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Abstract

A graph G is chromatically unique if its chromatic polynomial completely
determines the graph. An n-spoked wheel, Wn, is shown to be chromatically
unique when n ≥ 4 is even [S.-J. Xu and N.-Z. Li, The chromaticity of wheels,
Discrete Math. 51 (1984) 207–212]. When n is odd, this problem is still open
for n ≥ 15 since 1984, although it was shown by different researchers that the
answer is no for n = 5, 7, yes for n = 3, 9, 11, 13, and unknown for other odd
n. We use the beta invariant of matroids to prove that if M is a 3-connected
matroid such that |E(M)| = |E(Wn)| and β(M) = β(M(Wn)), where β(M)
is the beta invariant of M , then M ∼= M(Wn). As a consequence, if G is a
3-connected graph such that the chromatic (or flow) polynomial of G equals
to the chromatic (or flow) polynomial of a wheel, then G is isomorphic to the
wheel. The examples for n = 3, 5 show that the 3-connectedness condition
may not be dropped. We also give a splitting formula for computing the
beta invariants of general parallel connection of two matroids as well as the
3-sum of two binary matroids. This generalizes the corresponding result of
[T.H. Brylawski, A combinatorial model for series-parallel networks, Trans.
Amer. Math. Soc. 154 (1971) 1–22].
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1. introduction

The notation and the terminology for the beta invariant, Tutte, and chromatic
polynomial follows [19] and the matroid terminology not defined in the paper
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follow [20]. A graph is cosimple if it has no cut-edges. Let G be a graph. We use
PG(λ) to denote its chromatic polynomial. A graph G is chromatically unique if
whenever PG(λ) = PH(λ) for a graph H, then G ∼= H. If G is not isomorphic to
H but PG(λ) = PH(λ), then G and H are called chromatically equivalent (see,
for example, [13]). There are many papers in the literature (see, for example, [10,
11, 13]) on chromatically unique graphs and chromatically equivalent graphs and
many other result on graphs determined by other polynomials (see for example,
[1, 5, 7, 18]). In general, it is difficult to determine if a graph is chromatically
unique due to the lack of information that can be extracted from the chromatic
polynomial of the given graph. For example, given a chromatic polynomial of a
graph G, one cannot determine if the graph is 3-connected, or 2-connected but
not 3-connected.

One of the open problems involving chromatic polynomial is on the chromatic
uniqueness of the n-spoked wheel graph, Wn (for example, W3 is isomorphic to
K4). Note some authors use Wn to denote a wheel with n vertices. Chao and
Whitehead [11] proved that W4 is chromatically unique but W5 is not chromati-
cally unique by providing a chromatically equivalent graph. Xu and Li [22] proved
that for even n ≥ 4, the wheels are chromatically unique. They also made a con-
jecture in the same paper that Wn is not chromatically unique for odd n ≥ 9
[22]. Xu and Li [22] also provided a graph G which is chromatically equivalent
to W7 as well. Figure 1 shows two graphs G, from [11], and H, from [22], which
are chromatically equivalent to W5 and W7, respectively. Xu and Li’s conjecture
was disproved as W9 and W11 were shown to be chromatically unique. Read
[21] proved that W9 is chromatically unique by generating graphs which have
the same properties as W9, such as number of triangles, edges and vertices, and
comparing the chromatic polynomials of these graphs using a computer. Li and
Whitehead [17] provided a proof which does not depend on a computer for the
chromatically uniqueness of W9. Al-Rekaby and Khalaf [3] proved that W11 is
chromatically unique without using a computer. Azarija [4] (Ph.D. thesis) proved
that W11 and W13 are chromatically unique with the help of a computer. Azarija
[4] also mentioned a conjecture, contrary to Xu and Li’s conjecture [22], that for
every odd n ≥ 9, the wheel graph Wn is chromatically unique. The following
are the results on the chromatic uniqueness of the wheels listed in chronological
order.

Theorem 1. (1) ([11], 1978) W5 is not chromatically unique.

(2) ([22], 1984) For every even n ≥ 4, the wheel graph Wn is chromatically

unique.

(3) ([22], 1984) W7 is not chromatically unique.

(4) ([21], 1988), ([17], 1992) W9 is chromatically unique.

