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Abstract

For an integer s ≥ 0, G is s-hamiltonian-connected if for any vertex sub-
set S ⊆ V (G) with |S| ≤ s, G− S is hamiltonian-connected. Thomassen in
1984 conjectured that every 4-connected line graph is hamiltonian (see [Re-
flections on graph theory, J. Graph Theory 10 (1986) 309–324]), and Kužel
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and Xiong in 2004 conjectured that every 4-connected line graph is hamil-
tonian-connected (see [Z. Ryjáček and P. Vrána, Line graphs of multigraphs

and Hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011)
152–173]). In this paper we prove the following.
(i) For s ≥ 3, every (s+4)-connected line graph is s-hamiltonian-connected.
(ii) For s ≥ 0, every (s + 4)-connected line graph of a claw-free graph is
s-hamiltonian-connected.

Keywords: line graph, claw-free graph, s-hamiltonian-connected, collapsi-
ble graphs, reductions.

2020 Mathematics Subject Classification: 05C75, 05C45.

1. Introduction

Graphs considered here are finite and loopless. Unless otherwise noted, we follow
[1] for notation and terms. As in [1], κ(G) and κ′(G) denote the connectivity
and the edge-connectivity of a graph G, respectively. A graph is nontrivial if it
contains edges. An edge cut X is essential if G −X has at least two nontrivial
components. For an integer k > 0, a graph G is essentially k-edge-connected if
G does not have an essential edge cut X with |X| < k. For a connected graph
G, let ess′(G) = max{k : G is essentially k-edge-connected}, and for an integer
i ≥ 0, let Di(G) = {u ∈ V (G) : dG(u) = i}. Throughout this paper, for an
integer n ≥ 2, Cn denotes a cycle on n vertices (called an n-cycle), Wn denotes
the graph obtained from an n-cycle by adding a new vertex and connecting it to
every vertex of the n-cycle. If S ⊆ V (G) or S ⊆ E(G), then G[S] is the subgraph
induced in G by S. We use H ⊆ G to denote the fact that H is a subgraph of G.
For H ⊆ G, x ∈ V (G), A ⊆ V (G), X ⊆ E(G), and Y ⊆ E(G) − E(H), define
EG(x) = {e : e is incident to x}, NH(x) = NG(x) ∩ V (H), dH(x) = |NH(x)|,
G−A = G[V (G)−A], G−X = G[E(G)−X], and H+Y = G[E(H)∪Y ]. When
A = {v} and X = {e}, we use G− v for G− {v} and G− e for G− {e}.

Let O(G) denote the set of odd degree vertices of G. A graph G is eulerian
if O(G) = ∅ and G is connected. A graph G is supereulerian if G has a spanning
eulerian subgraph. A graph G is claw-free if it does not containK1,3 as an induced
subgraph. The line graph of a graph G, denoted by L(G), has E(G) as its vertex
set, where two vertices in L(G) are adjacent if and only if the corresponding edges
in G are adjacent. From the definition of a line graph, if L(G) is not a complete
graph, then L(G) is k-connected if and only if G is essentially k-edge-connected.
The following are several fascinating conjectures in the literature.

Conjecture 1. (i) (Thomassen [20]) Every 4-connected line graph is hamilto-

nian.

(ii) (Matthews and Sumner [16]) Every 4-connected claw-free graph is hamilto-

nian.
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(iii) (Kužel and Xiong [11]) Every 4-connected line graph is hamiltonian-con-

nected.

(iv) (Ryjáček and Vrána [17]) Every 4-connected claw-free graph is hamiltonian-

connected.

Ryjáček and Vrána in [17] indicated that the statements in Conjecture 1 are
mutually equivalent. There have been many studies on these conjectures in the
literature. Among them are the following.

Theorem 2 (Zhan [21]). Every 7-connected line graph is hamiltonian-connected.

Theorem 3 (Kaiser and Vrána [9]). Every 5-connected line graph with minimum

degree at least 6 is hamiltonian.

Theorem 4 (Kriesell [10]). Every 4-connected line graph of a claw-free graph is

hamiltonian-connected.

For an integer s ≥ 0, a graph G is s-hamiltonian (or s-hamiltonian-connected,
respectively) if for any vertex subset S ⊆ V (G) with |S| ≤ s, G−S is hamiltonian
(or hamiltonian-connected, respectively). It is routine to observe that every s-
hamiltonian graph is (s+2)-connected, and every s-hamiltonian-connected graph
is (s+ 3)-connected. The converse, on the other hand, is not true, as Km,m+1 is
m-connected but nonhamiltonian.

Theorem 5 (Kaiser, Ryjáček, and Vrána [8]). Every 5-connected claw-free graph

with minimum degree 6 is 1-hamiltonian-connected.

Theorem 6. Let s be an integer.

(i) (Theorem 1.4 of [12]) For s ≥ 3, every (s+4)-connected line graph is (s−1)-
hamiltonian-connected.

(ii) (Theorem 1.3 of [13]) For s ≥ 5, every (s + 2)-connected line graph is s-
hamiltonian.

(iii) (Theorem 1.6 of [15])) For s ≥ 0, every (s + 2)-connected line graph of a

claw-free graph is s-hamiltonian.

(iv) (Theorem 1.6 of [15])) Every 4-connected line graph of a claw-free graph is

1-hamiltonian-connected.

Motivated by Conjecture 1 as well as the results in [5, 12] and [13], the
following conjecture was proposed.

Conjecture 7 [15]. Let s be an integer.

(i) For s ≥ 2, a line graph is s-hamiltonian if and only if it is (s+2)-connected.

(ii) For s ≥ 2, a claw-free graph is s-hamiltonian if and only if it is (s + 2)-
connected.
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(iii) For s ≥ 1, a line graph is s-hamiltonian-connected if and only if it is (s+3)-
connected.

(iv) For s ≥ 1, a claw-free graph is s-hamiltonian-connected if and only if it is

(s+ 3)-connected.

In [18], Ryjáček and Vrána showed that when s = 1, Conjecture 7(iii) is
equivalent to Conjecture 1(i). The main results in this paper are presented below.

Theorem 8. For s ≥ 3, every (s + 4)-connected line graph is s-hamiltonian-

connected.

Theorem 9. For s ≥ 0, every (s + 4)-connected line graph of a claw-free graph

is s-hamiltonian-connected.

Catlin’s reduction method will be refreshed in Section 2, together with other
useful tools developed in this paper for our proofs of the main results. The proof
of Theorem 8 is presented in Section 3, and the proof of Theorem 9 is presented in
Section 4. We would like to point out that some of the mechanisms developed in
[15] will be utilized in the proof arguments of Theorem 9, as shown in Section 4.

