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Abstract

A tree T on 2n vertices is called set-sequential if the elements in V (T )∪
E(T ) can be labeled with distinct nonzero (n + 1)-dimensional 01-vectors
such that the vector labeling each edge is the component-wise sum modulo
2 of the labels of the endpoints. It has been conjectured that all trees on
2n vertices with only odd degree are set-sequential (the “Odd Tree Conjec-
ture”), and in this paper, we present progress toward that conjecture. We
show that certain kinds of caterpillars (with restrictions on the degrees of
the vertices, but no restrictions on the diameter) are set-sequential. Addi-
tionally, we introduce some constructions of new set-sequential graphs from
smaller set-sequential bipartite graphs (not necessarily odd trees). We also
make a conjecture about pairings of the elements of Fn

2
in a particular way;

in the process, we provide a substantial clarification of a proof of a theorem
that partitions F

n
2
from a paper [P.N. Balister, E. Győri and R.H. Schelp,

Coloring vertices and edges of a graph by nonempty subsets of a set, Euro-
pean J. Combin. 32 (2011) 533–537]. Finally, we put forward a result on
bipartite graphs that is a modification of a theorem in the aforementioned
paper.
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1. Introduction

In 1985, in [1], Acharya and Hegde introduced the notion of a set-sequential
graph, which they defined as a graph G for which it is possible to assign distinct
nonempty subsets of a set X to the edges and vertices of the graph in such a way
that for each e ∈ E(G), the label of e = uv is the symmetric difference of the
labels of u, v ∈ V (G). Notice that each set X of size n has 2n subsets, and that we
can represent these subsets by n-dimensional 01-vectors: a 1 in the i-th position
of the vector indicates membership of the i-th element of X in the subset. Under
this representation, the symmetric difference becomes addition modulo 2, leading
to the definition presented in the abstract. The definition of set-sequential in the
abstract fits better with our methods of proof throughout this paper, so we have
opted to use it throughout.

It is easy to understand what is meant by the term “set-sequential” (in other
literature, “strongly set colorable”), but it is difficult to provide an exhaustive
list of all graphs or classes of graphs that have this property. In fact, in the
more than thirty-five years since Acharya and Hegde’s initial introduction of the
problem of classifying set-sequential graphs, this problem remains open. Certain
classes of graphs are known to be set-sequential, however, including stars on 2n

vertices (it is an easy exercise to check this). Note here that these stars contain
only vertices of odd degree.

Another broad class of set-sequential graphs is the set of paths on 2n vertices
for n = 1 and n ≥ 4. This result was proved initially by Mehta and Vijayakumar
in [7].

Theorem 1.1 (Mehta and Vijayakumar [7]). For any integer n ≥ 2, G
n is

sequentially ternary if and only if n is neither 3 nor 4.

Here, Mehta and Vijayakumar define Gn in the same way as Fn
2 , and their def-

inition of “sequentially ternary” is equivalent to our definition of “set-sequential”.
This result was also proved by Balister et al. in [4], using terminology more sim-
ilar to what is used in the remainder of this paper.

Theorem 1.2 (Balister et al. [4]). The paths P4 and P8 are not strongly set

colorable while all other paths of the form P2n−1 are strongly set colorable.

This raises the following question. Why are the paths P4 and P8 not set-
sequential? This question is answered in [4], so we do not provide a rigorous
explanation, but rather give the following sketch. Consider the path P4. There
are two vertices of even degree here, which means that for two of the vertices, the
vectors v and u labeling them appear three times in the overall sum, which must
be zero. Since we consider addition modulo 2, this leads us to the conclusion
that v = u, which contradicts our definition of set-sequential. So P4 is not
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set-sequential. A similar but more complex argument gives that P8 is not set-
sequential. Not all graphs, then, are set-sequential, and what is more, it seems
to be the vertices of even degree that introduce some measure of uncertainty
regarding whether a graph is set-sequential or not. In a 2009 paper [6], Hegde
proved that there must indeed be restrictions on vertices of even degree.

Theorem 1.3 (Hegde [6]). If a graph G (p > 2, here p = |V (G)|) has:

1. exactly one or two vertices of even degree or

2. exactly three vertices of even degree, say, v1, v2, v3, and any two of these

vertices are adjacent or

3. exactly four vertices of even degree, say, v1, v2, v3, v4 such that v1v2 and

v3v4 are edges in G, then G is not strongly-set colorable.

