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Abstract

An adjacent vertex distinguishing (AVD-)total coloring of a simple graph
G is a proper total coloring of G such that for any pair of adjacent vertices u
and v, we have C(u) 6= C(v), where C(u) is the set of colors given to vertex
u and the edges incident to u for u ∈ V (G). The AVD-total chromatic
number, χ′′

a(G), of a graph G is the minimum number of colors required for
an AVD-total coloring of G. The AVD-total coloring conjecture states that
for any graph G with maximum degree ∆, χ′′

a(G) ≤ ∆+3. The total coloring
conjecture states that for any graph G with maximum degree ∆, χ′′(G) ≤
∆+2, where χ′′(G) is the total chromatic number of G, that is, the minimum
number of colors needed for a proper total coloring of G. A graph G is
said to be AVD-total colorable (total colorable), if G satisfies the AVD-total
coloring conjecture (total coloring conjecture). In this paper, we prove that
for any AVD-total colorable graph G and any total-colorable graph H with
∆(H) ≤ ∆(G), the corona product G◦H of G and H satisfies the AVD-total
coloring conjecture. We also prove that the graph G ◦Kn admits an AVD-
total coloring using (∆(G◦Kn) +p) colors, if there is an AVD-total coloring
of graph G using (∆(G) + p) colors, where p ∈ {1, 2, 3}. Furthermore, given
a total colorable graph G and positive integer r and p where 1 ≤ p ≤ 3, we
classify the corona graphs G(r) = G ◦ G ◦ · · · ◦ G (r + 1 times) such that
χ′′
a(G(r)) = ∆(G(r)) + p.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. We use
the standard notation and terminology that can be found in the book of graph
theory [18]. The corona product of two graphs G and H, denoted by G ◦ H, is
the graph obtained by taking one copy of G, called the center graph and |V (G)|
copies of H, called the outer graph, and making the ith vertex of G adjacent to
every vertex of the ith copy of H, where 1 ≤ i ≤ |V (G)|. The maximum degree of
corona graph is denoted by ∆(G◦H) and equals ∆(G◦H) = |V (H)|+∆(G). An
example is given in Figure 1 where the graph G is shown with black color, copies
of graph H with blue color and the dotted edges are the newly added edges.
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Figure 1. An example of corona product G ◦H.

A proper vertex (or edge) coloring of a graph G = (V,E) is an assignment of
colors to the vertices V (or edges E) of G such that no two adjacent vertices (or
edges) get the same color. A proper total coloring of a graph G is an assignment of
colors given to the vertices and the edges of the graph such that (i) two adjacent
vertices receive different colors, (ii) two adjacent edges receive different colors
and (iii) if a vertex x is incident to edge e, then x and e receive different colors.
Through out the paper, whenever we say total coloring, we mean a proper total
coloring, unless otherwise stated. The minimum integer k such that G has a
total coloring using k colors is the total chromatic number of G and is denoted
by χ′′(G). Behzad [1] and Vizing [14] independently posed the total coloring
conjecture which states that for any graph G, χ′′(G) ≤ ∆ + 2 where ∆ is the
maximum degree of G. A graph G is said to be a total colorable graph if G
satisfies the total coloring conjecture.

Consider a total coloring f of a graph G = (V,E) and let C(u) be the set
of colors given to vertex u and the edges incident to u where u ∈ V (G). A pair
of adjacent vertices u and v satisfies the adjacent vertex distinguishing property
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(AVD-property), if C(u) 6= C(v). An adjacent vertex distinguishing (AVD-)total
coloring of a graph G is a total coloring such that each pair of adjacent vertices
u and v satisfies the AVD-property. We call a color c “available” for vertex v
with respect to a total coloring, if c /∈ C(v). We denote the set of available colors
on vertex v by C̄(v). Observe that if the AVD-property holds for an adjacent
pair of vertices u and v, then C̄(u) 6= C̄(v). The minimum integer k, such that
G has an AVD-total coloring using k colors, is the adjacent vertex distinguishing
(AVD-)total chromatic number of G and is denoted by χ′′a(G). This concept was
introduced in 2005 by Zhang et al. [20]. They posed the AVD-total coloring
conjecture which states that for any graph G, χ′′a(G) ≤ ∆(G)+3. This conjecture
has been proved for general graphs with ∆ = 3 by Wang [15] and Chen [2].
AVD-total colorings have been further studied for graphs with ∆ = 3 in [6, 9].
Papaioannou and Raftopoulou [12] proved the AVD-total coloring conjecture for
4-regular graphs. Recently, Lu et al. [8] validated the conjecture for all graphs
with ∆ = 4. For planar graphs with ∆ ≥ 9, the AVD-total coloring conjecture
has been shown to be true [3–5,17], while χ′′a(G) ≤ ∆ + 2 holds for planar graph
G with ∆ ≥ 11 [16,19]. Wang and Huang [16] proved that if G is a planar graph
with ∆ ≥ 14, then χ′′a(G) = ∆ + 2 if and only if G contains two adjacent vertices
of maximum degree. Recently, Huo [7] extended this characterization to planar
graphs with ∆ = 13. A graph G is said to be AVD-total colorable graph if G
satisfies the AVD-total coloring conjecture.

For the total chromatic number of a graph, it is known that χ′′(G) ≥ ∆ + 1.
We say that a graph G is a type-I-graph if χ′′(G) = ∆ + 1. Mohan et al. [11]
proved that the corona product of graphs of certain graph classes is a type-I
graph. Later, Vignesh et al. [13] proved that for any two total colorable graphs
G and H, the corona product G ◦H is a type-I graph.

