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Abstract

In 2017, Adamus proved that a strong balanced bipartite digraph of
order 2a with a ≥ 3 is hamiltonian, if d(u) + d(v) ≥ 3a for every pair of
dominating or dominated vertices {u, v}. In this paper, we characterize all
non-hamiltonian bipartite digraphs when d(u)+d(v) ≥ 3a−1 for every pair
of dominating or dominated vertices {u, v}, consisting of one infinite family
and four exceptional bipartite digraphs of order six. Using this result, we
also prove that a strong balanced bipartite digraph of order 2a with a ≥ 4
contains all cycles of lengths 2, 4, . . . , 2a − 2 except for a single bipartite
digraph, and also contains a hamiltonian path, if d(u) + d(v) ≥ 3a − 1
for every pair of dominating or dominated vertices {u, v}. The bounds for
3a−1 in two results are sharp. This partly settles the following problem when
l = a−1 proposed by Adamus [A Meyniel-type condition for bipancyclicity in
balanced bipartitie digraphs, Graphs Combin. 34 (2018) 703–709]. Whether
for every 1 ≤ l < a there is a k(l), k(l) ≥ 1, such that every strong balanced
bipartite digraph of order 2a contains cycles of lengths 2, 4, . . . , 2l, whenever
d(u) + d(v) ≥ 3a − k(l) for every pair of dominating or dominated vertices
{u, v}.

Keywords: bipartite digraph, degree sum, bipancyclicity, hamiltonian cy-
cle.
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1. Terminology and Introduction

In this paper, we consider finite digraphs without loops and multiple arcs. We
shall assume that the reader is familiar with the standard terminology on digraphs
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and refer the reader to [8] for terminology not defined here. Let D be a digraph
with vertex set V (D) and arc set A(D). Let x, y be distinct vertices in D. If
xy ∈ A(D), then we say that x dominates y and write x → y. If x → y and
y → x, then we write x ↔ y. If x dominates y and y does not dominate x,
then we write x 7→ y. For some vertex z if x → z and y → z, then we call
the pair {x, y} dominating. Likewise, if z → x and z → y, then we call the
pair {x, y} dominated. We say that a pair of vertices {x, y} is a good pair, if
{x, y} is dominating or dominated, otherwise, it is called a bad pair. For disjoint
subsets X and Y of V (D), X → Y means that every vertex of X dominates
every vertex of Y and X ⇒ Y means that there are no arcs from Y to X.
For a vertex set S ⊆ V (D), we denote by N+(S) the set of vertices in V (D)
dominated by the vertices of S; i.e., N+(S) = {u ∈ V (D) : vu ∈ A(D) for
some v ∈ S}. Similarly, N−(S) denotes the set of vertices of V (D) dominating
vertices of S; i.e., N−(S) = {u ∈ V (D) : uv ∈ A(D) for some v ∈ S}. If
S = {v} is a single vertex, we denote by d+(v) (respectively, d−(v)) the number
of vertices in V (D) dominated by v (respectively, dominating v). The degree of
v is d(v) = d+(v) + d−(v). For S ⊆ V (D), we denote by D[S] the subdigraph
of D induced by the vertex set S. We denote by d+S (v) (respectively, d−S (v))
the number of vertices in D[S] dominated by v (respectively, dominating v).
We set dS(v) = d+S (v) + d−S (v). For a pair of vertex sets X,Y of D, define
(X,Y ) = {xy ∈ A(D) : x ∈ X, y ∈ Y }. Let ←→a (X,Y ) = |(X,Y )|+ |(Y,X)|.

Let P = y0y1 · · · yk be a path or a cycle of D (note that y0 = yk if P is a
cycle). For i 6= j, yi, yj ∈ V (P ) we denote by yiPyj the subpath of P from yi to
yj , if it exists. If 0 < i ≤ k, then the predecessor of yi on P is the vertex yi−1

and is also denoted by y−i . If 0 ≤ i < k, then the successor of yi on P is the
vertex yi+1 and is also denoted by y+i . Denote (y+i )

+ = y++
i and (y−i )

− = y−−
i .

A cycle factor in D is a collection of vertex-disjoint cycles C1, C2, . . . , Ct such
that V (C1) ∪ V (C2) ∪ · · · ∪ V (Ct) = V (D).

A digraph D is said to be strongly connected or just strong, if for every pair
of vertices x, y of D, there is a path from x to y and a path from y to x. A
digraph D in which, for every pair of vertices u, v ∈ V (D) precisely one of the
arcs uv, vu belongs to A(D) is called a tournament. A digraph D is complete, if
for every pair of vertices x, y of D, both xy and yx are in A(D). A digraph D is
bipartite when V (D) is a disjoint union of independent sets V1 and V2. It is called
balanced if |V1| = |V2|. A matching from V1 to V2 is an independent set of arcs
with origin in V1 and terminus in V2 (a set of arcs with no common end-vertices
is called independent). If D is balanced, one says that such a matching is perfect
if it consists of precisely |V1| arcs. A digraph is called semicomplete bipartite if
for every pair of vertices x, y from distinct partite sets, xy or yx, or both is in
A(D). A digraph is called complete bipartite if for every pair of vertices x, y from
distinct partite sets, both xy and yx are in A(D). A complete bipartite digraph
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with partite sets of cardinalities a and b will be denoted by K∗
a,b. A digraph on

n ≥ 2 vertices containing cycles of all lengths 2, 3, . . . , n is called pancyclic. A
balanced bipartite digraph of order 2a is bipancyclic if it contains cycles of all
even lengths 2, 4, . . . , 2a.

A digraph D is called hamiltonian if it contains a hamiltonian cycle, i.e., a
cycle that includes every vertex of D. The problem of hamiltoncity of digraphs is
one of central importance in graph theory and its applications. The following two
results on the existence of hamiltonian cycles in digraphs are basic and famous.

Theorem 1 (Woodall, [21]). Let D be a digraph of order n, where n ≥ 2. If
d+(u) + d−(v) ≥ n for every pair of vertices u, v such that there is no arc from u
to v, then D is hamiltonian.

Theorem 2 (Meyniel, [14]). Let D be a strong digraph of order n, where n ≥ 2.
If d(x) + d(y) ≥ 2n − 1 for all pairs of non-adjacent vertices x, y, then D is
hamiltonian.

In [1], Adamus et al. gave Woodall-type condition for hamiltonicity of bal-
anced bipartite digraphs as follows.

Theorem 3 [1]. Let D be a balanced bipartite digraph of order 2a, where a ≥ 2.
If d+(u) + d−(v) ≥ a + 2 for all u and v from the different partite set such that
uv /∈ A(D), then D is hamiltonian.

The first author of the present paper in [18] characterized all non-hamiltonian
bipartite digraphs when reducing the bound by 1 in Theorem 3, consisting of
only one exceptional bipartite digraph of order six. In [2], Adamus et al. gave
Meyniel-type degree condition for hamiltonicity of balanced bipartite digraphs as
follows.

Theorem 4 [2]. Let D be a balanced bipartite digraph of order 2a, where a ≥ 2.
Then D is hamiltonian provided one of the following holds.

(a) For every pair of non-adjacent vertices u, v ∈ V (D), d(u) + d(v) ≥ 3a+ 1;

(b) D is strong and for every pair of non-adjacent vertices u, v ∈ V (D), d(u) +
d(v) ≥ 3a.

In [7], combining local structure of the digraph with conditions on the degrees
of non-adjacent vertices, Bang-Jensen et al. raised the following conjectures.

Conjecture 5 [7]. Let D be a strong digraph of order n, where n ≥ 2. Suppose
that d(x)+d(y) ≥ 2n−1 for every pair of dominating or dominated non-adjacent
vertices {x, y}. Then D is hamiltonian.

Conjecture 6 [7]. Let D be a strong digraph of order n, where n ≥ 2. Suppose
that d(x)+d(y) ≥ 2n−1 for every pair of dominated non-adjacent vertices {x, y}.
Then D is hamiltonian.
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Conjecture 5 is still open. The authors of the present paper and Chang
found an example in [16], which disproved Conjecture 6. In [3], Adamus gave
dominating and dominated degree conditions for hamiltonicity of balanced bi-
partite digraphs.

