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Abstract

For an integer s > 0, G is s-hamiltonian-connected if for any vertex sub-
set S C V(G) with |S] < s, G — S is hamiltonian-connected. Thomassen in
1984 conjectured that every 4-connected line graph is hamiltonian (see [Re-
flections on graph theory, J. Graph Theory 10 (1986) 309-324]), and Kuzel
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and Xiong in 2004 conjectured that every 4-connected line graph is hamil-
tonian-connected (see [Z. Ryjacek and P. Vrdna, Line graphs of multigraphs
and Hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011)
152-173]). In this paper we prove the following.

(i) For s > 3, every (s+4)-connected line graph is s-hamiltonian-connected.
(ii) For s > 0, every (s + 4)-connected line graph of a claw-free graph is
s-hamiltonian-connected.

Keywords: line graph, claw-free graph, s-hamiltonian-connected, collapsi-
ble graphs, reductions.
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1. INTRODUCTION

Graphs considered here are finite and loopless. Unless otherwise noted, we follow
[1] for notation and terms. As in [1], K(G) and k'(G) denote the connectivity
and the edge-connectivity of a graph G, respectively. A graph is nontrivial if it
contains edges. An edge cut X is essential if G — X has at least two nontrivial
components. For an integer k > 0, a graph G is essentially k-edge-connected if
G does not have an essential edge cut X with | X| < k. For a connected graph
G, let ess’'(G) = max{k : G is essentially k-edge-connected}, and for an integer
i >0, let D;(G) = {u € V(G) : dg(u) = i}. Throughout this paper, for an
integer n > 2, C),, denotes a cycle on n vertices (called an n-cycle), W, denotes
the graph obtained from an n-cycle by adding a new vertex and connecting it to
every vertex of the n-cycle. If S C V(G) or S C E(G), then G[S] is the subgraph
induced in G by S. We use H C G to denote the fact that H is a subgraph of G.
For HC G,z € V(G), ACV(G), X CE(G),and Y C E(G) — E(H), define
Eqg(z) = {e : e is incident to z}, Ng(z) = Ng(x) N V(H), dg(xz) = |Ng(z)|,
G-A=G[V(G)-A],G-X =G[E(G)—X],and H+Y = G[E(H)UY]. When
A ={v} and X = {e}, we use G — v for G — {v} and G — e for G — {e}.

Let O(G) denote the set of odd degree vertices of G. A graph G is eulerian
if O(G) =0 and G is connected. A graph G is supereulerian if G has a spanning
eulerian subgraph. A graph G'is claw-free if it does not contain K7 3 as an induced
subgraph. The line graph of a graph G, denoted by L(G), has E(G) as its vertex
set, where two vertices in L(G) are adjacent if and only if the corresponding edges
in G are adjacent. From the definition of a line graph, if L(G) is not a complete
graph, then L(G) is k-connected if and only if G is essentially k-edge-connected.
The following are several fascinating conjectures in the literature.

Conjecture 1. (i) (Thomassen [20]) Every 4-connected line graph is hamilto-
nian.

(ii) (Matthews and Sumner [16]) Every 4-connected claw-free graph is hamilto-
nian.
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(iii) (Kuzel and Xiong [11]) Every 4-connected line graph is hamiltonian-con-
nected.

(iv) (Ryjacek and Vrana [17]) Every 4-connected claw-free graph is hamiltonian-
connected.

Ryjécek and Vrana in [17] indicated that the statements in Conjecture 1 are
mutually equivalent. There have been many studies on these conjectures in the
literature. Among them are the following.

Theorem 2 (Zhan [21]). Every 7-connected line graph is hamiltonian-connected.

Theorem 3 (Kaiser and Vrana [9]). Every 5-connected line graph with minimum
degree at least 6 is hamiltonian.

Theorem 4 (Kriesell [10]). Every 4-connected line graph of a claw-free graph is
hamiltonian-connected.

For an integer s > 0, a graph G is s-hamiltonian (or s-hamiltonian-connected,
respectively) if for any vertex subset S C V(G) with |S| < s, G— S is hamiltonian
(or hamiltonian-connected, respectively). It is routine to observe that every s-
hamiltonian graph is (s+2)-connected, and every s-hamiltonian-connected graph
is (s + 3)-connected. The converse, on the other hand, is not true, as Ky, ;41 is
m-~connected but nonhamiltonian.

Theorem 5 (Kaiser, Ryjacek, and Vrana [8]). Every 5-connected claw-free graph
with minimum degree 6 is 1-hamiltonian-connected.

Theorem 6. Let s be an integer.
(i) (Theorem 1.4 of [12]) For s > 3, every (s+4)-connected line graph is (s—1)-
hamiltonian-connected.
(ii) (Theorem 1.3 of [13]) For s > 5, every (s + 2)-connected line graph is s-
hamiltonian.
(iii) (Theorem 1.6 of [15])) For s > 0, every (s + 2)-connected line graph of a
claw-free graph is s-hamiltonian.

(iv) (Theorem 1.6 of [15])) Every 4-connected line graph of a claw-free graph is
1-hamiltonian-connected.

Motivated by Conjecture 1 as well as the results in [5, 12] and [13], the
following conjecture was proposed.

Conjecture 7 [15]. Let s be an integer.
(i) For s > 2, a line graph is s-hamiltonian if and only if it is (s + 2)-connected.

(ii) For s > 2, a claw-free graph is s-hamiltonian if and only if it is (s + 2)-
connected.
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(iii) For s > 1, a line graph is s-hamiltonian-connected if and only if it is (s+3)-
connected.

(iv) For s > 1, a claw-free graph is s-hamiltonian-connected if and only if it is
(s + 3)-connected.

In [18], Ryjacek and Vrana showed that when s = 1, Conjecture 7(iii) is
equivalent to Conjecture 1(i). The main results in this paper are presented below.

Theorem 8. For s > 3, every (s + 4)-connected line graph is s-hamiltonian-
connected.

Theorem 9. For s > 0, every (s + 4)-connected line graph of a claw-free graph
is s-hamiltonian-connected.