2. Preliminaries

We view a trail of G as a vertex-edge alternating sequence v0, e1, v1, e2, . . . , ek, vk
such that all the ei’s are distinct and for each i = 1, 2, . . . , k, ei is incident with
both vi−1 and vi. The vertices in v1, v2, . . . , vk−1 are internal vertices of the trail.
For edges e′, e′′ ∈ E(G), an (e′, e′′)-trail of G is a trail T of G whose first edge
is e′ and whose last edge is e′′. An internally dominating (e′, e′′)-trail of G is an
(e′, e′′)-trail T of G such that every edge of G is incident with an internal vertex
of T , and a spanning (e′, e′′)-trail of G is an internally dominating (e′, e′′)-trail
T of G such that V (T ) = V (G). Harary and Nash-Williams [6] first showed
the relationship between eulerian subgraphs in G and hamiltonicity in L(G).
Theorem 10(ii) below is observed in [14].

Theorem 10. Let G be a graph with |E(G)| ≥ 3. Each of the following holds.

(i) (Harary and Nash-Williams [6]) L(G) is hamiltonian if and only if G has a

dominating eulerian subgraph.

(ii) ([14]) L(G) is hamiltonian-connected if and only if for any pair of edges

e′, e′′ ∈ E(G), G has an internally dominating (e′, e′′)-trail.

Theorem 11. Let G be a connected graph with at least three edges and s > 0
an integer. The line graph L(G) is s-hamiltonian-connected if and only if G− S
has an internally dominating (e′, e′′)-trail for any S ⊂ E(G) with |S| ≤ s, and
for any pair of edges e′, e′′ ∈ E(G− S).
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We say that an edge e ∈ E(G) is subdivided when it is replaced by a path
of length 2 whose internal vertex, denoted by v(e), has degree 2 in the resulting
graph. The process of taking an edge e and replacing it by the path of length 2
is called subdividing e. For a graph G and edges e′, e′′ ∈ E(G), let G(e′) denote
the graph obtained from G by subdividing e′, and let G(e′, e′′) denote the graph
obtained from G by subdividing both e′ and e′′. Then V (G(e′, e′′)) − V (G) =
{v(e′), v(e′′)}.

Proposition 12. For a graph G and edges e′, e′′ ∈ E(G), if G(e′, e′′) has a

dominating (spanning, respectively) (v(e′), v(e′′))-trail, then G has an internally

dominating (spanning, respectively) (e′, e′′)-trail.

Let X ⊆ E(G) be an edge subset of G. The contraction G/X is the graph
obtained from G by identifying the two ends of each edge in X and then deleting
the resulting loops. If H is a subgraph of G, then we write G/H for G/E(H).
If vK is the vertex in G/H onto which the connected subgraph K is contracted,
then K is called the preimage of vK , and denoted by PI(vK). In [2] Catlin
defined collapsible graphs. Given an even subset R of V (G), a subgraph Γ of G
is called an R-subgraph if O(Γ) = R and G − E(Γ) is connected. A graph G is
collapsible if for any even subset R of V (G), G has an R-subgraph. In particular,
K1 is collapsible. Catlin [2] showed that for any graph G, one can obtain the
reduction G′ of G by contracting all maximal collapsible subgraphs of G. A graph
G′ is reduced if G′ has no nontrivial collapsible subgraphs. A vertex x in G′ is
c-nontrivial (or c-trivial) if |V (PI(x))| ≥ 2 (or |V (PI(x))| = 1). By definition,
every collapsible graph is supereulerian. We summarize some results on Catlin’s
reduction method and other related facts below.

Theorem 13. Let G be a graph and let H be a collapsible connected subgraph of

G. Let vH denote the vertex onto which H is contracted in G/H. Each of the

following holds.

(i) (Catlin, Theorem 3 of [2]) G is collapsible if and only if G/H is collapsible.

Therefore, G is collapsible if and only if the reduction of G is K1.

(ii) (Catlin, implied by definition and Theorem 3 of [2]) C2, C3 are collapsible,

and when n ≥ 4, for any e ∈ E(Wn), Wn(e) is collapsible.

(iii) (Theorem 2.3(iii) of [14]) If G is collapsible, then for any pair of vertices

u, v ∈ V (G), G has a spanning (u, v)-trail.

(iv) (Theorem 2.3(iv) of [14]) For vertices u, v ∈ V (G/H)− {vH}, if G/H has a

spanning (u, v)-trail, then G has a spanning (u, v)-trail.

(v) (Theorem 3.3 of [14]) Let G be a 3-edge-connected graph. If every 3-edge-cut
X has at least one edge in a 2-cycle or 3-cycle of G, then, for any two edges

e′, e′′ ∈ E(G), G(e′, e′′) is collapsible.
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Let τ(G) denote the maximum number of edge-disjoint spanning trees of G.
Let F (G) be the minimum number of additional edges that must be added to G
so that the resulting graph has two edge-disjoint spanning trees. The following
theorem summarizes results related to F (G) and supereulerian properties.

Theorem 14. Let G be a connected graph and let G′ be the reduction of G. Then

each of the following holds.

(i) (Jaeger [7]) If F (G) = 0, then G is collapsible.

(ii) (Catlin [2]) If F (G) ≤ 1, then G′ ∈ {K1,K2}. Therefore, G is supereulerian

if and only if G′ 6= K2.

(iii) (Catlin et al. [3]) If F (G) ≤ 2, then G′ ∈ {K1,K2,K2,t} for some integer

t ≥ 1. Therefore, G is supereulerian if and only if G′ 6∈ {K2,K2,t} for some

odd integer t.

(iv) (Theorem 1.1 of [4]) Let k ≥ 1 be an integer. Then κ′(G) ≥ 2k if and only

if for any edge subset X ⊆ E(G) with |X| ≤ k, τ(G−X) ≥ k.

Lemma 15 ([15]). Assume that K = v1v2v3v1 is a triangle in a connected graph

G with dG(v1) = 3. Also assume that NG(v1) = {v2, v3, x} and e ∈ {v1v2, v2v3}.
Let w be the new vertex in G/K on which K is contracted, and let u( 6= w) ∈
V (G/K). Let T be a spanning (u,w)-trail in G/K. Then each of the following

holds.

(i) For e = v1v2, G(e) has a dominating (u, v(e))-trail T1 such that V (G(e)) −
V (T1) ⊆ {v1}.

(ii) For e = v2v3, if xv1 6∈ E(T ), then G(e) has a spanning (u, v(e))-trail T2.

Lemma 16 ([15]). Let s ≥ 3 be an integer and G be a graph with κ′(G) ≥ 3 and

ess′(G) ≥ s+ 2. If v ∈ D3(G), then κ′(G− v) ≥ 3 and ess′(G− v) ≥ s+ 1.

3. Proof of Theorem 8.

Let s ≥ 3 be an integer, and let G be a connected, essentially s-edge-connected
graph such that L(G) is not a complete graph. Then for any edge vx ∈ E(G)
with dG(v) ∈ {1, 2}, we have dG(x) ≥ s+2−dG(v). Following [19], the core of the
graph G, written as G0, is obtained by the following two operations repeatedly.