Theorem 7 [3]. Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 3. If d(u) + d(v) ≥ 3a for every pair of dominating or dominated vertices
{u, v}, then D is hamiltonian.

In Section 2, we replace 3a with 3a − 1 in Theorem 7, then the following
theorem holds.

Theorem 8. Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 3. If d(u) + d(v) ≥ 3a − 1 for every pair of dominating or dominated
vertices {u, v}, then D is either hamiltonian, or isomorphic to a digraph in H1

(see Example 9 below), or isomorphic to one of the digraphs H2, H3, H4, H5 (see
Example 10 below).

Example 9. For an odd integer a ≥ 3, let H1 be a set of bipartite digraphs with
the following properties. For any digraph H1 in H1, let V1 and V2 be partite
sets of H1 such that V1 (respectively, V2) is a disjoint union of S,R (respectively,
U,W ) with |S| = |W | = a+1

2 , |U | = |R| = a−1
2 and A(H1) contains the following

arcs.

(a) rw and wr, for all r ∈ R and w ∈W ;

(b) us and su, for all u ∈ U and s ∈ S;

(c) ws, for all w ∈W and s ∈ S;

(d) moreover, for any two vertices w ∈W and s ∈ S, sw /∈ A(D) and there exist
r ∈ R and u ∈ U such that ur ∈ A(H1). For every r ∈ R, dU (r) ≥

a−3
2 and

for every u ∈ U , dR(u) ≥
a−3
2 .

Clearly, H1 is strong. The degree sum of all pairs of vertices from the same
partite set is greater than or equal to 3a−1. Since |N+(S)| = |U | < |S|, by König-
Hall theorem, H1 contains no perfect matching from V1 to V2. So H1 contains
no hamiltonian cycles. Note that H1[S ∪ U ] and H1[R ∪W ] both are complete
bipartite digraphs. Let s1, s2 (respectively, w1, w2) be two distinct vertices in
S (respectively, W). There is a hamiltonian path P1 (respectively, P2) from s1
(respectively, w1) to s2 (respectively, w2) in H1[S ∪U ] (respectively, H1[R∪W ]).
Then w1P2w2s1P1s2 is a hamiltonian path of H1. Moreover, H1 contains cycles
of all even lengths 2, 4, . . . , 2a− 2.

Example 10. Let H2, H3, H4, H5 be bipartite digraphs with partite sets V1 =
{x1, x2, x3} and V2 = {y1, y2, y3}. See Figures 1–4 on the next page. Undirected
edges correspond to directed 2-cycles.
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Clearly, each of Hi is strong and the degree sum for every pair of dominating
or dominated vertices is greater than or equal to 8. It is easy to check that each
of Hi contains a cycle factor and possesses a hamiltonian path, but Hi is non-
hamiltonian. Also note that each Hi, 2 ≤ i ≤ 5, contains cycles of lengths 2, 4.

From Example 9, we know that every digraph in H1 contains no cycle factors.
Combining this with Theorem 8, we can obtain the following theorem.

Theorem 11. Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 4. Suppose that D contains a cycle factor. If d(u) + d(v) ≥ 3a− 1 for every
pair of dominating or dominated vertices {u, v}, then D is hamiltonian.

It is unknown whether the lower bound is sharp in Theorem 11. From The-
orem 8, Examples 9 and 10, one easily derives the following immediate conse-
quence.

Corollary 12. Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 3. If d(u)+ d(v) ≥ 3a− 1 for every pair of dominating or dominated vertices
{u, v}, then D possesses a hamiltonian path.

The following example from [6] shows that the lower bound 3a−1 in Corollary
12 is sharp.

Example 13. For a ≥ 3 and 1 ≤ l ≤ a/2, let D(a, l) be a bipartite digraph
with partite sets V1 and V2 such that V1 (respectively, V2) is a disjoint union of
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S,R (respectively, U,W ) with |S| = |W | = a − l, |U | = |R| = l, and A(D(a, l))
consists of the following arcs.

(a) ry and yr, for all r ∈ R and y ∈ V2;

(b) ux and xu, for all u ∈ U and x ∈ V1; and

(c) ws, for all w ∈W and s ∈ S.

Then d(r) = d(u) = 2a for all r ∈ R and u ∈ U , and d(s) = d(w) = a+ l for
all s ∈ S and w ∈W . For even a, we have d(x) + d(y) ≥ 3a− 2 for every pair of
vertices x, y in D(a, (a − 2)/2). Notice that D(a, (a − 2)/2) is strong, but since
the maximum matching from V1 to V2 has a−2 arcs, we have that D(a, (a−2)/2)
contains no hamiltonian paths and cycles of length 2a− 2.

In [4], Adamus proved that the hypotheses of Theorem 7 imply bipancyclicity
except for a single digraph.

Theorem 14 [4]. Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 3. If d(u) + d(v) ≥ 3a for every pair of dominating or dominated vertices
{u, v}, then either D is bipancyclic or it is a directed cycle of length 2a.

In the same paper, the author also proposed the following problem.

Problem 15 [4]. Whether for every 1 ≤ l < a there exists a k(l), k(l) ≥ 1, such
that every strong balanced bipartite digraph of order 2a contains cycles of all even
lengths up to 2l, provided d(u) + d(v) ≥ 3a − k(l) for every pair of dominating
or dominated vertices {u, v}?

In Section 3, we shall prove that k(a − 1) = 1 when a ≥ 4 (see Theorem 16
below). In addition, for l = 1, we can take k(1) = a − 1 and the lower bound
is sharp. In fact, if D is not a directed cycle, then there exists a vertex such
that its degree is at least three. Therefore, there exists a good pair in D, say
u and v. Since d(u) + d(v) ≥ 3a − (a − 1) = 2a + 1, we have d(u) ≥ a + 1 or
d(v) ≥ a + 1. This implies that D contains a cycle of length 2. Note that the
degree of every vertex in a bipartite tournament of order 2a is a and a bipartite
tournament contains no cycles of length 2. Hence the lower bound is sharp for
l = 1. From these, we conjecture k(l) = a− l in Problem 15.

Theorem 16. Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 4. If d(u)+ d(v) ≥ 3a− 1 for every pair of dominating or dominated vertices
{u, v}, then either D contains all cycles of lengths 2, 4, . . . , 2a − 2, or it is a
directed cycle of length 2a.

Now we observe the following remark. Let D be a bipartite digraph with
partite sets V1 = {x1, x2, x3} and V2 = {y1, y2, y3}. The arc set A(D) consists of
the following 2-cycles xi ↔ yi and yi ↔ xi+1, for i = 1, 2, 3, where the subscripts
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are taken modulo 3. Note that D satisfies the hypothesis of the degree sum
condition of Theorem 16, but it contains no cycle of length 2a − 2. This shows
that, in Theorem 16, the bound a ≥ 4 is sharp.

Example 13 shows that the lower bound of the degree sum-condition in The-
orem 16 is sharp. By Theorems 11 and 16, we can obtain the following corollary.

Corollary 17. Let D be a strong balanced bipartite digraph of order 2a, where
a ≥ 4. Suppose that D contains a cycle factor. If d(u) + d(v) ≥ 3a− 1 for every
pair of dominating or dominated vertices {u, v}, then either D is bipancyclic or
it is a directed cycle of length 2a.

The sharpness of the bound in Corollary 17 is unknown. For other recent
results on the degree condition of balanced bipartite digraphs, see [5, 9, 10, 17, 20].

2. The Proof of Theorem 8

Before establishing the main theorem we present a series of structural lemmas
and theorems which are useful in our proof.

Lemma 18 [2, 19]. Let D be a balanced bipartite digraph with partite sets V1

and V2. Suppose that D is non-hamiltonian and contains a cycle factor. Let
C1, C2, . . . , Cs be a cycle factor such that s is minimum possible. Then←→a (V (Ci),

V (Cj)) ≤
|V (Ci)|·|V (Cj)|

2 , for all i 6= j. Furthermore, if ←→a (V (Ci), V (Cj)) =
|V (Ci)|·|V (Cj)|

2 , then for any u ∈ V (Ci) ∩ Vq and v ∈ V (Cj) ∩ Vq with q ∈ {1, 2},
|A(D) ∩ {uv+, vu+}| = 1.