Catlin’s reduction method will be refreshed in Section 2, together with other
useful tools developed in this paper for our proofs of the main results. The proof
of Theorem 8 is presented in Section 3, and the proof of Theorem 9 is presented in
Section 4. We would like to point out that some of the mechanisms developed in
[15] will be utilized in the proof arguments of Theorem 9, as shown in Section 4.

2. PRELIMINARIES

We view a trail of G as a vertex-edge alternating sequence vg, e1,v1, €2, .. ., €k, Uk
such that all the e;’s are distinct and for each i = 1,2,...,k, e; is incident with
both v;_1 and v;. The vertices in v1,vo,...,v._1 are internal vertices of the trail.
For edges ¢',¢”’ € E(G), an (¢/,e")-trail of G is a trail T' of G whose first edge
is ¢/ and whose last edge is ¢”. An internally dominating (€', €”)-trail of G is an
(e/,e")-trail T of G such that every edge of G is incident with an internal vertex
of T, and a spanning (€/,€e")-trail of G is an internally dominating (', ¢”)-trail
T of G such that V(T') = V(G). Harary and Nash-Williams [6] first showed
the relationship between eulerian subgraphs in G and hamiltonicity in L(G).
Theorem 10(ii) below is observed in [14].

Theorem 10. Let G be a graph with |E(G)| > 3. Each of the following holds.
(i) (Harary and Nash-Williams [6]) L(G) is hamiltonian if and only if G has a
dominating eulerian subgraph.

(ii) ([14]) L(GQ) is hamiltonian-connected if and only if for any pair of edges
e, € E(G), G has an internally dominating (€', e")-trail.

Theorem 11. Let G be a connected graph with at least three edges and s > 0
an integer. The line graph L(QG) is s-hamiltonian-connected if and only if G — S
has an internally dominating (€', e")-trail for any S C E(G) with |S| < s, and
for any pair of edges €',e¢" € E(G — S).
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We say that an edge e € FE(G) is subdivided when it is replaced by a path
of length 2 whose internal vertex, denoted by v(e), has degree 2 in the resulting
graph. The process of taking an edge e and replacing it by the path of length 2
is called subdividing e. For a graph G and edges €¢/,¢” € E(G), let G(¢’) denote
the graph obtained from G by subdividing €/, and let G(€’,e”) denote the graph
obtained from G by subdividing both ¢’ and €”’. Then V(G(¢/,e")) — V(G) =

{v(€'), v(e")}

Proposition 12. For a graph G and edges €', € E(G), if G(¢/,e") has a
dominating (spanning, respectively) (v(e'),v(e"))-trail, then G has an internally
dominating (spanning, respectively) (€¢/,e")-trail.

Let X C E(G) be an edge subset of G. The contraction G/X is the graph
obtained from G by identifying the two ends of each edge in X and then deleting
the resulting loops. If H is a subgraph of G, then we write G/H for G/E(H).
If vk is the vertex in G/H onto which the connected subgraph K is contracted,
then K is called the preimage of vk, and denoted by PI(vk). In [2] Catlin
defined collapsible graphs. Given an even subset R of V(G), a subgraph I of G
is called an R-subgraph if O(I') = R and G — E(T") is connected. A graph G is
collapsible if for any even subset R of V(G), G has an R-subgraph. In particular,
K is collapsible. Catlin [2] showed that for any graph G, one can obtain the
reduction G’ of G by contracting all maximal collapsible subgraphs of G. A graph
G’ is reduced if G' has no nontrivial collapsible subgraphs. A vertex z in G’ is
c-nontrivial (or c-trivial) if |V (PI(z))| > 2 (or |V(PI(z))| = 1). By definition,
every collapsible graph is supereulerian. We summarize some results on Catlin’s
reduction method and other related facts below.

Theorem 13. Let G be a graph and let H be a collapsible connected subgraph of
G. Let vy denote the vertex onto which H is contracted in G/H. Fach of the
following holds.

(i) (Catlin, Theorem 3 of [2]) G is collapsible if and only if G/H s collapsible.
Therefore, G is collapsible if and only if the reduction of G is K.

(ii) (Catlin, implied by definition and Theorem 3 of [2]) C,C3 are collapsible,
and when n > 4, for any e € E(W,,), Wy(e) is collapsible.

(iii) (Theorem 2.3(iii) of [14]) If G is collapsible, then for any pair of vertices
u,v € V(G), G has a spanning (u,v)-trail.

(iv) (Theorem 2.3(iv) of [14]) For vertices u,v € V(G/H) —{vu}, if G/H has a
spanning (u,v)-trail, then G has a spanning (u,v)-trail.

(v) (Theorem 3.3 of [14]) Let G be a 3-edge-connected graph. If every 3-edge-cut

X has at least one edge in a 2-cycle or 3-cycle of G, then, for any two edges
e, € E(G), G(¢,¢€") is collapsible.
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Let 7(G) denote the maximum number of edge-disjoint spanning trees of G.
Let F(G) be the minimum number of additional edges that must be added to G
so that the resulting graph has two edge-disjoint spanning trees. The following
theorem summarizes results related to F(G) and supereulerian properties.

Theorem 14. Let G be a connected graph and let G’ be the reduction of G. Then
each of the following holds.

(i) (Jaeger [7]) If F(G) =0, then G is collapsible.
(ii) (Catlin [2]) If F(G) <1, then G' € {K1, K2}. Therefore, G is supereulerian
if and only if G' # K.
(iii) (Catlin et al. [3]) If F(G) < 2, then G' € {K, K, K2} for some integer
t > 1. Therefore, G is supereulerian if and only if G' & {Ka, Ko} for some
odd integer t.

(iv) (Theorem 1.1 of [4]) Let k > 1 be an integer. Then k'(G) > 2k if and only
if for any edge subset X C E(G) with | X| <k, 7(G— X) > k.

Lemma 15 ([15]). Assume that K = vivavsvy is a triangle in a connected graph
G with dg(v1) = 3. Also assume that Ng(v1) = {va,v3, 2} and e € {vjve, vou3}.
Let w be the new verter in G/K on which K is contracted, and let u(# w) €
V(G/K). Let T be a spanning (u,w)-trail in G/K. Then each of the following
holds.