Operation 1. Delete each vertex of degree 1.

Operation 2. For each vertex y of degree 2 with EG(y) = {xy, yz}, contract
exactly one edge in EG(y). This amounts to deleting vertex y in G with dG(y) = 2
and replacing xy and yz with a new edge xz.
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Reversing Operation 2
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G0 = O2(O1(G))

Figure 1. The core graph.

Let O1(G) denote the graph obtained from G by applying Operation 1 to each
vertex of degree 1, and O2(G) the graph obtained from G by applying Operation
2 to each vertex of degree 2. Thus G0 = O2(O1(G)). As shown in [19], we observe
that G0 is well-defined, and is 3-edge-connected and essentially s-edge-connected.
By the definitions of these operations, any trail in G is contracted to a trail in
G0. Conversely, for any trail T ′ in G0, there is a trail T in G such that T ′ is the
contraction image of T . We call T a lift of T ′, or say that T ′ can be lifted to T .

In the rest of this section, we assume that G is a connected, essentially s-
edge-connected graph, where s ≥ 6 is an integer, and let X ⊆ E(G) with |X| ≤ 3.
Let H = G0 − (E(G0) ∩X). If H is not connected, then H contains an isolated
vertex v with EG(v) = X = EG0

(v) and |X| = 3, and H − v is essentially s-edge-
connected. If H is connected, then H is essentially (s− 3)-edge-connected since

G is essentially s-edge-connected. Let GX =

{

H, if H is connected,
H − v, if H is not connected.

Then we have

GX is essentially (s− 3)-connected.(1)

Let (GX)0 be the core of GX . Then

(GX)0 is 3-edge-connected and essentially (s− 3)-edge-connected.(2)

Theorem 17 (Theorem 4.1 of [13]). Let G be an essentially 7-edge-connected
graph. If X ⊆ E(G) with |X| ≤ 3, then τ((GX)0) ≥ 2.

Lemma 18. Let G be an essentially 7-edge-connected graph. Let X ⊆ E(G) be

a subset with |X| ≤ 3 and {e1, e2} ⊆ E(G) −X. Then G −X has an internally

dominating (e1, e2)-trail.

Proof. Let G0 be the core of G. Notice that G is essentially 7-edge-connected.
By (2),

(GX)0 is 3-edge-connected and essentially 4-edge-connected.(3)

Claim 1. Let e = xy ∈ E(G). We assume that dGX
(y) ≥ dGX

(x) if e ∈ E(G0)
but e 6∈ E((GX)0); otherwise, we assume that dG(y)≥dG(x). Then y ∈ V ((GX)0).
Therefore, d(GX)0(y) ≥ 3.
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Proof. Notice that there are three possibilities for the location of e: e∈E((GX)0),
e 6∈ E(G0), or e ∈ E(G0) and e 6∈ E((GX)0). If e ∈ E((GX)0), then both x and
y are in V ((GX)0).

If e 6∈ E(G0), then since dG(y) ≥ dG(x), dG(x) ∈ {1, 2}. As G is essentially
7-edge-connected, dG(x) + dG(y) ≥ 9, and so dG(y) ≥ 9 − dG(x). Therefore,
dG0

(y) ≥ 7 and dGX
(y) ≥ 7− 3 = 4. This implies that y ∈ V ((GX)0).

If e ∈ E(G0) and e 6∈ E((GX)0), then since dGX
(y) ≥ dGX

(x), we have
dGX

(x) ∈ {1, 2}. By (1), GX is essentially 4-edge-connected. Then dGX
(x) +

dGX
(y) ≥ 6. Thus, dGX

(y) ≥ 6− dGX
(x) ≥ 4. So y ∈ V ((GX)0). Claim 1 holds.

For i = 1, 2, denote ei = xiyi in such a way that if ei ∈ E(G0) but ei 6∈
E((GX)0), then the labeling of xi and yi satisfies dGX

(yi) ≥ dGX
(xi); otherwise

we label xi and yi so that dG(yi) ≥ dG(xi). Let

Q =







(GX)0(e1, e2), if e1, e2 ∈ E((GX)0),
(GX)0(ei), if {e1, e2} ∩ E((GX)0) = {ei},
(GX)0, otherwise

and

vi =

{

v(ei), if ei ∈ E((GX)0),
yi, otherwise.

By Theorem 17, τ((GX)0) ≥ 2 and so F (Q) ≤ 2. By Theorem 14(iii) and (3), Q
is collapsible. By Theorem 13(iii),

Q has a spanning (v1, v2)-trail T1.(4)

Let T2 be the lift of T1 in GX and let T3 be the lift of T2 in (G−X)(e1, e2). Let
T be a trail obtained from T3 by replacing vi by ei. Then T is an (e1, e2)-trail
of G − X. Let T = w1f1w2f2 · · · fkwk, where f1 = e1 and fk = e2, and let
I = {w2, w3, . . . , wk−1}. Then V (T1)− {v(e1), v(e2)} ⊆ I. To show that T is an
internally dominating (e1, e2)-trail in G −X, it suffices to show that every edge
e = xy of G − X is incident with an internal vertex of T , i.e., either x ∈ I or
y ∈ I.

We assume that dGX
(y) ≥ dGX

(x) if e ∈ E(G0) but e 6∈ (GX)0; otherwise,
we assume that dG(y) ≥ dG(x). By Claim 1, y ∈ V ((GX)0). By (4), y ∈ V (T1).
As d(GX)0(y) ≥ 3, y 6∈ {v(e1), v(e2)} and so y ∈ V (T1)− {v(e1), v(e2)} ⊆ I.

Lemma 19. Every 7-connected line graph is 3-hamiltonian-connected.

Proof. Lemma 19 follows from Lemma 18 and Theorem 11.

Proof of Theorem 8. By Lemma 19, Theorem 8 holds when s = 3. We assume
that s ≥ 4 and that Theorem 8 holds for smaller values of s. Let G be a graph
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with κ(L(G)) ≥ s+ 4. For any S ⊆ V (L(G)) with |S| ≤ s, pick ve0 ∈ S. Assume
that the edge in G corresponding to ve0 in L(G) is e0. Let G∗ = G − e0. Since
κ(L(G)) ≥ s+4, κ(L(G∗)) = κ(L(G)− ve0) ≥ s+3. It follows by induction that
as L(G∗) is (s + 3)-connected, L(G∗) is (s − 1)-hamiltonian-connected, and so
L(G) − S = L(G∗) − (S − {ve0}) must be hamiltonian-connected. It follows by
definition that L(G) is s-hamiltonian-connected.

4. Graphs with Property K(s) and Proof of Theorem 9

Throughout this section, we assume that s ≥ 0 is an integer. Following [15], we
shall introduce a property of graphs which will play an important role in our
arguments.