Theorem 19 [11, 12]. Let D be a strong semicomplete bipartite digraph. If D
contains a cycle factor, then D is hamiltonian.

Lemma 20 [19]. Let D be a strong non-hamiltonian balanced bipartite digraph.
Suppose that D contains a cycle factor C1 ∪C2. If D[V (Cj)] is either a complete
bipartite digraph, or a complete bipartite digraph minus one arc with |V (Cj)| ≥ 6,
for j = 1 or j = 2, then there exists z ∈ V (C3−j) such that dCj

(z) = 0.

Definition. Let D be a balanced bipartite digraph of order 2a. For an integer
k, we say that D satisfies the condition (Mk), when every pair of dominating or
dominated vertices {u, v} satisfies d(u) + d(v) ≥ 3a+ k.

In Lemmas 21, 22 and 23, we assume that D is a strong balanced bipartite
digraph of order 2a, where a ≥ 3, which satisfies the condition (M−1). Let V1

and V2 be the partite sets of D.

Lemma 21. Either D contains a cycle factor or it is isomorphic to a digraph in
H1 (see Example 9).
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Proof. Observe that D contains a cycle factor if and only if there exist both
a perfect matching from V1 to V2 and a perfect matching from V2 to V1. By
the König-Hall theorem, D contains a perfect matching from V1 to V2 and a
perfect matching from V2 to V1 if and only if |N+(S)| ≥ |S| for every S ⊆ V1 and
|N+(T )| ≥ |T | for every T ⊆ V2.

Suppose that there exists a non-empty set S ⊆ V1 such that |N+(S)| <
|S|. Now we shall show that D is isomorphic to a digraph in H1. Note that
V2 \ N

+(S) 6= ∅. If |S| = 1, write S = {x}, then |N+(S)| < |S| implies that
d+(x) = 0. It is impossible in a strong digraph. Thus |S| ≥ 2. If |S| = a, then
every vertex from V2 \N

+(S) has in-degree zero, which again contradicts strong
connectedness of D. Therefore, 2 ≤ |S| ≤ a− 1.

First we show that any two vertices in Vi, for i = 1, 2, form good pairs,
|S| = a+1

2 and |N+(S)| = a−1
2 . Since D is strong and |N+(S)| < |S|, there exist

s1, s2 ∈ S and u ∈ N+(S) such that {s1, s2} → u. Thus {s1, s2} forms a good
pair. By the condition (M−1) and the choice of S,

3a− 1 ≤ d(s1) + d(s2) ≤ 2(a+ |N+(S)|) ≤ 2(a+ |S| − 1).(2.1)

This implies that 2|S| ≥ a+1. Note that there are no arcs from S to V2 \N
+(S)

and |V2 \N
+(S)| > |V1 \ S|. Since D is strong, there exist w1, w2 ∈ V2 \N

+(S)
and r ∈ V1 \S such that r → {w1, w2}. Thus {w1, w2} forms a good pair. By the
condition (M−1) and the choice of S,

3a− 1 ≤ d(w1) + d(w2) ≤ 2a+ 2(a− |S|) = 2(2a− |S|).(2.2)

This implies that 2|S| ≤ a + 1. Thus |S| = a+1
2 and equalities hold everywhere

in (2.1) and (2.2). In particular, |N+(S)| = |S| − 1 = a−1
2 , d−(s1) = a and

d+(w1) = a. Therefore, any two vertices in V2 are dominating s1 and any two
vertices in V1 are dominated by w1, that is, any two vertices in Vi, for i = 1, 2,
form good pairs.

For any si, sj ∈ S and wi, wj ∈ V2 \N
+(S), we have that

3a− 1 ≤ d(si) + d(sj) ≤ 2(|N+(S)|+ a),(2.3)

and

3a− 1 ≤ d(wi) + d(wj) ≤ 2(2a− |S|).(2.4)

Since |S| = a+1
2 and |N+(S)| = a−1

2 , equalities hold everywhere in (2.3) and (2.4).
In particular, d−(si) = d+(wi) = a, d−(wi) = a− |S| and d+(si) = |N

+(S)|. By
the strong connectedness of D and the hypothesis of this lemma, D is isomorphic
to a digraph in H1.

Analogously, if there exists a non-empty set T ⊆ V2 such that |N+(T )| < |T |,
then D is isomorphic to a digraph in H1. This completes the proof.
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Lemma 22. Suppose that D is not a directed cycle of length 2a. Then, for every
vertex x ∈ V (D), there exists a vertex y ∈ V (D) \ {x} such that {x, y} forms a
good pair.

Proof. Suppose, on the contrary, that there exists a vertex x′ ∈ V (D), say
x′ ∈ V1, such that x′ and any other vertex in V1 form a bad pair. Since D
is strong, there exists an (x′, z)-path, for any z ∈ V (D) \ {x′}. Denote it by
P = p1p2 · · · pl, where p1 = x′ and pl = z.

Let w ∈ V2 be arbitrary. If p1 and w are adjacent, then since p1 and any
other vertex in V1 form a bad pair, we have d(w) ≤ a. In particular, d(p2) ≤ a.
If p1 and w are not adjacent, then d(w) ≤ 2a − 2. Thus, for any y′ ∈ V2 \ {p2},
either d(p2) + d(y′) ≤ 2a < 3a − 1 or d(p2) + d(y′) ≤ 3a − 2 < 3a − 1, which
implies that p2 and any vertex in V2 form a bad pair. Continuing this process,
we can obtain that pl = z and any other vertex from the same partite set form
a bad pair. By the arbitrariness of z, it follows that D contains no good pair.
Therefore, for every v ∈ V (D), d−(v) = d+(v) = 1. This together with strong
connectedness of D implies that D is a directed cycle of length 2a, contrary to
the hypothesis of this lemma.

Lemma 23. Suppose that D is not a directed cycle of length 2a. For any u ∈
V (D), d(u) ≥ a− 1.

Proof. By Lemma 22, there exists a vertex v ∈ V (D) \ {u} such that {u, v}
forms a good pair. Then, by the condition (M−1), d(u) + d(v) ≥ 3a − 1. This
together with d(v) ≤ 2a implies d(u) ≥ a− 1.

Proof of Theorem 8. Suppose thatD is not isomorphic to a digraph inH1. By
Lemma 21, D contains a cycle factor C1, C2, . . . , Cs. Assume that s is minimum
possible and D is not hamiltonian. So s ≥ 2. Without loss of generality, assume
that |V (C1)| ≤ |V (C2)| ≤ · · · ≤ |V (Cs)|. Clearly, |V (C1)| ≤ a. Denote C1 =
D − V (C1). By Lemma 18, the following holds

←→a (V (C1) ∩ V1, V (C1)) +
←→a (V (C1) ∩ V2, V (C1))

=←→a (V (C1), V (C1)) =
s

∑

i=2

←→a (V (C1), V (Ci))(2.5)

≤
|V (C1)|(2a− |V (C1)|)

2
.

Without loss of generality, we may assume that

←→a (V (C1) ∩ V1, V (C1)) ≤
|V (C1)|(2a− |V (C1)|)

4
,(2.6)
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as otherwise

←→a (V (C1) ∩ V2, V (C1)) ≤
|V (C1)|(2a− |V (C1)|)

4
.(2.7)

To complete the proof, we first give the following several claims.

Claim 1. Let q ∈ {1, 2}, i 6= j ∈ {1, 2, . . . , s}, u ∈ V (Ci)∩Vq and v ∈ V (Cj)∩Vq.
Then each of the following holds.

(a) |A(D) ∩ {uv+, vu+}| ≤ 1;

(b) If d(u) ≥ 2a− 1, then |A(D) ∩ {u−v, vu+}| ≤ 1;

(c) If d(u) = 2a, then |A(D) ∩ {u−v, vu+}| = 0.

(d) If there exist t vertices in V (Ci) ∩ Vq such that their degree are greater than
or equal to 2a− 1, then d(v) ≤ 2a− t.

(e) If d(u) ≥ 2a−1 and d(v) ≥ 2a−1, then d(u) = d(v) = 2a−1, dCi
(u) = |V (Ci)|

and dCj
(v) = |V (Cj)|.