(i) For e = viva, G(e) has a dominating (u,v(e))-trail Ty such that V(G(e)) —
V(Th) C {n}.
(ii) For e = vaus, if xvy & E(T), then G(e) has a spanning (u,v(e))-trail Ts.

Lemma 16 ([15]). Let s > 3 be an integer and G be a graph with £'(G) > 3 and
ess'(G) > s+ 2. If v e D3(G), then k(G —v) > 3 and ess' (G —v) > s+ 1.

3. PROOF OF THEOREM 8.

Let s > 3 be an integer, and let G be a connected, essentially s-edge-connected
graph such that L(G) is not a complete graph. Then for any edge vz € E(G)
with dg(v) € {1,2}, we have dg(x) > s+2—dg(v). Following [19], the core of the
graph G, written as Gy, is obtained by the following two operations repeatedly.

Operation 1. Delete each vertex of degree 1.

Operation 2. For each vertex y of degree 2 with Eqg(y) = {xy,yz}, contract
exactly one edge in Eg(y). This amounts to deleting vertex y in G with dg(y) = 2
and replacing xy and yz with a new edge xz.
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Y Y
Operation 1 Operation 2 @
Reversing Operation 1 Reversing Operation 2
G 01(G) Go = 02(01(G))

Figure 1. The core graph.

Let O1(G) denote the graph obtained from G by applying Operation 1 to each
vertex of degree 1, and Oz(G) the graph obtained from G by applying Operation
2 to each vertex of degree 2. Thus Gy = O2(O1(G)). As shown in [19], we observe
that G is well-defined, and is 3-edge-connected and essentially s-edge-connected.
By the definitions of these operations, any trail in G is contracted to a trail in
Gg. Conversely, for any trail 77 in Gy, there is a trail T' in G such that T” is the
contraction image of T. We call T a [lift of T", or say that T” can be lifted to T

In the rest of this section, we assume that G is a connected, essentially s-
edge-connected graph, where s > 6 is an integer, and let X C E(G) with | X| < 3.
Let H= Gy — (E(Go) N X). If H is not connected, then H contains an isolated
vertex v with Eg(v) = X = Eg,(v) and | X| = 3, and H — v is essentially s-edge-
connected. If H is connected, then H is essentially (s — 3)-edge-connected since

. . H, if H is connected,
G is essentially s-edge-connected. Let Gx = { H—wv, if H is not connected.
Then we have
(1) Gx is essentially (s — 3)-connected.

Let (Gx)o be the core of Gx. Then
(2)  (Gx)o is 3-edge-connected and essentially (s — 3)-edge-connected.

Theorem 17 (Theorem 4.1 of [13]). Let G be an essentially 7T-edge-connected
graph. If X C E(G) with |X| < 3, then 7((Gx)o) > 2.

Lemma 18. Let G be an essentially 7T-edge-connected graph. Let X C E(G) be
a subset with |X| < 3 and {e1,e2} C F(G) — X. Then G — X has an internally
dominating (ey, e2)-trail.

Proof. Let Gy be the core of G. Notice that G is essentially 7-edge-connected.
By (2),

(3) (Gx)o is 3-edge-connected and essentially 4-edge-connected.

Claim 1. Let e = zy € E(G). We assume that dg, (y) > da, (x) if e € E(Go)
bute & E((Gx)o); otherwise, we assume that dg(y) >dg(z). Theny € V((Gx)o).-
Therefore, d(q ), (y) = 3.
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Proof. Notice that there are three possibilities for the location of e: e € E((Gx)o),
e & E(Gy), or e € E(Gp) and e &€ E((Gx)o). If e € E((Gx)o), then both z and
y are in V((Gx)o).

If e & E(Gy), then since dg(y) > dg(x), dg(x) € {1,2}. As G is essentially
7-edge-connected, dg(z) + dg(y) > 9, and so dg(y) > 9 — dg(x). Therefore,
dg,(y) > 7 and dg, (y) > 7— 3 = 4. This implies that y € V((Gx)o).

If e € E(Go) and e ¢ E((Gx)o), then since dgy(y) > day(x), we have
day(z) € {1,2}. By (1), Gx is essentially 4-edge-connected. Then dg, (z) +
day (y) > 6. Thus, dg, (y) > 6 —dg, (z) > 4. Soy € V((Gx)o). Claim 1 holds.

O

For ¢ = 1,2, denote e; = z;y; in such a way that if e; € E(Gy) but e; &
E((Gx)o), then the labeling of z; and y; satisfies dg, (yi) > dg (x;); otherwise
we label x; and y; so that dg(y;) > dg(x;). Let

(GX)0(61762)7 if €1,€e2 € E((GX)O)v
Q=19 (Gx)olei), if {e1,e2} N E((Gx)o) = {ei},
(Gx)o, otherwise

and

Yi, otherwise.

v; = { v(ei), if e; € E((Gx)g),

By Theorem 17, 7((Gx)o) > 2 and so F(Q) < 2. By Theorem 14(iii) and (3), @
is collapsible. By Theorem 13(iii),

(4) @ has a spanning (v, ve)-trail Tj.

Let Ty be the lift of 77 in Gx and let T3 be the lift of 75 in (G — X)(e1,e2). Let
T be a trail obtained from T3 by replacing v; by e;. Then T is an (e, e)-trail
of G — X. Let T = wyfiwafo--- frwr, where fi = e; and fr = ez, and let
Z = {wa,ws, ..., wg—1}. Then V(T1) — {v(e1),v(e2)} CZ. To show that T" is an
internally dominating (ej, e2)-trail in G — X, it suffices to show that every edge
e = zy of G — X is incident with an internal vertex of T, i.e., either x € Z or
yel.

We assume that dg, (y) > dg (z) if e € E(Go) but e € (Gx)o; otherwise,
we assume that dg(y) > dg(x). By Claim 1, y € V((Gx)o). By (4), y € V(T1).
As digy),(y) =3, y & {v(e1),v(e2)} and soy € V(T1) — {v(e1),v(e2)} CZ. m

Lemma 19. Every 7-connected line graph is 3-hamiltonian-connected.

