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Abstract

A 2-nearly Platonic graph of type (k, d) is a k-regular plane graph with
f faces, f − 2 of which are of size d and the remaining two are of sizes
d1, d2, both different from d. Such a graph is called balanced if d1 = d2. We
show that all connected 2-nearly Platonic graphs are balanced. This proves
a recent conjecture by Keith, Froncek, and Kreher. We also show that any
2-nearly Platonic graph belongs to one of 15 well defined infinite classes.
The latter states more precisely the statement of Deza, Dutour Sikirič, and
Shtogrin from 2013, and of Froncek, Khorsandi, Musawi, and Qui from 2021
that there are only 14 such classes. Moreover, our short proof provides a
complete characterization of all 2-nearly Platonic graphs.
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1. Introduction and Terminology

Let us first present some of the basic definitions, notations and terminology used
in this paper. Other terminology will be introduced as it naturally occurs in the
text or is used according to Diestel’s book [5]. Through this paper, we consider
only finite simple graphs that are connected and planar.

A graph is said to be planar if it can be drawn in the plane such that each
common point of two edges is a vertex. This drawing of a planar graph G is
called a plane graph (or planar embedding of) G and can be regarded as a graph
isomorphic to G. By this definition, we need some matters of the topology of
the plane. Immediately, after deleting the points corresponding to the vertices
and edges of a plane graph from the plane, we have some maximal open sets (or
regions) of the points in the plane called faces of the plane graph. There exists
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exactly one unbounded region that we call the outer face of the plane graph and
other faces are called internal faces. The boundary of a face is the set of points
consisting of vertices and edges touching the face. A face is said to be incident

with the vertices and edges in its boundary. Two faces are adjacent if their
boundaries have an edge in common. Two faces of a plane graph are touching if
they share at least one vertex.

The degree of a vertex v, denoted by degG(v) or simply by deg(v) when the
underlying graph is understood, is the number of edges incident with the vertex,
where any loop is counted twice. A graph is r-regular (or r-valent) if the degree
of each vertex in G is r, and the graph is regular if it is r-regular for some r.

The degree or size of a face F of a connected plane graph is the number
of edges incident with the face F , where any cut-edge is counted twice, and is
denoted by degG(F ) or deg(F ) if the graph G is known from the content. Note
that in the case when the planar graph is 2-connected, the boundary of any face
is a cycle. We will use fr = fr(G) to denote the number of faces of degree r in
the graph G.

Let G = (V (G), E(G), F (G)) be a connected plane graph with vertex set
V (G), edge set E(G), and face set F (G). The well-known Euler’s formula states
that

|V (G)| − |E(G)|+ |F (G)| = 2.

To distinguish our approach in this paper from that of [4, 8] we need to
introduce two important notions which are studied in the Section 4.3 of the
book [5]. First one is a topological isomorphism between two plane graphs H

and H ′. Its definition is rather complicated. We omit it here. Intuitively it is
a homeomorphism from the plane R2 to itself taking H onto H ′ (and keeping
orientations of the corresponding faces). The second one is a combinatorial iso-

morphism of the graphs H and H ′. It is a bijection σ : V (H) ∪E(H) ∪ F (H) →
V (H ′) ∪ E(H ′) ∪ F (H ′) that preserves incidence not only of vertices and edges
but also of vertices and edges with faces. (Formally, we require that a vertex or
edge x ∈ V (H)∪E(H) shall lie on the boundary of a face F ∈ F (H) if and only
if σ(x) lies on the boundary of the face σ(F ).)

A graph G is k-connected if |V (G)| > k and G−X is connected for every set
X ⊆ V (G) with |X| < k.

A Platonic solid of type (k, d) is a convex three-dimensional polyhedron all
vertices of which are of degree k and all faces of which are of degree d. Using
Euler’s formula we get that

(k, d) ∈ {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}.