In this paper, we study the AVD-total coloring of the corona product of
graphs. We prove the AVD-total coloring conjecture for corona product of an
AVD-total colorable graph G and a total colorable graph H when ∆(G) ≥ ∆(H).
We also prove the AVD-total coloring conjecture for graph G ◦ H, when G is
an AVD-total colorable graph and H is the complete graph Kn. Furthermore,
given a total colorable graph G and a positive integer r, we classify the corona
graphs G(r) = G ◦ G ◦ · · · ◦ G (r + 1 times) with respect to their AVD-total
chromatic numbers. In particular, we characterize the corona graphs G(r) such
that χ′′a(G(r)) = ∆(G(r)) + p, where p is a positive integer and 1 ≤ p ≤ 3.

2. AVD-Total Coloring of the Corona Product of Graphs

In this section, we present the results on the corona product of two graphs G◦H.
Throughout the paper, we assume that |V (G)| = m, |V (H)| = n and V (G) =
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{v1, v2, . . . , vm}. Let H1, H2, . . . ,Hm be the m copies of the graph H in the
graph G ◦H and V (Hi) = {xi1, xi2, . . . , xin}, for each i, 1 ≤ i ≤ m. In [13], the
total coloring of the corona product of two total colorable graphs G and H is
examined. Therefore we focus on G and H being AVD-total colorable graphs.
First, we consider the case, when ∆(G) ≥ ∆(H) and we prove that the AVD-total
coloring conjecture holds for the corona product of two graphs G and H, where
G and H are two AVD-total colorable graphs with ∆(G) ≥ ∆(H). Our result
holds even if the graph H is a total colorable graph.

Note that the maximum degree of G◦H, that is ∆(G◦H) = |V (H)|+∆(G),
depends on the maximum degree ∆(G) of G. Therefore, in the case where ∆(G) ≥
∆(H), we start with an AVD-total coloring of the center graph G using ∆(G)+3
colors. Next, we totally color each subgraph Hi in the outer graph using the same
set of colors, which is possible since ∆(G) ≥ ∆(H). Finally, we color the edges
connecting the center graph to the outer graph using |V (H)| new colors such that
the obtained coloring is an AVD-total coloring using ∆(G ◦H) + 3 colors.

On the other hand, for the case where ∆(H) > ∆(G), we cannot use a similar
approach. We cannot totally color the copies of Hi with the same set of ∆(G)+3
colors as used to color the center graph G, as ∆(H) > ∆(G) holds.

Theorem 1. Let G be an AVD-total colorable graph and H be an AVD-total or
total colorable graph. If ∆(G) ≥ ∆(H), then χ′′a(G ◦H) ≤ ∆(G ◦H) + 3.

Proof. If Gc is a connected component of G, then Gc ◦ H is a maximal con-
nected component of G ◦H, and the AVD-total colorings of different connected
components do not depend on each other. Therefore, we assume without loss
of generality that G is a connected graph. Since G is an AVD-total colorable
graph, there exists an AVD-total coloring of G using (∆(G) + 3) colors. Let
C = {1, 2, . . . ,∆(G) + 3} be a set of ∆(G) + 3 colors. Let f be an AVD-total
coloring of G using (∆(G)+3) colors from the set C. We assume that H is a total
colorable graph; the case where H is AVD-total colorable is similar. Suppose that
|V (H)| = n ≤ 2. Note that in this case, H has at most one edge. We color the
center graph G with respect to the coloring f and color the vertices and edge
(if any) of each copy Hi with different colors from the set C \ {f(vi)}. Observe
that it is always possible to color Hi this way as graph G is a connected graph
and ∆(G) ≥ ∆(H). We color the n edges between vertex vi and copy Hi with
n new colors. Thus, we totally color the graph G ◦H using ∆(G ◦H) + 3, that
is, ∆(G) + n + 3 colors. It is easy to observe that the obtained coloring is an
AVD-total coloring of G ◦H as the coloring f is an AVD-total coloring of G.

Therefore, we assume that n ≥ 3. Since H is a total colorable graph, there
exists a total coloring of H using (∆(H) + 2) colors. So, we take a total coloring
g of each copy of Hi using (∆(H) + 2) colors from the set C, where 1 ≤ i ≤ m.
Note that since ∆(H) ≤ ∆(G), g requires at most ∆(H) + 2 ≤ ∆(G) + 3 colors,
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while C has ∆(G) + 3 colors in total. We use these colorings to construct an
AVD-total coloring of G◦H using (∆(G◦H)+3), that is, (∆(G)+n+3) colors1.
First, we totally color the center graph G and color the edges of the subgraphs
Hi according to the colorings f and g, respectively. Next, we color the vertices
of each Hi and the uncolored edges connecting the subgraphs Hi to the center
graph G, using n new colors. Let C′ = {c1, c2, . . . , cn} be a set of n new colors.
Formally, we define the AVD-total coloring φ : V (G ◦H)∪E(G ◦H)→ C ∪ C′ as
follows. For 1 ≤ i ≤ m,
1. for each vertex vi ∈ V (G), φ(vi) = f(vi);

2. for each edge vivj ∈ E(G), φ(vivj) = f(vivj);

3. for each edge xijxik ∈ E(Hi), φ(xijxik) = g(xjxk), where xjxk ∈ E(H),
1 ≤ j, k ≤ n;

4. for each vertex xij ∈ V (Hi), φ(xij) = cj+1 for 1 ≤ j ≤ n− 1 and φ(xin) = c1;

5. for each edge φ(vixij) = cj , for 1 ≤ j ≤ n.