Proof. Lemma 19 follows from Lemma 18 and Theorem 11. ]

Proof of Theorem 8. By Lemma 19, Theorem 8 holds when s = 3. We assume
that s > 4 and that Theorem 8 holds for smaller values of s. Let G be a graph
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with kK(L(G)) > s+ 4. For any S C V(L(G)) with |S| < s, pick ve, € S. Assume
that the edge in G corresponding to v, in L(G) is ep. Let G* = G — ep. Since
K(L(GQ)) > s+4, k(L(G*)) = k(L(G) — ve,) > s+ 3. It follows by induction that
as L(G*) is (s + 3)-connected, L(G*) is (s — 1)-hamiltonian-connected, and so
L(G) — S = L(G*) — (S — {ve, }) must be hamiltonian-connected. It follows by
definition that L(G) is s-hamiltonian-connected. |

4. GRAPHS WITH PROPERTY K(s) AND PROOF OF THEOREM 9

Throughout this section, we assume that s > 0 is an integer. Following [15], we
shall introduce a property of graphs which will play an important role in our
arguments.

([15]) Let K denote the graph family such that a (connected) graph G is in
K if and only if G satisfies each of the following.

(KS1) For any w € D3(G), the subgraph induced by Ng(w) contains at least
one edge.

(KS2) Let w € Ng(x1) N Ng(x2), where 1,22 € D3(G) and 129 € E(G). If
Ng(w) = {z1,z2,v}, then either vx; ¢ E(G) or vzy & E(G).

(KS3) Let wi,wy € Ng(x1) N Ng(x2), where x1,29 € D3(G) and x129 &
E(G). If wywe € E(G), then Ng(w;1) U Ng(wz) € Ng(z1) U Ng(x2) U {z1, 22}

By definition, K4 € K and every claw-free graph satisfies (KS1) and (KS3).
Since (KS2) is violated for the graphs Wy and Wj, we have Wy, W5 ¢ K. For an
integer s > 0, a graph G is said to have Property K(s) if G is in K — {K4} and
satisfies both x'(G) > 3 and ess'(G) > s + 4.

Lemma 20 [15]. If the graph G has Property K(s), then there is a set A(G) of
edge-disjoint triangles in G such that D3(G) C V(L), where L is the subgraph
induced by Upen e E(K), and D3(G) NV (K) # 0 for each K € A(G).

Let G have Property K(s) and v € D3(G). By Lemma 20, there is a triangle
in A(G) that contains v. We denote this triangle by A,. Thus, for v,u € D3(G),
we have either E(A,) = E(Ay) or E(A,) N E(A,) = (. Fix a given subset
E' C E(G). Define A'(G) = {A, € A(G) : v € D3(GQ) and E(A,) NE" = 0}
and A*(G) = A(G) — A'(G). Then A(G) = A(G) if E'N E(A(G)) = 0. Let
G1 = G/A(GQ) and GF = G/A'(G) be the graphs obtained from G by contracting
the edges in A(G) and A'(G), respectively. Thus if E' N E(A(G)) = 0, then
G1 = G7. We call G; a A-contraction of G and G} a A-contraction of G with
respect to E’. Since G is 3-edge-connected and essentially (s+4)-edge-connected,
we have

(5) K'(G1) >4 and ess'(G1) > s+ 4, and £/'(G}) > 3 and ess'(G}) > s + 4.
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By Theorem 14(iv), for any X C E(G;) with |X| < 2, 7(G; — X) > 2, and
so F(G1 — X) = 0. Let ¢ be the number of different triangles in A*(G) and let
AN(G) ={Dyyy .o, Dy, } with V(A,) = {vi, ui, w; }. Then {vy, ..., v} C D3(GY)
and E(A,,)NE" # ( for i = 1,...,t (Figure 2). Since G7 is 3-edge-connected
and essentially 4-edge-connected, we have either dgs(u;) > 4 or dg:(w;) > 4.
Without loss of generality, we assume that

(6> dGT (w;) > 4.

E(Ay,)NE #£Qfori=1,...,¢

Figure 2. G5 = G1/A/(G).

Lemma 21. (i) Ift =0, then G§ = Gi.

(ii) Ift =1, then for any edge e € E(G7), T(G} —e) > 2.

(iii) If s=0 and t = 2, then 7(G7) > 2.

(iv) If s > 1 and t = 2, then for any e € E(GY), 7(G} —e) > 2.

Proof. If t = 0, then A*(G) = (. Thus G} = G;. If t = 1, then A*(G) = {Ay, }
with V(Ay,) = {v1,u1,w1}. By (6), dg:(w1) > 4. Let Q1 be the graph obtained
from G7 by adding the new edge viu;. Actually this new edge and the edge viu;
in the triangle A,, are parallel. We denote this new edge by (viu1)’. Then Q1 is
4-edge-connected. Thus, for any edge e € E(GY), 7(G5—e) = 7(Q1—{e, (viu1)'})
> 2.

If t = 2, then A*(G) = {Ay,, Loy} with V(Ay,) = {vi,wi,wi (i = 1,2).
By (6), dg;(w;) > 4. If s = 0, then we set Q2 to be the graph obtained from
G7 by adding the new edges vivy and ujug. Thus, ()2 is 4-edge-connected. So
T(GY) = 7(Q2 — {viva,uus}) > 2. If s > 1, then G7 is essentially 5-edge-
connected. Thus, for z € {u1, w1, us, w2}, dg:(x) > 4. Let Q3 be the graph
obtained from G7 by adding the new edge viv2. Then 3 is 4-edge-connected.
So for any edge e € E(GY), 7(G} — ) = 7(Q3 — {v1v2,€}) > 2. |

The next lemma will be used in the proof of Theorem 9. For any edge subset
X of G with | X| = s, to prove that L(G) is s-hamiltonian connected, it suffices to
prove that for any two edges e1,es € G— X, G — X has an internally dominating
(e1, ez)-trail. By Theorem 8, we only need to consider s € {0, 1, 2}.
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Lemma 22. Let X be an edge subset of G, and s = | X| € {0,1,2}. If G satisfies
Property K(s), then for any two edges e1,ea € G — X, G — X has an internally
dominating (e1, ea)-trail T such that V(G) — V(T) C Ufig’ D;(G).