This theorem prompts the following conjecture (which has been put forth
before by others, among them Golowich and Kim in [5], though the precise origin
is unknown).

Conjecture 1.4 (Odd Tree Conjecture). Any tree on 2n vertices with only ver-

tices of odd degree is set-sequential.

In particular, the class of caterpillars with vertices of only odd degree has
been of interest to some, among them Golowich and Kim [5], Abhishek [2] and
Agustine (together with Abhishek) [3]. A 2012 paper by Abhishek and Agustine
[3] presented results for some classes of graphs of diameter 4 — in particular,
caterpillars with vertices of certain odd degrees. Following that, in 2013, Ab-
hishek [2] extended those results to certain caterpillars of diameter 5. Most
recently, in a 2020 paper [5], Golowich and Kim set forth results that show that
several classes of graphs are set-sequential, including odd caterpillars of diameter
at most 18. We were able to show that another larger class of caterpillars is
set-sequential, without making the assumption that the caterpillars are “small
enough”.

Further results on set-sequential trees can be found in a 2011 paper by Bal-
ister et al. [4]. In addition to the result that all paths except P4 and P8 are
set-sequential, the authors proved that bipartite graphs can be connected in such
a way that produces larger set-sequential graphs. Balister et al. also put forth a
conjecture that partitions Fn

2 (the field of n-dimensional 01-vectors under addition
modulo 2) in a specific way and provided a proof of one case of that conjecture.
We as well prove some results for bipartite graphs and address another case of
their partitioning conjecture, noting that this conjecture can be used to aid us
in our goal of proving the Odd Tree Conjecture. The vertex and edge labels in a
set-sequential labeling are in fact elements of Fn

2 .
In addition to these results, we note that the proof of Theorem 4 given in

[4] treats only one of several cases of that theorem and so is incomplete. In this
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paper, we give a more explicit generalization of the technique of that proof and
so provide a rigorous proof of the theorem.

2. Odd Tree Conjecture

One approach to attempting to prove the Odd Tree Conjecture is to try to find
a labeling for each odd tree on 2n vertices for all n, perhaps with the aid of a
computer program. This idea does have merit, and we used it, along with the
fact stated in the introduction that stars are set-sequential, to show that all odd
trees on 8 vertices are set-sequential.

Lemma 2.1. The Odd Tree Conjecture is true for n ≤ 3.

Proof. This is trivial for n = 1. For n = 2 and n = 3, it is sufficient to exhibit
a set-sequential labeling of the edges and vertices for each odd tree on 4 and 8
vertices. For n = 2, there is only one odd tree on 4 vertices, and we may label it
as in Figure 1. For n = 3, there are 3 odd trees on 8 vertices, and we may label
those as in Figure 2.

As n grows large (greater than 3 in fact), however, both the number of
odd trees on 2n vertices and the number of possible labelings become too great
to check exhaustively due to limits in computational speed. We do know that
at least some odd trees on 16 vertices are set-sequential, but this is not due
to a computer program but rather to methods set forth in the remainder of this
section. We have studied in earnest three main operations which we present here:
constructing caterpillars, splicing smaller graphs together, and using a method
introduced to us in [4].

001011

101

111

010
100

110

Figure 1. Set-sequential labeling of the only odd tree on 4 vertices.

2.1. Constructing Caterpillars

As mentioned in the introduction, a 2020 paper by Golowich and Kim [5] presents
some results regarding the set-sequentialness of caterpillars. Let C be an odd
caterpillar of diameter k. One result in [5] is that C is set-sequential if k is at
most 18, and another is that C is set-sequential if 2k−1 ≤ |V (C)|. We add to
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these results that an even larger class of odd caterpillars is set-sequential. Our
result places some restrictions on the possible degrees of vertices along the path
that serves as the “bone” of the caterpillar but has no limitation on the diameter.

0011 0001 0111

1011 1101 0101 1111 1001

0010 0110

1010

1100
0100

1110

1000

0011 0001 0111 1001

10001011 0101 1101

0010 0110 1110

1010

0100

1100 1111

1001 1011 0001 1111 1000

1101 0101 1100

0110 1010 1110 0111

0010 0100 0011

Figure 2. Set-sequential labelings of the three odd trees on 8 vertices.

