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Abstract

The graph grabbing game is a two-player game on a connected graph with
a weight function. In the game, they alternately remove a non-cut vertex
from the graph (i.e., the resulting graph remains connected) and get the
weight assigned to the vertex. Each player’s aim is to maximize his or her
outcome, when all vertices have been taken. Seacrest and Seacrest proved
that if a given graph G is a tree with even order, then the first player can
win the game for every weight function on G, and conjectured that the same
statement holds if G is a connected bipartite graph with even order [D.E.
Seacrest and T. Seacrest, Grabbing the gold, Discrete Math. 312 (2012)
1804–1806]. In this paper, we introduce a conjecture which is stated in
terms of forbidden subgraphs and includes the above conjecture, and give
two partial solutions to the conjecture.
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1. Introduction

In this paper, we deal only with finite simple undirected graphs. For a graph
G and a subset S of V (G), the subgraph G[S] induced by S in G is defined by
V (G[S]) = S and E(G[S]) = {e ∈ E(G) : e joins two vertices in S}, and G − S
denotes the subgraph induced by V (G) \ S (if S consists of a single vertex v,
then we write G − v instead of G − {v}). If G − S (respectively, G − v) is not
connected, then S is called a cutset (respectively, v is called a cutvertex). A graph
is even (respectively, odd) if the number of vertices is even (respectively, odd). We
mainly deal with a graph G with a weight function w : V (G) → R+ ∪ {0}, where
R+ denotes the set of positive real numbers. We remark that when we consider
a fixed weight function w, we often argue without referring to w explicitly. For
basic terminology in graph theory, we refer the reader to [5].

In this paper, we consider a game on a graph G with a weight function, called
the graph grabbing game (in this paper, we often refer to the graph grabbing game
on G simply as the game on G).

Graph grabbing game

There are two players: Alice and Bob. Starting with Alice, they take the vertices
alternately one by one and collect their weights. The vertices taken are removed
from the graph. The choice of a vertex to be played in each move is restricted
by the rule that after each move the remaining vertices form a connected graph
(that is, each player is prohibited from taking a cutvertex). Both players’ aim is
to maximize their outcomes at the end of the game, when all vertices have been
taken. Alice wins the game if she gets at least half of the total weight of the
graph, and otherwise, Bob wins.

In the literature, the graph grabbing game is introduced in Winkler’s puzzle
book [19]. He showed that if G is an even path, then for every weight function,
Alice can win the game on G. Moreover, he observed that there exists an odd
path with a weight function for which Alice cannot win the game; for example,
consider an odd path with three vertices and a weight function which assigns a
positive weight to the middle vertex and zero to the other two vertices (the fact is
that for every odd path of order at least three, there exists a weight function for
which Alice cannot win the game; see the last paragraph of Section 4). Concerning
cycles, as in the case of paths, if G is an even cycle, then for every weight function,
Alice can win the game on G, and there exists an odd cycle with a weight function
for which Alice can obtain at most 4/9 of the total weight. It is also known that
if G is an odd cycle, then for every weight function on G, Alice can obtain at
least 4/9 of the total weight ([4, 12]). For variants of the graph grabbing game,
see [1, 9, 16].

Considering the advantage of the first player, it is easy to show that for every
connected graph G, there exists a weight function on G for which Alice can win
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the game. However, for a given graph G with a weight function, to decide which
player wins the game on G is PSPACE-complete ([3]). Thus we seek for a class of
graphs such that as long as a given graph G is in the class, Alice can win the game
for every weight function on G. Micek and Walczak [15] proved that if T is an
even tree, then Alice can obtain at least 1/4 of the total weight for every weight
function on T , and conjectured that Alice can win the game for every weight
function on T . After that, Seacrest and Seacrest [17] verified the conjecture by
an elegant proof, and they conjectured the following (a partial solution to the
conjecture is given in [7]).

Conjecture 1 [17]. Let G be a connected bipartite even graph. Then for every

weight function Alice can win the game on G.

In this paper, we consider the graph grabbing game in connection with for-
bidden subgraphs. Let Cn (n ≥ 3) denote the cycle of order n, and Km (m ≥ 1)
denote the complete graph of order m. Let H and R be graphs, and write
V (H) =

{

h1, h2, . . . , h|V (H)|

}

. The corona product of H and R, denoted by
H ⊙R, is defined by

V (H ⊙R) = V (H) ∪ V (R1) ∪ V (R2) ∪ · · · ∪ V
(

R|V (H)|
)

, and

E(H ⊙R) = E(H) ∪

|V (H)|
⋃

i=1

{

E(Ri) ∪
⋃

v∈V (Ri)

{hiv}

}

,

where Ri is a copy of R for each i ∈ {1, 2, . . . , |V (H)|}. The corona product
Cn⊙K1 is referred to as the Cn-corona. We let Codd denote the set of the C2k+1-
coronas as k ranges over all positive integers. Let G be a graph. For a graph H,
G is said to be H-free if G does not contain a copy of H as an induced subgraph.
For a set H of graphs, G is said to be H-free if G is H-free for all H ∈ H (in this
context, members of H are referred to as forbidden subgraphs).

Let k ≥ 1 be an integer. Cibulka et al. [3] reported that there exists a
weight function on the C2k+1-corona C2k+1 ⊙ K1 for which Alice cannot win
the game. In fact, the same statement holds for C2k+1 ⊙ H for any odd graph
H (see the paragraph following the proof of Theorem 40 in Section 4). Note
that C2k+1 ⊙ H contains a copy of the C2k+1-corona as an induced subgraph.
The following conjecture has recently been made by Eoh and Choi in [8], which
includes Conjecture 1.

Conjecture 2 [8]. Let G be a connected even graph. If G is Codd-free, then for

every weight function Alice can win the game on G.

In [8], a weaker version of Conjecture 2 in which w is assumed to take only
two values 0 and 1 is also proposed, and even this weaker version remains open.
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In [8], it is also conjectured that the converse of Conjecture 2 holds. However, as
we shall show in Section 4 (see Theorem 40), there exists a graph which shows
that the converse of Conjecture 2 does not hold.

The main purpose of this paper is to give two partial solutions to Conjecture
2. We need some more definitions. For n ≥ 2, let Pn denote the path of order n. A
graph isomorphic to the C3-corona is called a net. A bull is a graph obtained from
a net by removing one vertex of degree 1. A graph isomorphic to the complete
bipartite graph K1,3 having bipartite sets of cardinalities 1 and 3 is called a claw.
A connected graph is said to be nonseparable if it has no cutvertex. A block B of
a connected graph G is a maximal nonseparable subgraph of G. A block which
contains at most one cutvertex of G is called an end block. A block path is a
graph consisting of a sequence of blocks B0, B1, . . . , Bm (m ≥ 0) for each such
that i ∈ {0, 1, . . . ,m−1}, |V (Bi)∩V (Bi+1)| = 1 and we have V (Bi)∩V (Bj) = ∅
for any j /∈ {i+1, i−1}. Under this notation, B0 and Bm are the end blocks (it is
possible that B0 = Bm, i.e., m = 0). A special kind of block path in which each
block is a clique, i.e., a complete subgraph, is called a clique path. A subgraph H
of a graph G dominates G if each vertex in V (G) \ V (H) is adjacent to a vertex
in V (H).

Path-free graphs have extensively been studied because they have nice prop-
erties. For example, a graph is P2-free if and only if it has no edge, and a graph
is P3-free if and only if it is a disjoint union of complete graphs. It is also known
that a connected graph G is P4-free if and only if each connected induced sub-
graph G has either a dominating K1 or a dominating induced C4 ([10]), and that
a connected graph G is P5-free if and only if each connected induced subgraph
of G has either a dominating clique or a dominating induced C5 ([13]). As for
the graph grabbing game on path-free graphs, we can prove the following partial
solution to Conjecture 2 rather easily (see the paragraph following the proof of
Claim 29 in Section 3).

Proposition 1. Let G be a connected P4-free even graph. Then for every weight

function Alice can win the game on G.

In this paper, we prove the following stronger result.

Theorem 2. Let G be a connected {P5, bull}-free even graph. Then for every

weight function Alice can win the game on G.

Note that every P4-free graph is {P5, bull}-free, and every {P5, bull}-free
graph is Codd-free. Thus Theorem 2 is stronger than Proposition 1, and is a
partial solution to Conjecture 2.

Along a different line of research, claw-free graphs have been studied in con-
nection with the conjecture that every 4-connected claw-free graph has a Hamil-
tonian cycle, which was made in [14]. This conjecture is still open, but it has been
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proved that every 2-connected {claw, net}-free graph has a Hamiltonian cycle,
and that every connected {claw, net}-free graph has a Hamiltonian path. It is also
known that every connected {claw, net}-free graph is a block path (see [6, 11, 18]).
Having in mind the fact that not every block path is {claw, net}-free, we here
confine ourselves to clique paths. Note that every clique path is {claw, net}-free,
and every {claw, net}-free graph is Codd-free. Thus the following theorem provides
another partial solution to Conjecture 2.