The class of Platonic solids consists of the well-know five polyhedra: the tetra-
hedron (of type (3, 3)), the cube (of type (3, 4)), the octahedron (of type (4, 3)),
the dodecahedron (of type (3, 5)), and the icosahedron (of type (5, 3)).
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The investigation of properties of Platonic solids has a long history. There is
no reliable information about their first mention. However, they are still attrac-
tive for mathematicians, chemists, and others. In the last two centuries, many
of authors have paid attention to these polyhedra and they have extended the
study to convex and concave polytopes, see, e.g., [9].

From a combinatorial point of view a convex polyhedron can be studied as
a plane graph as there is a correspondence between the graph of a polyhedron
determined by its vertices and edges and a planar graph. Namely, Steinitz’s
theorem (see, e.g. [9]) states that a graph G with at least four vertices is the
graph of vertices and edges of a convex polyhedron if and only if G is planar and
3-connected.

A connected k-regular plane graph with f faces is a t-nearly Platonic graph

of type (k, d) if f > 2t, f − t of its faces are of size d, and the remaining t faces
are of sizes other than d. The faces of size d are often called common faces, and
the remaining ones exceptional faces. When t ≥ 2 and all exceptional faces are
of the same size, then the graph is called a balanced t-nearly Platonic graph.

In 1967, Grünbaum [9] considered 3-regular connected planar graphs. For a
3-regular connected plane graph and k ∈ {2, 3, 4, 5}, he proved that if the degree
of all faces but t of them is divisible by k then t ≥ 2 and if t = 2 two exceptional
faces do not have a common edge [9]. In 1968, Malkevitch proved the same
results for 4-regular and 5-regular 3-connected plane graphs [19]. Several papers
are devoted to the study of this topic, but all of them have considered plane
graphs such that the sizes of all faces but some exceptional ones are multiple of k
and k ∈ {2, 3, 4, 5} (see [2, 10–12]). For a more general approach to 3-connected
k-regular plane graphs see [13, 16], and [14].

Keith, Froncek, and Kreher [17, 18] and Froncek, Khorsandi, Musawi, and
Qiu [7] proved recently that there are no 1-nearly Platonic graphs.

Deza, Dutour Sikirič, and Shtogrin [4] classified for each admissible pair
(k, d) all possible degrees of the exceptional faces of balanced 3-nearly Platonic
graphs and sketched a proof of the completeness of the list. Froncek and Qiu [6]
provided a detailed proof of existence of infinite families of such graphs for each
listed exceptional degrees based on the combinatorial isomorphism.

There are two well-known infinite classes of 3-connected 2-nearly Platonic
graphs known also as n-prisms and n-antiprisms, n ≥ 3. The n-prism, denoted by
Dn, is obtained from two cycles Cn = x1 · · ·xnx1 and C ′

n = y1 · · · yny1 by adding
edges xiyi, 1 ≤ i ≤ n. The n-antiprism, denoted by An, is obtained from two
cycles Cn = x1 · · ·xnx1 and C ′

n = y1 · · · yny1 by adding edges xiyi, xiyi+1, xny1,

1 ≤ i ≤ n.

There are 14 known classes of balanced connected 2-nearly Platonic (plane)
graphs (see [4, 8]). The authors of [4] provide a list and a sketch of a proof that
their list is complete. Froncek et al. in [8], give a very extensive proof of the
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existence of this list constituted according to the combinatorial isomorphism of
plane graphs.

So the above mentioned result, that 14 such classes exist, is correct from
this point of view. In [17], Keith, Froncek, and Kreher conjectures that every
connected 2-nearly Platonic graph must be balanced.

Our approach to the decomposition of the class of all connected 2-nearly
Platonic graphs according to the topological isomorphism and fundamental bricks

(defined latter) shows that every 2-nearly Platonic graph belongs to one of 15
well defined classes and that all connected 2-nearly Platonic graphs are balanced.
The latter proves the conjecture of Keith, Froncek, and Kreher [17]. The former
states more precisely the statement of Deza, Dutour Sikirič, and Shtogrin [4]
and Froncek et al. [8]. Our result provides the same 13 infinite classes as that
of [8] that all connected 2-nearly Platonic graphs are balanced and splits the
fourteenth class of [8] into two disjoint ones. Moreover, our approach gives a
complete characterization of all 2-nearly Platonic graphs and provides a method
how to construct all of them.