Recall from the introduction the result by Balister et al. in [4] that all paths
of the form P2n except for P4 and P8 are set-sequential. Start with a path P2k ,
with k > 4. From this we will construct a larger caterpillar with vertices of certain
degrees that is also set-sequential. We allow the path P2k to become the “bone”
of the caterpillar and add pendent edges in such a manner that each new vertex
and the edge attaching it to the path correspond to the preceding or subsequent
vertex and edge in the path.

Lemma 2.2. Let Ck,3 denote the caterpillar on k vertices with only vertices of

degrees 1 and 3. For n = 2, 3 and n > 4, C2n,3 is set-sequential.

Proof. Lemma 2.1 gives that C22,3 and C23,3 are set-sequential. To show the
cases where n > 4, we utilize Theorem 1 from [4]. Paths of the form P2m for
m ≥ 4 have a labeling.
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Observe that we may write C2n,3 as the path P2n−1 with one edge connect-
ing each interior vertex to a single additional vertex and two edges connecting
two vertices to the last vertex in the path. Suppose n > 4. Take some la-
beling w1, f1, w2, f2, . . . , f2n−1

−1, w2n−1 with n-dimensional vectors for the path
P2n−1 (denoted in blue). Append a 0 to each vector to form vectors of di-
mension (n + 1), noting that this does not change the validity of the labeling.
Label the pendent edges and outer vertices with (n + 1)-dimensional vectors
v1, e1, . . . , v2n−1

−1, e2n−1
−1, v2n−1 , e2n−1 , as shown in Figure 3.

Since 1+1 = 0 under addition modulo 2, wi1+fi1 = wi0+fi0 = wi+10. So let
vi = wi1 and ei = fi1. This is a good labeling for vi and ei for i = 1, . . . , 2n−1−1.
What remains is to label v2n−1 and e2n−1 . Observe that we did not use the vector
w2n−11 or the (n + 1)-dimensional vector 0 · · · 01 for any labelings so far. Since
w2n−10 + w2n−11 = 0 · · · 01, let v2n−1 = w2n−11 and e2n−1 = 0 · · · 01.

w10 w20 w30 w40 w50 w60 w70 w80 w2n−10 v2n−1

v1 v2 v3 v4 v5 v6 v7 v2n−1
−1

f10 f20 f30 f40 f50 f60 f70 f80 f2n−1
−10 e2n−1

e1 e2 e3 e4 e5 e6 e7 e2n−1
−1

Figure 3. Labeling of the pendent edges and vertices.

Another more general result may be obtained in the same manner.

Theorem 2.3. Take n, k > 4 with n ≥ k, and consider the path P2k−1. Join

2n−k+1 − 1 pendent edges and vertices to each of the 2k−1 − 2 interior vertices

of the path, and join an additional 2 ·
(

2n−k+1 − 1
)

pendent edges and vertices

to any one of the vertices in P2k−1. The caterpillar on 2n vertices constructed in

this way is set-sequential.

Note that choosing k = n and choosing to join the pendent edges and vertices
to the last vertex in the path gives Lemma 2.2.

Proof. As in the proof of Lemma 2.2, we use that paths of the form P2m have a
labeling for m ≥ 4. Note here that in the construction we propose, we have

2k−1 +
(

2k−1 − 2
)

·
(

2n−k+1 − 1
)

+ 2 ·
(

2n−k+1 − 1
)

= 2n

vertices, so this construction does in fact yield a caterpillar on 2n vertices. Sup-
pose n, k > 4 and n ≥ k. Take some labeling w1, f1, w2, f2, . . . , f2k−1

−1, w2k−1

with k-dimensional vectors for the path P2k−1 . Append n− k+ 1 zeros (denoted
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in general by 0n−k+1, but here more succinctly as ~0) to each vector to form vec-
tors of dimension (n + 1), noting that this does not change the validity of the
labeling. We will prove the theorem in two cases.

Case 1. The additional 2 · (2n−k+1− 1) pendent edges and vertices are added
to one of the two end vertices of P2k−1 . Without loss of generality, suppose
the pendent edges and vertices are added to the final vertex in the path. Let
i = 2n−k+1−1, j = 2k−1−2, and label these pendent edges and vertices with (n+
1)-dimensional vectors v1, e1, . . . , vj·i+2·(2n−k+1

−1), ej·i+2·(2n−k+1
−1) as in Figure 4.