Note that the obtained coloring φ is a total coloring when restricted to any
subgraph Hi or subgraph G. The coloring assigns n distinct colors to the n edges
between a subgraph Hi and G, where 1 ≤ i ≤ m. Therefore, the obtained coloring
φ is a total coloring using (∆(G) +n+ 3) colors. Suppose that u, v ∈ V (G◦H) is
a pair of adjacent vertices. Now, there are three cases to consider depending on
whether u and v belong to G or Hi. (i) If u, v ∈ V (G), then the AVD-property
holds for the vertices u and v as the coloring φ restricted to G is an AVD-total
coloring, and therefore C(u) 6= C(v). (ii) If u ∈ V (G) and v ∈ V (Hi) for some
i, 1 ≤ i ≤ m, then C(u) contains all colors of C′, whereas C(v) contains only
two colors of C′. This implies that the AVD-property holds for the vertices u
and v as n ≥ 3. (iii) If u, v ∈ V (Hi), then C(u) and C(v) both contain exactly
two colors from C′. However, a different pair of colors from C′ is used for each
vertex of Hi. Thus, in every case the AVD-property holds for the vertices u
and v. Hence, the obtained coloring is an AVD-total coloring of G ◦ H and
χ′′a(G ◦H) ≤ ∆(G) + n+ 3 = ∆(G ◦H) + 3 as claimed.

In Figure 2, we illustrate the AVD-total coloring φ of G ◦ H produced by
Theorem 1. Note that graphs G and H satisfy the condition ∆(G) ≥ ∆(H) of
the theorem.

Next, we aim to relax the condition ∆(G) ≥ ∆(H) and investigate the AVD-
total chromatic number of the corona product G ◦H, where G is an AVD-total
colorable graph and H is any total colorable graph. The following result is a
first attempt towards this generalization. We consider G to be an AVD-total

1In fact, g requires at most ∆(H) + 2 colors if H is total colorable, and at most ∆(H) + 3
colors if it is AVD-total colorable. In both cases the number of needed colors is at most ∆(G)+3.
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colorable graph and H to be the complete graph Kn on n vertices. Our proof
uses the following known result.
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Figure 2. Illustration for the AVD-total coloring of G◦H produced by Theorem 1, where
∆(G) > ∆(H).

Theorem 2 [20]. For a complete graph Kn with n vertices,

χ′′a(Kn) =

{
n+ 1, if n is even,

n+ 2, if n is odd.

Theorem 3. Let G be a connected graph with m > 3 vertices and Kn be a
complete graph of order n. If there exists an AVD-total coloring of graph G using
∆(G)+p colors, then the graph G◦Kn has an AVD-total coloring using ∆(G◦Kn)
+ p colors, where p ∈ {1, 2, 3}.

Proof. As in the proof of Theorem 1, let G be a connected graph with V (G) =
{v1, v2, . . . , vm}, where m ≥ 4. Assume that there exists an AVD-total coloring
of graph G using ∆(G) + p colors, where p ∈ {1, 2, 3}. The corona product
G ◦Kn has maximum degree ∆(G ◦Kn) = ∆(G) + n. We produce an AVD-total
coloring of G ◦ Kn using (∆(G) + n + p) colors as follows. The center graph
is G and take m copies of Kn in outer graph, say Ki

n, where 1 ≤ i ≤ m. Let
V (Ki

n) = {vi1, vi2, . . . , vin}, where 1 ≤ i ≤ m. We start with an AVD-total
coloring of the complete graph (Ki

n +vi) on (n+1) vertices for each i, 1 ≤ i ≤ m
and we remove the color of each vertex vi, 1 ≤ i ≤ m. Finally, we take an AVD-
total coloring of the center graph G and make local modification to assure that
the AVD-property holds for all pairs of adjacent vertices. There are two cases to
consider depending on whether n is odd or even.

Case 1. n is odd. Let C = {1, 2, . . . , n + 2} be a set of n + 2 colors. From
Theorem 2, χ′′a(Ki

n + vi) = n + 2 as n + 1 is even, for 1 ≤ i ≤ m. We take an
AVD-total coloring φ of each complete subgraph (Ki

n + vi), 1 ≤ i ≤ m (which
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assigns the same color φ(vi) and the same color set C(vi) to vertex vi for every i,
1 ≤ i ≤ m) using colors from the set C and we remove the color of every vertex
vi, 1 ≤ i ≤ m. Now, observe that each vertex vi of G has two available colors
from the set C, say c1, c2 ∈ C \ (C(vi) \ {φ(vi)}). Note that c1 and c2 are the same
for all vertices vi of G. These two colors can be used to color the uncolored edges
and vertices of the center graph G. Let C′ = {n + 3, n + 4, . . . , n + ∆(G) + p}
be a set of ∆(G) + p − 2 new colors. We know that there exists an AVD-total
coloring of graph G using ∆(G) + p colors. We take an AVD-total coloring f
of the center graph with colors from {c1, c2} ∪ C′. Consider vertex vi of G, for
1 ≤ i ≤ m. Suppose that in the obtained coloring f(vi) /∈ {c1, c2}. In this case,
the AVD-property holds for each pair of vertices consisting of vi and any one of
its neighbors. Suppose that in the obtained coloring, we have f(vi) ∈ {c1, c2}. If
for any vertex vij for 1 ≤ j ≤ n of the subgraph Ki

n we have f(vi) 6= φ(vij), then
the AVD-property holds for vi and vij . So it remains to consider the case when
there exists a vertex f(vi) = φ(vij), that is vertices vi and vij have the same
color. In this case, we recolor vertex vij using any color from the set C′. Since G
is a connected graph with at least 4 vertices, C′ 6= ∅. Thus, we can always recolor
vertex vij with some color from the set C′. It follows that the obtained coloring
of G ◦Kn is an AVD-total coloring using ∆(G) + n+ p colors.