Proof. (a) If |A(D) ∩ {uv+, vu+}| = 2, then Ci can be merged with Cj , i.e.,
uv+Cjvu

+Ciu is a cycle, a contradiction to the minimality of s. Hence, |A(D) ∩
{uv+, vu+}| ≤ 1.

(b) If |A(D) ∩ {u−v, vu+}| = 2, then, by (a), v− 9 u and u 9 v+, which
means d(u) ≤ 2a− 2, a contradiction. Therefore, the statement (b) holds.

(c) Since d(u) = 2a, we have v− → u and u → v+. By (a), u− 9 v and
v 9 u+. Hence, |A(D) ∩ {u−v, vu+}| = 0.

(d) By (b), it is obvious.

(e) By (b), |A(D) ∩ {u−v, vu+}| ≤ 1 and |A(D) ∩ {v−u, uv+}| ≤ 1. So the
result holds. �

Claim 2. Let u, v belong to the same partite set such that {u, v} forms a bad
pair. Then d(u) + d(v) ≤ 2a.

Proof. Since {u, v} forms a bad pair, d+(u)+ d+(v) ≤ a and d−(u)+ d−(v) ≤ a.
Therefore, d(u) + d(v) ≤ 2a. �

Claim 3. If there exists u ∈ Vq for q ∈ {1, 2} such that d(u) ≤ a or d(u) ≥ 2a−1,
then every pair of vertices in V3−q forms a good pair.

Proof. Clearly, if d(u) ≥ 2a− 1, then every pair of vertices in V3−q forms a good
pair. If d(u) ≤ a, we can find another vertex in Vq such that its degree is greater
than or equal to 2a − 1. In fact, by Lemma 22, there exists v ∈ Vq such that
{u, v} forms a good pair. Thus, d(v) ≥ 3a− 1− d(u) ≥ 2a− 1. �

Claim 4. If there exists u ∈ V (Ci)∩Vq such that d(u) = a− 1, for i ∈ {1, . . . , s}
and q ∈ {1, 2}, then each of the following holds.
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(a) u and every vertex in V (Ci) ∩ V3−q are not adjacent.

(b) If a ≥ 4 and |V (Ci)| ≤ a + 1, then, for any w ∈ (V (Ci) ∩ Vq) \ {u}, {u,w}
forms a good pair and d(w) = 2a.

Proof. (a) Suppose, on the contrary, that u and some vertex in V (Ci) ∩ V3−q,
say v, are adjacent. Then {u, v−} is dominating or {u, v+} is dominated. Thus,
d(v+) ≥ 3a−1−d(u) = 2a or d(v−) ≥ 3a−1−d(u) = 2a, which is a contradiction
to Claim 1(c).

(b) By Claim 4(a), d(u) = dCi
(u) = a − 1. Let w ∈ (V (Ci) ∩ Vq) \ {u} be

arbitrary. If dCi
(u) + dCi

(w) ≥ |V (Ci)| + 1, then {u,w} forms a good pair by
Claim 2. Now assume that dCi

(u) + dCi
(w) ≤ |V (Ci)|. Then 2 ≤ dCi

(w) ≤
|V (Ci)| − dCi

(u) ≤ a + 1 − (a − 1) = 2, which means |V (Ci)| = a + 1. As
a ≥ 4, we have a + 1 is even and |V (Ci)| = a + 1 ≥ 6. If u → w+ or w− → u,
then {u,w} forms a good pair. Now assume that u 9 w+ and w−

9 u. Thus,
a − 1 = d(u) = dCi

(u) ≤ |V (Ci)| − 2 = a − 1, which implies that u ↔ z+ or
u ↔ z−, for any z ∈ V (Ci) ∩ Vq \ {u,w}. Therefore, {u, z} forms a good pair
and so d(z) ≥ 3a − 1 − (a − 1) = 2a. By Claim 1(c), for any x ∈ Vq \ V (Ci),
z− 9 x and x 9 z+. Clearly, {z+, z−} forms a good pair. Thus, 3a − 1 ≤
d(z+) + d(z−) ≤ 2(a− a+1

2 ) + 4(a+1
2 − 2) +←→a ({z+, z−}, {u,w}). From this, we

obtain←→a ({z+, z−}, {u,w}) ≥ 6, which implies that {u,w} forms a good pair and
d(w) ≥ 3a− 1− d(u) ≥ 2a. So d(w) = 2a. �

Claim 5. If |V (C1)| ≥ 4, then it is impossible that there exist two vertices from
the same partite set in V (Ci) for i ∈ {1, 2, . . . , s} such that their degrees are both
equal to a.

Proof. Suppose not. Without loss of generality, assume that there exist two
vertices u,w ∈ V (Ci)∩V1 such that d(u) = d(w) = a. Write Ci = x1y1 · · ·xmymx1
and Cj = u1v1 · · ·unvnu1, for some j 6= i, where xk, ul ∈ V1 and yk, vl ∈ V2 with
k ∈ {1, . . . ,m} and l ∈ {1, . . . , n}. Since |V (C1)| ≥ 4, we have |V (Ci)| ≥ 4 and
|V (Cj)| ≥ 4. For convenience, assume u = x1 and w = xr. By d(x1) + d(xr) =
2a < 3a− 1, we know that {x1, xr} forms a bad pair, which means that, for any
y ∈ V2,

←→a ({x1, xr}, y) ≤ 2. Combining this with d(x1) + d(xr) = 2a, we have
←→a ({x1, xr}, y) = 2.

Let f ∈ {1, r}. According to Claim 1(a) and the condition (M−1), we can
obtain the following observation. If xf → vi for some vi ∈ V (Cj) ∩ V2, then
{xf , ui} forms a good pair, ui 9 yf and d(ui) = 2a − 1; if vi → xf , then
{xf , ui+1} forms a good pair, yf−1 9 ui+1 and d(ui+1) = 2a− 1.

By ←→a ({x1, xr}, v1) = 2 and {x1, xr} forming a bad pair, we can, without
loss of generality, assume that x1 → v1, and v1 → x1 or v1 → xr. By the
above observation, u1 9 y1, d(u1) = d(u2) = 2a − 1, and ym 9 u2 or yr−1 9

u2, which implies that dCj
(u1) = dCj

(u2) = |V (Cj)| and u2 → y1. However,
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u2y1Cix1v1u1v2Cjvnu2 is a cycle with vertex set V (Ci) ∪ V (Cj), a contradiction
to the minimality of s. �

We now consider the following two cases.

Case 1. |V (C1)| = 2. Let V (C1) ∩ V1 = {x1} and V (C1) ∩ V2 = {y1}. By
(2.5), we have that

d(x1) + d(y1) ≤ 2a+ 2.(2.8)

By (2.6), d(x1) ≤ a+1. From this and Lemma 23, we have a−1 ≤ d(x1) ≤ a+1.

Claim 6. If d(x1) + d(y1) = 2a + 2, then x1 (respectively, y1) and every vertex
in V1 \ {x1} (respectively, V2 \ {y1}) are dominating (respectively, dominated).

Proof. By d(x1)+d(y1) = 2a+2, we have that dCi
(x1)+dCi

(y1) =
|V (C1)|·|V (Ci)|

2 ,
for i 6= 1. Let y be a vertex in V (Ci) ∩ V2 and y− denote the predecessor of y on
Ci. By Lemma 18, we have |A(D)∩ {x1y, y

−y1}| = 1. So {x1, y
−} is dominating

and {y1, y} is dominated. �

Now, according to the degree of x1, we consider the following three subcases.

Subcase 1.1. d(x1) = a−1. By Claim 4, x1 and every vertex in V2\{y1} are not
adjacent, that is, a− 1 = d(x1) = dC1

(x1) = 2. So a = 3. If x1 and every vertex
in V1 \ {x1} form good pairs, then by the condition (M−1), for any x ∈ V1 \ {x1},
d(x) = 2a. Clearly, D is isomorphic to H2. Now assume that x1 and some vertex
in V1 \ {x1} form a bad pair. By Claim 3, 4 = a+1 ≤ d(y) ≤ 2a− 2 = 4, for any
y ∈ V2, that is, d(y) = 4. Clearly, D is isomorphic to H3.

Subcase 1.2. d(x1) = a. By Claim 3, every pair of vertices in V2 forms a good
pair.