Since 1+1 = 0 under addition modulo 2, for any 01-vector x of dimension n−k+1,
we have wℓx + fℓx = wℓ+1

~0. There are 2n−k+1 − 1 nonzero vectors we may
construct using n− k+1 symbols. Denote them by za, for a = 1, . . . , 2n−k+1− 1.
So we may express each vector wℓ

~0, ℓ ≥ 2 a total of 2n−k+1 − 1 ways using
the sums wℓ−1za + fℓ−1za = wℓ

~0. Now for each of the interior vertices wℓ
~0 of

P2k−1 , let their pendent edges ea and vertices va be given by ea = fℓ−1za, va =
wℓ−1za. We now have a set-sequential labeling using (n+ 1)-dimensional vectors
for w1, f1, . . . , f2k−1

−1, w2k−1 and for v1, e1, . . . , v(j+1)·i, e(j+1)·i. What remains is
to label v(j+1)·i+1, e(j+1)·i+1, . . . v(j+2)·i, e(j+2)·i.

So far, we have not used the vectors w2k−1za or the vector 0kza, for a =
1, . . . , 2n−k+1 − 1. Let each of the remaining unlabeled pendent edges ea and
vertices va of w2k−1

~0 be given by ea = 0kza, va = w2k−1za. Then for each vb, eb
attached to w2k−1

~0, we have vb + eb = w2k−1
~0, finishing the required labeling for

this caterpillar.

Case 2. The additional 2 · (2n−k+1− 1) pendent edges and vertices are added
to one of the 2k−1 − 2 interior vertices of P2k−1 , say, wh

~0, for 2 ≤ h ≤ 2k−1 − 1.
Let i = 2n−k+1 − 1, j = 2k−1 − 2, and label these pendent edges and vertices
with (n + 1)-dimensional vectors v1, e1, . . . , vj·i+2·(2n−k+1

−1), ej·i+2·(2n−k+1
−1) as

in Figure 5. Since 1 + 1 = 0 under addition modulo 2, for any 01-vector x
of dimension n − k + 1, we have wℓx + fℓx = wℓ+1

~0. There are 2n−k+1 − 1
nonzero vectors we may construct using n − k + 1 symbols. Denote them by
za, for a = 1, . . . , 2n−k+1 − 1. So we may express each vector wℓ

~0, 2 ≤ ℓ ≤
2k−1 − 1, a total of 2n−k+1 − 1 ways using either wℓ−1za + fℓ−1za = wℓ

~0 or
wℓ+1za + fℓza = wℓ

~0. Now for each of the interior vertices wℓ
~0 of P2k−1 with

ℓ ≤ h − 1, let their pendent edges ea and vertices va be given by ea = fℓ−1za,
va = wℓ−1za. For each of the interior vertices wℓ

~0 with ℓ ≥ h+1, let their pendent
edges ea and vertices va be given by ea = fℓza, va = wℓ+1za. We now have a
good labeling using (n+1)-dimensional vectors for w1, f1, . . . , f2k−1

−1, w2k−1 and
for v1, e1, . . . , v(h−2)·i, e(h−2)·i, v(h−1)·i+1, e(h−1)·i+2, . . . , vj·i, ej·i. What remains is
to appropriately label v(h−2)·i+1, e(h−2)·i+1, . . . , v(h−1)·i, e(h−1)·i and vj·i+1, ej·i+1,
. . . , v(j+2)·i, e(j+2)·i.

So far, the vectors wh−1za, fh−1za, whza, fhza, wh+1za or 0kza, for a =
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1, . . . , 2n−k+1− 1, have not been used. Since wh−1za+ fh−1za = wh+1za+ fhza =
whza + 0kza = wh

~0, let each pair of vectors (v(h−2)·i+1, e(h−2)·i + 1), . . . , (v(h−1)·i,
e(h−1)·i) be equal to a pair (wh−1za, fh−1za), let each pair of vectors (vj·i+1, ej·i+1),
. . . , (v(j+1)·i, e(j+1)·i) be equal to a pair (wh+1za, fhza), and finally let each pair of

vectors (v(j+1)·i+1, e(j+1)·i+1), . . . , (v(j+2)·i, e(j+2)·i) be equal to a pair (whza, 0
kza).