Case 2. n is even. Let C = {1, 2, . . . , n + 3} be a set of n + 3 colors. From
Theorem 2, χ′′a(Ki

n + vi) = n + 3 as n + 1 is odd, for 1 ≤ i ≤ m. We take the
AVD-total coloring φ of each complete subgraph (Ki

n + vi), 1 ≤ i ≤ m (which
assigns the same color φ(vi) and the same color set C(vi) to vertex vi for every i,
1 ≤ i ≤ m) using colors from the set C and we remove the color of each vertex vi,
1 ≤ i ≤ m. Now, observe that each vertex vi of G has three available colors from
the set C, say c1, c2, c3 ∈ C\(C(vi) \ {φ(vi)}). Note that c1, c2 and c3 are the same
for all vertices vi of G. These three colors can be used to color the uncolored edges
and vertices of the center graph G. Let C′ = {n+3, n+4, . . . , n+∆(G)+p} be a
set of ∆(G) + p− 3 new colors. We know that there exists an AVD-total coloring
of graph G using ∆(G) +p colors. We take an AVD-total coloring f of the center
graph with colors from {c1, c2, c3}∪ C′. As in Case 1, the AVD-property holds for
vertex vi and any of its neighbors, except for the case where f(vi) ∈ {c1, c2, c3}
and vertex vi of G has the same color with vertex vij of Ki

n, that is f(vi) = φ(vij),
where 1 ≤ i ≤ m, 1 ≤ j ≤ n. In this case, we recolor vertex vij with some color
from the set C′. Since G is a connected graph with at least 4 vertices, C′ 6= ∅ and
so we can always recolor vertex vij with some color from the set C′. Thus the
obtained coloring is a proper total coloring of graph G ◦Kn.

Hence, the graph G ◦Kn has an AVD-total coloring using (∆(G ◦Kn) + p)
colors.
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In Figure 3 we illustrate the AVD-total coloring of K2 ◦ K3 produced by
Theorem 3 (Case 1).
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Figure 3. Illustration for the AVD-total coloring of K2 ◦K3 produced by Theorem 3.

Next, our interest is to compute the AVD-total chromatic number of graph
G ◦H, when H = G and G is a total colorable graph. First, we characterize the
graphs G◦G such that χ′′a(G◦G) = ∆(G◦G)+p, where G is a total colorable graph
and p is a positive integer p ∈ {1, 2}. Furthermore, we extend the characterization
to the generalized corona graph (G ◦G ◦ · · · ◦G(r+ 1 times)), where G is a total
colorable graph and r is a positive integer. This generalized corona product of
graphs, (G ◦G ◦ · · · ◦G(r+ 1 times)) is called the corona graph of graph G and it
is denoted by G(r). If G is a connected graph, then G(0) = G, G(1) = G ◦G, and
G(r) = G(r−1) ◦G. Note that ∆(G(r)) = ∆(G)+nr, where n is the order of graph

G. For G = K3 the corona graph K
(2)
3 is shown in Figure 4. First, we study

the AVD-total chromatic number of corona graph G(1). Let the center graph of
G(1) be G and let G1, . . . , Gn be the n copies of G in the outer graph, where
V (G) = {v1, v2, . . . , vn} and V (Gi) = {vi1, vi2, . . . , vin}, for 1 ≤ i ≤ n. Observe
that if n = 1, then G(1) ≡ K2 and hence, χ′′a(G(1)) = ∆(G(1)) + 2 by Theorem 2.
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Theorem 4. If G is a total-colorable graph with at least two vertices, then
χ′′a(G(1)) ≤ ∆(G(1)) + 2.

Proof. Assume that V (G) = {v1, v2, . . . , vn} and C = {1, 2, . . . ,∆(G)+2} is a set
of ∆(G)+2 colors. Since G is a total colorable graph, there exists a total coloring
f of G using the ∆(G) + 2 colors of C. We start by applying the total coloring f
on the center graph G and on each copy Gi, 1 ≤ i ≤ n. Let C′ = {c1, c2, . . . , cn}
be a set of n new colors. In order to produce an AVD-total coloring of G(1),
we use C′ to color the edges between G and each Gi and, finally, we modify the
coloring in order to assure that the AVD-property holds for each pair of adjacent
vertices. Now, each vertex vi has at least one available color with respect to the
coloring f from the set C. Let ai ∈ C be an available color of vertex vi for each
i, 1 ≤ i ≤ n. Note that ai = aj might hold for 1 ≤ i 6= j ≤ n. Define the
AVD-total coloring φ : V (G(1)) ∪ E(G(1))→ C ∪ C′ as follows.

1. For 1 ≤ i, j ≤ n, φ(vij) = f(vj).

2. For 1 ≤ i, j, k ≤ n, φ(vijvik) = f(vjvk) where vjvk ∈ E(G).

3. For 1 ≤ i, j ≤ n, φ(vivj) = f(vivj) and φ(vi) = ci.

4. For 1 ≤ i, j ≤ n,

φ(vivij) =

{
ai, if j = i,

cj , otherwise.

Note that the obtained coloring φ uses (n− 1) distinct colors from the set C′
to color (n− 1) edges between any subgraph Gi and G, for 1 ≤ i ≤ n. Hence, it
is not difficult to verify that φ is a total coloring of G(1). Note that in G(1) the
degree of vertex vi is greater than the degree of vertex vij for any i, j. Hence, the
AVD-property holds for the end vertices of each edge vivij going from G to Gi,
1 ≤ i ≤ n. Next, observe that the AVD-property holds for any adjacent pair of
vertices within Gi, as each vertex vij except for vertex vii, has exactly one color
in their color set from the set C′, which are mutually different. It remains to
check the AVD-property for any pair of adjacent vertices vi and vk in the center
graph G such that vi and vk have the same degree. Note that the color set of any
vertex vi is C(vi) = C′ ∪ Cf (vi) \ {f(vi)} ∪ {ai}, where Cf (vi) denotes the color
set of vertex vi with respect to the initial coloring f .