([15]) Let K denote the graph family such that a (connected) graph G is in
K if and only if G satisfies each of the following.

(KS1) For any w ∈ D3(G), the subgraph induced by NG(w) contains at least
one edge.

(KS2) Let w ∈ NG(x1)∩NG(x2), where x1, x2 ∈ D3(G) and x1x2 6∈ E(G). If
NG(w) = {x1, x2, v}, then either vx1 6∈ E(G) or vx2 6∈ E(G).

(KS3) Let w1, w2 ∈ NG(x1) ∩ NG(x2), where x1, x2 ∈ D3(G) and x1x2 6∈
E(G). If w1w2 ∈ E(G), then NG(w1) ∪NG(w2) ⊆ NG(x1) ∪NG(x2) ∪ {x1, x2}.

By definition, K4 ∈ K and every claw-free graph satisfies (KS1) and (KS3).
Since (KS2) is violated for the graphs W4 and W5, we have W4,W5 6∈ K. For an
integer s ≥ 0, a graph G is said to have Property K(s) if G is in K − {K4} and
satisfies both κ′(G) ≥ 3 and ess′(G) ≥ s+ 4.

Lemma 20 [15]. If the graph G has Property K(s), then there is a set △(G) of

edge-disjoint triangles in G such that D3(G) ⊆ V (L), where L is the subgraph

induced by
⋃

K∈△(G)E(K), and D3(G) ∩ V (K) 6= ∅ for each K ∈ △(G).

Let G have Property K(s) and v ∈ D3(G). By Lemma 20, there is a triangle
in △(G) that contains v. We denote this triangle by △v. Thus, for v, u ∈ D3(G),
we have either E(△v) = E(△u) or E(△v) ∩ E(△u) = ∅. Fix a given subset
E′ ⊆ E(G). Define △′(G) = {△v ∈ △(G) : v ∈ D3(G) and E(△v) ∩ E′ = ∅}
and △∗(G) = △(G) − △′(G). Then △(G) = △′(G) if E′ ∩ E(△(G)) = ∅. Let
G1 = G/△(G) and G∗

1 = G/△′(G) be the graphs obtained from G by contracting
the edges in △(G) and △′(G), respectively. Thus if E′ ∩ E(△(G)) = ∅, then
G1 = G∗

1. We call G1 a △-contraction of G and G∗
1 a △-contraction of G with

respect to E′. Since G is 3-edge-connected and essentially (s+4)-edge-connected,
we have

κ′(G1) ≥ 4 and ess′(G1) ≥ s+ 4, and κ′(G∗
1) ≥ 3 and ess′(G∗

1) ≥ s+ 4.(5)
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By Theorem 14(iv), for any X ⊆ E(G1) with |X| ≤ 2, τ(G1 − X) ≥ 2, and
so F (G1 −X) = 0. Let t be the number of different triangles in △∗(G) and let
△∗(G) = {△v1 , . . . ,△vt} with V (△vi) = {vi, ui, wi}. Then {v1, . . . , vt} ⊆ D3(G

∗
1)

and E(△vi) ∩ E′ 6= ∅ for i = 1, . . . , t (Figure 2). Since G∗
1 is 3-edge-connected

and essentially 4-edge-connected, we have either dG∗

1
(ui) ≥ 4 or dG∗

1
(wi) ≥ 4.

Without loss of generality, we assume that

dG∗

1
(wi) ≥ 4.(6)

v1 vt

· · ·

E(△vi
) ∩ E′ 6= ∅ for i = 1, . . . , t

Figure 2. G∗

1 = G1/△
′(G).

Lemma 21. (i) If t = 0, then G∗
1 = G1.

(ii) If t = 1, then for any edge e ∈ E(G∗
1), τ(G

∗
1 − e) ≥ 2.

(iii) If s = 0 and t = 2, then τ(G∗
1) ≥ 2.

(iv) If s ≥ 1 and t = 2, then for any e ∈ E(G∗
1), τ(G

∗
1 − e) ≥ 2.

Proof. If t = 0, then △∗(G) = ∅. Thus G∗
1 = G1. If t = 1, then △∗(G) = {△v1}

with V (△v1) = {v1, u1, w1}. By (6), dG∗

1
(w1) ≥ 4. Let Q1 be the graph obtained

from G∗
1 by adding the new edge v1u1. Actually this new edge and the edge v1u1

in the triangle △v1 are parallel. We denote this new edge by (v1u1)
′. Then Q1 is

4-edge-connected. Thus, for any edge e ∈ E(G∗
1), τ(G

∗
1−e) = τ(Q1−{e, (v1u1)

′})
≥ 2.

If t = 2, then △∗(G) = {△v1 ,△v2} with V (△vi) = {vi, ui, wi}(i = 1, 2).
By (6), dG∗

1
(wi) ≥ 4. If s = 0, then we set Q2 to be the graph obtained from

G∗
1 by adding the new edges v1v2 and u1u2. Thus, Q2 is 4-edge-connected. So

τ(G∗
1) = τ(Q2 − {v1v2, u1u2}) ≥ 2. If s ≥ 1, then G∗

1 is essentially 5-edge-
connected. Thus, for x ∈ {u1, w1, u2, w2}, dG∗

1
(x) ≥ 4. Let Q3 be the graph

obtained from G∗
1 by adding the new edge v1v2. Then Q3 is 4-edge-connected.

So for any edge e ∈ E(G∗
1), τ(G

∗
1 − e) = τ(Q3 − {v1v2, e}) ≥ 2.

The next lemma will be used in the proof of Theorem 9. For any edge subset
X of G with |X| = s, to prove that L(G) is s-hamiltonian connected, it suffices to
prove that for any two edges e1, e2 ∈ G−X, G−X has an internally dominating
(e1, e2)-trail. By Theorem 8, we only need to consider s ∈ {0, 1, 2}.
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Lemma 22. Let X be an edge subset of G, and s = |X| ∈ {0, 1, 2}. If G satisfies

Property K(s), then for any two edges e1, e2 ∈ G −X, G −X has an internally

dominating (e1, e2)-trail T such that V (G)− V (T ) ⊆
⋃s+3

i=3 Di(G).

Proof. Let E′ = X∪{e1, e2} and let G1 be a △-contraction of G and G∗
1 be a △-

contraction of G with respect to E′. If △∗(G) 6= ∅, then we assume that △∗(G) =
{△v1 , . . . ,△vt} with V (△vi) = {vi, ui, wi} (i = 1, . . . , t). Thus E(△vi) ∩ E′ 6= ∅
and t ∈ {0, 1, . . . , 2 + s}. By (5), we have

Di(G
∗
1) ⊆ Di(G) for i = 3, . . . , s+ 3.(7)

Since a triangle is collapsible, to prove Lemma 22, by Proposition 12 and Theorem
13(iv), it suffices to prove that (G∗

1 −X)(e1, e2) has a dominating (v(e1), v(e2))-
trail T such that

V ((G∗
1 −X)(e1, e2))− V (T ) ⊆

s+3
⋃

i=3

Di(G
∗
1).(8)

Claim 1. If s = 0, then for any two edges e′, e′′ in G∗
1, G

∗
1(e

′, e′′) is collapsible.