2. Results

The following theorem is proved in [17].

Theorem 1. There are no 1-nearly Platonic graphs.

The proof of the next theorem can be found in [3] and [7].

Theorem 2. Every connected 2-nearly Platonic graph is 2-connected.

The following useful lemma is proved in [8]. For convenience, we repeat its
proof.

Lemma 3. Let G be a 2-nearly Platonic graph of type (k, d). Then 3 ≤ d ≤ 5
for k = 3 and d = 3 for k ∈ {4, 5}.

Proof. Let |V (G)| = n, |E(G)| = m, |F (G)| = f , and d1 and d2 be sizes of two
exceptional faces. The graph G is k-regular so we have kn = 2m. On the other
hand, 2m = (f −2)d+d1+d2 and by Euler’s formula f −2 = m−n = 1

2(k−2)n.

Therefore, kn = 1
2(k − 2)nd + d1 + d2 or d = 2k

k−2 − 2(d1+d2)
(k−2)n which implies that

d < 2k
k−2 . Now, 3 ≤ d ≤ 5 for k = 3 and d = 3 for k ∈ {4, 5}.

It is easy to see from Lemma 3 that the only possible types of 2-nearly
Platonic graphs are

(k, d) ∈ {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}.

The main result of this paper is the following.
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Theorem 4. Any 2-nearly Platonic graph is balanced and belongs to exactly one

of 15 well defined infinite classes of plane graphs.

In Sections 3 and 4 we state and give proofs of Theorem 5 and Theorem 6
from which we obtain Theorem 4.

3. On 2-Connected But Not 3-Connected 2-Nearly Platonic

Graphs

In this section we give the proof of our main result, Theorem 4, for the classes of
graphs with properties named in the section title.

Let G be a plane graph and F1 and F2 be two its distinct faces touching in
a vertex z. The splitting the vertex z with respect to the faces F1 and F2 is a
local operation changing G to a new plane graph G′ in which the vertex z of G
is replaced by two non-adjacent vertices z1 and z2 of G′ and the faces F1 and F2

are changed to one new face F ′ of G′ so that degG′(z1) + degG′(z2) = degG(z)
and degG′(F ′) = degG(F1) + degG(F2). The remaining vertices and faces of G
keep their degrees in the corresponding vertices and faces of G′. Observe, that
|V (G′)| = |V (G)|+ 1, |E(G′)| = |E(G)|, and |F (G′)| = |F (G)| − 1.

Let G be a 2-nearly Platonic graph of type (k, d) with two exceptional faces
F1 and F2. Choose a minimum 2-vertex cut {u, v}, i.e., a 2-vertex cut so that
a component K of the graph G − {u, v} has the minimum number of vertices
from among all possible 2-vertex-cuts of G. Then the block H = H(u, v) induced
on the vertex set V (H(u, v)) = V (K) ∪ {u, v} has the following properties. It
is 2-connected, all vertices of H lie on or in the interior (respectively, in the
exterior) of a separating cycle C determined by two internally vertex disjoint
u, v-paths P1 and P2 whose all internal vertices are from the vertex set V (K)
(Compare with [15].). All vertices of H, except for the vertices u and v, are of
degree k and all internal faces of H are of degree d. For the vertices u and v we
have degH(u) = a ≥ 2, degH(v) = b ≥ 2. Observe that H is a subgraph of the
Platonic solid of type (k, d) and that it is isomorphic to the the Platonic solid of
type (k, d) with one edge deleted or it is isomorphic to the Platonic solid of type
(k, d) with one vertex, say z, split with respect to two distinct faces incident to
z, to two vertices u′ and v′. By case analysis one can easily check that otherwise
on C or in the interior of C a vertex w of degH(w) 6= k, u 6= w 6= v, and/or a
face of size different from d appears which would be a contradiction.