Theorem 3. Let G be a clique path of even order. Then for every weight function

Alice can win the game on G.

The rest of the paper is organized as follows. In the next section, we prove a
structural result concerning {P5, bull}-free graphs, which we use in Section 3. In
Section 3, we prove Theorems 2 and 3. In Section 4, we give several graphs on
which Alice can/cannot win the game.

2. Characterization of {P5, bull}-Free Graphs

In this section, we give a structural result concerning {P5, bull}-free graphs. The
main result is Theorem 18. For a graph G and a set S ⊆ V (G), we denote by
NG(S) the set of vertices adjacent to a vertex in S. If S = {v}, then we write
NG(v) for NG(S).

Lemma 4. Let G be a connected P5-free graph. Then any two distinct cutvertices

are adjacent.

Proof. Let u, v be two cutvertices of G (u 6= v). Let F be a connected component
of G − u not containing v, and let F ′ be a connected component of G − v not
containing u. Now suppose that uv /∈ E(G), and let P be an induced u-v path
in G. Then |V (P )| ≥ 3. Let u′ be a vertex in F adjacent to u, and let v′ be a
vertex in F ′ adjacent to v. Since V (P ) ⊆ V (G− V (F )− V (F ′)), it follows that
V (P ) ∪ {u′, v′} induces a path of order |V (P )|+ 2 ≥ 5, a contradiction.

Lemma 5. Let G be a connected {P5, bull}-free graph, and suppose that G has

two cutvertices u, v (u 6= v). Then the following statements hold.

(i) We have uv ∈ E(G), NG(u) ∩NG(v) = ∅ and NG(u) ∪NG(v) = V (G).

(ii) There exists no cutvertex of G other than u, v.

(iii) If F is a block of G, then one of the following holds.

(a) uv ∈ E(F );

(b) u ∈ V (F ), v /∈ V (F ) and {u} ∪NF (u) = V (F ); or

(c) u /∈ V (F ), v ∈ V (F ) and {v} ∪NF (v) = V (F ).
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Proof. Let u′, v′ be as in the proof of Lemma 4.
(i) By Lemma 4, uv ∈ E(G). If there exists x ∈ NG(u) ∩ NG(v), then

{x, u, v, u′, v′} induces a bull, a contradiction. Thus NG(u)∩NG(v) = ∅. Suppose
that NG(u) ∪ NG(v) 6= V (G). There exist x ∈ (NG(u) ∪ NG(v)) \ {u, v} and
x′ ∈ V (G) \ (NG(u) ∪ NG(v)) such that xx′ ∈ E(G). We may assume that
x ∈ NG(u) \ {v}. Since NG(u) ∩ NG(v) = ∅, xv /∈ E(G). Hence {x′, x, u, v, v′}
induces a copy of P5, a contradiction. Thus NG(u) ∪NG(v) = V (G).

(ii) Note that (i) holds for any two distinct cutvertices. Thus if there exists
a third cutvertex p, then by the first assertion of (i), pu, pv ∈ E(G), which
contradicts the second assertion of (i), a contradiction.

(iii) Let F be a block of G. Since u, v are the only cutvertices, it follows
that if F is not an end block, then {u, v} ⊆ V (F ), and that if F is an end block,
then {u, v} ∩ V (F ) = {u} or {v}. Hence if F is not an end block, then (a) holds.
Thus we may assume that F is an end block. By symmetry, we may assume that
{u, v} ∩ V (F ) = {u}. Then NG(v) ∩ (V (F ) \ {u}) = ∅. By the third assertion of
(i), this implies that V (F ) \ {u} ⊆ NG(u), i.e., {u} ∪NF (u) = V (F ).

Let G be a connected graph. For two disjoint subsets S1, S2 of V (G), let
EG(S1, S2) be the set of edges joining a vertex in S1 and a vertex in S2.

A partition (X1, X2, . . . , X2p) of V (G) (Xi 6= ∅ for each i) is admissible if
the following holds: for i, j with 1 ≤ i, j ≤ p, if i ≤ j, then each vertex in
X2j is adjacent to all vertices in X2i−1, and if j < i, then EG(X2i−1, X2j) =
EG(X2i, X2j) = EG(X2i−1, X2j−1) = ∅ (for example, see Figure 1).

X8

X6

X4

X2X1

X3

X5

X7

Figure 1. An admissible partition (X1, X2, . . . , X8) where |Xi| = 1 for each i ∈ {1, 2,
. . . , 8}.

We prove the following key proposition for our structural result about {P5,
bull}-free graphs.

Proposition 6. Let G be a connected {P5, bull}-free graph, and suppose that G
has two cutvertices u, v (u 6= v). Let A1, . . . , As be the blocks of G such that
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u /∈ V (Ai) and v ∈ V (Ai) (1 ≤ i ≤ s), and let B1, . . . , Bt be the blocks of G such

that u ∈ V (Bj) and v /∈ V (Bj) (1 ≤ j ≤ t). Then G has an admissible partition

(X1, X2, . . . , X2p) (p ≥ 2) with X1 = {u}, X2 = (V (B1) ∪ · · · ∪ V (Bt)) \ {u},
X2p−1 = (V (A1) ∪ · · · ∪ V (As)) \ {v} and X2p = {v}.

Proof. Let H be the block of G such that uv ∈ E(H). If |V (H)| = 2, then the
desired conclusion holds with p = 2. Thus we may assume that |V (H)| ≥ 3. Set
A = NH(v) \ {u}, B = NH(u) \ {v}.

Claim 7. A ∩B = ∅ and A ∪B = V (H) \ {u, v}.

Proof. This immediately follows from Lemma 5(i).

Let H1, H2, . . . , Hr be the connected components of H − {u, v}.

Claim 8. For each 1 ≤ i ≤ r, V (Hi) ∩A 6= ∅ and V (Hi) ∩B 6= ∅.

Proof. If V (Hi) ∩ A = ∅, then by the definition of A, u is a cutvertex of H, a
contradiction. Thus V (Hi) ∩A 6= ∅ and, similarly, we have V (Hi) ∩B 6= ∅.

It follows from Claim 8 that A 6= ∅ and B 6= ∅.

Claim 9. We have r = 1, i.e., H − {u, v} is connected.

Proof. Suppose that r ≥ 2. For i = 1, 2, it follows from Claim 8 that there
exists xiyi ∈ E(Hi) with xi ∈ V (Hi)∩A and yi ∈ V (Hi)∩B. Then x1y1uy2x2 is
an induced path of order 5, a contradiction.

Define an equivalence relation ∼ on A by letting x ∼ x′ if and only if NH(x)∩
B = NH(x′) ∩ B (x, x′ ∈ A). Let X3, X5, . . . , X2p−3 be the equivalence classes
with respect to ∼, and let X1 = {u} and X2p−1 = (V (A1) ∪ · · · ∪ V (As)) \ {v}.

Define an equivalence relation ≈ on B by letting y ≈ y′ if and only if NH(y)∩
A = NH(y′) ∩ A (y, y′ ∈ B). Let X4, X6, . . . , X2q−2 be the equivalence classes
with respect to ≈, and let X2 = (V (B1) ∪ · · · ∪ V (Bt)) \ {u} and X2q = {v}. By
the definition of A and B and by Claim 7, we have the following.

Claim 10.

(i)–(a) For each 1 ≤ i ≤ p− 1, EG(X2i−1, X2p−1) = ∅.

–(b) For each 2 ≤ i ≤ p− 1, EG(X1, X2i−1) = ∅.

(ii)–(a) For each 2 ≤ j ≤ q, EG(X2, X2j) = ∅.

–(b) For each 2 ≤ j ≤ q − 1, EG(X2j , X2q) = ∅.

Claim 11. (i) EG(X2i−1, X2i′−1) = ∅ for any i, i′ (1 ≤ i, i′ ≤ p) with i 6= i′.

(ii) EG(X2j , X2j′) = ∅ for any j, j′ (1 ≤ j, j′ ≤ q) with j 6= j′.
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Proof. We prove (i) (we can prove (ii) in a similar way). By Claim 10, we may
assume that 2 ≤ i, i′ ≤ p−1. Suppose that there exist x ∈ X2i−1 and x′ ∈ X2i′−1

such that xx′ ∈ E(G). By the definition of ∼, there exists y ∈ B such that
|NH(y)∩ {x, x′}| = 1. Take z ∈ X2p−1. Then G[{v, x, x′, z, y}] is isomorphic to a
bull, a contradiction.

Claim 12. (i) NH(x) ∩B 6= ∅ for every x ∈ A.

(ii) NH(y) ∩A 6= ∅ for every y ∈ B.

Proof. We prove (i) (we can prove (ii) in a similar way). If there exists a ∈ A
such that NH(a) ∩ B = ∅, then it follows from Claim 11(i) that v is a cutvertex
of H, a contradiction.

Claim 13. (i) Let 1 ≤ i, i′ ≤ p with i 6= i′. Then NG(X2i−1)∩B ⊆ NG(X2i′−1)∩
B or NG(X2i−1) ∩B ⊇ NG(X2i′−1) ∩B.