(5) ([3], 2014), ([4], 2016) W11 and W13 are chromatically unique.
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In Section 2, as a corollary of the main result of this paper, we prove that
if PG(λ) = PWn

(λ), and G is 3-connected, then G ∼= Wn. We actually prove
a more general result for 3-connected matroids. In the third section, we give a
splitting formula for the beta invariant of a generalized parallel connection across
a 3-point line and 3-sum.

Let M be a matroid with rank function r, then the Tutte polynomial of M
is defined as

TG(x, y) =
∑

F⊆E(G)

(x− 1)r(E)−r(F )(y − 1)|F |−r(F ).

Here r(F ) is the rank of the set F in the matroid.
The beta invariant, denoted β(M), of M is a numerical invariant and was

first introduced by Crapo [12]. The beta invariant can be obtained from the
chromatic polynomial or from the Tutte polynomial of the matroid. The beta
invariant of a matroid M is defined as follows:

(1) β(M) = (−1)r(M)
∑

A⊆E(M)

(−1)|A|r(A).

The chromatic (or characteristic) polynomial of the matroidM , denoted P (M,λ),
is defined by

(2) P (M ;λ) =
∑

A⊆E(M)

(−1)|A|λr(M)−r(A).

For any graph G, there is a natural matroid M(G) associated with G called
the cycle matroid of G, where the set of circuits of the matroid M(G) is the
set of cycles of G. If M is a matroid and M ∼= M(G), then M is called a
graphic matroid. When a matroid M is the cycle matroid of a graph G, then the
chromatic polynomial of G can be obtained from the characteristic polynomial
of M(G) as follows:

(3) PG(λ) = λω(G)P (M(G);λ),

where ω(G) is the number of the components of G.
The beta invariant of the matroid M is related to the P (M ;λ) by the follow-

ing identity

(4) β(M) = (−1)r(M)+1dP (M ;λ)

dλ

∣

∣

∣

∣

∣

λ=1

.

Let TG(x, y) be the Tutte polynomial of the graph G with at least two edges.
Then β(M(G)) is the coefficient of either x or y in TG(x, y).
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Let G be any bridgeless graph, D be the set of directed edges of G after
implementing arbitrary orientation, and A be an artribary Abelian group. An
A-flow on G is a map f from D to A such that the total flow out of a vertex is
equal to the total flow into the vertex. An A-flow f is a nowhere-zero flow (NZF)
if f(uv) 6= 0 for any uv ∈ D.

For an Abelian group A, the number of NZF A-flows on G is independent of
the structure of A, and depends only on the order of A, (see, for example [8]).
This number is a polynomial of |A|, called the flow polynomial of G and denoted
by QG(x). This polynomial can be also obtained from the Tutte polynomial of
G as follows. Suppose that G is a connected graph with n vertices and m edges.
Then

(5) QG(x) = (−1)m−n+1TG(0, 1− x).

Moreover, the beta invariant of M(G) is given by the absolute value of the coeffi-
cient of t = 1−x of the flow polynomial after we make the substitution t = 1−x.

The following is the deletion-contraction formula of Crapo [12] for the beta
invariant.

Lemma 2. For an element e ∈ E(M) which is neither a loop nor a coloop of M ,

β(M) = β(M\e) + β(M/e).

Matroid connectivity is defined as following. Let (X,E(M)−X) be a parti-
tion of E(M) of a matroid M . Then for a positive integer k, the pair (X,E(M)−
X) is a k-separation if r(X)+r(E(M)−X)−r(M) ≤ k−1 and |X|, |E(M)−X|
≥ k. A matroid M is n-connected if it has no k-separation for all k ∈ {1, 2, . . . ,
n− 1}. Then the matroid M is 3-connected if M has no 1- or 2-separations. The
following is our first main result.

Theorem 3. Let M be a 3-connected matroid such that |E(M)| = |E(Wn)| and
β(M) = β(M(Wn)). Then M ∼= M(Wn).

In [14], de Mier and Noy proved that any wheel Wn is completely determined
by its Tutte polynomial TWn

(x, y). Our above result shows that if we know the
graph is 3-connected with the right number of edges of the graph, then we need
only one coefficient (that is, β(M)), which is the coefficient of x (or y), rather
than the whole Tutte polynomial to determine the wheel graph.