Proof. Let E' = X U{e1,e2} and let Gy be a A-contraction of G and G5 be a A-
contraction of G with respect to E'. If A*(G) # (), then we assume that A*(G) =
{Dyys .oy Ay} with V(A,) = {vi,ui,wi} (1 =1,...,t). Thus E(A,,)NE #0
and t € {0,1,...,24 s}. By (5), we have

(7) Di(GY) C Dy(G) for i = 3,..., 5+ 3.

Since a triangle is collapsible, to prove Lemma 22, by Proposition 12 and Theorem
13(iv), it suffices to prove that (G} — X)(e1, e2) has a dominating (v(e1), v(ez2))-
trail 7" such that

s+3
(8) V(G = X)(e1,e2)) = V(T) € | Di(GY).
1=3

Claim 1. If s = 0, then for any two edges €',e" in G, Gi(¢',€e") is collapsible.
Therefore, (G7 — X)(e1, e2) has a spanning (v(e1),v(e2))-trail T.

Proof. Since s =0, we have X = () and ¢t € {0,1,2}. Thus G5 —X = G3. By (5),
G5 is 3-edge-connected and essentially 4-edge-connected. Therefore, G (', €”) is
2-edge-connected. Let G’ be the reduction of G3(¢/,€”). By Lemma 21(i)—(iii),
7(G%) > 2. Thus F(G} —{€,€¢"}) < 2. As F(G} —{€,¢"}) = F(G5(¢,€")), we
have F(G5(¢,€")) < 2. Since Gi(€/,€”) has only two vertices of degree two and
since G7 is essentially 4-edge-connected, G’ has at most two vertices of degree
two. By Theorem 14(iii), G’ = Kj. So Gj(€/,e") is collapsible. By Theorem
13(iii), (G — X)(e1, e2) has a spanning (v(eq),v(ez))-trail T'. Claim 1 holds. [

Claim 2. Assume that s =1. Let X = {f}.

(i) Ift =0, then (G} — X)(e1,e2) has a spanning (v(e1),v(ez))-trail T.

(i) Ift €{1,2,3}, then (G} — X)(e1, e2) has a dominating (v(e1),v(e2))-trail T
such that |V ((G7—X)(e1,e2))=V(T)| <1 and V((G5—X)(e1,e2))—V(T) C
Ds3(GY). Furthermore, if t € {1,2} and V((G7 — X)(e1,e2)) — V(T) = {v},
then Eg(v) = {f,e1,e2}.

Proof. As s =1, G} is 3-edge-connected and essentially 5-edge-connected. Thus,
(G7 — f)(e1, e2) is 2-edge-connected and |Da((G5 — f)(e1,e2))| < 3. If t =0, then
G} = Gy and so F((G7 — f)(e1,e2)) < 1. By Theorem 14(ii), (G7 — f)(e1,e2) is
collapsible. So (G} — X)(e1,e2) has a spanning (v(e1), v(e2))-trail T

If t € {1,2}, then by Lemma 21(ii) and Lemma 21(iv), F((G7 — f)(e1, €2))
2. Let G’ be the reduction of (G7 — f)(e1,e2). Since |Da((GF — f)(e1,€2))| <
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and since G7 is essentially 5-edge-connected, we have |Da(G')| < 4. By The-
orem 14(111), G € {K17K2,27K2,37K2,4}. If G = Ki, by Theorem 13(111),
(G} — f)(e1,e2) has a spanning (v(ey),v(eg))-trail. If G' € {K33, K24}, then
v(er),v(e2) € Da(G"). By Theorem 13(iv), (G} — f)(e1,e2) has a spanning
(v(er),v(ez))-trail. If G’ = Ks 9, then v(e1),v(e2) € Da(G’) such that v(er),v(e2)
are not adjacent. Let V(G') — {v(e1),v(e2)} = {v,v'}. Then either PI(v) or
PI(v') is trivial. Without loss of generality, we assume that PI(v) is trivial. So
f is incident to v, and (G} — X)(e1, e2) has a dominating (v(e1),v(ez))-trail T’
such that V((G} — f)(e1,e2)) = V(T') = {v}, where Eg(v) = {e1, e, f}.

Ift =3, then f € X' and A*(G) = {Ay,, Duyy Dug b, where for 1 <i < 3, v; €
D3(G7). Without loss of generality, we assume that f € E(A,,), e1 € E(Dy,)
and ey € E(A,;). By Lemma 16, G — v; is 3-edge-connected and essentially 4-
edge-connected. By Claim 1, (G} — v1)(e1, e2) has a spanning (v(eq1), v(e2))-trail
(T’ — f) + {vlul, Ul’wl}, if fe E(T/)

T'. Let T = , . . Then T is a dominating
T, otherwise

(v(e1),v(ez))-trail in (G} — X)(e1,e2) such that V((G] — X)(e1,e2)) — V(T) C

{v1} € D3(G%). Claim 2 holds. O

Claim 3. If s = 2, then (G} — X)(e1, e2) has a dominating (v(e1),v(ez))-trail T'
such that V((G% — X)(e1,e2)) — V(T) C U2_s Di(GY).

Proof. Since s = 2, G7 is 3-edge-connected and essentially 6-edge-connected.
Let X = {f1, f2}. Then Gj — X is connected and essentially 4-edge-connected.
So (G} — X)(e1, e2) is connected. As s = 2, we have t € {0,1,2,3,4}.

Claim 3.1. If G7 — X is not 2-edge-connected, then Claim 3 holds.