First assume that there exist two vertices in V1 such that they form a bad
pair. By Claim 3 and (2.8), we have that

(2.9) a+ 1 ≤ d(y1) ≤ a+ 2.

Since d(x1) = a and x1 ↔ y1, there exists a vertex y′ ∈ V2\{y1} such that
x1 and y′ are not adjacent. Then by (2.9) and the condition (M−1), d(y

′) ≥
3a − 1 − d(y1) ≥ 2a − 3. Denote D′ = D − {x1, y1}. So dD′(y′) = dD(y

′) ≥
2a− 3 = 2(a− 1)− 1, which means that every pair of vertices in V1\{x1} forms
a good pair. So it must be that x1 and some vertex in V1 \ {x1} forms a bad
pair. Let the vertex be x2 and assume that x2 ∈ V (Ci). Since {x1, x2} forms
a bad pair, we have |A(D) ∩ {x2y1, x1x

+
2 }| = 0 and |A(D) ∩ {x−2 x1, y1x2}| = 0.

Then, by Claim 1(a), ←→a (V (C1), V (Ci)) ≤ |V (Ci)| − 2. By Lemma 18, we obtain
d(x1) + d(y1) =

←→a (V (C1), V (C1)) + 4 ≤ |V (Ci)| − 2+ 2a− |V (Ci)| − 2+ 4 = 2a.
So d(y1) ≤ a, a contradiction to (2.9).
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Next assume that any two vertices in V1 form good pairs. By the condition
(M−1),

d(x) ≥ 2a− 1, for any x ∈ V1 \ {x1}.(2.10)

So y1 and every vertex in V1 are adjacent. From this with (2.8), a+1 ≤ d(y1) ≤ a+
2. If d(y1) = a+1, thenD[V (C1)] is a complete bipartite digraph. If d(y1) = a+2,
then D[V (C1)] is a complete bipartite digraph minus one arc. Clearly, D[V (C1)]
contains a hamiltonian cycle. Hence s = 2. Note that dC2

(x1) = a − 2 > 0 and
dC2

(y1) ≥ a − 1 > 0. By Lemma 20, D[V (C2)] is a complete bipartite digraph
minus one arc with |V (C2)| = 4 and d(y1) = a+2. So the equality holds in (2.5).
Write C2 = x2y2x3y3x2, where xi ∈ V1 and yi ∈ V2, for i = 2, 3. Without loss of
generality, assume x2 7→ y2. By (2.10), we have x2 ↔ y1. By Claim 1(c), y3 9 x1
and x1 9 y2. Clearly y2 9 x1, for otherwise D contains a hamiltonian cycle.
So, x1 and y2 are not adjacent. By d(x1) = a, we have x1 7→ y3. By Claim 1(a),
x3 9 y1. By d(x3) ≥ 2a− 1, y1 7→ x3. Note that D is isomorphic to H4.

Subcase 1.3. d(x1) = a+ 1. By (2.8) and Lemma 23, a− 1 ≤ d(y1) ≤ a+ 1.
The case d(y1) = a− 1 or d(y1) = a is similar to Subcases 1.1 and 1.2. Thus we
assume that d(y1) = a+ 1. Hence

d(x1) + d(y1) = 2a+ 2(2.11)

and the equality in (2.5) holds. Therefore, ←→a (V (C1), V (Cj)) = |V (Cj)|. By
Lemma 18, for any xi, yi ∈ V (C2),

|A(D) ∩ {xiy1, x1yi}| = 1 and |A(D) ∩ {yi−1x1, y1xi}| = 1.(2.12)

By Claim 6, x1 (respectively, y1) and every vertex in V1 \ {x1} (respectively,
V2 \ {y1}) form good pairs (respectively, good pairs). By the condition (M−1),

(2.13) d(u) ≥ 2a− 2, for every u ∈ V (D) \ {x1, y1}.

Since 2(2a− 2) = 4a− 4 > 2a, by Claim 2, every pair of vertices in V1 \ {x1} or
V2 \ {y1} forms a good pair.

Assume that |V (C2)| = 2. Write C2 = x2y2x2, where x2 ∈ V1 and y2 ∈ V2.
Analogously, we can also assume that d(x2) = d(y2) = a + 1. Thus, 2a − 2 ≤
d(x2) = a+ 1, which implies that a = 3 and so s = 3. Write C3 = x3y3x3, where
x3 ∈ V1 and y3 ∈ V2. Analogously, we can also assume that d(x3) = d(y3) = a+1.
By Theorem 19, there exist two vertices from different partite sets such that they
are not adjacent, say x1 and y2. By d(x1) = d(y2) = a + 1 = 4, we have that
x1 ↔ y3 and x3 ↔ y2. It is easy to see that x2 and y3 are not adjacent since
s = 3. Then d(x2) = a+ 1 = 4 implies that x2 ↔ y1. Clearly, x1y1x2y2x3y3x1 is
a hamiltonian cycle in D, a contradiction.
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Next assume that |V (C2)| ≥ 4. From this, |V (Ci)| ≥ 4, for i = 3, . . . , s. Let
D′ = D − {x1, y1} and a′ = a− 1.

First we claim that s = 2. It suffices to show that D′ is hamiltonian. For
a′ = 2 and a′ = 3, it is obvious. According to (2.13),

dD′(u) ≥ 2a− 4 = 2a′ − 2.(2.14)

Thus, for any two non-adjacent vertices u and v inD′, dD′(u)+dD′(v) ≥ 2(2a′−2).
If a′ ≥ 5, then 2(2a′ − 2) ≥ 3a′ + 1. By Theorem 4(a), D′ is hamiltonian. If
a′ = 4, then 2(2a′ − 2) ≥ 3a′. If D′ is strong, then by Theorem 4(b), D′ is
hamiltonian. Next assume that D′ is not strong. In this case, s = 3 and C2, C3

are both 4-cycles. Write C2 = x2y2x3y3x2, where xi ∈ V1 and yi ∈ V2, for
i = 2, 3. Since D′ is not strong, without loss of generality, assume that C2 ⇒ C3.
So dD′(x2) ≤ 2 + 4 = 2a′ − 2 and dD′(y2) ≤ 2a′ − 2. Combining this with (2.14),
we have that dD′(x2) = dD′(y2) = 2a′ − 2 = 2a − 4. By (2.13), x2 ↔ y1 and
x1 ↔ y2. This means that C1 can be merged with C2, a contradiction. Hence
s = 2.

Write C2 = x2y2 · · ·xayax2, where xi ∈ V1 and yi ∈ V2, for i = 2, . . . , a.
By Lemma 20, there exists a vertex z ∈ V (C2) such that dC1

(z) = 0, say x2,
namely, x2 and y1 are not adjacent. From this and d(x2) ≥ 2a− 2, we have that
d(x2) = 2a − 2, implying x2 ↔ yi, for i = 2, . . . , a. Since y1 and x2 are not
adjacent, by (2.12), we have ya → x1 and x1 → y2.

First consider the case when a = 3. By dC2
(x1) = dC2

(y1) = a − 1, we have
y3 7→ x1 and x1 7→ y2 and y1 ↔ x3. Thus x3y1x3, x1y2x2y3x1 is a cycle factor of
D. By x1 ↔ y1 and Claim 1(a), we have y3 9 x3 and x3 9 y2, and so x3 7→ y3
and y2 7→ x3. Note that D is isomorphic to the digraph H5.

Next consider the case when a ≥ 4. Assume that xa → y1. By (2.12),
x1 9 ya. Furthermore, for any i ∈ {2, . . . , a − 1}, ya 9 xi+1, otherwise
xay1x1y2C2yix2yaxi+1C2xa is a hamiltonian cycle, a contradiction. Thus, d(ya) ≤
2a− 3, a contradiction to (2.13). Now we assume xa 9 y1. Since dC2

(y1) = a− 1
and y1 and x2 are not adjacent, there exists a vertex xi ∈ {x3, . . . , xa−1} such
that xi → y1. Take r = max{i : 3 ≤ i ≤ a − 1 and xi → y1}. By the choice
of r, for every j ∈ {r + 1, . . . , a}, xj 9 y1. Then by (2.12), x1 → yj . If
xj → y2, then xry1x1yjC2x2yrC2xjy2C2xr is a hamiltonian cycle, a contradic-
tion. Hence xj 9 y2. Combining this with xj 9 y1 and d(xj) ≥ 2a− 2, we have
d(xj) = 2a − 2. Hence xj → {yj , yj−1} → xj , which implies that the converse
of yrC2ya is a directed path, that is, yaxaya−1 · · ·xr+1yr is a directed path. So
xry1x1yaxaya−1 · · ·xr+1yrx2C2xr is a hamiltonian cycle, a contradiction.

