v_{1}}, \triangle_{v_{2}}\right\}$, where $v_{i} \in D_{3}\left(G_{1}^{*}\right), V\left(\triangle_{v_{i}}\right)=\left\{v_{i}, u_{i}, w_{i}\right\}$ and $\left\{e_{2}, f_{2}\right\} \cap E\left(\triangle_{v_{2}}\right) \neq \emptyset$. Let $E_{G_{1}^{*}}\left(v_{2}\right)=$ $\left\{v_{2} u_{2}, v_{2} w_{2}, v_{2} z_{2}\right\}$. Since G_{1}^{*} is essentially 6 -edge-connected, $d_{G_{1}^{*}}(x) \geq 5$ for $x \in$ $\left\{u_{1}, w_{1}, u_{2}, w_{2}\right\}$. By Lemma $16, G_{1}^{*}-v_{1}$ is 3 -edge-connected and essentially 5 -edge-connected. Since v_{2} is the only vertex of degree 3 in $G_{1}^{*}-v_{1}$, we have $\tau\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}\right\}\right) \geq 2$, and so $F\left(\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}\right) \leq 1$.

Consider $G_{1}^{*}-v_{1}$. Then $\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}$ is essentially 3 -edge-connected. If $\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}$ has a cut edge f^{\prime}, then we assume that H_{1} and H_{2} are components of $\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}, f^{\prime}\right\}$. Since G_{1}^{*} is essentially 6 -edge-connected, we have either H_{1} or H_{2} is trivial. Without loss of generality, we assume that $V\left(H_{1}\right)=\left\{u_{1}\right\}$. Then $E_{G_{1}^{*}}\left(u_{1}\right)=\left\{u_{1} v_{1}, u_{1} w_{1}, f_{2}, f^{\prime}\right\}$ and $\left(E_{G_{1}^{*}}\left(u_{1}\right) \cup E_{G_{1}^{*}}\left(v_{1}\right)\right)-$ $\left\{u_{1} v_{1}\right\}$ is an essential 5 -edge cut in G_{1}^{*}, a contradiction. So $\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}$ is 2 -edge-connected.

If $e_{2} \in E_{G_{1}^{*}}\left(v_{1}\right) \cup\left\{u_{1} w_{1}\right\}$, then $f_{2} \in E\left(\triangle_{v_{2}}\right)$. We assume that e_{2} is incident to b_{3}, where $b_{3} \in\left\{u_{1}, w_{1}, z_{1}\right\}$. By Theorem 14(ii), $\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}$ is collapsible. Thus $\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}$ has a spanning $\left(b_{1}, b_{3}\right)$-trail T^{\prime}. Thus $T=v\left(e_{1}\right) T^{\prime} v\left(e_{2}\right)$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ such that $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. So we may assume that $e_{2} \notin E_{G_{1}^{*}}\left(v_{1}\right) \cup\left\{u_{1} w_{1}\right\}$.

As $\tau\left(\left(G_{1}^{*}-v_{1}\right)-\left\{f_{2}\right\}\right) \geq 2, F\left(\left(\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}\right)\left(e_{2}\right)\right) \leq 2$. Let G^{\prime} be the reduction of $\left(\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}\right)\left(e_{2}\right)$. By Theorem 14(iii), $G^{\prime} \in\left\{K_{1}, K_{2, \ell}\right\}$ $(\ell \geq 3)$. Since $d_{G_{1}^{*}-v_{1}}\left(u_{1}\right) \geq 4$ and $d_{G_{1}^{*}-v_{1}}\left(w_{1}\right) \geq 4$ and since $G_{1}^{*}-v_{1}$ is 3-edgeconnected and essentially 5 -edge-connected, $G^{\prime}=K_{1}$. Notice that $e_{1}=v_{1} b_{1}$. Then $\left(\left(G_{1}^{*}-v_{1}\right)-\left\{u_{1} w_{1}, f_{2}\right\}\right)\left(e_{2}\right)$ has a spanning $\left(b_{1}, v\left(e_{2}\right)\right)$-trail T. This trail can be extended to a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T in $\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. We finish the proof of Claim 3.