Proof. Assume that G] — X is not 2-edge-connected. Let e be a cut edge of
G7 — X, and let H; and Hy be components of (G} — X) —e. Then {f1, fa,e} is
a 3-edge cut of G7. As G7 is essentially 6-edge-connected, we may assume that
V(Hy) = {v1}. Then Eg:(vi) = {f1, fo,e}. Thus t < 3. Consider G7 — v1.
Then dg;—y, (x) > 4 for any x € Ngz(v1). Since t < 3, G — v1 contains at
most two vertices of degree 3. By Lemma 16, G7 — v; is 3-edge-connected and
essentially 5-edge-connected. Thus 7((G} — v) — e;) > 2. This implies that
F((G7 —v) —{e1,e2}) <1 and so F((GF — v1)(e1,e2)) < 1. By Theorem 14(ii),
(G — v1)(e1, e2) is collapsible. Let T' be a spanning (v(e1), v(e2))-trail of (G} —
vi)(e1,e2). Then T is a dominating (v(e1),v(ez))-trail of (G} — X)(e1, e2) with
V(GT) = V(T) = {v1} C D3(G7). Claim 3.1 holds. 0

By Claim 3.1, we may assume that G — X is 2-edge-connected. Then (G} —
X)(e1,e2) is also 2-edge-connected. If ¢ = 0, then fi, fo,e1,e2 € E(Gp) and
G7 = G1. So (G1—X)(e1, e2) has at most three vertices of degree 2. Let G’ be the
reduction of (G1—X)(e1,e2). Then |Dy(G")| < 4. By (5), Gy is 4-edge-connected.
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By Theorem 14(iv), we have 7(G; — X) > 2 and so F((G1 — X)(e1,e2)) < 2.
Since (G1—X)(e1, e2) is 2-edge-connected and G is essentially 6-edge-connected,
G e {Kl,K272,K273}. If G = Kl, by Theorem 13(iii), (G1 — X)(el,eg) has
a spanning (v(ej),v(eg))-trail. If G’ = Kay3, then v(ei),v(e2) € Do(G'). By
Theorem 13(iv), (G1 — X)(e1,e2) has a spanning (v(ey),v(ez))-trail. If G' =
Ky, then v(e),v(e2) € Da(G’) such that v(ep),v(e2) are not adjacent. Let
V(G") —{v(e1),v(e2)} = {v,v'}. Then either PI(v) or PI(v') is trivial. Without
loss of generality, we assume that PI(v) is trivial. So fi, f2 are incident to v
and (G1 — X)(e1,e2) has a dominating (v(ey), v(ez))-trail T' such that V((G1 —
X)(e1,e2)) =V (T) ={v} C Ds(G1), where Eg(v) = {e1, €2, f1, f2}. Next we just
need to consider ¢ € {1,2,3,4}.

Claim 3.2. If f1, fo € E(G1), then Claim 3 holds.

Proof. In this case, |[{e1,ea} N E(G1)| < 1 and ¢t € {1,2}. Without loss of
generality, we assume that ey ¢ E(G1). We consider two cases.

Case 1. t = 1. Then A*(G) = {A,,} with v; € D3(GY) and V(4,,) =
{vi,u1, w1}, and e2 € E(A,,). Let EG{(Ul) = {viuy,vywi,v1z}. By Lemma
16, G7 — v; is 3-edge-connected and essentially 5-edge-connected. Since G7 is

essentially 6-edge-connected, we have dgs—, (y) > 4 for y € {uj,wq,z}. Thus
G5 — vy is 4-edge-connected, and so 7((G} — v1) — { f1, fo}) > 2.

Z, if €1 = V1%,
If eg € {viu1, v1w }, assume that es = viw;. Leta = ¢ uy, if e1 = viuq,
v(ey), otherwise
(G —v1) —{f1, f2} if e1 € {v12,v1u1}
and let H = . . Then F(H) <1
{ (G} —v1) —{f1, f2})(e1), otherwise (H) <

and H is 2-edge-connected. By Theorem 14(ii), H has a spanning (wy,a)-trail.
This trail can be extended to a dominating (v(e1), v(e2))-trail 7' in (G5 —X)(e1, e2)
with V((G’ik — X)(el,eg)) — V(T) = {’Ul} Q Dg(GT)

If e & {viu1,viw}, then e = wywy. If e € Ecs (v1), then e; = v1b, where
b € {wi,ur,z}. As F(((G] —v1) — {f1, fo})(e2)) < 1, (G —v1) — {f1, f2})(e2)
has a spanning (b,v(e2))-trail. This trail can be extended to a dominating
(v(e1),v(e2))-trail T in (G7 — X)(e1,e2) with V((G7 — X)(e1,e2)) — V(T) =
{vi} € D3(GY). If er & Eg;(v1), then as F(((GT — v1) — {f1, fa})(e1)) < 1,
((G} = v1) = {f1, fo})(e1) has a spanning (wy,v(e1))-trail T7. If ex ¢ E(T"),
then this trail 7" can be extended to a dominating (v(e1), v(ez))-trail T in (G} —
X)(e1,e2) with V((GF — X)(e1,e2)) — V(T) = {v1} C D3(G3). If ea € E(T'),
then T'=T" — {wyu1 } + {v1u1, viwy, wiv(ez)} is a spanning (v(ey), v(ez))-trail in
(GT - X)(el, 62).

Case 2. t = 2. Then ej,es ¢ E(G1) and A (G) = {Ay,, Dy, } with v; €
D3(G7) and V(Ay,) = {vi,ui,w;} (i = 1,2). For i = 1,2, we assume that
e; € B(Ay,), By (vi) = {viu;, viw;, v;z; }, and let x; be the vertex on which A, is
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contracted in Gy. If G1 — {f1, f2, 121, 222} is not connected, then z; = 29 and
fi, f2, 121, X222 are incident to z; of degree 4. Thus {fi, f2, v121, vau2, vawa}
is an essential 5-edge cut in G7, a contradiction. So G — {f1, f2,z121, 222}
is connected. Similarly, G1 — {f1, f2, 121} and Gy — {f1, f2, x222} are 2-edge-
connected.