Then for each vb, eb attached to wh
~0, we have vb+eb = wh

~0, finishing the required
labeling for this caterpillar.

w1~0 w2~0

w3~0

w2k−1
~0

v1 v2 vi

vi+1 vi+2 v2i

vj·i+1 vj·i+2 v(j+1)·i

v(j+1)·i+1

v(j+1)·i+2

v(j+2)·i

· · ·

· · ·

· · ·

...

f1~0 f2~0 f3~0 f2k−1
−1
~0 e(j+1)·i+1

e(j+1)·i+2

e(j+2)·i

e(j+1)·iej·i+2ej·i+1
e1 e2 ei

ei+1 ei+2 e2i

Figure 4. Labeling of the caterpillar in Case 1.

w1~0 w2~0

wh−1
~0 wh+1

~0

w2k−1
−1
~0 w2k−1

~0
wh

~0

v1 v2 vi v(j−1)·i+1 v(j−1)·i+2 vj·i

v(h−2)·iv(h−3)·i+2v(h−3)·i+1 v(h−1)·i+1 v(h−1)·i+2 vh·i

v(h−2)·i+1 v(h−2)·i+2 v(h−1)·i

vj·i+1 vj·i+2 v(j+2)·i

· · · · · ·

· · · · · ·

· · ·

· · ·· · ·

f1~0 f2~0 f2k−1
−2
~0 f2k−1

−1
~0

ej·ie(j−1)·i+2e(j−1)·i+1
e1 e2 ei

e(h−2)·i
e(h−3)·i+2

e(h−3)·i+1 e(h−1)·i+1
e(h−1)·i+2

eh·i

fh−1
~0 fh~0

e(h−2)·i+1

e(h−2)·i+2

e(h−1)·i

ej·i+1 ej·i+2 e(j+2)·i

Figure 5. Labeling of the caterpillar in Case 2.

To allow for a more solid understanding of this proof, we present the following
example.
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Example 2.4. Take n = 6, k = 5, and consider a caterpillar on 64 vertices,
constructed in the manner of the above proof. We wish to show that it is set-
sequential; that is, we wish to label it with the 127 nonzero 01-vectors of dimen-
sion 7. The “bone” of the caterpillar is the path P16. We will add to each interior
vertex of this path 3 pendent edges and vertices, and we will add to some other
vertex in the path 6 additional pendent edges and vertices. This gives 16 vertices
in the path, 3 extra vertices attached to 14 of the path vertices, and 6 extra
vertices attached to some path vertex: in total, there are 16 + 3 · 14 + 6 = 64
vertices, with 63 edges. Take a labeling of P16 using the 5-dimensional vectors
w1, f2, . . . , f15, w16. Figures 6 and 7 show labelings for the caterpillar construc-
tions in Cases 1 and 2 of the previous proof, using 7-dimensional 01-vectors.

w100 w200

w300

w400 w1600w500 w1500

w101 w110 w111

w201 w210 w211

w301 w310 w311 w1501 w1510 w1511

w1601

w1610

w1611

f100 f200 f300 f400 f1500

f101
f110

f111

f201

f210

f211

f301
f310

f311 f1501
f1510

f1511

0000001

0000010

0000011

Figure 6. Labeling of the caterpillar in Case 1.

2.2. Splicing

Another technique that aids our goal of proving the Odd Tree Conjecture is one
that constructs a large set-sequential tree from four smaller ones with an equal
number of vertices. It is important that we start with four small trees rather
than only two. Suppose we start with two copies T1 and T2 of a set-sequential
tree on 2n vertices. From them we want to construct a tree on 2n+1 vertices that
is also set-sequential. In order to do this, we must take the vectors of dimension
n + 1 and extend them by both a zero and a one in order to get all vectors of
dimension n + 2 (except the vector with n + 1 zeros followed by a 1, denoted
~01). Express the trees as bipartite graphs with color classes X1, Y1 and X2, Y2
and edge sets E1 and E2, respectively. We have by the set-sequential nature of
T1 and T2 that sums of the vectors labeling the vertices in Xi and the vectors
labeling the vertices in Yi are equal to the vectors labeling the edges in Ei. Any
extensions of these vector labels must preserve this, but if we only increase by
one dimension, we may only extend with a zero or a one. It is not possible to do
this. Extending the vectors labeling the vertices in X1 and Y1 and the edges in
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E1 by zero leaves that we must extend the vertices in X2 and Y2 and the edges
in E2 by one, which produces not sums of zero but sums of ~01. The only other
option is, without loss of generality, to extend the vectors labeling the vertices in
X1 and Y1 by one and the vectors labeling the edges in E1 by zero. This satisfies
the sum condition for T1, but for T2 it gives again sums of ~01. In order to avoid
this, we consider constructing a tree on 2n vertices from four smaller trees on
2n−2 vertices.