Case 1. In the former case we have degH(u) = a = degH(v) = b = k − 1.
Both paths P1 and P2 have length d − 1 and the graph H + uv is the Platonic
solid of type (k, d). This means that any nontrivial block of the graph G is
isomorphic to the block H and, therefore G has a decomposition into graphs
H+ = H(u, v) + v′ + vv′ and can be obtained, e.g., by replacing any edge of the
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cycle Ct of length t ≥ 2 with the graph H+ in a suitable way. In this case we
have d1 = d2 = td.

Case 2. In the latter case we have degH(u′) = a ≥ 2, degH(v′) = b ≥ 2,
and a + b = k. Let (a, b) = (2, 2) for k = 4 and (a, b) = (3, 2) or (a, b) = (2, 3)
for k = 5. In all these cases both paths P1 and P2 have length 3. This means
that any nontrivial block of the graph G is isomorphic to the block H and G

has a decomposition into the graphs H = H(u, v) and can be obtained, e.g., by
replacing any edge of the cycle Ct of length t ≥ 2 with the graph H = H(u, v) in
a suitable way. The result is a 2-nearly Platonic graph with d1 = d2 = 3t. Note
that for t = 1 we have the Platonic solid of type (k, d).

From the above considerations we have the following.

Theorem 5. Any 2-connected but not 3-connected 2-nearly Platonic graph is
balanced. There are seven infinite classes of such 2-nearly Platonic graphs.
Namely, one of type (3, 3), one of type (3, 4), one of type (3, 5), two of type
(4, 3), and two of type (5, 3).

4. 3-Connected 2-Nearly Platonic Graphs

LetG be a 3-connected 2-nearly Platonic graph of type (k, d) with two exceptional
faces F1 and F2. Let F1 (respectively, F2) be the outer (respectively, the inner)
face. We denote their respective boundaries by x1, x2, . . . , xn, and y1, y2, . . . , ym
in clockwise order. We define the distance between F1 and F2 as

dist(F1, F2) = min{dist(xi, yj)|xi ∈ F1, yj ∈ F2}.

Let the vertices x1 and y1 be chosen so that

dist(F1, F2) = dist(x1, y1) = l.

Claim 1. If G is a 3-connected 2-nearly Platonic graph with exceptional faces F1

and F2, then dist(F1, F2) ≥ 1.

Proof. Assume that there is 3-connected 2-Platonic graph of type (k, d) with
dist(F1, F2) = 0. Then the faces F1 and F2 share exactly one edge uv or exactly
one common vertex z (because of 3-connectivity). If, in the former case, we delete
the edge uv we get the graph H described in the previous Section, Case 1, which
together with the edge uv leads to G being the Platonic solid of type (k, d); a
contradiction. If, in the latter case, we split the vertex z with respect to the faces
F1 and F2 to two vertices u and v, we get the graph H investigated in the case 2
of the previous section. The converse operation to splitting, the identification of
the vertices u and v, leads again to the Platonic solid of type (k, d) which does
not contain any exceptional face; a contradiction.
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Let P = z1z2 · · · zr be a path from a vertex z1 of F1 to a vertex zr of F2.
The pattern of P with respect to the faces F1 and F2 is the sequence t1, t2, . . . , tr
of ordered triplets ti = (αG(zi), βG(zi), γG(zi)), i ∈ {1, . . . , r}, where αG(zi)
(respectively, γG(zi)) denotes the number of edges going to right (respectively,
to left) from the vertex zi in G when going from the vertex z1 to the vertex zr
along the path P . The value βG(zi) denotes the number of edges of the path P

incident to the vertex zi. Notice that αG(zi) + βG(zi) + γG(zi) = degG(zi).