If for any adjacent pair the AVD-property is violated, then we will recolor
some edge so that the AVD-property is satisfied on that pair of vertices. We will
use Algorithm 1 to complete this step.

Claim. The obtained coloring φ from the Algorithm 1 is an AVD-total coloring.

Proof. First we show that the coloring obtained by Algorithm 1 is a total
coloring. Let vk is a neighbor of vertex vi with least index such that C̄(vk) = C̄(vi)
and Algorithm 1 picks a color c′ ∈ C̄(vk). Since C̄(vk) = C̄(vi), color c′ is also
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Algorithm 1 Recoloring Algorithm

function Recoloring(G,φ)
for i← 1 to n− 1 do

for k ← i+ 1 to n do
if vk ∈ N(vi) and C̄(vk) = C̄(vi) then

Pick a color c′ ∈ C̄(vk);
Recolor φ(vik) = ck;
Recolor φ(vivik) = c′;
C(vi) = C′ \ {ck} ∪ Cf (vi) \ {f(vi)} ∪ {ai, c′};
break;

available on vertex vi. It implies that c′ ∈ C as C̄(vi) ⊂ C. Since we recolor
vertex vik with color ck, after recoloring c′ ∈ C̄(vik). It implies that the coloring
obtained after the recoloring of edge f(vivik) with color c′ remains proper total
coloring of the graph G(1). Recall that in G(1) the degree of any vertex vi is
greater than the degree of any vertex vij , for any i, j, 1 ≤ i, j ≤ n. Therefore, the
AVD-property always holds for such pairs of adjacent vertices. Additionally, at
any iteration i, recoloring takes place on one edge whose endpoints belong to the
graph Gi and the center graph G. Therefore, we only need to prove the following
claim.

Subclaim. At the end of iteration i, the AVD-property holds on any pair of
adjacent vertices within the subgraph Gi and any pair of adjacent vertices from
the set {v1, v2, . . . , vi}.
Proof. Assume that at the start of iteration i, the AVD-property holds for each
adjacent pair of vertices from the set {v1, v2, . . . , vi−1}. If at the ith iteration,
recoloring does not take place, then our claim is trivially true. Suppose that at
the ith iteration, recoloring takes place. It implies that at the beginning of the
ith iteration, there exists some vertex vk ∈ N(vi) such that C̄(vi) = C̄(vk), where
k is the least such index and k > i. Since we have used color c′ on edge vivik
and color c′ is still available on vertex vk, C(vi) 6= C(vk). Note that even after
Algorithm 1, C(vii) ∩ C′ = ∅ and C(vik) ∩ C′ = ck. Therefore, C(vii) 6= C(vik).
Observe that even after the recoloring, exactly one color belongs to the color
set C(vij) from the set C′ which is distinct for each value of j, for i 6= j 6= k.
Therefore, C(vik) 6= C(vij) for any 1 ≤ j ≤ n, j 6= k. Hence, the AVD-property
holds on any pair of adjacent vertices within the subgraph Gi.

Observe that the recoloring step can cause violation of the AVD-property only
on the pair of vertices vi and its some neighbor from the set {v1, v2, . . . , vi−1}.
Assume for a contradiction that at the end of iteration i, the AVD-property fails
for the adjacent vertices vi and vj , where j < i, i.e., at the end of iteration i,



Adjacent Vertex Distinguishing Total Coloring of ... 327

C(vi) = C(vj). Since after recoloring vi has a new available color ck, color ck
is also available on vertex vj . It implies that vjvk ∈ E(G(1)) and at iteration
j, recoloring took place on edge vjvjk. Since at the end of iteration i the color
sets of the vertices vi and vj are the same and color ck is available on both the
vertices, C(vj) = C(vi) = C(vk) at the start of iteration j as well. This implies
that Algorithm 1 must have chosen vertex vi ∈ N(vj) for the recoloring step as
j < i < k. It implies that color ci is available on vertex vj but not color ck, which
is a contradiction. Hence, at the end of iteration i the AVD-property holds on
any adjacent pair of vertices from the set {vi, v2, . . . , vi}. It completes the proof
of the subclaim.

Therefore, the coloring obtained from Algorithm 1 is an AVD-total coloring
of the graph G(1) using (∆ + n+ 2) colors. 2

Thus, we obtained an AVD-total coloring φ of the graph G(1) using ∆(G(1))+
2, that is, ∆(G) + n+ 2 colors. Hence, χ′′a(G(1)) ≤ ∆(G(1)) + 2.
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Figure 5. Illustration for the AVD-total coloring of K
(1)
3 produced by Theorem 4.

In Figure 5, we illustrate the AVD-total coloring of graph K3 ◦K3 produced
by Theorem 4.

Theorem 5. Let G be a total-colorable graph with at least two vertices. If G has
no two adjacent vertices with degree ∆(G), then χ′′a(G(1)) = ∆(G(1)) + 1.

Proof. Let C = {1, 2, . . . ,∆(G) + 2} be a set of ∆(G) + 2 colors. Since G is
a total colorable graph, there exists a total coloring f of G using the ∆(G) + 2
colors of C. Note that each vertex vi in G must have at least one available color
from the set C corresponding to the coloring f . Let ai ∈ C be an available color
of vertex vi. Note that ai = aj might hold for 1 ≤ i 6= j ≤ n. Without loss of
generality, assume that vn is a vertex of maximum degree ∆, up to a relabeling
of the vertices. We start by applying the total coloring f on the center graph G
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and on each copy Gi, 1 ≤ i ≤ n. Let C′ = {c1, c2, . . . , cn−1} be a set of n − 1
new colors. In order to produce an AVD-total coloring of G(1), we use C′ to color
the edges between G and each Gi and, finally, we modify the coloring in order to
assure that the AVD-property holds for each pair of adjacent vertices. Define a
partial AVD-total coloring assignment, φ : V (G(1))∪E(G(1))→ C∪C′ as follows.