w100 w200

w1000

w1100

w1200

w1500 w1600

w101 w110 w111

w901 w910 w911

w1001 w1010 w1011

w1201 w1210 w1211 w1101 w1110 w1111

w1301 w1310 w1311

w1601 w1610 w1611

f100 f200 f1000 f1100 f1400 f1500

f101
f110

f111

f901 f910
f911

f1001

f1010

f1011

f1101
f1110

f1111
00001

00010
00011

f1201 f1210 f1211

f1501
f1510

f1511

Figure 7. Labeling of the caterpillar in Case 2.

We therefore present an operation on four odd set-sequential trees on 2k−2

vertices with equal bipartitions (that is, color classes must be of equal size, but
edge sets may be different). We claim that this operation can be used to construct
an odd set-sequential tree on 2k vertices. This operation utilizes the following
definition, which we have named “splicing”.

Definition 2.5. Let G be a graph with some vertex v1 and some edge with
endpoints u1, u2. We define splicing v1 into (u1u2) to be the operation that
removes the edge (u1, u2) and adds the edges (v1, u1) and (v1, u2).

Consider three sets of splicing operations applied to four bipartite graphs
with equal bipartitions (that is, the cardinalities of the color classes must be the
same but the edge sets may be different).
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Set 1

(i) Splice vi ∈ Xi into (u1,ju2,j), where u1,j ∈ Xj, u2,j ∈ Yj, and j 6= i.

(ii) Splice vi ∈ Xi into (u1,ku2,k), where u1,k ∈ Xk, u2,k ∈ Yk, and k /∈ {i, j}.

(iii) Splice vi ∈ Xi into (u1,ℓu2,ℓ), where u1,ℓ ∈ Xℓ, u2,ℓ ∈ Yℓ, and ℓ /∈ {i, j, k}.

Set 2

(i) Splice vi ∈ Xi into (u1,ju2,j), where u1,j ∈ Xj, u2,j ∈ Yj, and j 6= i.

(ii) Splice vi ∈ Xi into (u1,ku2,k), where u1,k ∈ Xk, u2,k ∈ Yk, and k /∈ {i, j}.

(iii) Splice vm ∈ Ym into (u1,ℓu2,ℓ), where u1,ℓ ∈ Xℓ, u2,ℓ ∈ Yℓ, ℓ /∈ {i, j, k}, and
m ∈ {j, k}.

Set 3

(i) Splice xi ∈ Xi into (u1,ju2,j), where u1,j ∈ Xj and u2,j ∈ Yj.

(ii) Splice vj ∈ Yj into (u1,ku2,k), where u1,k ∈ Xk, u2,k ∈ Yk, and k /∈ {i, j}.

(iii) Splice vk ∈ Yk into (u1,ℓu2,ℓ), where u1,ℓ ∈ Xℓ, u2,ℓ ∈ Yℓ, and ℓ /∈ {i, j, k}.

We claim that if the four bipartite graphs were odd set-sequential trees then
the graph resulting from any of the sets of splicing operations is also an odd
set-sequential tree.

Theorem 2.6. Take four odd set-sequential trees Ti on 2k−2 vertices with color

classes Xi and Yi, for i = 1, 2, 3, 4. Suppose that |Xi| = |Xj | = ℓ and |Yi| =
|Yj | = m for i 6= j. If there exists a labeling of each Ti such that {v1, v2, . . . , vℓ}
labels each Xi and {vℓ+1, vℓ+2, . . . , vℓ+k} labels each Yi, then we may perform one

of the sets of splicing operations given above to construct a set-sequential tree on

2k vertices.

Proof. The graphs resulting from the three splicing operations defined above
are given in Figures 8–10, with the removed edge indicated by dashed line. By
examining the extensions of the color classes and the indicated edges connecting
them, the graphs are seen to be set-sequential.

As an example of this splicing operation, we present in Figures 11–13 some
constructions of odd set-sequential trees on 32 vertices from four odd set-sequential
trees on 8 vertices. Note here that these graphs are not caterpillars, nor can they
be produced by the technique we will describe in the following section, so this
splicing operation is indeed useful.