Case 2. |V (C1)| ≥ 4. In this case, a ≥ 4. Let x′, x′′ ∈ V (C1)∩V1 and y′, y′′ ∈
V (C1) ∩ V2 be distinct and chosen so that ←→a ({x′, x′′}, V (C1)) and ←→a ({y′, y′′},



Cycles of many lengths in bipartite digraphs on ... 259

V (C1)) are minimal respectively. According to (2.6),

dC1
(x′) + dC1

(x′′) =←→a ({x′, x′′}, V (C1)) ≤ 2a− |V (C1)|.(2.15)

Claim 7. |V (C1)| = a− 1 or |V (C1)| = a.

Proof. Suppose, on the contrary, that |V (C1)| ≤ a − 2. By (2.15), d(x′) +
d(x′′) ≤ 2|V (C1)|+2a−|V (C1)| ≤ 3a−2, which means {x′, x′′} forms a bad pair.
According to Claim 4(b), we can obtain that d(x′) 6= a − 1 and d(x′′) 6= a − 1.
These together with Lemma 23 and Claim 2 imply that d(x′) = a = d(x′′), a
contradiction to Claim 5. Therefore |V (C1)| = a− 1 or |V (C1)| = a. �

By Claim 7, s = 2 and |V (C2)| = a+ 1 or |V (C2)| = a.

Claim 8. Let q, i ∈ {1, 2}. Any two vertices in V (Ci) ∩ Vq form a good pair.

Proof. Let u, v ∈ V (Ci) ∩ Vq be arbitrary. By Lemma 23, d(u) ≥ a − 1 and
d(v) ≥ a− 1. If one of the degree of u, v equals to a− 1, then, by Claim 4, {u, v}
forms a good pair. So d(u) ≥ a and d(v) ≥ a. According to Claim 5, d(u) ≥ a+1
or d(v) ≥ a + 1. Hence d(u) + d(v) ≥ 2a + 1. By Claim 2, {u, v} forms a good
pair. �

By Claim 8, {x′, x′′} forms a good pair. Therefore, by (2.15), we have

3a− 1 ≤ d(x′) + d(x′′) ≤ 2|V (C1)|+ dC2
(x′) + dC2

(x′′)

≤ 2|V (C1)|+ 2a− |V (C1)| = 2a+ |V (C1)| ≤ 3a.(2.16)

By (2.16) and Claim 7, we have that dC2
(x′) + dC2

(x′′) = 2a − |V (C1)| or
dC2

(x′) + dC2
(x′′) = 2a− |V (C1)| − 1.

Claim 9. If dC2
(x′) + dC2

(x′′) = 2a − |V (C1)|, then dC2
(y′) + dC2

(y′′) ≤ 2a −
|V (C1)|.

Proof. If dC2
(x′) + dC2

(x′′) = 2a − |V (C1)|, then the equality holds in (2.6).
Further, by (2.5), the inequality holds in (2.7). Then dC2

(y′) + dC2
(y′′) ≤ 2a −

|V (C1)|. �

Claim 10. For any x ∈ V (D), d(x) ≥ a.

Proof. Suppose not. According to Lemma 23, there exists a vertex z in V (D)
such that d(z) = a − 1. Without loss of generality, assume that z ∈ V (Ci) ∩ V1

for i = 1 or i = 2. By Claim 4, for any w ∈ (V (Ci) ∩ V1) \ {z}, d(w) = 2a. In
particular, d(z++) = d(z−−) = 2a. For any u ∈ V (C3−i) ∩ V1, by Claim 1(c),
z+ 9 u and u 9 z−. Hence d(u) ≤ 2a−2 and so d(z)+d(u) ≤ 3a−3, which means
{z, u} forms a bad pair. So u 9 z+ and z− 9 u. From these, we have that z+ and
z− are not adjacent to u. By the arbitrariness of u, we get that z+ and z− are not
adjacent to every vertex of V (C3−i)∩V1. By Claim 3, {z+, z−} forms a good pair.
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So 3a− 1 ≤ d(z+) + d(z−) = dCi
(z+) + dCi

(z−) ≤ 2|V (Ci)| ≤ 2(a+ 1) < 3a− 1,
a contradiction. Hence, for any x ∈ V (D), d(x) ≥ a. �

Claim 11. Any two vertices from the same partite set form good pairs.

Proof. Suppose that there exists a pair of vertices {u, v} from the same partite
set such that {u, v} forms a bad pair. By Claim 10, d(u) ≥ a and d(v) ≥
a. Combining this with Claim 2, d(u) = d(v) = a. By Claim 8, u ∈ V (C1),
v ∈ V (C2), or u ∈ V (C2), v ∈ V (C1). Write C1 = x1y1 · · ·xmymx1 and C2 =
xm+1ym+1 · · ·xayaxm+1, where xi ∈ V1 and yi ∈ V2, for i = 1, 2, . . . , a. Without
loss of generality, assume that u = x1, v = xm+1. By Claims 2 and 5, it is
not difficult to see that {x1, xm+1} is the unique bad pair. So d(xj) ≥ 2a − 1
for any xj ∈ V1 \ {x1, xm+1}. By Claim 1(d), we can deduce that a = 4 and
|V (C1)| = |V (C2)| = 4. By Claim 1(e), d(x2) = d(x4) = 2a− 1, x2 → {y1, y2} →
x2 and x4 → {y3, y4} → x4. If y1 → x4 and y3 → x2, then y3x2y2x1y1x4y4x3y3
is a hamiltonian cycle, a contradiction. Without loss of generality, assume that
y1x4 6∈ A(D). By d(x4) = 2a − 1, we have x4 7→ y1, x4 ↔ y2. From this and
Claim 1(a), we have x2 9 y4, x1 9 y4 and y3 9 x1. By d(x2) = 2a − 1, we
have y3 → x2. Since x1 and x3 are neither dominating nor dominated, we have
x1 9 y3 and y4 9 x1. Hence, y3 and y4 are not adjacent to x1. By d(x1) = a = 4,
we have x1 → {y1, y2} → x1. Then y3x2y1x1y2x4C2y3 is a hamiltonian cycle, a
contradiction. �

By Claim 11, any two vertices from the same partite set form good pairs.

Claim 12. For any u ∈ V (C2), dC1
(u) > 0.

Proof. Suppose, on the contrary, that there exists u0 ∈ V (C2) such that
dC1

(u0) = 0. If u0 ∈ V (C2) ∩ V1, then by the condition (M−1) and (2.15),
2(3a−1) ≤ 2d(u0)+d(x′)+d(x′′) ≤ 2|V (C2)|+2|V (C1)|+2a−|V (C1)| ≤ 6a−4,
a contradiction. So u0 ∈ V (C2) ∩ V2. If dC2

(y′) + dC2
(y′′) ≤ 2a − |V (C1)|,

then similar to the above argument, we can obtain a contradiction. Now as-
sume that dC2

(y′) + dC2
(y′′) > 2a − |V (C1)|. By Claim 9 and (2.15), dC2

(x′) +
dC2

(x′′) = 2a − |V (C1)| − 1. Then, by (2.16), we can deduce that |V (C1)| = a.
So |V (C2)| = a. Then d(u0) = dC2

(u0) ≤ |V (C2)| = a, which implies that
d(y) ≥ 3a − 1 − d(u0) ≥ 2a − 1, for any y ∈ V2 \ {u0}, which can obtain a
contradiction according to Claim 1(d). �

By Lemma 20 and Claim 12, D[V (C1)] is not a complete bipartite digraph.
Recall that dC2

(x′) + dC2
(x′′) = 2a − |V (C1)| or dC2

(x′) + dC2
(x′′) = 2a−

|V (C1)| − 1.