Corollary 4. Let G be a 3-connected graph such that G and Wn have the same

chromatic or flow polynomial. Then G ∼= Wn.

In Figure 1, the graphs G and H are chromatically equivalent to W5 and W7,
respectively. Both G and H are 2-connected but not 3-connected. This shows
3-connectedness condition in our above results may not be dropped. We can also
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see from these two examples that both G and H have the same number of vertices
and edges as W5 and W7, respectively. In fact, when two simple graphs have the
same chromatic polynomial, then these two graphs have the same number of
edges and vertices. It is straightforward to show that the same property applies
to two simple matroids with the same chromatic polynomial. And a similar result
holds for the flow polynomial of a cosimple matroid as well. It is easily shown
that P (M ;λ) is a polynomial with degree r(M) and with integer coefficients
alternating in sign beginning with 1, −|E(M)|, . . .. Thus the next proposition
is clearly true. The following propositions will be used in the proof in the next
section.

G H

Figure 1. PG(λ) = PW5
(λ) and PH(λ) = PW7

(λ).

Proposition 5. Let M and N be simple matroids such that P (M ;λ) = P (N ;λ).
Then r(M) = r(N) and |E(M)| = |E(N)|.

Proposition 6 [15]. Let G and H be connected cosimple graphs with at least one

edge such that QG(x) = QH(x). Then |V (G)| = |V (H)| and |E(G)| = |E(H)|.

In the last section, we provide a splitting formula for the beta invariant of
generalized parallel connection of two matroids, and the 3-sum of two binary
matroids. These are well-known operations for matroids and have numerous
applications (see [19]). A matroid is binary if it can be represented by a matroid
in the field of two elements. Let M1 and M2 be matroids such that M1|T , the
submatroid restricted on T , and M2|T are equal, where T = E(M1)∩E(M2). Let
N = M1|T and suppose that si(N), the simplified matroid associated with N , is
a modular flat of the matroid si(M1) (see [19] for the definition of the modular
flat). The generalized parallel connection PN (M1,M2) of M1 and M2 across N is
the matroid on E(M1)∪E(M2) whose flats are those subsets X of E(M1)∪E(M2)
such that X ∩ E(M1) is a flat of M1, and X ∩ E(M2) is a flat of M2. When T
is a triangle of both M1 and M2 and both M1 and M2 have at least 7 elements,
the 3-sum of two binary matroids, M1 ⊕3 M2 is defined as M = PT (M1,M2)\T .

The following is our second main result.
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Theorem 7. Let M1 and M2 be two binary matroids such that E(M1)∩E(M2) =
{s, p, q} and M = M1 ⊕3 M2. Then β(M) = β(M1)β(M2)− β(M1/s)β(M2/s)−
β(M1/p)β(M2/p)− β(M1/q)β(M2/q).

2. Chromatic Uniqueness of Wheels

There are results on characterizing matroids with specific beta invariants. For
example, the beta invariant of a matroid M is always non-negative, and if M has
at least two elements, β(M) > 0 if and only if M is connected [12]. Also, if M has
at least two elements, β(M) = 1 if and only if M is a series-parallel network [9].
Now we characterize 3-connected matroids with fixed beta invariant β(M) ≥ 2
and with maximum number of elements. A matroid whirl Wn, first defined by
Tutte [23], is a non-graphic matroid closely related to the wheel graph Wn (see
[19]). It is known that β(Wn+1) = n and β(Wn+1) = n+ 1 [12].

We will use the following well-known Tutte’s Wheels and Whirls Theorem
(see Oxley [20, Theorem 8.8.4]).

Theorem 8. Let M be a 3-connected matroid other than a wheel or a whirl.

Then there exists a 3-connected matroid M0, which is a wheel of rank at least three

or a whirl of rank at least two, and a sequence M0,M1, . . . ,Mn of 3-connected
matroids with Mn

∼= M such that Mi is a single-element deletion or single-element

contraction of Mi+1 for all i in {0, 1, . . . , n− 1}.

Theorem 9. Let Mn be the set of 3-connected matroids N with β(N) = n,
n > 1. Then |E(M)| = max{|E(N)| : N ∈ Mn} if and only if M ∼= Wn+1.