(ii) Let 1 ≤ j, j′ ≤ q with j 6= j′. Then NG(X2j) ∩ A ⊆ NG(X2j′) ∩ A or

NG(X2j) ∩A ⊇ NG(X2j′) ∩A.

Proof. We prove (i) (we can prove (ii) in a similar way). By the definition
of X1 and B, NG(X1) ∩ B = B. By the definition of X2p−1, we also have
NG(X2p−1) ∩B = ∅. Thus we may assume that 2 ≤ i, i′ ≤ p− 1.

Suppose to the contrary that (NG(X2i−1) \ NG(X2i′−1)) ∩ B 6= ∅ and
(NG(X2i′−1) \ NG(X2i−1)) ∩ B 6= ∅. Take y ∈ (NG(X2i−1) \ NG(X2i′−1)) ∩ B
and y′ ∈ (NG(X2i′−1) \ NG(X2i−1)) ∩ B. If NG(X2i−1) ∩ NG(X2i′−1) ∩ B 6= ∅,
then letting z ∈ NG(X2i−1)∩NG(X2i′−1)∩B, x ∈ X2i−1 and x′ ∈ X2i′−1, we see
that x 6∼ x′ and y 6≈ z 6≈ y′ 6≈ y, and hence, it follows from Claim 11 that yxzx′y′

is an induced P5, a contradiction. Consequently, NG(X2i−1)∩NG(X2i′−1)∩B = ∅.

By Claim 9, H − u − v is connected. Let z1z2 · · · zℓ be a shortest (X2i−1,
X2i′−1)-path in H − u − v. It follows from Claim 11(i) that z2, zℓ−1 ∈ B.
Thus z2 6≈ zℓ−1. By Claim 11(ii), dH−u−v(z2, zℓ−1) ≥ 2. This implies ℓ ≥ 5,
which contradicts the assumption that G is P5-free. Therefore NG(X2i−1)∩B ⊆
NG(X2i′−1) ∩B or NG(X2i−1) ∩B ⊇ NG(X2i′−1) ∩B.

In view of Claim 13, relabeling X3, . . . , X2p−3 if necessary, we may assume
that we have NG(X2i−1) ∩ B ⊇ NG(X2i′−1) ∩ B for any i, i′ with 1 ≤ i < i′ ≤ p.
For each 2 ≤ i ≤ p, set J2i−1 = {2j : 2 ≤ j ≤ q− 1, X2j ⊆ NG(X2i−1)∩B}. Then
J3 ⊇ J5 ⊇ · · · ⊇ J2p−1 = ∅.

Claim 14. J3 = {4, 6, . . . , 2q − 2}.

Proof. If J3 6= {4, 6, . . . , 2q − 2}, then letting 2j ∈ {4, 6, . . . , 2q − 2} \ J3 and
y ∈ X2j , we get NG(y) ∩A = ∅, which contradicts Claim 12(ii).

Claim 15. For each 2 ≤ i ≤ p− 1, |J2i−1 \ J2i+1| = 1.
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Proof. By the definition of ∼ and ≈, J2i−1 6= J2i+1. Suppose to the contrary
that |J2i−1 \ J2i+1| ≥ 2. Take 2j, 2j′ ∈ J2i−1 \ J2i+1 with j 6= j′, and let y ∈ X2j

and y′ ∈ X2j′ . Then NG(y)∩A = X1 ∪X3 ∪ · · · ∪X2i−1 = NG(y
′)∩A, and hence

y ≈ y′, which contradicts the fact that j 6= j′. Thus |J2i−1 \ J2i+1| = 1.

It follows from Claims 14 and 15 that q = p and, relabeling X4, . . . , X2q−2 if
necessary, we may assume that J2i−1 = {2i, 2i+2, . . . , 2p−2} for each 2 ≤ i ≤ p.
By the definition of J2i−1, this implies that (X1, X2, . . . , X2p) is an admissible
partition of G. This completes the proof of Proposition 6.

We prepare two more lemmas and then prove our main theorem in this sec-
tion.

Lemma 16. Let G be a connected P5-free graph, and suppose that G has precisely

one cutvertex u. Then G has at most one block H such that V (H) 6= {u}∪NH(u).

Proof. Otherwise, we can easily find an induced P5, a contradiction.

Lemma 17. Let H be a connected {P5, bull}-free graph. Let u ∈ V (H), and

suppose that V (H) 6= {u} ∪ NH(u). Then there exists v ∈ NH(u) such that

H − (NH(u) \ {v}) is connected, and v is a cutvertex of H − (NH(u) \ {v}).

Proof. Take v ∈ NH(u) so that |NH(v) \ ({u} ∪NH(u))| is as large as possible.
Since V (H) 6= {u} ∪ NH(u), we have NH(v) \ ({u} ∪ NH(u)) 6= ∅. Suppose
that H − (NH(u) \ {v}) is not connected. Let F be a connected component of
H−(NH(u)\{v}) which does not contain v. Then NH(V (F ))∩(NH(u)\{v}) 6= ∅.
Take ry ∈ E(H) with r ∈ V (F ) and y ∈ NH(u)\{v}. By the choice of F , we have
r /∈ {u} ∪NH(u) and rv /∈ E(H). Hence r ∈ (NH(y) \NH(v)) \ ({u} ∪NH(u)).
In view of the maximality of |NH(v) \ ({u} ∪NH(u))|, we can take x ∈ (NH(v) \
NH(y)) \ ({u} ∪ NH(u)). Again by the choice of F , we have rx /∈ E(H). Now,
according as yv ∈ E(H) or yv /∈ E(H), {r, y, u, v, x} induces a bull or a copy of P5,
a contradiction. Thus H−(NH(u)\{v}) is connected. Since NH−(NH(u)\{v})(u) =
{v} and NH−(NH(u)\{v})(v) \ {u} = NH(v) \ ({u} ∪NH(u)) 6= ∅, it follows that v
is a cutvertex of H − (NH(u) \ {v}).

Theorem 18. Let G be a connected {P5, bull}-free graph, and suppose that G
has a cutvertex u. Then G has an admissible partition (X1, X2, . . . , X2p) (p ≥ 1)
with X1 = {u}.

Proof. In view of Proposition 6, we may assume that u is the only cutvertex of
G. We may also assume that V (G) 6= {u} ∪NG(u); for otherwise, (X1, X2) with
X2 = V (G) \ {u} is an admissible partition. Having Lemma 16 in mind, let H
be the unique block of G such that V (H) 6= {u} ∪NH(u), and let B1, . . . , Bt be
all other blocks of G. Let v ∈ NH(u) be as in Lemma 17, and let Z be a minimal
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subset of NH(u) \ {v} such that v is a cutvertex of H − Z. Set G′ = G− Z and
H ′ = H − Z, and let A1, . . . , As be the blocks of G′ such that v ∈ V (Ai) and
u /∈ V (Ai) (i.e., (V (Ai) \ {v}) ∩NH′(u) = ∅).

Claim 19. Let z ∈ Z. Then xz ∈ E(G) for every x ∈ (V (A1)∪· · ·∪V (As))\{v}.

Proof. Suppose that there exists x ∈ (V (A1) ∪ · · · ∪ V (As)) \ {v} such that
xz /∈ E(G). We may assume that x ∈ V (A1)\{v}. By the minimality of Z, there
exists x′ ∈ V (A1) \ {v} such that x′z ∈ E(G). By choosing x, x′ ∈ V (A1) \ {v}
with xz /∈ E(G) and x′z ∈ E(G) so that dA1−v(x, x

′) is as small as possible, we
may assume that xx′ ∈ E(G). Take y ∈ V (B1). Then xx′zuy is an induced P5,
a contradiction.

Claim 20. The blocks B1, . . . , Bt are the only blocks F of G′ which satisfy u ∈
V (F ) and v /∈ V (F ).

Proof. Suppose thatG′ has a block Bt+1 (/∈ {B1, . . . , Bt}) such that u ∈ V (Bt+1)
and v /∈ V (Bt+1). Since Bt+1 is not a block of G, V (Bt+1) ⊆ V (H), and there
exist z ∈ Z and y ∈ V (Bt+1) \ {u} such that yz ∈ E(G). Take x ∈ V (A1) \ {v}
and y′ ∈ V (B1) \ {u}. Then by Claim 19, G[{z, u, y, x, y′}] is isomorphic to a
bull, a contradiction.

In view of Lemma 5, it follows from Claim 20 that H ′′ = H ′ − ((V (A1) ∪
· · · ∪ V (As)) \ {v}) is the block of G′ such that uv ∈ E(H ′′). By Proposition 6,
G′ has an admissible partition (X ′

1, X
′
2, . . . , X

′
2p) such that X ′

1 = {u}, X ′
2 =

(V (B1)∪ · · · ∪V (Bt)) \ {u}, X
′
2p−1 = (V (A1)∪ · · · ∪V (As)) \ {v} and X ′

2p = {v}.
Set A = NH′′(v) \ {u} and B = NH′′(u) \ {v}. Then A = X ′

3 ∪X ′
5 ∪ · · · ∪X ′

2p−3

and B = X ′
4 ∪X ′

6 ∪ · · · ∪X ′
2p−2.