Consider Gy — {f1, f2,z121}. By (5), G1 is 4-edge-connected. By Theorem
14<iV), F(Gl — {fl,f2,$121}) < 1 and F(G1 — {f17f2,1'1Z1,$2Z2}) < 2. By
Theorem 14(ii), G1 — {f1, f2,x121} is collapsible. Thus G1 — {f1, f2,x121} has
a spanning (z1,x2)-trail T. If ey # ugws, then by Lemma 15, (G} — X)(e1, €2)
has a dominating (v(e1), v(e2))-trail 7" with V(G7) — V(T') C {v1,v2} € D3(G7).
So we may assume that es = uswso. Similarly, we assume that e; = ujw;. By
Lemma 15, {f1, fo} N {x121, 2222} = 0.

Notice that G1 — {f1, fa, x121, 222} is connected and F(G1 — {f1, f2, z121,
x929}) < 2. Let G’ be the reduction of G1 — {f1, f2, 2121, z222}. By Theorem
14(iii), G’ € {K1,K, Kay}. Since Gy is 4-edge-connected and essentially 6-
edge-connected, and since z; and xy are the vertices on which A,, and A, are
contracted in Gy, we have G’ # Ky . If G' = K1, then G1 — {f1, f2, 121, 222}
has a spanning (z1,x2)-trail. By Lemma 15(ii), (G — X)(e1, e2) has a spanning
(v(e1),v(e2))-trail. If G' = Ky, then we assume that G’ = ab. Thus either
PI(a) or PI(b) is trivial. Without loss of generality, we assume that PI(a)
is trivial. Since G7 is essentially 6-edge-connected, we have a € V(G7). As
G1—{f1, fo,x121} and G1 —{f1, f2, z222} are 2-edge-connected, we have E¢, (a)N
{z121, 2922} # 0. Without loss of generality, we assume that a = z;. Thus
x1 € V(PI(b)). Since Eg; (a) U{viur,viw1} — {z1v1} is essentially edge-cut of
G7 and since G7 is essentially 6-edge-connected, dg,(a) > 5. Thus Eg,(a) =
{ab, z121, 202, f1, fo}, a = z1 = 29 and x1,29 € PI(b). Let T be a spanning
(21, z2)-trail in PI(b). As e; = ujw; and ey = ugws, by Lemma 15(ii), (G7 — X)
(e1,e2) — a has a spanning (v(ey),v(ez))-trail 7”. This trail 7" is a dominating
(v(e1),v(e2))-trail in (G — X)(e1, e2) with V((G] — X)(e1,e2)) = V(T) = {a} C
D5 (G7). We finish the proof of Claim 3.2. 0

By Claim 3.2, we may assume that f; € F(G1). In addition, we assume that
Avl € A*(G) such that f; € E(Avl)~ Let EGI (U1) = {U1U17U1w1,7)121}, where
V(Avl) = {’Ul, ui, wl}.

Claim 3.3. If Eg:(v1) N{e1,e2} =0, then Claim 3 holds.

Proof. In this case, ej,ea € E(G] — v1). By Lemma 16, G} — vy is 3-edge-
connected and essentially 5-edge-connected. If fo & Eg:(v1), then fo € E(G] —
v1). By Claim 2, ((G5 —v1) — f2)(e1, e2) has a dominating (v(e1),v(eg))-trail 7"
such that V(((G7 — v1) — f2)(e1,e2)) = V(T") C {y} C D3(GF —v1). Let T =
{ (T/ - fl) + {U1’LL1,’U11U1}, if f1 € E(T’)

Then T i inati
T, othererwise en is a dominating (v(e1),
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v(ez))-trail in (G7 — X)(e1, e2) such that V((G] — X)(e1,e2)) =V (T') C{v1,y} C
D3(GY). If fo € Eg;(v1), then by Claim 2, (G} — v1) — uiwi)(e1,e2) has a
dominating (v(ej), v(e2))-trail T' such that V(((G7 —v1) — f2)(e1,e2)) = V(T) C
{y} € D3(G7 — v1). This trail T is also a dominating (v(e1),v(e2))-trail in
(G7 — X)(e1,e2) such that V((GF — X)(e1,e2)) — V(T) C {v1,y} C D3(G7).
Claim 3.3 holds. O

By Claim 3.3, we assume that e; € Egs (v1). Let e; = v1by, where by €
{w1,u1,21}. Consider fo. If fo € E(G1), then t € {1,2}; if fo & E(G1), then
we may assume that fo € E(A,,) for some A, € A*(G). Thus by Claim 3.3,
e2 € Egz(v;). So we still have t € {1,2}.

Claim 3.4. Ift =1, then Claim 3 holds.

Proof. In this case, A*(G) = {A,,}. Since G7j is 3-edge-connected and essen-
tially 6-edge-connected and since vy is only the vertex of degree three, G — vy is
4-edge-connected. So

(9) T((G7 —v) = {f2, mwn}) =

If ez € Eg;(v1), then we assume that ez = v1bg, where by € {u1, w1, 21} —{b1}.
By (9), (G} —v1) — {f2,uqw; } is collapsible. Thus (G} — v1) — { f2, uiw1 } has a
spanning (by, by)-trail. This trail can be extended to a dominating (v(e1),v(e2))-
trail 7' in (G — X)(e1,e2) with V((G} — X)(e1,e2)) — V(T') = {v1} C D3(G7).
If ea & Eg:(v1), by (9), F(((GT —v1) — {f2, vaw1})(e2)) < 1. By Theorem 14(ii),
((G] = v1) = {f2,uaw1})(e2) is collapsible. Thus ((GT — v1) — {f2, wrw1})(e2)
has a spanning (b1, v(ez))-trail. This trail can be extended to a dominating
(v(e1),v(ez))-trail T in (G7 — X)(e1,e2) with V((G7 — X)(e1,e2)) — V(T) =
{1} € D3(G7). Claim 3.4 holds. 0

By Claim 3.4, we assume that ¢t = 2. Then A*(G) = {A,, Ay, }, where
v; € D3(GY), V(L) = {vi,ui, wi} and {eg, fo} N E(Ay,) # 0. Let Egy(v2) =
{vaug, vaws, v2z2}. Since G7 is essentially 6-edge-connected, daz () > 5 for x €
{u1, w1, u2,wa}. By Lemma 16, G} — v; is 3-edge-connected and essentially 5-
edge-connected. Since vy is the only vertex of degree 3 in G7 — v;, we have
T((GT —v1) = {f2}) = 2, and so F((G] — v1) — {wawy, fo}) < 1.