First suppose dC2
(x′)+dC2

(x′′) = 2a−|V (C1)|. By (2.6), dC2
(xi)+dC2

(xj) =
2a − |V (C1)|, for any xi, xj ∈ V (C1) ∩ V1. Since D[V (C1)] is not a complete
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bipartite digraph, there exists a vertex x∗ ∈ V (C1) ∩ V1 such that dC1
(x∗) ≤

|V (C1)| − 1. For any xk ∈ (V (C1) ∩ V1) \ {x
∗},

3a− 1 ≤ d(x∗) + d(xk) ≤ (2|V (C1)| − 1) + 2a− |V (C1)| ≤ 3a− 1.

So |V (C1)| = a, dC1
(x∗) = |V (C1)| − 1 and dC1

(xk) = |V (C1)|, which implies
that D[V (C1)] is a complete bipartite digraph minus one arc. According to
Lemma 20 and Claim 12, |V (C1)| = a = 4. Write C1 = x1y1x2y2x1 and C2 =
x3y3x4y4x3, where xi ∈ V1 and yi ∈ V2, for i = 1, 2, 3, 4. According to Claim
9, dC2

(y1) + dC2
(y2) ≤ 2a − |V (C1)| = a. Then 3a − 1 ≤ d(y1) + d(y2) ≤

2a − 1 + a = 3a − 1 implies that dC2
(y1) + dC2

(y2) = 2a − |V (C1)| = a, which
means dC1

(x3) + dC1
(x4) = 2a− |V (C2)| = a. By symmetry, we can deduce that

D[V (C2)] is a complete bipartite digraph minus one arc. Note that d(x1)+d(x2) =
3a− 1 = 11 and d(x3) + d(x4) = 3a− 1 = 11. Without loss of generality, assume
d(x1) ≤ 5 and d(x3) ≤ 5. Then d(x1) + d(x3) ≤ 10 = 3a− 2, a contradiction.

Now suppose dC2
(x′) + dC2

(x′′) = 2a − |V (C1)| − 1. From (2.16), we have
|V (C1)| = a and dC1

(x′) = dC1
(x′′) = a. If a = 4, then D[V (C1)] is a complete

bipartite digraph, a contradiction. Next assume that a ≥ 6. By Lemma 20
and Claim 12, D[V (C1)] is neither a complete bipartite digraph nor a complete
bipartite digraph minus one arc. Denote V (C1) ∩ V1 = {x1, x2, . . . , xa

2

} and
without loss of generality, assume that dC2

(x1) ≤ dC2
(x2) ≤ · · · ≤ dC2

(xa
2

).

Observe that {x1, x2} = {x′, x′′}. By the choice of x1 and x2 and dC2
(x1) +

dC2
(x2) = a − 1, we know that dC2

(x1) ≤
a
2 − 1. Denote dC2

(x1) =
a
2 − k, with

k ≥ 1. So dC2
(x2) =

a
2 +k−1 and dC2

(xi) ≥
a
2 +k−1, for i = 2, . . . , a2 . By (2.6),

a/2
∑

i=1

dC2
(xi) ≤

a2

4
.(2.17)

Since D[V (C1)] is neither a complete bipartite digraph nor a complete bipartite
digraph minus one arc, either there exists a vertex xi ∈ V (C1) ∩ V1 such that
dC1

(xi) ≤ a− 2 or there exist at least two vertices xi and xj such that dC1
(xi) =

a− 1 and dC1
(xj) = a− 1. For any xt ∈ (V (C1) ∩ V1) \ {x1}, if dC1

(xt) ≤ a− l,
then

dC2
(xt) ≥ 3a− 1− d(x1)− dC1

(xt)

≥ 3a− 1−

(

3a

2
− k

)

− (a− l) =
a

2
+ k + l − 1.(2.18)

If there exists a vertex xi ∈ V (C1) ∩ V1 such that dC1
(xi) ≤ a − 2, then, by

(2.18), dC2
(xi) ≥

a
2 + k + 1. Therefore,
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a/2
∑

i=1

dC2
(xi) ≥

(a

2
− k

)

+
(a

2
− 2

)(a

2
+ k − 1

)

+
a

2
+ k + 1

=
a2

4
+
(a

2
− 2

)

(k − 1) + 1 >
a2

4
,

a contradiction to (2.17).
Now assume there exist at least two vertices xi and xj such that dC1

(xi) =
a − 1 and dC1

(xj) = a − 1. Since dC1
(x1) = dC1

(x2) = a, we have a ≥ 8. By
∑

a
2

i=1 dC2
(xi) ≥

a
2 −k+(a2 −1)(a2 +k−1) = a2

4 + (a−4)k−(a−2)
2 and (2.17), we have

k ≤ 1 and so k = 1. By (2.18), dC2
(xi) ≥

a
2 + k and dC2

(xj) ≥
a
2 + k. Therefore,

a/2
∑

i=1

dC2
(xi) ≥

(a

2
− k

)

+
(a

2
− 3

)(a

2
+ k − 1

)

+ 2(
a

2
+ k)

=
(a

2
− 1

)

+
(a

2
− 3

) a

2
+ 2

(a

2
+ 1

)

=
a2

4
+ 1,

a contradiction to (2.17). We have considered all cases and completed the proof
of the theorem.

3. The Proof of Theorem 16

The proof of Theorem 16 will be based on Theorems 24, 28 and Lemmas 25, 26
and 27.

Theorem 24 [15]. Let D be a strong digraph of order n, where n ≥ 3. If
d(u)+ d(v) ≥ 2n for all pairs of non-adjacent vertices u, v in D, then D is either
pancyclic, or a tournament, or n is even and D is isomorphic to K∗

n
2
,n
2

.

Lemma 25 [6]. Let D be a bipartite digraph on n ≥ 3 vertices, which contains
a cycle C of length 2r with 2 ≤ 2r < n. Let x be a vertex not contained in C.
If dC(x) ≥ r + 1, then D contains cycles of every even length m, 2 ≤ m ≤ 2r,
through x.

From now on, we assume that D is a strong balanced bipartite digraph of
order 2a where a ≥ 4, which satisfies the condition (M−1). To prove Theorem 16,
by Theorems 8 and Example 9, it suffices to consider the case when D contains a
hamiltonian cycle. Now assume D contains a hamiltonian cycle C and D is not
a cycle of length 2a. If there exists a vertex x ∈ V (D) such that d+(x) = a or
d−(x) = a, then D contains cycles of all even lengths. Now we assume that

(3.1) d+(u) ≤ a− 1 and d−(u) ≤ a− 1, for every u ∈ V (D).
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By Lemma 22, for every u ∈ V (D), there exists a vertex v ∈ V (D) \ {u} such
that {u, v} forms a good pair. By (3.1), d(v) ≤ 2a− 2. Hence

(3.2) d(u) ≥ 3a− 1− (2a− 2) = a+ 1.

Now for the digraph D, we will prove the following two lemmas.

Lemma 26. Every pair of vertices {u, v} from the same partite set in D forms
a good pair. Moreover d+(u) + d+(v) ≥ a+ 1 and d−(u) + d−(v) ≥ a+ 1.

Proof. Let u and v be two vertices from the same partite sets. By (3.2), d(u) ≥
a + 1 and d(v) ≥ a + 1. Thus, 2a + 2 ≤ d(u) + d(v) = (d+(u) + d+(v)) +
(d−(u) + d−(v)), which implies d+(u) + d+(v) ≥ a+ 1 or d−(u) + d−(v) ≥ a+ 1.
Therefore, {u, v} forms a good pair. From this and (3.1), we have 3a − 1 ≤
d(u)+d(v) = (d+(u)+d+(v))+(d−(u)+d−(v)) ≤ d+(u)+d+(v)+2a−2. Hence,
d+(u) + d+(v) ≥ a+ 1. Analogously, d−(u) + d−(v) ≥ a+ 1.

Lemma 27. If D contains a cycle of length 2a− 2, then it contains cycles of all
lengths 2, 4, . . . , 2a− 2.