Therefore, (G∗
1 −X)(e1, e2) has a spanning (v(e1), v(e2))-trail T .

Proof. Since s = 0, we have X = ∅ and t ∈ {0, 1, 2}. Thus G∗
1−X = G∗

1. By (5),
G∗

1 is 3-edge-connected and essentially 4-edge-connected. Therefore, G∗
1(e

′, e′′) is
2-edge-connected. Let G′ be the reduction of G∗

1(e
′, e′′). By Lemma 21(i)–(iii),

τ(G∗
1) ≥ 2. Thus F (G∗

1 − {e′, e′′}) ≤ 2. As F (G∗
1 − {e′, e′′}) = F (G∗

1(e
′, e′′)), we

have F (G∗
1(e

′, e′′)) ≤ 2. Since G∗
1(e

′, e′′) has only two vertices of degree two and
since G∗

1 is essentially 4-edge-connected, G′ has at most two vertices of degree
two. By Theorem 14(iii), G′ = K1. So G∗

1(e
′, e′′) is collapsible. By Theorem

13(iii), (G∗
1 −X)(e1, e2) has a spanning (v(e1), v(e2))-trail T . Claim 1 holds.

Claim 2. Assume that s = 1. Let X = {f}.

(i) If t = 0, then (G∗
1 −X)(e1, e2) has a spanning (v(e1), v(e2))-trail T .

(ii) If t ∈ {1, 2, 3}, then (G∗
1 −X)(e1, e2) has a dominating (v(e1), v(e2))-trail T

such that |V ((G∗
1−X)(e1, e2))−V (T )| ≤ 1 and V ((G∗

1−X)(e1, e2))−V (T ) ⊆
D3(G

∗
1). Furthermore, if t ∈ {1, 2} and V ((G∗

1 −X)(e1, e2))− V (T ) = {v},
then EG(v) = {f, e1, e2}.

Proof. As s = 1, G∗
1 is 3-edge-connected and essentially 5-edge-connected. Thus,

(G∗
1−f)(e1, e2) is 2-edge-connected and |D2((G

∗
1−f)(e1, e2))| ≤ 3. If t = 0, then

G∗
1 = G1 and so F ((G∗

1 − f)(e1, e2)) ≤ 1. By Theorem 14(ii), (G∗
1 − f)(e1, e2) is

collapsible. So (G∗
1 −X)(e1, e2) has a spanning (v(e1), v(e2))-trail T .

If t ∈ {1, 2}, then by Lemma 21(ii) and Lemma 21(iv), F ((G∗
1− f)(e1, e2)) ≤

2. Let G′ be the reduction of (G∗
1 − f)(e1, e2). Since |D2((G

∗
1 − f)(e1, e2))| ≤ 3
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and since G∗
1 is essentially 5-edge-connected, we have |D2(G

′)| ≤ 4. By The-
orem 14(iii), G′ ∈ {K1,K2,2,K2,3,K2,4}. If G′ = K1, by Theorem 13(iii),
(G∗

1 − f)(e1, e2) has a spanning (v(e1), v(e2))-trail. If G′ ∈ {K2,3,K2,4}, then
v(e1), v(e2) ∈ D2(G

′). By Theorem 13(iv), (G∗
1 − f)(e1, e2) has a spanning

(v(e1), v(e2))-trail. If G
′ = K2,2, then v(e1), v(e2) ∈ D2(G

′) such that v(e1), v(e2)
are not adjacent. Let V (G′) − {v(e1), v(e2)} = {v, v′}. Then either PI(v) or
PI(v′) is trivial. Without loss of generality, we assume that PI(v) is trivial. So
f is incident to v, and (G∗

1 − X)(e1, e2) has a dominating (v(e1), v(e2))-trail T
such that V ((G∗

1 − f)(e1, e2))− V (T ) = {v}, where EG(v) = {e1, e2, f}.
If t = 3, then f ∈ X ′ and △∗(G) = {△v1 ,△v2 ,△v3}, where for 1 ≤ i ≤ 3, vi ∈

D3(G
∗
1). Without loss of generality, we assume that f ∈ E(△v1), e1 ∈ E(△v2)

and e2 ∈ E(△v3). By Lemma 16, G∗
1 − v1 is 3-edge-connected and essentially 4-

edge-connected. By Claim 1, (G∗
1 − v1)(e1, e2) has a spanning (v(e1), v(e2))-trail

T ′. Let T =

{

(T ′ − f) + {v1u1, v1w1}, if f ∈ E(T ′)
T ′, otherwise

. Then T is a dominating

(v(e1), v(e2))-trail in (G∗
1 − X)(e1, e2) such that V ((G∗

1 − X)(e1, e2)) − V (T ) ⊆
{v1} ⊆ D3(G

∗
1). Claim 2 holds.

Claim 3. If s = 2, then (G∗
1 −X)(e1, e2) has a dominating (v(e1), v(e2))-trail T

such that V ((G∗
1 −X)(e1, e2))− V (T ) ⊆

⋃5
i=3Di(G

∗
1).

Proof. Since s = 2, G∗
1 is 3-edge-connected and essentially 6-edge-connected.

Let X = {f1, f2}. Then G∗
1 − X is connected and essentially 4-edge-connected.

So (G∗
1 −X)(e1, e2) is connected. As s = 2, we have t ∈ {0, 1, 2, 3, 4}.

Claim 3.1. If G∗
1 −X is not 2-edge-connected, then Claim 3 holds.

Proof. Assume that G∗
1 − X is not 2-edge-connected. Let e be a cut edge of

G∗
1 −X, and let H1 and H2 be components of (G∗

1 −X)− e. Then {f1, f2, e} is
a 3-edge cut of G∗

1. As G∗
1 is essentially 6-edge-connected, we may assume that

V (H1) = {v1}. Then EG∗

1
(v1) = {f1, f2, e}. Thus t ≤ 3. Consider G∗

1 − v1.
Then dG∗

1
−v1(x) ≥ 4 for any x ∈ NG∗

1
(v1). Since t ≤ 3, G∗

1 − v1 contains at
most two vertices of degree 3. By Lemma 16, G∗

1 − v1 is 3-edge-connected and
essentially 5-edge-connected. Thus τ((G∗

1 − v) − e1) ≥ 2. This implies that
F ((G∗

1 − v) − {e1, e2}) ≤ 1 and so F ((G∗
1 − v1)(e1, e2)) ≤ 1. By Theorem 14(ii),

(G∗
1 − v1)(e1, e2) is collapsible. Let T be a spanning (v(e1), v(e2))-trail of (G

∗
1 −

v1)(e1, e2). Then T is a dominating (v(e1), v(e2))-trail of (G
∗
1 − X)(e1, e2) with

V (G∗
1)− V (T ) = {v1} ⊆ D3(G

∗
1). Claim 3.1 holds.