Let P1 = x1v1 · · · vl−1y1 be an x1, y1-path of length l between F1 and F2. Let
P2 = xaw1 · · ·wl−1yb be another path of length l between F1 and F2 having the
same pattern as P1. Let Q1 = x1x2 · · ·xa (respectively, Q2 = y1y2 · · · yb) be a
subpath of the boundary cycle of F1 (respectively, of F2). Then the subgraph D

of G bounded by the cycle C = P1 ∪Q1 ∪ P2 ∪Q2 has the following properties.

1. All faces inside of C are of degree d.

2. All vertices of D, except for the ones of the paths P1 and P2, are of degree k.

3. For the vertices of the paths P1 and P2 we have

degD(x1) + degD(xa) = degD(y1) + degD(yb) = k + 1

degD(vi) + degD(wi) = k + 2

for any i ∈ {1, . . . , l − 1}.

4. The subgraph D is 2-connected.

The subgraph Bl(k, d) is called a fundamental brick of the type (k, d) if it is
of minimum order with respect to the properties 1, 2, 3, and 4.

Note. If there is no other path in G of the same pattern as P1, we consider P1

again, in the role of P2. In this case Q1 is the cycle around F1 and Q2 the cycle
around F2.

Below we show that the fundamental bricks are enforced (unavoidable) con-
figurations with respect to the face F1, its clockwise orientation (given by sub-
scripts of vertices of F1), its distance l from the face F2, the pair (k, d), and that
2 ≤ a = b ≤ d + 1. The fundamental brick B = Bl(k, d) can be found uniquely
when starting with the path P1, checking (drawing) only vertices of degree k

and faces of size d, continuing along the path Q1 in the clockwise order, taking
into consideration the pattern of P1, namely the degrees degB(x1), degB(y1), and
degG(vi), i ∈ {1, . . . , l − 1}. The procedure finishes when the first path P2 of the
same pattern as the path P1 has, is found out.

A fundamental brick B is present in any 3-connected 2-nearly Platonic graph
G. It is possible to delete it from the graph G and obtain a smaller 3-connected
2-nearly Platonic graph G′ of the same type or a Platonic graph of the same



358 S. Jendrol’

type. The deletion of B means removing from G all vertices and edges of B

except those from the paths P1 and P2 and next identifying the corresponding
vertices and edges of the paths P1 and P2. The resulting new graph G′ has a new
path P ∗

1 of the same pattern as P1.

The repeated use of the deletion of the fundamental brick B from the graph
G leads to a Platonic graph of the same type as G has (in this case n = m) or to
a contradiction with Theorem 1.

The fundamental brick can be used also conversely, for constructions of all
2-nearly Platonic graphs of type (k, d).

Next we show how the fundamental bricks look depending on the type of the
graph G. We distinguish several cases.

Case 1. Type (3, 3). As no 3-connected 3-regular planar graph (except the
tetrahedron) contains two adjacent triangular faces (there would be a 2-vertex
cut), there is no 3-connected 2-nearly Platonic graph of type (3, 3).

Case 2. Type (3, 4). If a 3-connected 3-regular planar graph contains a vertex
incident to three faces of degree four, then it is either the graph of the cube or
it contains either at least one face of degree at least five or a 2-vertex cut. A
contradiction. This implies that l = 1 and the fundamental brick B1(3, 4) consists
of exactly one face of degree four. This shows that G is exactly an n-prism with
|V (F1)| = |V (F2)| = n for some n ≥ 4.

Case 3. Type (4, 3). As distG(F1, F2) = dist(x1, y1) ≥ 1 (by Claim 1),
each edge of any exceptional face is adjacent to a triangular face and (by Euler’s
formula, see e.g. [9] or [16]) f3 = m + n. From this we immediately have n =
m, l = 1 and that G is the n-antiprism for some n ≥ 4. Hence B1(4, 3) consists
of two adjacent triangular faces.

Case 4. Type (3, 5).