We finish the proof of Lemma 22.
We need one more notation. Let $e=x y \in E\left(W_{5}\right)$ with $x, y \in D_{3}\left(W_{5}\right)$ and let H be a graph and $e^{\prime}=x^{\prime} y^{\prime} \in E(H)$. Define a new graph $H \oplus W_{5}$ to be a graph obtained from the disjoint union of $H-e^{\prime}$ and W_{5} by identifying x and x^{\prime} to form a new vertex, also called x, and by identifying y and y^{\prime} to form a new vertex, also called y.
Lemma 23 [15]. Suppose that $s \geq 0$ and that G is a claw-free graph such that $\kappa(L(G)) \geq s+4$. Let G_{0} be the core of G and let $w_{1}, w_{2}, w_{3} \in D_{3}\left(G_{0}\right)$ be vertices with $N_{G_{0}}\left(w_{2}\right)=\left\{w_{1}, w_{3}, v\right\}$. If $v w_{1}, v w_{3} \in E\left(G_{0}\right)$, then each of the following holds.
(i) $s=0$.
(ii) Either $G=G_{0} \in\left\{K_{4}, W_{4}, W_{5}\right\}$, or there exists a subgraph H of G with $\kappa^{\prime}(H) \geq 3$ and ess ${ }^{\prime}(H) \geq 4$ such that $G_{0}=H \oplus W_{5}$ (see Figure 3).

Figure 3. $K_{k+2} \oplus W_{5}$ in Lemma 23.
Proof of Theorem 9. Let X be any edge subset of G with $|X|=s$. To prove that $L(G)$ is s-hamiltonian connected, it suffices to prove that for any two edges
$e_{1}, e_{2} \in G-X, G-X$ has an internally dominating $\left(e_{1}, e_{2}\right)$-trail. By Theorem 8, we assume that $s \in\{0,1,2\}$. Let G_{0} be the core of G. Then it suffices to assume that $X \cup\left\{e_{1}, e_{2}\right\} \subseteq E\left(G_{0}\right)$, and to show $G_{0}-X$ has an internally dominating $\left(e_{1}, e_{2}\right)$-trail T with $V\left(G_{0}\right)-V(T) \subseteq \bigcup_{i=3}^{s+3} D_{i}\left(G_{0}\right)$. By contradiction, we assume that G is a counterexample to Theorem 9 with $\left|V\left(G_{0}\right)\right|$ minimized. Then there exist edges $X \cup\left\{e_{1}, e_{2}\right\} \subseteq E\left(G_{0}\right)$ such that $\left(G_{0}-X\right)\left(e_{1}, e_{2}\right)$ does not have a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T with

$$
\begin{equation*}
V\left(\left(G_{0}-X\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq \bigcup_{i=3}^{s+3} D_{i}\left(G_{0}\right) \tag{10}
\end{equation*}
$$

By (10) and Theorem 13 (iii), we assume that $G_{0} \notin\left\{K_{4}, W_{4}, W_{5}\right\}$ and G_{0}^{*} is not collapsible. By Lemma 22, G_{0} does not have Property $\mathcal{K}(s)$. As G_{0} is clawfree, $(\mathrm{KS} 2)$ is violated. Thus there exist $w_{1}, w_{2}, w_{3} \in D_{3}\left(G_{0}\right)$ with $N_{G_{0}}\left(w_{2}\right)=$ $\left\{w_{1}, w_{3}, v\right\}$ and $v w_{1}, v w_{3} \in E\left(G_{0}\right)$. By Lemma 23, we have $s=0$ and $G_{0}=$ $H \oplus W_{5}$ for a subgraph H of G_{0} with $\kappa^{\prime}(H) \geq 3$ and ess $^{\prime}(H) \geq 4$. Assume that $V\left(W_{5}\right)=\left\{v, w_{1}, \ldots, w_{5}\right\}$ with $w_{4} w_{5} \in E(H) \cap E\left(W_{5}\right)$, as depicted in Figure 3. As H is claw-free, every 3 -edge-cut of H has at least one edge in a 3 -cycle. By Theorem $13(\mathrm{v})$, for any two edges $e^{\prime}, e^{\prime \prime} \in E(H), H\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible. Thus H and $H\left(e^{\prime}\right)$ are collapsible.

If $\left\{e_{1}, e_{2}\right\} \cap E\left(W_{5}\right)=\emptyset$, then by the minimality of $G_{0}, H\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T_{1} with $V\left(H\left(e_{1}, e_{2}\right)\right)-V\left(T_{1}\right) \subseteq D_{3}(H)$. Thus the subgraph induced by $E\left(T_{1}\right) \cup\left\{v w_{5}, v w_{4}, w_{5} w_{1}, w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}\right\}$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in G_{0}^{*}, contrary to (10). If $e_{1}, e_{2} \in E\left(W_{5}\right)$, then by inspection, $W_{5}\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T_{2} that contains either w_{4} or w_{5}. As H is collapsible, H has a spanning eulerian subgraph T_{3}. Thus $T_{4}=G_{0}^{*}\left[\left(E\left(T_{2}\right)-E\left(T_{3}\right)\right) \cup\left(E\left(T_{3}\right)-E\left(T_{2}\right)\right)\right]$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in G_{0}^{*} with $V\left(G_{0}^{*}\right)-V\left(T_{4}\right) \subseteq D_{3}\left(G_{0}\right)$, contrary to (10). Thus we assume that $e_{1} \in E(H)-E\left(W_{5}\right)$ and $e_{2} \in E\left(W_{5}\right)-E(H)$. By Theorem 13(ii), $W_{5}\left(e_{2}\right)$ is collapsible. By Theorem $13(\mathrm{v}), H\left(e_{1}\right)$ is collapsible. Thus G_{0}^{*} is collapsible, a contradiction.