Proof. Note that the only nontrivial 3-connected matroids with less than 4 ele-
ments are U0,1, U1,1, U1,2, U1,3, U2,3, but each of these matroid has beta invariant
at most one. Thus for each M ∈ Mn, as β(M) = n > 1, we have that M has
at least four elements. Assume to the contrary that M ∈ Mn, M ≇ Wn+1, and
|E(M)| = max{|E(N)| : N ∈ Mn}. We will show that |E(Wn+1)| > |E(M)|.
Note that M is neither a wheel nor a whirl. Indeed, if M is a wheel Wt, then as
β(Wt) = t− 1 [12, Proposition 10], we conclude that t = n+ 1; a contradiction.
If M is a whirl W t for some t, then n = t as β(W t) = t [12, Proposition 10].
This is a contradiction as |E(Wn+1)| > |E(Wn)| but β(Wn+1) = β(Wn) = n.
By Theorem 8, there exists a sequence of 3-connected matroids M0, . . . ,Mk, such
that M0

∼= W and Mk
∼= M , where W is a wheel of rank r at least three or

a whirl of rank r at least two. Since M is not a wheel or a whirl, k > 0 and
|E(M)| = |E(W )|+ k = 2r + k.

Since W ∼= M0, if W is a wheel, then β(M0) = r(M0) − 1. If W is a whirl,
then β(M0) = r(M0). Let e ∈ E(Mi+1)\E(Mi) for some 0 ≤ i < k. Then by
the deletion-contraction formula for the beta invariant, β(Mi+1) = β(Mi+1\e) +
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β(Mi+1/e). Since Mi+1 is 3-connected, both Mi+1\e and Mi+1/e are connected
and both β(Mi+1\e), β(Mi+1/e) ≥ 1. Also either Mi+1\e ∼= Mi or Mi+1/e ∼= Mi.
Combined with the deletion contraction formula, for each i ∈ {0, 1, . . . , k − 1},

(6) β(Mi+1) ≥ β(Mi) + 1.

Thus, by applying induction on (6),we get

(7) n = β(M) = β(Mk) ≥ β(M0) + k.

If W is a rank r whirl, then β(M0) = r and by (7), β(Mk) = n ≥ r+k. Similarly,
if W is a rank r wheel, β(M0) = r − 1 and β(Mk) ≥ r − 1 + k. Therefore
n = β(Mk) ≥ r−1+k. Let s ∈ N such that r+s = n+1. Then β(Wn+1) = r+s−1
and since n ≥ r − 1 + k, we have that s ≥ k > 0. Therefore, |E(Wn+1)| =
2r + 2s > 2r + k = |E(M)|. Thus β(Wn+1) = β(M) but |E(Wn+1)| > |E(M)|, a
contradiction.

Theorem 3 is an immediate consequence of Theorem 9 as only a wheel has
the maximum number of elements among all 3-connected matroids with a fixed
beta invariant. Now we prove Corollary 4.

Proof of Corollary 4. If G is a 3-connected graph such that PG(λ) = PWn
(λ),

then |E(G)| = |E(Wn)| and β(M(G)) = β(Wn), where M(G) is a cycle matroid
of the graph G. Thus M(G) ∼= M(Wn). As both G and Wn are 3-connected,
G ∼= Wn by Whitney’s 2-isomorphism theorem [24]. Suppose that a 3-connected
graph G and Wn have the same flow polynomial. By Proposition 5, the beta
invariant is the coefficient of t in QG(x) after we make the substitution t = 1−x.
Hence ifQG(x) = QWn

(x), we have that β(M) = β(Wn). Then again, by applying
Proposition 6 and Theorem 9, we conclude that G ∼= Wn.

The last corollary can be also proved using a result of the authors [16, The-
orem 1.6]. For the open problem that whether W2n+1 is chromatically unique,
Corollary 4 reduces the problem to the 2-connected but not 3-connected case. In
this case, one can decompose such a graph into a 2-sum of two minors of G first.
For definitions of 2-sum and 3-sum, see the next section. In the next section,
we will derive a formula to find the beta invariants of the 3-sum of two binary
matroids. Since graphic matroids are also binary, the results apply to graphic
matroids as well. In the end of the next section, we will discuss a possible strat-
egy of studying whether W2n+1 is chromatically unique for small n using beta
invariant of the 2-sum of two graphic matroids by considering the 2-connected
but not 3-connected case.