Claim 21. Let z ∈ Z. Then yz /∈ E(G) for every y ∈ B.

Proof. If there exists y ∈ B such that yz ∈ E(G), then letting x ∈ X ′
2p−1 and

y′ ∈ X ′
2, we see from Claim 19 that G[{z, u, y, x, y′}] is isomorphic to a bull, a

contradiction.

Claim 22. Let z ∈ Z. Then xz ∈ E(G) for every x ∈ A.

Proof. Suppose that there exists x ∈ A such that xz /∈ E(G). Let 2i − 1
(2 ≤ i ≤ p − 1) be the index such that x ∈ X ′

2i−1. Take y ∈ X ′
2i. Then

xy ∈ E(G). Take x′ ∈ X ′
2p−1. By Claims 19 and 21, xyuzx′ is an induced path

of order 5, a contradiction.

It follows from Claims 19, 21 and 22 that (X ′
1, X

′
2, . . . , X

′
2p−1, X

′
2p ∪Z) is an

admissible partition of G. This completes the proof of Theorem 18.
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We here remark that if a graph G has an admissible partition (X1, . . . , X2p)
such that G[Xi] is {P5, bull}-free for every 1 ≤ i ≤ 2p, then G is {P5, bull}-free.
Thus Theorem 18 gives a characterization of connected {P5, bull}-free graphs
which have a cutvertex.

3. Partial Solutions to Conjecture 2

In this section, we prove Theorems 2 and 3.

3.1. {P5, bull}-free graphs

In this subsection, by using the characterization of {P5, bull}-free graphs which
we proved in the preceding section, we prove Theorem 2. In order that induction
arguments may work, we actually prove the following proposition (the proof of
Theorem 2 is included at the end of this subsection).

Proposition 23. Let G be a connected even graph having an admissible partition

(X1, . . . , X2p). Let w be a fixed weight function on G, and suppose that

(1)
Alice can win the game on every connected induced even subgraph G′

with |V (G′)| < |V (G)| for the weight function w.

Then Alice can win the game on G.

Proof. We first make the following observations.

Observation 24. For each 1 ≤ i ≤ 2p and each X ( Xi, (X1, . . . , Xi −
X, . . . ,X2p) is an admissible partition of G−X.

Observation 25. If p ≥ 2, then for each 2 ≤ i ≤ 2p − 1, (X1, . . . , Xi−1 ∪
Xi+1, . . . , X2p) is an admissible partition of G−Xi.

Observation 26. If p ≥ 2, then for each 1 ≤ i ≤ 2p − 2, (X1, . . . , Xi−1, Xi+2,
. . . , X2p) is an admissible partition of G−Xi −Xi+1.

Throughout the rest of the proof of the proposition, we let wk = max{w(x) :
x ∈ Xk} for each 1 ≤ k ≤ 2p. Also for each 1 ≤ k ≤ 2p with |Xk| = 1, we let xk
denote the unique vertex in Xk (thus wk = w(xk)). We start by proving three
claims concerning the case where p = 1.

Claim 27. Suppose that p = 1 and |X1| = 1. Then Alice can win the game at

least by w1 − w2.
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Proof. We proceed by induction on |V (G)|. If |V (G)| = 2, then the claim clearly
holds. Thus let |V (G)| ≥ 4, and assume that the claim holds for smaller graphs.
If G[X2] is connected, then if follows from (1) that Alice can win the game at
least by w1 −w2 by taking x1. Thus we may assume that G[X2] is disconnected.

Write X2 = {y1, y2, . . . , y|X2|} so that w2 = w(y1) ≥ w(y2) ≥ · · · ≥ w(y|X2|).
First we consider the case where G[X2 \ {y1}] is disconnected. In this case, Alice
takes y1. Let b be the vertex taken by Bob in his first turn. Since G[X2 \ {y1}] is
disconnected, b 6= x1, and hence w(y1) ≥ w(b). By the induction hypothesis, Alice
can win the game on G − y1 − b at least by w1 −max{w(y) : y ∈ X2 \ {y1, b}}.
Since w(y1) ≥ w(b) and w2 ≥ max{w(y) : y ∈ X2 \ {y1, b}}, this implies the
desired conclusion.

Next we consider the case where G[X2 \{y1}] is connected. In this case, y1 is
an isolated vertex of G[X2], and hence G[X2 \ {y2}] is disconnected. Alice takes
y2. Let b be the vertex taken by Bob in his first turn. Since G[X2 \ {y2}] is
disconnected, b 6= x1. Assume for the moment that b 6= y1. Then w(y2) ≥ w(b).
Since it follows from the induction hypothesis that Alice can win the game on
G− y2 − b at least by w1 −w2, this implies the desired conclusion. Thus we may
assume that b = y1. Then by the induction hypothesis, Alice can win the game
on G−y1−y2 at least by w1−w(y3). Since w(y2) ≥ w(y3), this implies that Alice
can win the game on G at least by (w(y2)−w(y1))+(w1−w(y3)) ≥ w1−w2.

Claim 28. Suppose that p = 1 and |X2| = 1, and let x1 ∈ X1 be a vertex such

that w(x1) = w1. Then Alice can win the game at least by min{w1 − w2, 0} by

taking x1.

Proof. Let b be the vertex taken by Bob in his first turn. By (1), Alice can win
the game on G − x1 − b. Since w(x1) − w(b) ≥ min{w1 − w2, 0} by the choice
of x1, this implies the desired conclusion (note that this argument works in the
case where |V (G)| = 2 as well).

Claim 29. Suppose that p = 1. Then Alice can win the game.

Proof. By symmetry, we may assume that w1 ≥ w2. Choose x1 ∈ X1 so that
w(x1) = w1. If G−x1 is connected, then it follows from (1) that Alice can win the
game by taking x1. Thus we may assume that x1 is a cutvertex. Then X1 = {x1}
(and |X2| ≥ 3). Hence the desired conclusion follows from Claim 27.

In passing, we mention that Proposition 1 follows from Claim 29. Returning
to the proof of Proposition 23, we prove the following technical claim.

Claim 30. Suppose that |Xk| = 1 for every 1 ≤ k ≤ 2p, and there exists k0 such

that w1 ≥ · · · ≥ wk0−1 ≥ wk0 ≤ wk0+1 ≤ · · · ≤ w2p. Then Alice can win the game

at least by
∑p

i=1w2i−1 −
∑p

i=1w2i by taking w2p−1.
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Proof. Let α =
∑p

i=1w2i−1 −
∑p

i=1w2i. We proceed by induction on |V (G)|. If
|V (G)| = 2, then the claim clearly holds. Thus let |V (G)| ≥ 4, and assume that
the claim holds for smaller graphs. Let vℓ be the vertex taken by Bob in his first
turn.

Case 1. ℓ = 2p or ℓ = 2p − 2. Set G′ = G − x2p−1 − xℓ, and let x′2p−2 =
x2p−2 or x′2p−2 = x2p according as ℓ = 2p or ℓ = 2p − 2. By Observation 26,
({x1}, . . . , {x2p−3}, {x

′
2p−2}) is an admissible partition of G′, and G′ satisfies the

assumption of the claim. Hence by the induction hypothesis, Alice can win the
game on G′ at least by

∑p−1
i=1 w2i−1−(

∑p−2
i=1 w2i+w(x′2p−2)) = α−(w2p−1−w(xℓ)),

which implies the desired conclusion.

Case 2. ℓ ≤ 2p− 3. Note that ℓ 6= 1 because G− x2p−1 − x1 is disconnected.
This implies p ≥ 3. If ℓ < k0, then let a = xℓ−1 and ℓ′ = ℓ − 1; if ℓ ≥ k0, then
let a = xℓ+1 and ℓ′ = ℓ; By the assumption of the claim, we have w(a) ≥ w(xℓ).
Set G′ = G−xℓ−a. By Observation 26, ({x1}, . . . , {xℓ′−1}, {xℓ′+2}, . . . , {x2p}) is
an admissible partition of G′, and G′ satisfies the assumption of the claim (with
k0 replaced by k0 − 2 in the case where ℓ < k0, and possibly by k0 − 1 in the
case where ℓ = k0). By the induction hypothesis, by taking x2p−1, Alice can win
the game on G′ at least by α − w(xℓ′) + w(xℓ′+1) if ℓ′ is odd, and at least by
α−w(xℓ′+1)+w(xℓ′) if ℓ

′ is even. Since {xℓ, a} = {xℓ′ , xℓ′+1} and w(a) ≥ w(xℓ),
it follows that Alice can win the game on G′ at least by α − w(a) + w(xℓ) by
taking x2p−1. Since G′ − x2p−1 = G− x2p−1 − xℓ − a, we now see that Alice can
win the game on G at least by α by taking a in her second turn.

We here proceed to prove the proposition by distinguishing two cases (Claims
31 and 33).