Consider G —v;. Then (G7—v1) —{uiwi, fa} is essentially 3-edge-connected.
If (G —v1) — {ugws, fo} has a cut edge f’, then we assume that H; and Hj are
components of (G} —v1) —{ujwi, fo, f'}. Since G7 is essentially 6-edge-connected,
we have either Hy or Hs is trivial. Without loss of generality, we assume that
V(Hy) = {u1}. Then Eg;(u1) = {wav1, urwy, fa, f'} and (Egy(u1) U Egs (v1)) —
{u1v1} is an essential 5-edge cut in G, a contradiction. So (G} —v1) — {ujwy, fa}
is 2-edge-connected.
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If e2 € Egy(v1) U{uws}, then fo € E(A,,). We assume that e is incident
to bs, where b3 € {uj,wi,21}. By Theorem 14(ii), (G5 — v1) — {wiws, fo} is
collapsible. Thus (G} — v1) — {ujwi, fo} has a spanning (by, b3)-trail 7”. Thus
T = v(e1)T'v(e2) is a dominating (v(e1),v(e2))-trail in (G — X)(e1,e2) such
that V((G} — X)(e1,e2)) — V(T) = {1} € D3(G7). So we may assume that
€2 ¢ EG{ (Ul) U {ulwl}.

As T((Gy—v1)—{f2}) > 2, F(((GF —v1) —{urwn, f2})(e2)) < 2. Let G’ be the
reduction of ((G§ — v1) — {uiwi, f2})(e2). By Theorem 14(iii), G’ € {K1, K2z}
(¢ > 3). Since dgz v, (u1) > 4 and dg; ., (w1) > 4 and since G — vy is 3-edge-
connected and essentially 5-edge-connected, G’ = K. Notice that e; = v1b;.
Then ((G7 — v1) — {uiwy, f2})(e2) has a spanning (b1, v(ez))-trail 7. This trail
can be extended to a dominating (v(e1),v(e2))-trail T in (G} — X)(e1, e2) with
V(G — X)(e1,e2)) = V(T') = {v1} € D3(G75). We finish the proof of Claim 3.

|

We finish the proof of Lemma 22.

We need one more notation. Let e = zy € E(W;5) with x,y € D3(W5) and
let H be a graph and ¢ = 2'y’ € FE(H). Define a new graph H & W; to be a
graph obtained from the disjoint union of H — ¢’ and Wj by identifying x and 2’
to form a new vertex, also called z, and by identifying y and ¢’ to form a new
vertex, also called y.

Lemma 23 [15]. Suppose that s > 0 and that G is a claw-free graph such that
K(L(GQ)) > s+4. Let Gy be the core of G and let wi, wa, w3 € D3(Gp) be vertices
with Ng,(w2) = {w1,ws,v}. If vwi,vws € E(Gy), then each of the following
holds.

(i) s=0.

(ii) Either G = Gy € {K4, Wy, W5}, or there exists a subgraph H of G with
k'(H) > 3 and ess'(H) > 4 such that Gy = H © W5 (see Figure 3).

Figure 3. Kjy2 @ W5 in Lemma 23.

Proof of Theorem 9. Let X be any edge subset of G with |X| = s. To prove
that L(G) is s-hamiltonian connected, it suffices to prove that for any two edges
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e1,e2 € G— X, G— X has an internally dominating (e, ez)-trail. By Theorem 8,
we assume that s € {0, 1,2}. Let G be the core of G. Then it suffices to assume
that X U {e1,e2} C E(Gyp), and to show Gy — X has an internally dominating
(e1,e9)-trail T with V(Gp) — V(T) C Ufig? D;(Gyp). By contradiction, we assume
that G is a counterexample to Theorem 9 with |V (Gp)| minimized. Then there
exist edges X U {ej,ea} C E(Gp) such that (Gog — X)(e1,e2) does not have a
dominating (v(ey), v(e2))-trail 7" with

s+3
(10) V((Go = X)(e1,e2)) = V(T) | Di(Go).

=3

By (10) and Theorem 13(iii), we assume that Go & {K4, Wy, W5} and G§ is not
collapsible. By Lemma 22, Gy does not have Property K(s). As Gy is claw-
free, (KS2) is violated. Thus there exist wi,ws, w3 € D3(Go) with Ng,(w2) =
{w1,ws,v} and vwy,vws € E(Gy). By Lemma 23, we have s = 0 and Gy =
H @& Wj for a subgraph H of Gy with «'(H) > 3 and ess'(H) > 4. Assume that
V(Ws) = {v,wr,...,ws} with wyws € E(H) N E(W5), as depicted in Figure 3.
As H is claw-free, every 3-edge-cut of H has at least one edge in a 3-cycle. By
Theorem 13(v), for any two edges €', ¢” € E(H), H(¢,e") is collapsible. Thus H
and H(e') are collapsible.

If {e1,e2} N E(W5) = 0, then by the minimality of Gy, H (e, ez) has a dom-
inating (v(e1),v(e2))-trail 77 with V(H (e1,e2)) — V(Th1) C D3(H). Thus the
subgraph induced by E(T1) U {vws, vwy, wswi, wiws, wows, wsws} is a domi-
nating (v(e1),v(eg))-trail in G§, contrary to (10). If ej,es € E(W5), then by
inspection, Wx(eq1, e2) has a dominating (v(ey),v(e2))-trail Ty that contains ei-
ther wy or ws. As H is collapsible, H has a spanning eulerian subgraph 75. Thus
Ty = G§[(E(T2) — E(T5)) U (E(T3) — E(T3))] is a dominating (v(eq), v(e2))-trail
in G§ with V(G}) — V(Ty) C D3(Gp), contrary to (10). Thus we assume that
e1 € E(H) — E(W5) and ex € E(W5) — E(H). By Theorem 13(ii), Ws(e2) is
collapsible. By Theorem 13(v), H(e;) is collapsible. Thus G is collapsible, a
contradiction. ]
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