276 S. Lee and H. Wu

3. Beta Invariant of Generalized Parallel Connection

In this section, we prove a result on the computation of the beta invariant of a
generalized parallel connection and as a corollary, 3-sum of two binary matroids.
Since graphs are special binary matroids, the result will apply to graphs as well.
Suppose E(M1) ∩ E(M2) = T , clM1

(T ) is a modular flat of M1, and every non-
loop element of clM1

(T )−T is parallel to some element of T , and M1|T = M2|T .
Let PT (M1,M2) be the generalized parallel connection of M1 and M2 across
the common set T . From now on, we will use cl1(T ) instead of clM1

(T ) for
simplicity. When both M1 and M2 are binary and |E1|, |E2| ≥ 7, then recall
that PT (M1,M2)\T is called 3-sum of M1 and M2 and is denoted M1 ⊕3 M2.
When T = {p}, then PT (M1,M2) is called parallel connection of M1 and M2

with respect to p and is denoted by P (M1,M2), and P (M1,M2)\T is called 2-
sum of M1 and M2 and is denoted by M1⊕2M2. Brylawski [9, Theorem 6.16(vi)]
proved the following result.

Theorem 10 [9]. Suppose that p is neither a loop nor a coloop of M1 and M2,

then β(P (M1,M2)) = β(M1)β(M2).

Using Theorem 10, Oxley proved the following theorem [20, Proposition 2.5].

Theorem 11. Let M be a matroid and suppose that β(M) = k > 1. Then either

(i) M is a series-parallel extension of a 3-connected matroid N such that β(N) =
k, or

(ii) M = M1 ⊕2 M2 for some matroids M1 and M2, and β(M) = β(M1)β(M2)
each having β(Mi) < k for i = 1, 2.

We prove the generalizations of the last two results.

Theorem 12. Let M1 and M2 be matroids and M = PT (M1,M2), the gener-

alized parallel connection of M1 and M2 across a triangle T . Then β(M) =
β(M1)β(M2).

The proof easily follows from the next result from the fact that β(M1 | T ) = 1
as T is a triangle.

Theorem 13. Let M1 and M2 be matroids and M = PT (M1,M2), the generalized
parallel connection of M1 and M2 across T . If β(M1|T ) 6= 0, then β(M) =
β(M1)β(M2)
β(M1|T ) .

Proof. Let M1 and M2 be matroids and M = PT (M1,M2), the generalized
parallel connection of M1 and M2 across T . Here we assume that cl1(T ) is a
modular flat of M1 and every non-loop element of clM1

(T )−T is parallel to some
elements of T , and M1|T = M2|T .



Beta Invariant and Chromatic Uniqueness of Wheels 277

We prove the theorem by induction on |E(M1)−cl1(T )|. If |E(M1)−cl1(T )| =
0, then M is obtained from M2 by possibly adding loops and parallel elements
to some elements in T . It is straightforward to verify that the theorem holds.
Assume |E(M1) − cl(T )| > 0 and take e ∈ E(M1) − cl1(T ). If e is a loop, then
e ∈ cl1(T ); a contradiction. Suppose that e is a coloop of M . This is true if
and only if e is in no circuits of M . Moreover, a circuit of M1 is also a circuit of
M . Thus e is in no circuit of M1, and thus e is also a coloop of M1. Therefore
neither M nor M1 is connected, and both sides of β(M) = β(M1)β(M2)

β(M1|T ) are zero
and the theorem holds. Thus we assume that e is neither a loop nor a coloop of
M . Again it is straightforward to show that e is neither a loop nor a coloop of
M1 also. Thus by the deletion-contraction formula and induction,

β(M) = β(M\e) + β(M/e) = β(PT (M1\e,M2)) + β(PT (M1/e,M2))

=
β(M1\e)β(M2)

β(M1|T )
+

β(M1/e)β(M2)

β(M1|T )

=
(β(M1\e) + β(M1/e))β(M2)

β(M1|T )
=

β(M1)β(M2)

β(M1|T )
.

This completes the proof.

Next, we compute the beta invariant of 3-sum of two binary matroids M1

and M2.