By Claim 3.1, we may assume that G∗
1−X is 2-edge-connected. Then (G∗

1−
X)(e1, e2) is also 2-edge-connected. If t = 0, then f1, f2, e1, e2 ∈ E(G1) and
G∗

1 = G1. So (G1−X)(e1, e2) has at most three vertices of degree 2. Let G′ be the
reduction of (G1−X)(e1, e2). Then |D2(G

′)| ≤ 4. By (5), G1 is 4-edge-connected.
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By Theorem 14(iv), we have τ(G1 − X) ≥ 2 and so F ((G1 − X)(e1, e2)) ≤ 2.
Since (G1−X)(e1, e2) is 2-edge-connected and G1 is essentially 6-edge-connected,
G′ ∈ {K1,K2,2,K2,3}. If G′ = K1, by Theorem 13(iii), (G1 − X)(e1, e2) has
a spanning (v(e1), v(e2))-trail. If G′ = K2,3, then v(e1), v(e2) ∈ D2(G

′). By
Theorem 13(iv), (G1 − X)(e1, e2) has a spanning (v(e1), v(e2))-trail. If G′ =
K2,2, then v(e1), v(e2) ∈ D2(G

′) such that v(e1), v(e2) are not adjacent. Let
V (G′)−{v(e1), v(e2)} = {v, v′}. Then either PI(v) or PI(v′) is trivial. Without
loss of generality, we assume that PI(v) is trivial. So f1, f2 are incident to v
and (G1 −X)(e1, e2) has a dominating (v(e1), v(e2))-trail T such that V ((G1 −
X)(e1, e2))−V (T ) = {v} ⊆ D4(G1), where EG(v) = {e1, e2, f1, f2}. Next we just
need to consider t ∈ {1, 2, 3, 4}.

Claim 3.2. If f1, f2 ∈ E(G1), then Claim 3 holds.

Proof. In this case, |{e1, e2} ∩ E(G1)| ≤ 1 and t ∈ {1, 2}. Without loss of
generality, we assume that e2 6∈ E(G1). We consider two cases.

Case 1. t = 1. Then △∗(G) = {△v1} with v1 ∈ D3(G
∗
1) and V (△v1) =

{v1, u1, w1}, and e2 ∈ E(△v1). Let EG∗

1
(v1) = {v1u1, v1w1, v1z}. By Lemma

16, G∗
1 − v1 is 3-edge-connected and essentially 5-edge-connected. Since G∗

1 is
essentially 6-edge-connected, we have dG∗

1
−v1(y) ≥ 4 for y ∈ {u1, w1, z}. Thus

G∗
1 − v1 is 4-edge-connected, and so τ((G∗

1 − v1)− {f1, f2}) ≥ 2.

If e2 ∈ {v1u1, v1w1}, assume that e2 = v1w1. Let a =







z, if e1 = v1z,
u1, if e1 = v1u1,
v(e1), otherwise

and let H =

{

(G∗
1 − v1)− {f1, f2}, if e1 ∈ {v1z, v1u1}

((G∗
1 − v1)− {f1, f2})(e1), otherwise

. Then F (H) ≤ 1

and H is 2-edge-connected. By Theorem 14(ii), H has a spanning (w1, a)-trail.
This trail can be extended to a dominating (v(e1), v(e2))-trail T in (G∗

1−X)(e1, e2)
with V ((G∗

1 −X)(e1, e2))− V (T ) = {v1} ⊆ D3(G
∗
1).

If e2 6∈ {v1u1, v1w1}, then e2 = u1w1. If e1 ∈ EG∗

1
(v1), then e1 = v1b, where

b ∈ {w1, u1, z}. As F (((G∗
1 − v1) − {f1, f2})(e2)) ≤ 1, ((G∗

1 − v1) − {f1, f2})(e2)
has a spanning (b, v(e2))-trail. This trail can be extended to a dominating
(v(e1), v(e2))-trail T in (G∗

1 − X)(e1, e2) with V ((G∗
1 − X)(e1, e2)) − V (T ) =

{v1} ⊆ D3(G
∗
1). If e1 6∈ EG∗

1
(v1), then as F (((G∗

1 − v1) − {f1, f2})(e1)) ≤ 1,
((G∗

1 − v1) − {f1, f2})(e1) has a spanning (w1, v(e1))-trail T
′. If e2 6∈ E(T ′),

then this trail T ′ can be extended to a dominating (v(e1), v(e2))-trail T in (G∗
1 −

X)(e1, e2) with V ((G∗
1 − X)(e1, e2)) − V (T ) = {v1} ⊆ D3(G

∗
1). If e2 ∈ E(T ′),

then T = T ′−{w1u1}+ {v1u1, v1w1, w1v(e2)} is a spanning (v(e1), v(e2))-trail in
(G∗

1 −X)(e1, e2).

Case 2. t = 2. Then e1, e2 6∈ E(G1) and △∗(G) = {△v1 ,△v2} with vi ∈
D3(G

∗
1) and V (△vi) = {vi, ui, wi} (i = 1, 2). For i = 1, 2, we assume that

ei ∈ E(△vi), EG∗

1
(vi) = {viui, viwi, vizi}, and let xi be the vertex on which △vi is
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contracted in G1. If G1 − {f1, f2, x1z1, x2z2} is not connected, then z1 = z2 and
f1, f2, x1z1, x2z2 are incident to z1 of degree 4. Thus {f1, f2, v1z1, v2u2, v2w2}
is an essential 5-edge cut in G∗

1, a contradiction. So G1 − {f1, f2, x1z1, x2z2}
is connected. Similarly, G1 − {f1, f2, x1z1} and G1 − {f1, f2, x2z2} are 2-edge-
connected.

Consider G1 − {f1, f2, x1z1}. By (5), G1 is 4-edge-connected. By Theorem
14(iv), F (G1 − {f1, f2, x1z1}) ≤ 1 and F (G1 − {f1, f2, x1z1, x2z2}) ≤ 2. By
Theorem 14(ii), G1 − {f1, f2, x1z1} is collapsible. Thus G1 − {f1, f2, x1z1} has
a spanning (x1, x2)-trail T . If e2 6= u2w2, then by Lemma 15, (G∗

1 − X)(e1, e2)
has a dominating (v(e1), v(e2))-trail T with V (G∗

1)− V (T ) ⊆ {v1, v2} ⊆ D3(G
∗
1).

So we may assume that e2 = u2w2. Similarly, we assume that e1 = u1w1. By
Lemma 15, {f1, f2} ∩ {x1z1, x2z2} = ∅.