Claim 31. Suppose that there exists k0 such that |Xk| = 1 for every k 6= k0, and
w1 ≥ · · · ≥ wk0−1 ≥ wk0 ≤ wk0+1 ≤ · · · ≤ w2p. Then Alice can win the game.

Proof. We first prove the following subclaim, which is a modification of Claim 30.

Subclaim 3.1. Suppose that p ≥ 2 and k0 is even. Then Alice can win the game

at least by
∑p

i=1w2i−1 −
∑p

i=1w2i by taking x2p−1.

Proof. Let α =
∑p

i=1w2i−1 −
∑p

i=1w2i. We proceed by induction on |V (G)|.
If |V (G)| = 4, then |Xk0 | = 1, and hence the desired conclusion follows from
Claim 30. Thus let |V (G)| ≥ 6, and assume that the subclaim holds for smaller
graphs. In view of Claim 30, we may assume that |Xk0 | ≥ 2. Since |V (G)| is
even, it follows that |Xk0 | ≥ 3. Let b be the vertex taken by Bob.

Case 1. b ∈ Xk0 . Choose a ∈ Xk0 \ {b} so that w(a) = max{w(x) : x ∈
Xk0 \ {b}}, and set G′ = G − b − a, X ′

k0
= Xk0 \ {b, a} and w′

k0
= max{w(x) :

x ∈ X ′
k0
}. By Observation 24, ({x1}, . . . , {xk0−1}, X

′
k0
, {xk0+1}, . . . , {x2p}) is an

admissible partition of G′, and G′ satisfies the assumption of the subclaim. We
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have w(b) ≤ wk0 and w(a) ≥ w′
k0
. By the induction hypothesis, Alice can win

the game on G′ at least by α+wk0 −w′
k0
. Since G′ − x2p−1 = G− x2p−1 − b− a,

and wk0 − w′
k0

≥ w(b)− w(a), this implies that Alice can win the game on G at
least by α by taking a in her second turn.

Case 2. b /∈ Xk0 . Write b = xℓ. Then ℓ 6= k0.

Subcase 2.1. ℓ = 2p or ℓ = 2p− 2. Set G′ = G− x2p−1 − xℓ, and let X ′
2p−2 =

X2p−2 or X ′
2p−2 = X2p according as ℓ = 2p or ℓ = 2p − 2. By Observation 26,

(X1, . . . , X2p−3, X
′
2p−2) is an admissible partition of G′ and, in the case where

p ≥ 3, G′ satisfies the assumption of the subclaim. Hence by Claim 27 or the
induction hypothesis according as p = 2 or p ≥ 3, Alice can win the game on G′

at least by α− w2p−1 + wℓ, which implies the desired conclusion.

Subcase 2.2. ℓ ≤ 2p − 3. Note that ℓ 6= 1 because G − x2p−1 − x1 is dis-
connected. This implies p ≥ 3. If ℓ < k0, then let a = xℓ−1 and ℓ′ = ℓ − 1; if
ℓ > k0, then let a = xℓ+1 and ℓ′ = ℓ. By assumption, we have w(a) ≥ w(b). Set
G′ = G− b− a. By Observation 26, (X1, . . . , Xℓ′−1, Xℓ′+2, . . . , X2p) is an admis-
sible partition of G′, and G′ satisfies the assumption of the subclaim. Arguing as
in Claim 30, we see from the induction hypothesis that Alice can win the game
on G′ at least by α− w(a) + w(b) by taking x2p−1, which implies that Alice can
win the game on G at least by α by taking a in her second turn.

We also need the following subclaim.

Subclaim 3.2. Suppose that k0 is odd and |Xk0 | ≥ 3, and let a ∈ Xk0 be a vertex

such that w(a) = wk0. Then Alice can win the game at least by min
{
∑p

i=1w2i−1−
∑p

i=1w2i, 0
}

by taking a.

Proof. Let α =
∑p

i=1w2i−1 −
∑p

i=1w2i. We proceed by induction on |V (G)|.
If |V (G)| = 4, then the desired conclusion follows from Claim 28. Thus let
|V (G)| ≥ 6, and assume that the subclaim holds for smaller graphs. In view
of Claim 28, we may assume that p ≥ 2. Let b be the vertex taken by Bob.
First assume that b ∈ Xk0 . By (1), Alice can win the game on G− a − b. Since
w(a) ≥ w(b) by the choice of a, this implies the desired conclusion.

Next assume that b /∈ Xk0 , and write b = xℓ. Then ℓ 6= k0. If ℓ = 1 or
ℓ = 2p, then G − a − b is disconnected, which contradicts the fact that b is a
feasible move for Bob (note that if ℓ = 1, then k0 6= 1). Thus ℓ 6= 1 and ℓ 6= 2p.
If ℓ < k0, then let a′ = xℓ−1 and ℓ′ = ℓ − 1; if ℓ > k0, then let a′ = xℓ+1

and ℓ′ = ℓ. By assumption, we have w(a′) ≥ w(b). Set G′ = G − b − a′. By
Observation 26, (X1, . . . , Xℓ′−1, Xℓ′+2, . . . , X2p) is an admissible partition of G′,
and G′ satisfies the assumption of the subclaim. Arguing as in Claim 30, we
see from the induction hypothesis that Alice can win the game on G′ at least by
min{α−w(a′)+w(b), 0} by taking a. SinceG′−a = G−a−b−a′ and w(a′) ≥ w(b),



Graph Grabbing Game on Graphs with Forbidden Subgraphs 185

this implies that Alice can win the game on G at least by min{α, 0} by taking a′

in her second turn.

We can now complete the proof of Claim 31. Considering the partition
(X2p, . . . , X2, X1) in place of (X1, X2, . . . , X2p) if necessary, we may assume that
∑p

i=1w2i−1 ≥
∑p

i=1w2i. Now if k0 is even, then the desired conclusion follows
from Claim 27 or Subclaim 3.1, according as p = 1 or p ≥ 2; if k0 is odd, then the
desired conclusion follows from Claim 30 or Subclaim 3.2, according as |Xk0 | = 1
or |Xk0 | ≥ 3.

Claim 32. Suppose that the assumption of Claim 31 does not hold.

(i) (a) There exists k such that |Xk| ≥ 2, or k ≤ 2p − 1 and |Xk| = 1 and

wk < wk+1.

(b) There exists k such that |Xk| ≥ 2, or k ≥ 2 and |Xk| = 1 and wk <
wk−1.

(ii) Let k1 = min{k : |Xk| ≥ 2, or k ≤ 2p − 1 and |Xk| = 1 and wk < wk+1},
and let k2 = max{k : |Xk| ≥ 2, or k ≥ 2 and |Xk| = 1 and wk < wk−1}.
Then k1 < k2.

(iii) Set X =
⋃

k1≤k≤k2
Xk, and choose a ∈ X so that w(a) = max{w(x) : x ∈

X}.

(a) If |Xk1 | = 1, then a 6= xk1.

(b) If |Xk2 | = 1, then a 6= xk2.

(iv) The graph G− a is connected.

(v) (a) If k1 > 1, then G− a− x1 is disconnected.

(b) If k2 < 2p, then G− a− x2p is disconnected.

Proof. (i) If (a) does not hold, then the assumption of Claim 31 holds with
k0 = 2p. Thus (a) holds, and (b) can be shown in a similar way.

(ii) First assume that there exists ℓ such that |Xℓ| ≥ 2. Then k1 ≤ ℓ ≤ k2. If
k1 = ℓ = k2, then it follows from the definition of k1 and k2 that the assumption
of Claim 31 holds with k0 = ℓ, a contradiction. Thus k1 < k2. Next assume that
|Xk| = 1 for all k. Suppose that k1 ≥ k2. Then w1 ≥ w2 ≥ · · · ≥ wk2 ≥ · · · ≥ wk1

by the definition of k1, and wk2 ≤ · · · ≤ wk1 ≤ wk1+1 · · · ≤ w2p by the definition
of k2. Hence w1 ≥ · · · ≥ wk2 = · · · = wk1 ≤ · · · ≤ w2p. Consequently, the
assumption of Claim 31 holds with k0 = k1, a contradiction. Thus k1 < k2.

(iii) We prove (a) ((b) can similarly be proved). Assume that |Xk1 | = 1. Then
we have w(xk1) = wk1 < wk+1 by the definition of k1. Since w(a) ≥ max{w(x) :
x ∈ Xk1+1} = wk+1 by the choice of a, this implies a 6= xk.

(iv) Note that if there is a cutvertex c of G, then it follows from the definition
of an admissible partition that p ≥ 2, and either |X1| = 1 and c = x1 or |X2p| = 1
and c = x2p. Hence the desired conclusion follows from (iii).
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(v) Assume that k1 > 1. Then p ≥ 2 and |X1| = 1, and hence, x1 is a
cutvertex of G separating X2 and X3 ∪ · · · ∪ X2p. Suppose that G − a − x1 is
connected. Since |X3∪· · ·∪X2p| ≥ 2p−2 ≥ 2, we get X2 = {a}. Since k1 > 1, this
forces k1 = 2, which contradicts (iii). Consequently G − x1 − a is disconnected.
Thus (a) is proved, and (b) can be verified in a similar way.