Proof. Let Q = x1y1x2y2 · · ·xa−1ya−1x1 be a cycle of length 2a − 2 in D and
{x, y} = V (D)\V (Q), where x, xi ∈ V1 and y, yi ∈ V2. If dQ(x) ≥ a or dQ(y) ≥ a,
then, by Lemma 25, D contains cycles of all lengths 2, 4, . . . , 2a− 2. Now assume
that dQ(x) ≤ a − 1 and dQ(y) ≤ a − 1. These together with (3.2) imply that
dQ(x) = dQ(y) = a−1 and d(x) = d(y) = a+1. Let xi ∈ V (Q)∩V1 be arbitrary.
By Lemma 26, {x, xi} forms a good pair. Then

d(xi) ≥ 3a− 1− d(x) ≥ 2a− 2.(3.3)

If d+Q(xi) = a− 1 or d−Q(xi) = a− 1, then D[V (Q)] contains cycles of all lengths

2, 4, . . . , 2a − 2. So assume that d−Q(xi) ≤ a − 2 and d+Q(xi) ≤ a − 2. By (3.3),
2a − 2 ≤ d(xi) = dQ(xi) + d{y}(xi) ≤ dQ(xi) + 2 ≤ 2a − 4 + 2 = 2a − 2, which
implies xi ↔ y. Hence dQ(y) = 2a− 2, a contradiction to dQ(y) ≤ a− 1.

Now, we will denote the two partite sets of D by V1 and V2, with ele-
ments {x1, . . . , xa} and {y1, . . . , ya} respectively, ordered so that C is the cycle
x1y1 · · ·xayax1. The subscripts are taken modulo a.

Like [4] and [13], we will associate with D a new digraph, D∗, constructed as
follows. Set V (D∗) = {v1, . . . , va}, and vivj ∈ A(D∗) whenever yixj ∈ A(D), for
i, j ∈ {1, . . . , a}, i 6= j. For every 1 ≤ i ≤ a, we have

d+D∗(vi) =

{

d+D(yi), if yi 9 xi;

d+D(yi)− 1, if yi → xi;

(3.4) d−D∗(vi) =

{

d−D(xi), if yi 9 xi;

d−D(xi)− 1, if yi → xi.
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Theorem 28 [13]. If D∗ contains a cycle of length k, then there is a cycle of
length 2k in D.

Now we prove the main result of this section.

Proof of Theorem 16. In the proof, subscripts are taken modulo a. By Lemma
27 and Theorem 8, it suffices to show that D contains a cycle of length 2a − 2.
By way of contradiction, suppose that D contains no a cycle of length 2a − 2.
In particular, by Theorem 28, D∗ contains no a cycle of length a − 1. Recall
that C = x1y1 · · ·xayax1 is a hamiltonian cycle of D. Clearly, xi 9 yi+1 and
yi 9 xi+2, for any i ∈ {1, 2, . . . , a}. First we prove the following claim.

Claim 13. For any two non-adjacent vertices u, v in D∗, we have dD∗(u) +
dD∗(v) ≥ 2a.

Proof. Suppose, on the contrary, that there exist two non-adjacent vertices
vi, vj in V (D∗) such that dD∗(vi)+dD∗(vj) ≤ 2a−1. Consider the corresponding
vertices xi, yi and xj , yj of D. By Lemma 26, we have dD(xi) + dD(xj) ≥ 3a− 1
and dD(yi) + dD(yj) ≥ 3a− 1. Without loss of generality, assume that j = 1 and
so 3 ≤ i ≤ a− 1. It follows that

6a− 2 ≤ dD(xi) + dD(x1) + dD(yi) + dD(y1)

= d−D(xi) + d+D(yi) + d−D(x1) + d+D(y1)

+ d+D(xi) + d−D(yi) + d+D(x1) + d−D(y1)

≤ dD∗(vi) + dD∗(v1) + 4 + d+D(xi) + d−D(yi) + d+D(x1) + d−D(y1)

≤ 2a+ 3 + d+D(xi) + d−D(yi) + d+D(x1) + d−D(y1).

(3.5)

By (3.1) and (3.5),

(3.6) 4a− 5 ≤ d+D(xi) + d−D(yi) + d+D(x1) + d−D(y1) ≤ 4a− 4.

From these, we know that at least three of d+D(xi), d
−
D(yi), d

+
D(x1) and d−D(y1) are

equal to a−1, say d−D(yi) = a−1, d+D(xi) = a−1 and d+D(x1) = a−1, furthermore,
d−D(y1) ≥ a − 2. Then x1 → V2 \ {y2}, xi → V2 \ {yi+1} and V1 \ {xi−1} → yi
since D contains no cycle of length 2a− 2.

Now we shall show y1 → x1 and yi → xi. If y1 9 x1, then d+D(y1) =
d+D∗(v1) and d−D(x1) = d−D∗(v1). Then d−D(xi) + d+D(yi) + d−D(x1) + d+D(y1) ≤
d∗D(vi) + d∗D(v1) + 2 ≤ 2a + 1. By (3.5), d+D(xi) + d−D(yi) + d+D(x1) + d−D(y1) ≥
(6a−2)−(2a+1) = 4a−3, a contradiction to (3.6). Hence y1 → x1. Analogously,
yi → xi.

Now we show that i ≥ a−2 and i = 3. For any t ∈ {i+1, . . . , a−1}, xt 9 y1,
otherwise xty1Cxiyt+1Cx1yiCxt is a cycle of length 2a− 2 in D, a contradiction.
Combining this with xa 9 y1, we have {xi+1, . . . , xa}9 y1. By d−D(y1) ≥ a− 2,
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we have |{xi+1, . . . , xa}| ≤ 2, that is i ≥ a−2. For any p ∈ {2, . . . , i−2}, xp 9 yi,
otherwise xpyiCx1yp+1Cxiy1Cxp is a cycle of length 2a−2 in D, a contradiction.
Combining this with xi−1 9 yi, we have {x2, . . . , xi−1}9 yi. By d−D(yi) = a− 1,
we have |{x2, . . . , xi−1}| = 1, that is i = 3. This together with i ≥ a− 2 implies
a ≤ 5.

Note that y1 9 x4, otherwise y1x4Cx1y3x3y1 is a cycle of length 2a − 2 in
D, a contradiction. Combining this with y1 9 x3, we have d+D(y1) ≤ a − 2.
In addition ya 9 x3, otherwise yax3y1x1y3Cya is a cycle of length 2a − 2, and
ya 9 x4, otherwise yax4Cxay3x3y1x1ya is a cycle of length 2a−2, a contradiction.
Combining this with ya 9 x2, we have d+D(ya) ≤ a− 3. From these with Lemma
26, a + 1 ≤ d+D(y1) + d+D(ya) ≤ 2a − 5, a contradiction to a ≤ 5. Hence, for any
two non-adjacent vertices u, v in D∗, we have dD∗(u) + dD∗(v) ≥ 2a. �

Now we return to the proof of this theorem. Clearly, D∗ is strong. According
to Claim 13 and Theorem 24, D∗ is either pancyclic, or a tournament, or n is
even and D∗ is isomorphic to K∗

n
2
,n
2

. If D∗ is pancyclic, then we are done. If

D∗ is a tournament, then D∗ contains a cycle of length a − 1. Now assume
that a is even and D∗ is isomorphic to K∗

n
2
,n
2

. Since D∗ contains a hamiltonian

cycle v1 · · · vav1, the two partite sets must be precisely {v1, v3, . . . , va−1} and
{v2, v4, . . . , va}. Moreover, we have d+D∗(vi) =

a
2 , for every vi in D∗. Hence, by

(3.4), d+D(yi) ≤
a
2 + 1, for all 1 ≤ i ≤ a. By Lemma 26, for yi, yj ∈ V2, 3a − 1 ≤

dD(yi)+dD(yj) = d+D(yi)+d+D(yj)+d−D(yi)+d−D(yj) ≤ 2(a2 +1)+d−D(yi)+d−D(yj),
which means d−D(yi)+d−D(yj) ≥ 2a−3. This means that for every pair of vertices
yi, yj , d

−(yi) ≥ a − 1 or d−(yj) ≥ a − 1. This together with (3.1) implies that
d−(yi) = a − 1 for all i, except at most one. Let d−D(y3) = a − 1. We have
that x4 → y3 since x2y3 /∈ A(D). Since D∗ is isomorphic to K∗

n
2
,n
2

, we obtain

yp → xp−1 with p ∈ {1, . . . , a}. However xayaxa−1ya−1 · · ·x5y5x4y3x2y2x1y1xa is
a cycle of length 2a− 2 in D, a contradiction.
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