1. For 1 ≤ i, j, k ≤ n, φ(vij) = f(vj) and φ(vijvik) = f(vjvk), for vjvk ∈ E(G).

2. For 1 ≤ i, j ≤ n, φ(vivj) = f(vivj).

3. For 1 ≤ i ≤ n− 1, φ(vi) = ci.

4. For 1 ≤ i ≤ n,

φ(vivij) =

{
ai, if j = i,

cj , if 1 ≤ j ≤ n− 1 and j 6= i.

Now, vn is the only uncolored vertex and the remaining uncolored edges are
{vivin|1 ≤ i ≤ n − 1 }. We show how to color edge vivin for i < n. Note that
since vertex vin is a ∆-degree vertex of Gi, there exists exactly one color from
the set C in C̄(vin), in fact this color is an. There are three cases.

Case I. f(vi) ∈ C̄(vin) i.e., an = f(vi). In this case, we assign φ(vivin) =
f(vi).

Case II. f(vi) is used for some edge incident to vin. Suppose that there
exists an edge in subgraph Gi, say vinvi` (i 6= `), such that φ(vinvi`) = f(vi).
In this scenario, we recolor edge vinvi` with color ci and φ(vivin) = f(vi), where
1 ≤ i ≤ n− 1.

Case III. f(vi) = f(vn). It implies that φ(vin) = f(vi). In this case, we
recolor vertex vin with color ci−1 (index i− 1 is taken over modulo (n− 1)) and
assign φ(vivin) = f(vi).

In Figure 6, examples are given to depict the colorings for each case. Note
that the obtained coloring does not violate the total coloring properties.

Finally, we color vn, which is the only uncolored vertex. Let f(vn) = c, where
c ∈ C. To color vertex vn with color c, we have to make sure that in subgraph Gn

there is no vertex colored with color c. We know that φ(vnn) = c. Since vnn is a
vertex of degree ∆ and φ(vnn) = c, there exist at most n−∆ ≤ n− 1, vertices in
subgraph Gn with initial color φ(vnj) = c. Hence, there exists at least one index
k, such that vnk has color φ(vnk) = ck, such that ck 6= c. We recolor all vertices
vnj of color c with color ck and assign φ(vn) = c. Note that any two vertices of
Gn have different subsets of colors from C′ in their color sets.

It is easy to verify that the obtained coloring is a total coloring of G(1) using
(∆ +n+ 1) colors. First of all, note that in G(1) the degree of vertex vi is greater
than the degree of vertex vij for any i, j. Hence the AVD-property is satisfied
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Figure 6. Case analysis for the initial coloring assignment in the proof of Theorem 5.

for such pairs of adjacent vertices vi and vij , where 1 ≤ i, j ≤ n. Next, since
vin is a vertex with degree ∆ in Gi and it has no neighbor with degree ∆, the
AVD-property holds on vertex vin and any neighbor of vin in Gi, for all 1 ≤ i ≤ n.
Note that the color set of vertex vij has at most two colors from the set C′ which
is different for each vertex vij , for 1 ≤ j ≤ n, j 6= i and the color set of vertex
vii does not contain any color from the set C′, for 1 ≤ i ≤ n− 1 (refer to Figure
6). It implies that the AVD-property holds for every pair of adjacent vertices in
Gi, for 1 ≤ i ≤ n. Observe that for any vertex vi with maximum degree ∆(G(1)),
the color set of vi contains all the colors from the sets C and C′. According to
the hypothesis, G has no two adjacent vertices with the maximum degree, and
so G(1) does not have any adjacent pair of vertices having the maximum degree.
Therefore, any pair of adjacent vertices containing a vertex of maximum degree
satisfies the AVD-property.

It remains to check the AVD-property for any pair of adjacent vertices vi and
vk in the center graph G such that vi and vk have the same degree. If for any
adjacent pair the AVD-property violates, then we will recolor some vertices so
that the AVD-property is satisfied on that pair of vertices. We will use Algorithm
2 to complete this step. Since vertex vn is a vertex of degree ∆ in G, vn is a
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maximum degree vertex in graph G(1). Since vn has no neighbor of maximum
degree, the AVD-property holds for vertex vn and any of its neighbors. Therefore,
in Algorithm 2, i runs from 1 to n − 2. Note that the color set of any vertex vi
for i (1 ≤ i < n), is C(vi) = C′ ∪Cf (vi)∪ {ai}, where Cf (vi) denotes the color of
vertex vi with respect to the initial coloring f .

Algorithm 2 Recoloring Algorithm

function Recoloring(G,φ)
for i← 1 to n− 2 do

for k ← i+ 1 to n− 1 do
if vk ∈ N(vi) and C̄(vk) = C̄(vi) then

Pick a color c′ ∈ C̄(vk);
Recolor φ(vivik) = c′;
C(vi) = C′ \ {ck} ∪ Cf (vi) ∪ {ai, c′};
break;

Claim. The obtained coloring φ from the Algorithm 2 is an AVD-total coloring.