Claim 33. Suppose that G does not satisfy the assumption of Claim 31, and let

G, k1, k2, X, a be as in Claim 32. Then Alice can win the game by taking a.

Proof. We proceed by induction on |V (G)|. When |V (G)| = 2, the claim
holds in the sense that the assumption of the claim cannot be satisfied. Thus
let |V (G)| ≥ 4, and assume that the claim holds for smaller graphs. Note that
Claim 32 (iv) implies that Alice can take a in her first turn. Let b be the vertex
taken by Bob in his first turn. First assume that b ∈ X. By (1), Alice can win
the game on G− a− b. Since w(a) ≥ w(b), this implies the desired conclusion.

Next assume that b /∈ X. Note that by Claim 32 (ii), we have p ≥ 2. Write
b = xℓ. Since G− a− b is connected, it follows from Claim 32 (v) that ℓ 6= 1 and
ℓ 6= 2p. If ℓ < k1, then let a′ = xℓ−1 and ℓ′ = ℓ−1; if ℓ > k2, then let a′ = xℓ+1 and
ℓ′ = ℓ. By the definition of k1 and k2, we have w(a

′) ≥ w(b). Set G′ = G− b−a′.
By Observation 26, (X1, . . . , Xℓ′−1, Xℓ′+2, . . . , X2p) is an admissible partition of
G′. It follows that G′ does not satisfy the assumption of Claim 31, and that if we
define k′1, k

′
2 and X ′ for G′ as we defined k1, k2 and X for G in Claim 32, then we

have k′1 = k1 − 2 and k′2 = k2 − 2 or k′1 = k1 and k′2 = k2 according as ℓ < k1 or
ℓ > k2, and X ′ = X. Hence w(a) = max{w(x) : x ∈ X ′}. Applying Claim 32 (iv)
to G′, we see that G− a− b− a′ is connected, and hence Alice can take a′ in her
second turn. Moreover, by the induction hypothesis, Alice can win the game on
G′ by taking a in her first turn. Since G′ − a = G− a− b− a′, this implies that
Alice can win the game on G by taking a′ in her second turn.

Now the conclusion of the proposition follows from Claims 31 and 33. This
completes the proof of Proposition 23.

Proof of Theorem 2. We proceed by induction on |V (G)|. If |V (G)| = 2,
then the theorem clearly holds. Thus let |V (G)| ≥ 4, and assume that the
theorem holds for smaller graphs. Fix an arbitrary weight function on G. If
G has no cutvertex, then it follows from the induction hypothesis that Alice
can win the game by taking a vertex which has the maximum weight. Thus
we may assume that G has a cutvertex. By Theorem 18, G has an admissible
partition. The induction hypothesis implies that (1) holds. Therefore it follows
from Proposition 23 that Alice can win the game on G.

3.2. Clique paths

In this subsection, we prove Theorem 3. We here make some definitions. Let G
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be a connected graph with a fixed weight function w. The first (respectively,
the second) player in the game is denoted by 1 (respectively, 2), and the player
who makes the last move (respectively, the last move but one) is denoted by −1
(respectively, −2). Note that if G is even then 1 = −2 and 2 = −1, and if G is odd
then 1 = −1 and 2 = −2. As is introduced in [7] and [17], for k ∈ {1, 2,−1,−2},
N(G, k) denotes the gain of player k when both players play optimally. We have
N(G, 1) + N(G, 2) =

∑

x∈V (G)w(x). Also note that if x ∈ V (G) is a feasible
move for player 1 in the game on G, i.e., if G − x is connected, then we have
N(G, 1) ≥ w(x)+N(G−x, 2), where equality holds if and only if x is an optimal
move for player 1.

Now let α be a real number (we allow α to be negative). When N(G, 1) −
N(G, 2) ≥ α, we say that Alice can win the game on G at least by α. Similarly,
for a vertex x ∈ V (G) such that G−x is connected, when (w(x)+N(G−x, 2))−
N(G − x, 1) ≥ α, we say that Alice can win the game on G at least by α by
taking x.

Following [7] and [17], we introduce the notion of a rooted game (in those
papers, rooted games on disconnected graphs are also considered, but we here
consider rooted games on connected graphs only). Let G be a connected graph
with a weight function, and let S be a nonempty subset of V (G), called a root

set, such that G[S] is a complete graph. In the rooted game on G with root set
S, the players’ aim is the same as that in the usual graph grabbing game, and
each move is restricted by the same rule, and it is further restricted by the rule
that except for the last move, at least one vertex in S is to remain untaken after
the move. Thus if S consists of a single vertex v, then v can be taken only in
the last move. The rooted game on G with root set S is often referred to as the
rooted game on GR(S). Recall that for k ∈ {1, 2,−1,−2}, N(G,α) denotes the
gain of player α in the game on G when both players play optimally. As in [7], we
similarly let NR(S)(G,α) denote the gain of player α in the rooted game on GR(S)

when both players play optimally (when S consists of a single vertex v, we write
GR(v) and NR(v)(G,α) for GR(S) and NR(S)(G,α)). We state three observations.

Observation 34. If x is a feasible move for player 1 in the game on G, then

N(G, 2) ≤ N(G− x, 1),

with equality if and only if x is an optimal move for player 1.

Observation 35. If S is a nonempty subset of V (G) such that G[S] is a complete

graph, and x is a feasible move for player 1 in the rooted game on GR(S), then

NR(S)(G, 2) ≤ NR(S\{x})(G− x, 1),

with equality if and only if x is an optimal move for player 1.
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Observation 36. If v ∈ V (G) is a vertex such that G[NG(v)] is a complete

graph, then G− v is connected and

NR(v)(G,−2) = NR(NG(v))(G− v,−1).

Throughout the rest of this subsection, we let G be a clique path with a
weight function, and let B0 be an end block of G. We simultaneously prove the
following two claims by induction.

Claim 37. Let S be a subset of V (B0) such that either S = V (B0) or |S| = 1
and the unique vertex in S is not a cutvertex of G. Then

N(G,−2) ≥ NR(S)(G,−2),

i.e.,

N(G,−1) ≤ NR(S)(G,−1).

Claim 38. Suppose that G is even, and let S be a subset of V (B0) such that

either S = V (B0) or |S| = 1 and the unique vertex in S is not a cutvertex of G.

Then

N(G, 1) ≥ NR(S)(G, 2).

It is easy to see that both claims hold if |V (G)| ≤ 2. In the following proofs
of Claims 37 and 38, we let |V (G)| ≥ 3, and assume that both claims hold for
smaller graphs. Also in the case where B0 6= G, we let t0 be the unique cutvertex
of G which belongs to B0, and let B1 be the unique block other than B0 which
contains t0. We observe that if x ∈ V (G) and G′ = G − x is connected and the
set S′ = S \{x} is nonempty, then in G′, S′ satisfies the assumption of the claims
(with B0 replaced by B1 in the case where B0 6= G and S = V (B0) = {x, t0}).
We also observe that if x ∈ V (B0) and x is not a cutvertex of G, then in the
graph G′ = G−x, the set S′ = NG(x) (= V (B0)\{x}) satisfies the assumption of
the claims. These two observations will be used implicitly throughout the proof.

Proof of Claim 37. First assume that G is even. Let a be an optimal move for
player 1 in the rooted game on GR(S). Then

NR(S)(G,−1) = NR(S)(G, 2)

= NR(S\{a})(G− a, 1) (by Observation 35)

= NR(S\{a})(G− a,−1)

≥ N(G− a,−1) (by induction for Claim 37)

= N(G− a, 1)

≥ N(G, 2) (by Observation 34)

= N(G,−1).
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Next assume that G is odd. Let b be an optimal move for player 1 in the
game on G. If b is also feasible in the rooted game on GR(S), then

N(G,−2) = N(G, 2)

= N(G− b, 1) (by Observation 34)

= N(G− b,−2)

≥ NR(S\{b})(G− b,−2) (by induction for Claim 37)

= NR(S\{b})(G− b, 1)

≥ NR(S)(G, 2) (by Observation 35)

= NR(S)(G,−2).

Thus we may assume that b is not feasible in the rooted game on GR(S).
Then S = {b}, and b is not a cutvertex. Hence

N(G,−2) = N(G, 2)

= N(G− b, 1) (by Observation 34)

≥ NR(NG(b))(G− b, 2) (by induction for Claim 38)

= NR(NG(b))(G− b,−1)

= NR(S)(G,−2) (by Observation 36).

Proof of Claim 38. We consider the following two cases.

Case 1. S = V (B0). If B0 = G, then the rooted game on GR(S) is the same
as the game on G and, since B0 = G is a complete graph, Alice can win the
game on G, which implies that N(G, 1) ≥ N(G, 2) = NR(S)(G, 2). Thus we may
assume that B0 6= G.