Acknowledgments

The authors are indebted to an anonymous reviewer for providing insightful comments which help to improve the manuscript. The research of Xiaoling Ma is supported by the Natural Science Foundation of China (No. 11701490), the YouthTalent Project of Xinjiang Province (No. 2019Q016), and the Natural Science Foundation of Xinjiang Province (No. 2021D01C069).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier Science Publishing Co. Inc. New York NY, 1976). https://doi.org/10.1007/978-1-349-03521-2
[2] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-44. https://doi.org/10.1002/jgt. 3190120105
[3] P.A. Catlin, Z. Han and H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91. https://doi.org/10.1016/S0012-365X(95)00149-Q
[4] P.A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math. 309 (2009) 1033-1040. https://doi.org/10.1016/j.disc.2007.11.056
[5] Z.-H. Chen, H.-J. Lai, W. Shiu and D.Y. Li, An s-hamiltonian line graph problem, Graphs Combin. 23 (2007) 241-248. https://doi.org/10.1007/s00373-007-0727-y
[6] F. Harary and C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710. https://doi.org/10.4153/CMB-1965-051-3
[7] F. Jaeger, A note on sub-Eulerian graphs, J. Graph Theory 3 (1979) 91-93. https://doi.org/10.1002/jgt. 3190030110
[8] T. Kaiser, Z. Ryjáček and P. Vrána, On 1-Hamilton-connected claw-free graphs, Discrete Math. 321 (2014) 1-11. https://doi.org/10.1016/j.disc.2013.12.009
[9] T. Kaiser and P. Vrána, Hamilton cycles in 5-connected line graphs, European J. Combin. 33 (2012) 924-947. https://doi.org/10.1016/j.ejc.2011.09.015
[10] M. Kriesell, Every 4-connected line graph of claw-free graphs are hamiltonianconnected, J. Combin. Theory Ser. B 82 (2001) 306-315. https://doi.org/10.1006/jctb.2001.2040
[11] R. Kužel and L. Xiong, Every 4-connected line graph is hamiltonian if and only if it is hamiltonian-connected, in: R. Kučzel: Hamiltonian Properties of Graphs, Ph.D. Thesis, (U.W.B. Pilsen, 2004).
[12] H.-J. Lai, Y. Liang and Y. Shao, On s-hamiltonian-connected line graphs, Discrete Math. 308 (2008) 4293-4297.
https://doi.org/10.1016/j.disc.2007.07.120
[13] H.-J. Lai and Y. Shao, On s-hamiltonian line graphs, J. Graph Theory 74 (2013) 344-358.
https://doi.org/10.1002/jgt. 21713
[14] H.-J. Lai, Y. Shao, G. Yu and M. Zhan, Hamiltonian connectedness in 3-connected line graphs, Discrete Appl. Math. 157 (2009) 982-990. https://doi.org/10.1016/j.dam.2008.02.005
[15] H.-J. Lai, M. Zhan, T. Zhang and J. Zhou, On s-hamiltonian line graphs of claw-free graphs, Discrete Math. 342 (2019) 3006-3016.
https://doi.org/10.1016/j.disc.2019.06.006
[16] M.M. Matthews and D.P. Sumner, Hamiltonian results in $K_{1,3}-$ free graphs, J. Graph Theory 8 (1984) 139-146. https://doi.org/10.1002/jgt. 3190080116
[17] Z. Ryjáček and P. Vrána, Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011) 152-173. https://doi.org/10.1002/jgt. 20498
[18] Z. Ryjáček and P. Vrána, A closure for 1-Hamilton-connectedness in claw-free graphs, J. Graph Theory 75 (2014) 358-376. https://doi.org/10.1002/jgt. 21743
[19] Y. Shao, Claw-Free Graphs and Line Graphs, Ph.D. Dissertation (West Virginia University, 2005).
[20] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324. https://doi.org/10.1002/jgt. 3190100308
[21] S. Zhan, Hamiltonian connectedness of line graphs, Ars Combin. 22 (1986) 89-95.
Received 27 September 2021
Revised 27 December 2021
Accepted 27 December 2021
Available online 8 February 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