Subcase 4.1. If distG(F1, F2) = distG(x1, y1) = 1, then the fundamental brick
B1(3, 5) is unique and is enforced starting from the edge x1y1. It is bounded by
the cycle C = x1x2 · · ·x6y6y5 · · · y1x1 and contains of 10 pentagonal faces. All
its vertices, up to the vertices x1, x6, y1, y6 which are of degree 2, are of degree 3.
Using this brick one can easily construct a 3-connected 2-nearly Platonic graph
with n = m = 5t, t ≥ 2, from the t-prism by replacing each its quadrangular face
with the brick B1(3, 5).

Subcase 4.2. Let distG(x1, y1) ≥ 2. Observe that there is no 3-connected 2-
nearly Platonic graph with distG(F1, F2) = 2. Otherwise we have distG(F1, F2) =
1. Let distG(F1, F2) ≥ 3. As f5 = m+ n (by Euler’s formula, see e.g. [9] or [13])
and the fact that the exceptional face Fi is incident to degG(Fi) faces of degree
5, we immediately have n = m and l = 3. Clearly, B3(3, 5) consists of two



2-Nearly Platonic Graphs 359

adjacent pentagonal faces and a = b = 2. The graph G is a generalization of the
dodecahedron for some n ≥ 3, n 6= 5. It can be obtained from the n-prism Dn

by replacing each edge xiyi of it by the path xiuiziyi and then by inserting the
edge uizi+1 for any i ∈ {1, . . . , n}, subscripts modulo n.

Case 5. Type (5, 3).

Subcase 5.1. Let distG(F1, F2) = distG(x1, y1) ≥ 2. Then f3 = 3m + 3n (by
Euler’s formula, see e.g. [9] or [14]). Because each exceptional face Fi is touching
3 degG(Fi) triangular faces we immediately have l = 2, n = m and B2(5, 3) being
enforced by a cycle C = x1x2w1y2y1v1x1 having inside a vertex z adjacent to all
vertices of C except for the vertex y1. Also the edge v1y2 is present in B2(5, 3).
Using the fundamental brick B2(5, 3) one can easily construct a 3-connected,
balanced 2-nearly Platonic graph with exceptional n-gonal faces for every n ≥ 4.
It can be obtained from the n-prism Dn by replacing each edge xiyi with the
paths xiuiyi, followed by inserting a vertex zi in the interior of the face bounded
be the cycle xixi+1ui+1yi+1yiuixi and then adding the following edges: uiyi+1,
ziui, zixi, zixi+1, ziui+1, ziyi+1 for any i ∈ {1, . . . , n}.

Subcase 5.2. Let distG(F1, F2) = distG(x1, y1) = 1. To look for a fundamental
brick B we start with the edge x1y1 and with degB(x1) = r, r ∈ {2, 3, 4} and
degB(y1) = s, s ∈ {2, 3, 4}. Observe, that the cases when r = s = 2 and r = s = 4
cannot appear because otherwise a quadrangular face would appear in G. As
degB(x1)+degB(xa) = 6, it is enough, without loss of generality, to consider only
the cases r ∈ {3, 4}. In all possible subcases the fundamental brick B is bounded
by a cycle C = x1x2x3x4y4y3y2y1x1 having six vertices z1, z2, z3, z4, z5, z6 in the
interior.

Subcase 5.2.1. Let degB(x1) = 4 and degB(y1) = 3. Then the fundamental
brick (in this case B1) contains the following edges in the interior of C: x1z1,
x1z4, x2z1, x2z2, x2z3, x3z3, x3y3, x3y4, y1z4, y2z4, y2z5, y2z6, y3z6, y3z3, z1z2,
z1z4, z1z5, z2z5, z2z3, z2z6, z3z6, z4z5, z5z6.

Subcase 5.2.2. Let degB(x1) = 4 and degB(y1) = 2. Then the fundamental
brick B2 contains the following edges in the interior of C: x1z1, x1y2, x2z1, x2z2,
x2z3, x3z3, x3z6, x3y4, y2z1, y2z4, y3z4, y3z5, y3z6, y4z6, z1z2, z1z4, z2z3, z2z5,
z2z4, z4z5, z5z6, z3z5, z3z6.