Proof. First we show that the coloring obtained by Algorithm 2 is a total
coloring. Let vk is a neighbor of vertex vi with least index such that C̄(vk) = C̄(vi)
and Algorithm 2 picks a color c′ ∈ C̄(vk). It implies that c′ ∈ C̄(vik). Since
C̄(vk) = C̄(vi), color c′ is also available on vertex vi. It implies that c′ ∈ C as
C̄(vi) ⊂ C. Therefore, the coloring obtained by the recoloring of edge f(vivik)
with color c′, remains a proper total coloring of the graph G(1). Recall that in
G(1) the degree of any vertex vi is greater than the degree of any vertex vij , for
any i, j, 1 ≤ i, j ≤ n. Therefore, the AVD-property always holds for such pairs of
adjacent vertices. Additionally, at any iteration i, recoloring takes place on one
edge whose endpoints belong to the graph Gi and the center graph G. Therefore,
we only need to prove the following claim.

Subclaim. At the end of iteration i, the AVD-property holds on any pair of
adjacent vertices within the subgraph Gi and any pair of adjacent vertices from
the set {v1, v2, . . . , vi}.
Proof. Assume that at the start of iteration i, the AVD-property holds for each
adjacent pair of vertices from the set {v1, v2, . . . , vi−1}. If at the ith iteration,
recoloring does not take place, then our claim is trivially true. Suppose that
at the ith iteration, recoloring takes place. It implies that at the beginning of
the ith iteration, there exists some vertex vk ∈ N(vi) such that C̄(vi) = C̄(vk),
where k is the least such index and k > i. Since we have used color c′ on edge
vivik and color c′ is still available on vertices vii and vk, C(vii) 6= C(vik) and
C(vi) 6= C(vk). After the application of Algorithm 2, the color set C(vik) has
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one less color from the set C′ as i < n. However, the color set C(vij) contain at
least one color from the set C′, where j 6= k, j 6= i < n. If prior to recoloring
by Algorithm 2, the color set C(vik) contained only one color from the set C′,
then after recoloring the color set C(vik) has no color from the set C′. Therefore,
in this case C(vik) 6= C(vij) for any 1 ≤ j ≤ n − 1. Next assume that prior to
recoloring by Algorithm 2, the color set C(vik) contained two colors from the set
C′, then vertex C(vik) ∩ C′ = {ci, ck} by the recoloring in Case II (see Figure 6).
Therefore, after recoloring by Algorithm 2 the set C(vik) contains one color, that
is, ci from the set C′ which is not present on any other vertex vij (j 6= k) except
for vertex vin. Therefore, C(vik) 6= C(vij) for any 1 ≤ j ≤ n − 1, j 6= k and
C(vik) 6= C(vin) because d(vin) = ∆(G) + 1 whereas d(vik) 6= ∆(G) + 1. Hence,
the AVD-property holds on any pair of adjacent vertices within the subgraph Gi.

For the second part of the subclaim, assume that the AVD-property is vio-
lated for the pair of vertices vi and one of its neighbors from the set {v1, v2, . . . ,
vi−1}. Let at the end of iteration i, the AVD-property fails for the adjacent
vertices vi and vj , where j < i, i.e., at the end of iteration i, C(vi) = C(vj).
Since after recoloring, vertex vi has a new available color ck, then color ck is also
available for vertex vj . It implies that vjvk ∈ E(G(1)) and at iteration j, the re-
coloring process took place on edge vjvjk. Since at the end of iteration i the color
sets of the vertices vi and vj are the same and color ck is available on both the
vertices, C(vj) = C(vi) = C(vk) at the start of iteration j as well. This implies
that Algorithm 2 would have choosen vertex vi ∈ N(vj) for the recoloring step
as j < i < k. In that case, color ci would be available for vertex vj but not color
ck, which is a contradiction. Hence, at the end of iteration i the AVD-property
holds on any adjacent pair of vertices from the set {vi, v2, . . . , vi}. It completes
the proof of the subclaim.

Thus, the coloring obtained from Algorithm 2 is an AVD-total coloring of
the graph G(1) using (∆ + n+ 1) colors. 2

Hence, we obtained an AVD-total coloring φ of the graph G(1) using ∆(G) +
n+ 1 colors. Therefore, χ′′a(G(1)) = ∆(G) + n+ 1 = ∆(G(1)) + 1.

We know that if any two maximum degree vertices are adjacent, then χ′′a(G) ≥
∆(G) + 2. Therefore, the next corollary follows from Theorem 4 and Theorem 5.

Corollary 6. Let G be a total colorable graph with at least two vertices. Then
χ′′a(G(1)) = ∆(G(1)) + 2, if there exists a pair of adjacent vertices with degree
∆(G) in G; otherwise χ′′a(G(1)) = ∆(G(1)) + 1.

Next, we extend the above results obtained for G(1) to G(r), where r is any
positive integer. Let G be a graph of order n and V (G) = {v1, v2, . . . , vn}. To get
G(i), we take one copy of G with vertex set V (G) denoted as Gi

j for each vertex
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xj of G(i−1) with V (Gi
j) =

{
vij1, v

i
j2, . . . , v

i
jn

}
and add the edges vijhxj , where,

1 ≤ h ≤ n and 1 ≤ j ≤ |V (G(i−1))|. An example K
(2)
3 is given in Figure 4.

Theorem 7. Let G be a total colorable graph with at least two vertices and r be
a positive integer. Then χ′′a(G(r)) = ∆(G(r)) + 2, if there exists a pair of adjacent
vertices with degree ∆(G) in G; otherwise χ′′a(G(r)) = ∆(G(r)) + 1.

Proof. We prove the result by induction on r. We already proved that the result
is valid for r = 1. Observe that if G has a pair of adjacent vertices with degree
∆(G), then G(r) also has a pair of adjacent vertices with degree ∆(G(r)) which
belongs to the center subgraph G. Assume that the result is true for r = i−1 ≥ 1.
Now, we have to show that the result is also true for r = i. To get G(i), we add a
copy of G for each vertex xj of G(i−1), denoted as Gi

j , where 1 ≤ j ≤ |V (G(i−1))|.
Let χ′′a(G(i−1)) = ∆(G(i−1)) + p = ∆(G) + n(i − 1) + p, where p ∈ {1, 2}.