Notice that G1 − {f1, f2, x1z1, x2z2} is connected and F (G1 − {f1, f2, x1z1,
x2z2}) ≤ 2. Let G′ be the reduction of G1 − {f1, f2, x1z1, x2z2}. By Theorem
14(iii), G′ ∈ {K1,K2,K2,ℓ}. Since G1 is 4-edge-connected and essentially 6-
edge-connected, and since x1 and x2 are the vertices on which △v1 and △v2 are
contracted in G1, we have G′ 6= K2,ℓ. If G′ = K1, then G1 − {f1, f2, x1z1, x2z2}
has a spanning (x1, x2)-trail. By Lemma 15(ii), (G∗

1 −X)(e1, e2) has a spanning
(v(e1), v(e2))-trail. If G′ = K2, then we assume that G′ = ab. Thus either
PI(a) or PI(b) is trivial. Without loss of generality, we assume that PI(a)
is trivial. Since G∗

1 is essentially 6-edge-connected, we have a ∈ V (G∗
1). As

G1−{f1, f2, x1z1} and G1−{f1, f2, x2z2} are 2-edge-connected, we have EG1
(a)∩

{x1z1, x2z2} 6= ∅. Without loss of generality, we assume that a = z1. Thus
x1 ∈ V (PI(b)). Since EG∗

1
(a) ∪ {v1u1, v1w1} − {z1v1} is essentially edge-cut of

G∗
1 and since G∗

1 is essentially 6-edge-connected, dG1
(a) ≥ 5. Thus EG1

(a) =
{ab, z1x1, z2x2, f1, f2}, a = z1 = z2 and x1, x2 ∈ PI(b). Let T be a spanning
(x1, x2)-trail in PI(b). As e1 = u1w1 and e2 = u2w2, by Lemma 15(ii), (G∗

1 −X)
(e1, e2) − a has a spanning (v(e1), v(e2))-trail T

′. This trail T ′ is a dominating
(v(e1), v(e2))-trail in (G∗

1 −X)(e1, e2) with V ((G∗
1 −X)(e1, e2))− V (T ) = {a} ⊆

D5(G
∗
1). We finish the proof of Claim 3.2.

By Claim 3.2, we may assume that f1 6∈ E(G1). In addition, we assume that
△v1 ∈ △∗(G) such that f1 ∈ E(△v1). Let EG∗

1
(v1) = {v1u1, v1w1, v1z1}, where

V (△v1) = {v1, u1, w1}.

Claim 3.3. If EG∗

1
(v1) ∩ {e1, e2} = ∅, then Claim 3 holds.

Proof. In this case, e1, e2 ∈ E(G∗
1 − v1). By Lemma 16, G∗

1 − v1 is 3-edge-
connected and essentially 5-edge-connected. If f2 6∈ EG∗

1
(v1), then f2 ∈ E(G∗

1 −
v1). By Claim 2, ((G∗

1 − v1)− f2)(e1, e2) has a dominating (v(e1), v(e2))-trail T
′

such that V (((G∗
1 − v1) − f2)(e1, e2)) − V (T ′) ⊆ {y} ⊆ D3(G

∗
1 − v1). Let T =

{

(T ′ − f1) + {v1u1, v1w1}, if f1 ∈ E(T ′)
T ′, othererwise

. Then T is a dominating (v(e1),
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v(e2))-trail in (G∗
1−X)(e1, e2) such that V ((G∗

1−X)(e1, e2))−V (T ) ⊆ {v1, y} ⊆
D3(G

∗
1). If f2 ∈ EG∗

1
(v1), then by Claim 2, ((G∗

1 − v1) − u1w1)(e1, e2) has a
dominating (v(e1), v(e2))-trail T such that V (((G∗

1 − v1)− f2)(e1, e2))− V (T ) ⊆
{y} ⊆ D3(G

∗
1 − v1). This trail T is also a dominating (v(e1), v(e2))-trail in

(G∗
1 − X)(e1, e2) such that V ((G∗

1 − X)(e1, e2)) − V (T ) ⊆ {v1, y} ⊆ D3(G
∗
1).

Claim 3.3 holds.

By Claim 3.3, we assume that e1 ∈ EG∗

1
(v1). Let e1 = v1b1, where b1 ∈

{w1, u1, z1}. Consider f2. If f2 ∈ E(G1), then t ∈ {1, 2}; if f2 6∈ E(G1), then
we may assume that f2 ∈ E(△vi) for some △vi ∈ △∗(G). Thus by Claim 3.3,
e2 ∈ EG∗

1
(vi). So we still have t ∈ {1, 2}.

Claim 3.4. If t = 1, then Claim 3 holds.

Proof. In this case, △∗(G) = {△v1}. Since G∗
1 is 3-edge-connected and essen-

tially 6-edge-connected and since v1 is only the vertex of degree three, G∗
1 − v1 is

4-edge-connected. So

τ((G∗
1 − v1)− {f2, u1w1}) ≥ 2.(9)

If e2 ∈ EG∗

1
(v1), then we assume that e2 = v1b2, where b2 ∈ {u1, w1, z1}−{b1}.

By (9), (G∗
1 − v1)− {f2, u1w1} is collapsible. Thus (G∗

1 − v1)− {f2, u1w1} has a
spanning (b1, b2)-trail. This trail can be extended to a dominating (v(e1), v(e2))-
trail T in (G∗

1 −X)(e1, e2) with V ((G∗
1 −X)(e1, e2)) − V (T ) = {v1} ⊆ D3(G

∗
1).

If e2 6∈ EG∗

1
(v1), by (9), F (((G∗

1 − v1)−{f2, u1w1})(e2)) ≤ 1. By Theorem 14(ii),
((G∗

1 − v1) − {f2, u1w1})(e2) is collapsible. Thus ((G∗
1 − v1) − {f2, u1w1})(e2)

has a spanning (b1, v(e2))-trail. This trail can be extended to a dominating
(v(e1), v(e2))-trail T in (G∗

1 − X)(e1, e2) with V ((G∗
1 − X)(e1, e2)) − V (T ) =

{v1} ⊆ D3(G
∗
1). Claim 3.4 holds.

By Claim 3.4, we assume that t = 2. Then △∗(G) = {△v1 ,△v2}, where
vi ∈ D3(G

∗
1), V (△vi) = {vi, ui, wi} and {e2, f2} ∩ E(△v2) 6= ∅. Let EG∗

1
(v2) =

{v2u2, v2w2, v2z2}. Since G∗
1 is essentially 6-edge-connected, dG∗

1
(x) ≥ 5 for x ∈

{u1, w1, u2, w2}. By Lemma 16, G∗
1 − v1 is 3-edge-connected and essentially 5-

edge-connected. Since v2 is the only vertex of degree 3 in G∗
1 − v1, we have

τ((G∗
1 − v1)− {f2}) ≥ 2, and so F ((G∗

1 − v1)− {u1w1, f2}) ≤ 1.