Subcase 5.2.3. Let degB(x1) = 3 and degB(y1) = 3. Then the fundamental
brick B3 contains the following edges in the interior of C: x1z1, x2z1, x2z2, x2z3,
x3z3, x3z5, x3z6, x4z6, y1z1, y2z1, y2z2, y2z4, y3z4, y3z5, y3z6, y4z6, z1z2, z2z4,
z2z3, z3z4, z3z5, z4z5, z5z6.

If we take a t-prism, t ≥ 2, and replace each quadrangular face with the
fundamental brick Bj , j ∈ {1, 2, 3} we get three infinite classes Bj of 3-connected
balanced 2-nearly Platonic graphs of type (5, 3).
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It is easy to see that Bj ∩ B3 = ∅ for j ∈ {1, 2}.

We need to show that B1 ∩ B2 = ∅. To do this consider a plane (embedding
of) graph G ∈ B1 (respectively, H ∈ B2).

From the above considerations we know that any fundamental brick B of
every 2-nearly Platonic graph from case 5.2 is uniquely determined by the ex-
ceptional face F1, its (clockwise) orientation, and the ordered pair (degB(x1),
degB(y1)).

On the other hand, different fundamental bricks can give the same 2-nearly
Platonic graph. One can easily check that the 2-nearly Platonic graph G, de-
termined by the fundamental brick B1, defined by the ordered pair (4, 3) with
respect to the face F1 and its orientation, is also determined by the fundamental
bricks B1

1 and B1
2 defined by the ordered pairs (3, 2) and (2, 4), respectively, but

not any other fundamental brick.

Analogously, the 2-nearly Platonic graph H, determined by the fundamental
brick B2, defined by the ordered pair (4, 2) with respect to the face F1 and its
orientation, is also determined by the fundamental bricks B2

1 and B2
2 defined by

the ordered pairs (2, 3) and (3, 4), respectively, but no any other fundamental
brick.

Of course, all the above mentioned fundamental bricks are considered with
the respect to the face F1 and its (clockwise) orientation.

Consider an axis of symmetry not intersecting G (respectively, H) in the
plane. Let Ḡ (respectively, H̄) be the image of G (respectively, of H) accord-
ing to this axial symmetry. Evidently, the graphs G and Ḡ (respectively, the
graphs H and H̄) are combinatorially isomorphic but, by the axial symmetry,
the clockwise orientation of F1 is changed to the counterclockwise orientation of
the corresponding face F̄1 in Ḡ. This means that the plane graphs G and Ḡ

are distinct (respectively, plane graphs H and H̄ are distinct) and, hence, not
topologically isomorphic as plane graphs.

If we consider the clockwise orientation of the face F̄1 we find out that the
axial symmetric graph Ḡ (respectively, H̄) is determined by the fundamental
bricks defined by any of the ordered pairs (3, 4), (2, 3), and (4, 2) and by no other
one (respectively, by any of the ordered pairs (4, 3), (3, 2), and (2, 4) and no other
one). This means that H̄ ∈ B1 and Ḡ ∈ B2.

As the sets of fundamental bricks that determine the 2-nearly Platonic graphs
G ∈ B1 and H ∈ B2 are disjoint, the classes B1 and B2 are disjoint as well.

From the above considerations we have the following.

Theorem 6. Any 3-connected 2-nearly Platonic graph is balanced. There are

eight infinite classes of 3-connected 2-nearly Platonic graphs. Namely, one of

type (3, 4), one of type (4, 3), two of type (3, 5), and four of type (5, 3).
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Remark 1. A 3-dimensional polyhedron, which has no plane symmetry, is called
chiral, see e.g., [1], p. 301, or [20]. Regular polyhedra corresponding to 2-nearly
Platonic graphs from the classes B1 and B2 are chiral. Moreover, to any convex
polyhedron G ∈ B1 there is a convex polyhedron G′ ∈ B2 mirror symmetric to G

and vice versa.
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