Assume that f is an AVD-total coloring of G(i−1) using (∆(G)+n(i−1)+p) colors
and C is the set of colors used in f . Let Ci−1(v) be the color set of v ∈ V (G(i−1))
with respect to f . Let C′i be a set of n new colors. We shall extend the AVD-
total coloring f to G(i) using colors from the set C′i. Therefore, we have to color
all vertices and edges of each newly added copy Gi

j , as well as color the edges

between Gi
j and each vertex of V (G(i−1)), where 1 ≤ j ≤ |V (G(i−1))|.

We know that G is a total colorable graph. So, we take a total coloring of
each copy Gi

j using (∆(G) + 2) colors from the set C, where 1 ≤ j ≤ |V (G(i−1))|.
Note that for a fixed j, there are n edges between Gi

j and G(i−1), and all these

edges are incident to exactly one vertex in V (G(i−1)). We color the n edges which
connect the vertices of Gi

j to a vertex of G(i−1) with n distinct colors from the set

C′i. Let φ be the obtained coloring of graph G(i). Now, if there exists some vertex
u ∈ Gi

j such that φ(u) = φ(vj), where vj ∈ G(i−1) and vj is adjacent to every

vertex of the subgraph Gi
j , then we recolor vertex u with any color from the set

C, which has not been used on the subgraph Gi
j . Next, we claim that at most

n/2 vertices of Gi
j have to be recolored and so we will always have enough colors

for recoloring. Suppose that φ(u) = φ(vj) holds for more than half of the vertices
of Gi

j , then a permutation of the colors used for the total coloring of Gi
j would

guarantee that φ(u) 6= φ(vj) for at least half of the vertices of Gi
j . Eventually,

fewer than half of the vertices of Gi
j would need to be recolored.

Observe that the obtained coloring of G(i) after such recoloring step, is a
total coloring. Let the updated set of colors of vertex v be Ci(v), for every vertex
v ∈ V (G(i)). Since from each vertex vijh ∈ Gi

j there is exactly one edge that

connects vijh to G(i−1) and we have colored that edge with a new color from

C′i, Ci(v
i
jh) has exactly one color from the set C′i which is different for each h,

1 ≤ h ≤ n and 1 ≤ j ≤ |V (G(i−1))|. Thus, the AVD-property holds for every
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pair of adjacent vertices in Gi
j . Note that we have colored all the edges between

any Gi
j and G(i−1), from the set C′i. Therefore, for any vertex x ∈ V (G(i−1)),

Ci(x) = Ci−1(x) ∪ C′i. Since Ci−1(x) 6= Ci−1(y) in coloring f for any pair of
adjacent vertices x, y ∈ V (G(i−1)), Ci(x) 6= Ci(y). Therefore, AVD-property
holds for each pair of adjacent vertices in G(i). Finally, the AVD-property holds
for the vertices vijh and x, where 1 ≤ h ≤ n, 1 ≤ j ≤ |V (G(i−1))| and x ∈
V (G(i−1)) because the degree of vertex x is always greater than the degree of
vertex vijh. Hence, the obtained coloring is an AVD-total coloring of G(i) using

(∆(G) + i · n + p) colors. Thus, we proved that if χ′′a(G(i−1)) = ∆(G(i−1)) + p
then χ′′a(G(i)) = ∆(G(i)) + p, where p ∈ {1, 2}.

Hence, for any positive integer r, χ′′a(G(r)) = ∆(G(r))+2 if there exists a pair
of adjacent vertices with degree ∆(G) in G, otherwise χ′′a(G(r)) = ∆(G(r)) + 1.

3. Conclusion

Our work raises several interesting questions that could be further investigated.
In particular, we proved that the AVD-total coloring conjecture holds for the
corona product G◦H of any two AVD-total colorable graphs G and H, if ∆(G) ≥
∆(H). We also proved that the AVD-total coloring conjecture holds for the
corona product G ◦Kn, where G is an AVD-total colorable graph. Furthermore,
given a total colorable graph G and a positive integer r, we classified the corona
graphsG(r) = G◦G◦· · ·◦G (r+1 times) with respect to their AVD-total chromatic
numbers. However, the verification of the AVD-total coloring conjecture is an
open question for the corona product G ◦ H, of general graphs G and H. It
would be interesting to characterize the graphs G ◦ H according to their AVD-
total chromatic number, when G or H is restricted to some special classes of
graphs such as complete graphs, cycles or trees.

Recall that for a bipartite graph, the total chromatic number and the AVD-
total chromatic number can take values ∆ + 1 or ∆ + 2 at most. It is known
that the problem of classifying bipartite graphs with total chromatic number
∆ + 1 and ∆ + 2 is NP-complete even when the given graph is 3-regular and
bipartite [10]. However, the classification of bipartite graphs with AVD-total
chromatic number 4 and 5 is polynomial time solvable when the given graph has
maximum degree 3 [9]. Therefore, it is an interesting open question whether the
classification problem for the AVD-total chromatic number of general bipartite
graphs is NP-complete.

As a final remark, AVD-total colorings have been extensively studied for
planar graphs [3–5, 17]. However the verification of the AVD-total coloring con-
jecture is an open question for planar graphs with ∆ < 9. Additionally, it is
known that χ′′a(G) ≤ ∆(G) + 2 for planar graphs with ∆ ≥ 11 [16, 19]. It would
be an interesting open question whether χ′′a(G) ≤ ∆(G)+2, for all planar graphs.
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