Theorem 14. Let M1 and M2 be two binary matroids such that E(M1)∩E(M2) =
{s, p, q} and M = M1 ⊕3 M2. Then β(M) = β(M1)β(M2)− β(M1/s)β(M2/s)−
β(M1/p)β(M2/p)− β(M1/q)β(M2/q).

Proof. Let M = PT (M1,M2) where T = {s, p, q} is a triangle of both M1 and
M2. Note that M1 ⊕3 M2 = PT (M1,M2)\T . Then by Corollary 12 and the
deletion-contraction formula,

(1) β(M1)β(M2) = β(M) = β(PT (M1,M2)\s) + β(PT (M1,M2)/s).

By [19, Proposition 11.4.14(viii)], PT (M1,M2)/s = PT/s(M1/s,M2/s), thus
using Theorem 10, we deduce that

(2)
β(PT (M1,M2)/s) = β(PT/s(M1/s,M2/s)) = β(si(PT/s(M1/s,M2/s)))

= β(P (M1/s,M2/s)) = β(M1/s)β(M2/s).

Applying the deletion-contraction formula again for the matroid PT (M1,
M2)\s, we obtain

(3)

β(PT (M1,M2)\s) = β(PT (M1,M2)\s, p) + β(PT (M1,M2)\s/p)

= β(PT (M1,M2)\T ) + β(PT (M1,M2)\s, p/q)

+β(PT (M1,M2)\s/p).
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However,

(4)
β(PT (M1,M2)\s, p/q) = β(PT (M1,M2)/q\s, p)

= β(M1/q ⊕2 M2/q) = β(M1/q)β(M2/q),

and similarly, we can show that

(5) β(PT (M1,M2)\s/p) = β(M1/p)β(M2/p).

Now combining equations (3)–(5) and then with (1) and (2) we obtain the
required result.

As an application, we compute the beta invariant of AG(3, 2) = F7 ⊕3 F7.
Using the above theorem we obtain β(AG(3, 2)) = β(F7)β(F7) − 3(β(F7/e))

2 =
9− 3 = 6.

The generalized parallel connection is the generalization of k-clique-sum of
graphs. As an application for graphs, we can compute the beta invariant of
the graphic matroids obtained by taking the k-clique sum of two graphs using
Theorem 13. If G is the k-clique sum of graphs H and J , where the edges in
the common clique of H and J are not deleted, then β(M(G)) = β(M(H))β(M(J))

β(M(Kk))
where Kk is the complete graph with k vertices.

For the open problem that whether W2n+1 is chromatically unique, Corollary
4 reduces the problem to the 2-connected but not 3-connected case. The referee
asked if P (G) = P (W15), and G is not chromatic unique, can we conclude that
G must have a vertex of degree 2?

Here is a possible way one can use the beta invariant to study whether W2k+1

is chromatically unique where k is small, and in particular, to answer referee’s
above question. We use W15 as an example. Assume that P (G) = P (W15), and
G is not chromatically unique. Then G is simple, 2-connected with 16 vertices
and 30 edges, and β(M(G) = β(W15) = 14. Assume that the minimum degree of
G is at least 3. Then by Theorem 11, either M(G) is a serial-parallel extension of
M(H), where H is a 3-connected graph with the same beta invariant, or M(G)
is the 2-sum of two graphic matroids M(S) and M(T ) each having at least three
edges, with beta invariant of 2 and 7, respectively. In the former case, G must
be isomorphic to H (and thus 3-connected) as δ(G) ≥ 3 and G is simple. By
Corollary 4, G ∼= W15. So we assume that the latter case happens. By [20,
Theorem 2.2], the graph S is a series-parallel extension of K4, and T is a series-
parallel extension of one of five 3-connected graphs, each having at most eight
vertices [6, Figure 4]. Now considering these various series-parallel extensions
(the fact that δ(G) ≥ 3 will reduce the number of cases), we then compute the
chromatic polynomials of possible graphs G using Sage, and compare these to
the chromatic polynomial of W15. If we none of these graphs have the same
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chromatic polynomial as P (W15), then we get a contradiction and we conclude
that δ(G) = 2. If one of these graphs does have the same chromatic polynomial
as P (W15), then we find a graph G 6∼= W15, as G is not 3-connected, with the
same chromatic polynomial of W15. This will involve some case checking and
computations. In particular, we need to determine some 3-connected graphs
with beta invariant larger than 9.
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