Let H and H ′ be the connected components of G − t0. Exactly one of the
components, say H ′, has even order. Let H ′′ = G[V (H ′)∪{t0}]. Then H ′′ is odd.
Let X = NG(t0) ∩ V (H). Then H and X satisfy the assumption of the claims
except the parity of the order of graphs (in the case where H = G− V (B0), this
can be verified by applying to G− (V (B0 − t0)) the second observation made in
the paragraph following the statement of Claim 38).

Subclaim 3.3. NR(S)(G, 2) ≤ NR(X)(H, 2) +NR(t0)(H
′′, 1).

Proof. The desired inequality is equivalent to

NR(S)(G, 1) ≥ NR(X)(H, 1) +NR(t0)(H
′′, 2).

Alice and Bob play the rooted game on GR(S). Alice plays by following an
optimal strategy of player 1 = −1 in the rooted game on HR(X), and an optimal
strategy of player 2 = −2 in the rooted game on H ′′

R(t0)
. Note that in H, Bob has
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to follow the rule of the rooted game on HR(X) until H or H ′′ is completely taken
away. This is clear if H = B0 − t0 or H = G− V (B0) and G = B0 ∪B1 (because
X = V (H)); if H = G − V (B0) and G 6= B0 ∪ B1, then this follows from the
fact that X = V (B1) \ {t0} is a cutset of G separating B0 and G− V (B0 ∪ B1).
Similarly, in H ′′, Bob has to follow the rule of the rooted game on H ′′

R(t0)
until

H or H ′′ is completely taken away (because t0 is a cutvertex of G).

First we consider the case where H is completely taken away before H ′′ is
taken away. Let α be the sum of the weights of those vertices of H ′′ which are
taken by Alice before H is taken away, and let H0 denote the subgraph induced
by those vertices of H ′′ which remain untaken when H is taken away. Then

α+NR(t0)(H0,−2) ≥ NR(t0)(H
′′,−2) = NR(t0)(H

′′, 2).

Note that H0 is odd. After H is taken away, if H ′′ = G − V (B0 − t0), then
Alice can keep following the optimal strategy of player −2 in the rooted game
on H ′′

R(t0)
(because t0 is the only vertex in S which remains untaken) and, if

H ′′ = B0, then Alice can follow an optimal strategy of player −2 in the game
on H0 (because S ∩ V (H0) = V (H0)). Since N(H0,−2) ≥ NR(t0)(H0,−2) by the
induction hypothesis (for Claim 37), it follows that regardless of whether H ′′ =
G−V (B0− t0) or B0, Alice’s gain on H0 is at least NR(t0)(H0,−2). Hence Alice’s
gain onH ′′ is at least α+NR(t0)(H0,−2) ≥ NR(t0)(H

′′, 2) (note that this argument
works even if |V (H0)| = 1). Since Alice’s gain on H is at least NR(X)(H, 1), we
see that the total gain of Alice is at least NR(X)(H, 1) +NR(t0)(H

′′, 2).

Next we consider the case where H ′′ is taken away before H is taken away.
In this case, H ′′ = G− V (B0 − t0) (for if H

′′ = B0, then V (H ′′) = S, and hence
H ′′ cannot be taken away when some other vertices remain untaken). Let α be
the sum of the weights of those vertices of H which are taken by Alice before H ′′

is taken away, and let H0 denote the subgraph induced by those vertices of H
which remain untaken when H ′′ is taken away. Then

α+NR(V (H0))(H0,−1) ≥ NR(X)(H,−1) = NR(X)(H, 1).

Note thatH0 is even. AfterH
′′ is taken away, Alice follows an optimal strategy for

player 1 in the game on H0. Since N(H0, 1) ≥ NR(V (H0))(H0, 2) by the induction
hypothesis (for Claim 38), Alice’s gain on H0 is at least NR(V (H0))(H0, 2) =
NR(V (H0))(H0,−1). Hence Alice’s game on H is at least α+NR(V (H0))(H0,−1) ≥
NR(X)(H, 1). Since Alice’s game on H ′′ is at least NR(t0)(H

′′, 2), we see that the
total gain of Alice is at least NR(X)(H, 1) +NR(t0)(H

′′, 2).

Thus in either case, Alice’s gain is at least NR(X)(H, 1) + NR(t0)(H
′′, 2).

Therefore NR(S)(G, 1) ≥ NR(X)(H, 1) +NR(t0)(H
′′, 2), as desired.

Subclaim 3.4. N(G, 1) ≥ NR(X)(H, 2) +NR(t0)(H
′′, 1).
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Proof. Alice and Bob play the game on G. Alice plays by following an optimal
strategy of player 2 in the rooted game on HR(X), and an optimal strategy of
player 1 in the rooted game on H ′′

R(t0)
. As in Subclaim 3.3, in H (respectively,

H ′′), Bob has to follow the rule of the rooted game onHR(X) (respectively, H
′′
R(t0)

)

until H or H ′′ is taken away. First we consider the case where H ′′ is taken away
before H is taken away. Define α and H0 as in the second case of the proof of
Subclaim 3.3. Then

α+NR(X∩V (H0))(H0,−2) ≥ NR(X)(H,−2) = NR(X)(H, 2).

AfterH ′′ is taken away, Alice follows an optimal strategy of player −2 in the game
on H0. Since N(H0,−2) ≥ NR(X∩V (H0))(H0,−2) by the induction hypothesis (for
Claim 37), it follows that Alice’s gain on H is at least α+NR(X∩V (H0))(H0,−2) ≥
NR(X)(H, 2). Since Alice’s gain on H ′′ is at least NR(t0)(H

′′, 1), we see that the
total gain of Alice is at least NR(X)(H, 2) +NR(t0)(H

′′, 1).

Next we consider the case where H is taken away before H ′′ is taken away.
Define α and H0 as in the first case of the proof of Subclaim 3.3. Then

α+NR(t0)(H0, 2) = α+NR(t0)(H0,−1) ≥ NR(t0)(H
′′,−1) = NR(t0)(H

′′, 1).

AfterH is taken away, Alice follows an optimal strategy of player 1 in the game on
H0. Since N(H0, 1) ≥ NR(t0)(H0, 2) by the induction hypothesis (for Claim 38),
it follows that Alice’s gain on H ′′ is at least α + NR(t0)(H0, 2) ≥ NR(t0)(H

′′, 1).
Since Alice’s gain on H is at least NR(X)(H, 2), we see that the total gain of Alice
is at least NR(X)(H, 2) +NR(t0)(H

′′, 1).

Thus in either case, Alice’s gain is at least NR(X)(H, 2)+NR(t0)(H
′′, 1), which

implies the desired inequality.

It follows from Subclaims 3.3 and 3.4 that N(G, 1) ≥ NR(X)(H, 2) + NR(t0)

(H ′′, 1) ≥ NR(S)(G, 2). This concludes the discussion for Case 1.

Case 2. |S| = 1. We show that NR(S)(G, 1) ≥ N(G, 2). Write S = {u}. By
the assumption of the claim, u is not a cutvertex. Hence

NR(u)(G, 1) = NR(u)(G,−2)

= NR(NG(u))(G− u,−1) (by Observation 36)

≥ N(G− u,−1) (by induction for Claim 37)

= N(G− u, 1)

≥ N(G, 2) (by Observation 34),

as desired. This completes the proof of Claim 38.
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Proof of Theorem 3. Fix a weight function on G. Let S be the vertex set of
an end block of G. Then by Claims 37 and 38,

N(G, 1) ≥ NR(S)(G, 2) = NR(S)(G,−1) ≥ N(G,−1) = N(G, 2),

which implies the desired conclusion.

4. Examples

In this section, we construct graphs on which Alice can/cannot win the game
and show that the converse of Conjecture 2 does not hold in general. We start
with the definition of the toughness of a graph. As in [2], the toughness τ(G) of
a noncomplete connected graph G is defined by

τ(G) = min

{

|S|

ω(G− S)
: S ⊆ V (G) and ω(G− S) > 1

}

,

where ω(G−S) is the number of connected components of G−S (the toughness
of a complete graph is defined to be ∞). Note that if G has toughness t, then G
is ⌈2t⌉-connected.

A connected graph G is good (for Alice) if Alice can win the game for every
weight function on G; otherwise, it is said to be bad. It is easy to construct a
bad even graph with arbitrarily small toughness. Let k ≥ 1 be an integer. As is
mentioned in the Introduction, C2k+1 ⊙H is bad for any odd graph H. Letting
H = I2ℓ+1 (ℓ ≥ 0), where I2ℓ+1 is the null graph of order 2ℓ + 1, i.e., the graph
consisting of 2ℓ+1 isolated vertices, we see that G = C2k+1⊙ I2ℓ+1 is a bad even
graph and satisfies τ(G) = 1

2ℓ+2 .

In [3], it is shown that there exists a bad even graph with arbitrarily large
connectivity. As a refinement of this result, we here show that there exists a bad
even graph with arbitrarily large toughness.