Consider G∗
1−v1. Then (G∗

1−v1)−{u1w1, f2} is essentially 3-edge-connected.
If (G∗

1 − v1)− {u1w1, f2} has a cut edge f ′, then we assume that H1 and H2 are
components of (G∗

1−v1)−{u1w1, f2, f
′}. Since G∗

1 is essentially 6-edge-connected,
we have either H1 or H2 is trivial. Without loss of generality, we assume that
V (H1) = {u1}. Then EG∗

1
(u1) = {u1v1, u1w1, f2, f

′} and (EG∗

1
(u1) ∪ EG∗

1
(v1)) −

{u1v1} is an essential 5-edge cut in G∗
1, a contradiction. So (G∗

1−v1)−{u1w1, f2}
is 2-edge-connected.
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If e2 ∈ EG∗

1
(v1) ∪ {u1w1}, then f2 ∈ E(△v2). We assume that e2 is incident

to b3, where b3 ∈ {u1, w1, z1}. By Theorem 14(ii), (G∗
1 − v1) − {u1w1, f2} is

collapsible. Thus (G∗
1 − v1) − {u1w1, f2} has a spanning (b1, b3)-trail T

′. Thus
T = v(e1)T

′v(e2) is a dominating (v(e1), v(e2))-trail in (G∗
1 − X)(e1, e2) such

that V ((G∗
1 − X)(e1, e2)) − V (T ) = {v1} ⊆ D3(G

∗
1). So we may assume that

e2 6∈ EG∗

1
(v1) ∪ {u1w1}.

As τ((G∗
1−v1)−{f2}) ≥ 2, F (((G∗

1−v1)−{u1w1, f2})(e2)) ≤ 2. Let G′ be the
reduction of ((G∗

1 − v1) − {u1w1, f2})(e2). By Theorem 14(iii), G′ ∈ {K1,K2,ℓ}
(ℓ ≥ 3). Since dG∗

1
−v1(u1) ≥ 4 and dG∗

1
−v1(w1) ≥ 4 and since G∗

1 − v1 is 3-edge-
connected and essentially 5-edge-connected, G′ = K1. Notice that e1 = v1b1.
Then ((G∗

1 − v1) − {u1w1, f2})(e2) has a spanning (b1, v(e2))-trail T . This trail
can be extended to a dominating (v(e1), v(e2))-trail T in (G∗

1 − X)(e1, e2) with
V ((G∗

1 −X)(e1, e2))− V (T ) = {v1} ⊆ D3(G
∗
1). We finish the proof of Claim 3.

We finish the proof of Lemma 22.

We need one more notation. Let e = xy ∈ E(W5) with x, y ∈ D3(W5) and
let H be a graph and e′ = x′y′ ∈ E(H). Define a new graph H ⊕ W5 to be a
graph obtained from the disjoint union of H − e′ and W5 by identifying x and x′

to form a new vertex, also called x, and by identifying y and y′ to form a new
vertex, also called y.

Lemma 23 [15]. Suppose that s ≥ 0 and that G is a claw-free graph such that

κ(L(G)) ≥ s+4. Let G0 be the core of G and let w1, w2, w3 ∈ D3(G0) be vertices

with NG0
(w2) = {w1, w3, v}. If vw1, vw3 ∈ E(G0), then each of the following

holds.

(i) s = 0.

(ii) Either G = G0 ∈ {K4,W4,W5}, or there exists a subgraph H of G with

κ′(H) ≥ 3 and ess′(H) ≥ 4 such that G0 = H ⊕W5 (see Figure 3).

w2

w1

w5 w4

w3v

v1 v2
· · ·

vkKk

Figure 3. Kk+2 ⊕W5 in Lemma 23.

Proof of Theorem 9. Let X be any edge subset of G with |X| = s. To prove
that L(G) is s-hamiltonian connected, it suffices to prove that for any two edges
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e1, e2 ∈ G−X, G−X has an internally dominating (e1, e2)-trail. By Theorem 8,
we assume that s ∈ {0, 1, 2}. Let G0 be the core of G. Then it suffices to assume
that X ∪ {e1, e2} ⊆ E(G0), and to show G0 − X has an internally dominating
(e1, e2)-trail T with V (G0)− V (T ) ⊆

⋃s+3
i=3 Di(G0). By contradiction, we assume

that G is a counterexample to Theorem 9 with |V (G0)| minimized. Then there
exist edges X ∪ {e1, e2} ⊆ E(G0) such that (G0 − X)(e1, e2) does not have a
dominating (v(e1), v(e2))-trail T with

V ((G0 −X)(e1, e2))− V (T ) ⊆
s+3
⋃

i=3

Di(G0).(10)

By (10) and Theorem 13(iii), we assume that G0 6∈ {K4,W4,W5} and G∗
0 is not

collapsible. By Lemma 22, G0 does not have Property K(s). As G0 is claw-
free, (KS2) is violated. Thus there exist w1, w2, w3 ∈ D3(G0) with NG0

(w2) =
{w1, w3, v} and vw1, vw3 ∈ E(G0). By Lemma 23, we have s = 0 and G0 =
H ⊕W5 for a subgraph H of G0 with κ′(H) ≥ 3 and ess′(H) ≥ 4. Assume that
V (W5) = {v, w1, . . . , w5} with w4w5 ∈ E(H) ∩ E(W5), as depicted in Figure 3.
As H is claw-free, every 3-edge-cut of H has at least one edge in a 3-cycle. By
Theorem 13(v), for any two edges e′, e′′ ∈ E(H), H(e′, e′′) is collapsible. Thus H
and H(e′) are collapsible.

If {e1, e2} ∩E(W5) = ∅, then by the minimality of G0, H(e1, e2) has a dom-
inating (v(e1), v(e2))-trail T1 with V (H(e1, e2)) − V (T1) ⊆ D3(H). Thus the
subgraph induced by E(T1) ∪ {vw5, vw4, w5w1, w1w2, w2w3, w3w4} is a domi-
nating (v(e1), v(e2))-trail in G∗

0, contrary to (10). If e1, e2 ∈ E(W5), then by
inspection, W5(e1, e2) has a dominating (v(e1), v(e2))-trail T2 that contains ei-
ther w4 or w5. As H is collapsible, H has a spanning eulerian subgraph T3. Thus
T4 = G∗

0[(E(T2) − E(T3)) ∪ (E(T3) − E(T2))] is a dominating (v(e1), v(e2))-trail
in G∗

0 with V (G∗
0) − V (T4) ⊆ D3(G0), contrary to (10). Thus we assume that

e1 ∈ E(H) − E(W5) and e2 ∈ E(W5) − E(H). By Theorem 13(ii), W5(e2) is
collapsible. By Theorem 13(v), H(e1) is collapsible. Thus G∗

0 is collapsible, a
contradiction.
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