Let k ≥ 2 be an integer. Our construction is a modification of the k-connected
graph G′

n,k constructed in [3], where n = 2m > k. The graph G′
n,k consists of a

complete graph with n vertices a1, a2, . . . , an and
(

n
k

)

vertices bS where S ranges
over all k-element subsets of {1, 2, . . . , n}, and each bS is adjacent only to the k
vertices ai with i ∈ S. Note that |V (G′

n,k)| = n +
(

n
k

)

is even. Let ℓ be an odd

integer with ℓ ≥
(

n
k

)

. For each i ∈ {1, 2, . . . , n}, we replace ai with a complete
graph Qi such that |V (Qi)| = ℓ and, for all i, j with 1 ≤ i < j ≤ n, join each
vertex of Qi to all vertices of Qj , and join each bS to all vertices in

⋃

i∈S V (Qi).
The resulting graph is denoted by G′

n,k,ℓ. Note that
⋃

i∈{1,...,n} V (Qi) induces

a complete subgraph in G′
n,k,ℓ, and |V (G′

n,k,ℓ)| = nℓ +
(

n
k

)

is even. Further

τ(G′
n,k,ℓ) = nℓ/

(

n
k

)

≥ n.
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Now in G′
n,k, assign weight 1 to each ai, and weight 0 to each bS ; in G′

n,k,ℓ,
assign weight 1 to each vertex in

⋃

i∈{1,...,n} V (Qi), and weight 0 to each bS . In [3],
it is shown that Alice can take at most ⌊k/2⌋+1 vertices of weight 1 in the game
on G′

n,k (if Bob plays optimally). Arguing as in [3] (we omit the details), we
can show that in the game on G′

n,k,ℓ, Bob can play according to the following
strategy, i.e., for Bob, whenever the move described in 1 is not possible, the move
described in 2 is possible, and that if Bob plays according to the strategy, then
Alice can take at most n⌊ℓ/2⌋+ ⌊k/2⌋+ 1 vertices of weight 1:

1. if possible, Bob takes a vertex of weight 1;

2. otherwise he takes a vertex of weight 0 which is not a unique leaf neighbor
of a vertex of weight 1 in the remaining graph.

We now construct an example which shows that the converse of Conjecture
2 does not hold. We first make the following observation, which follows from
Theorem 2 because a graph of order four is clearly {P5, bull}-free.

Observation 39. Let G be a connected graph of order four. Then for every

weight function Alice can win the game on G.

Let H be a C3-corona, and write V (H) = {u1, u2, u3, v1, v2, v3}, where {u1,
u2, u3} forms a 3-cycle and vi is adjacent only to ui. Let G be the graph obtained
from H by adding two adjacent vertices x, x′ and joining them to all vertices of
H (see Figure 2).

v1

+

v2v3

x′

x

u3

u1

u2

Figure 2. The graph G where the plus sign means the join of {x, x′} and H.

Theorem 40. Let G be as above. Then for every weight function Alice can win

the game on the graph G.

Proof. Let w be a weight function on G. We prove several claims.

Claim 41. Let H ′ be an induced subgraph of order six of G with H ′ 6= H. Then

Alice can win the game on H ′.

Proof. If {u1, u2, u3} ⊆ V (H ′), then H ′ is 2-connected, and hence it follows from
Observation 39 that Alice can win the game on H ′ by taking a heaviest vertex. If
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{u1, u2, u3} 6⊆ V (H ′), then H ′ is {P5, bull}-free, and hence the desired conclusion
follows from Theorem 2.

Let pmax be a heaviest vertex of G.

Claim 42. If pmax /∈ {x, x′}, then Alice can win the game on G.

Proof. Alice takes pmax. Let b be the vertex taken by Bob. Then G−{pmax, b} 6=
H, and hence by Claim 41, Alice can win the game on G − {pmax, b}. Since
w(pmax) ≥ w(b), this implies the desired conclusion.

In view of Claim 42, we may assume that pmax ∈ {x, x′}. By symmetry, we
may assume that pmax = x.

Claim 43. If there exists j ∈ {1, 2, 3} such that w(uj) ≤ w(vj), then Alice can

win the game on G.

Proof. Alice takes x. If Bob takes a vertex other than x′, then it follows from
Claim 41 that Alice can win the game on G. Hence we may assume that Bob
takes x′. Thus it suffices to show that Alice can win the game on H.

Case 1. For all i ∈ {1, 2, 3}, w(ui) ≤ w(vi). It follows from Observation 39
that by taking a heaviest vertex among the vi’s, Alice can win the game on H.

Case 2. Otherwise. We may assume that w(v1)− w(u1) ≥ w(v2)− w(u2) ≥
w(v3)−w(u3). Then w(v1) ≥ w(u1) and w(v3) < w(u3). Alice takes v1. Let b be
the vertex taken by Bob. In view of Observation 39, we may assume that b 6= u1.
Then b ∈ {v2, v3}. Write b = vk and {2, 3} = {k, ℓ}. Alice takes uk in her second
turn (in the game on H). The remaining graph is a path of order three having
uℓ as its center. Hence Alice can take uℓ in her final turn. Since {k, ℓ} = {2, 3},
Alice’s gain is w(v1) + w(u2) + w(u3), and Bob’s gain is w(u1) + w(v2) + w(v3).
Since w(v1) − w(u1) ≥ w(v2) − w(u2) and w(v3) < w(u3), it follows that Alice
can win the game on H.

By Claim 43, we may assume that w(ui) > w(vi) for all i ∈ {1, 2, 3}. We may
assume that w(u1) ≥ w(ui) for each i ∈ {2, 3}. Set α = w(x) + w(v1) + w(v2) +
w(u3) and β = w(x′) + w(u1) + w(u2) + w(v3). We distinguish two cases.

Case 1. α ≥ β. Alice takes x. In view of Claim 41, we may assume that Bob
takes x′. Alice takes v1 in her second turn. Let b be the vertex taken by Bob
in his second turn. First assume that b = u1. Alice takes v2 in her third turn.
Since the remaining graph is a path of order three having u3 as its center, Alice
can take u3 in her final turn. Thus Alice’s gain is α and Bob’s gain is β, which
means that Alice can win the game. Next assume that b ∈ {v2, v3}. Write b = vk
and {2, 3} = {k, ℓ}. Alice takes uk in her third turn. As above, Alice can take uℓ
in her final turn. Since {k, ℓ} = {2, 3}, Alice’s gain is α + (w(u2) − w(v2)) and
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Bob’s gain is β− (w(u2)−w(v2)). Since w(u2)−w(v2) > 0, this means that Alice
can win the game.

Case 2. α < β. Alice takes u1. Let b be the vertex taken by Bob. If
b ∈ V (H − u1), then w(u1) > w(b), and hence the desired conclusion follows
from Claim 41. Thus we may assume that b ∈ {x, x′}. Write {x, x′} = {b, b′}.
Alice takes u2 in her second turn. Note that b′ is a cutvertex of the remaining
graph. If Bob takes u3, Alice takes v3; otherwise, Alice takes u3. As above,
Alice can take b′ in her final turn. Thus Alice’s gain is β + (w(b′) − w(x′)) or
β + (w(b′) − w(x′)) + (w(u3) − w(v3)), and Bob’s gain is α + (w(b) − w(x)) or
α + (w(b) − w(x)) − (w(u3) − w(v3)). Since {b, b′} = {x, x′}, w(x) − w(x′) ≥ 0
and w(u3)−w(v3) > 0, this means that Alice can win the game. This completes
the proof of Theorem 40.

We have seen that the condition that G is Codd-free is not a necessary condi-
tion for a connected graph G to be good. We conclude this paper by exhibiting
simple necessary conditions.

Arguing as in the fifth paragraph of this section, we can show that the con-
dition that the set S of cutvertices of G induces a bipartite graph is a necessary
condition for a connected even graph G to be good (this is not a sufficient condi-
tion because, as is described in the fourth and the fifth paragraphs of this section,
there exists a 2-connected bad even graph). To see this, by way of contradiction,
suppose that there exists a subset X of S such that G[X] is an odd cycle. As-
sign weight 1 to all vertices in X, and weight 0 to all other vertices. Bob plays
according to the following strategy:

1. if possible, Bob takes a vertex of weight 1;

2. in the case where Bob cannot make the move described in 1, if possible,
he takes a vertex v of weight 0 such that the removal of v does not create
a feasible (for Alice) vertex of weight 1 (unlike the case of G′

n,k,ℓ, Bob is
sometimes forced to take a vertex of weight 0 whose removal creates a feasible
vertex of weight 1).

Then we can verify that the first vertex x of weight 1 taken by a player is taken
by Bob. Note that when Bob has taken x, X \ {x} induces an even path in the
remaining graph. Based on this, we can show that after x is taken by Bob, Bob’s
gain is strictly greater than Alice’s gain at any stage of the game (since Bob can
take at least half of vertices of X \ {x}).

Similarly, the condition that G has no cutvertex is a necessary condition for
a connected odd graph to be good (this is not a sufficient condition because, as is
mentioned in the third paragraph of the Introduction, there exists a 2-connected
bad odd graph). To see this, by way of contradiction, suppose that G has a
cutvertex x. Assigning weight 1 to x, and weight 0 to all other vertices. We
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can show that if Bob plays according to the strategy described in the preceding
paragraph, then Bob can take x.
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