What follows now is an example showing that in Theorem 2.6 the four smaller
bipartite graphs must have the same labeling set for each upper and lower color
class in order to extend a set-sequential labeling via the splicing operations de-
fined.



162 E.N. Eckels, E. Győri, J. Liu and S. Nasir
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Figure 8. Set 1 splicing operations.
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Figure 9. Set 2 splicing operations.

Example 2.7. Let R and S be the trees given in Figure 14. Label R and S using
the labelings given in Lemma 2.1, noting that the vertices in the upper class of
R are labeled with the vectors {0001, 1000, 1001} and the vertices in the upper
class of S are labeled with the vectors {0101, 1011, 1111}. Let T1 = T2 = T3 = R
and T4 = S. Before attempting any splicing, we must extend the vectors in each
Ti by 00, 01, 10, or 11. Doing so, however, does not produce entirely distinct
vectors. Extend the color classes X1, Y1 of T1 by 00, X2, Y4 by 01, X3, Y2 by 10,
and X4, Y3 by 11 (or some similar arrangement). Then E1 is extended by 00, E2

by 11, E3 by 01, and E4 by 10. Extending in this way, we find 0111 extended
by 00, 10, and 11, since it is in Y1, Y2, Y3. But in T4, 0111 is an edge, so it is
extended by 10. This method of extension, then, gives that the vector 011110 is
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used twice in the larger tree on 32 vertices, which prevents that tree from being
set-sequential. It is thus not enough that the bipartitons of each Ti are equal —
we must assume that their upper and lower color classes have the same labeling
set.
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Figure 10. Set 3 splicing operations.

∼=

Figure 11. Set 1 splicing operations.

∼=

Figure 12. Set 2 splicing operations.
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∼=

Figure 13. Set 3 splicing operations.

∼=

(a) Tree R

∼=

(b) Tree S

Figure 14. Trees used in Example 2.7.

Though we can use this splicing technique to construct many odd trees, we
cannot use it to produce all odd trees.

Counterexample 2.8. Consider an odd tree on n vertices with one vertex of

degree of at least n
2 . If we take four small trees and perform one of the sets of

splicing operations, the maximum degree in each small tree will be n
4 . We are

adding only 6 edges to the graph, however. This means that we cannot produce a

vertex of degree n
2 when n is large.

How, then, can we produce labelings for graphs like the one in the above
counterexample or for other graphs that cannot be obtained via splicing? We
introduce the following section on partitions of Fn

2 , motivated by work done in
[4], to provide additional ways to construct odd set-sequential trees.

2.3. Partitioning F
n

2

One conjecture that is of significant interest with respect to the Odd Tree Con-
jecture is Conjecture 1 in [4].

Conjecture 2.9 (Balister et al. [4]). Given 2n−1 non-zero (not necessarily

distinct) vectors v1, . . . , v2n−1 ∈ F
n
2 , n ≥ 2, with

∑2n−1

i=1 vi = 0, there exists a
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partition of Fn
2 into pairs of vectors {pi, qi}, i = 1, . . . , 2n−1 such that for all i,

vi = pi − qi.

Some cases of this conjecture have been proven, in both [4] and [5] (one result
of particular note is that the conjecture is true for n ≤ 5), though the general
statement is yet unproven. This conjecture is of interest to our work because it
gives us a way to begin with some odd set-sequential tree on 2n vertices and add
2n more vertices in such a way that the resulting tree on 2n+1 vertices is still
both odd and set-sequential.

Example 2.10. Consider the tree T defined in Figure 15(a). This graph is not
a caterpillar, nor can it be obtained via splicing, but we can use a special case
of Conjecture 1 to prove that it is set-sequential. Note first that this T is one of
the odd trees on 8 vertices with 4 vertices to which two additional vertices are
joined. The four vertices v1, v2, v3, v4 are indicated in Figure 15(b).

(a) Tree T

v1

v2 v3 v4

(b) The 8-vertex base tree of T

Figure 15. Trees used in Example 2.10.

In the larger 16 vertex tree, label v1, . . . , v8 using the labeling of that odd
tree on 8 vertices (denoted k1, . . . , k8) extended by 0. Even though Conjecture
1 in [4] is yet unproven, it is known to be true for n ≤ 5. So we may partition
F
4
2 into quadruples of vectors (pi, qi, ℓi,mi) such that ki = pi + qi = ℓi + mi,

for i = 1, 2, 3, 4. (This is accomplished by letting k1 = k2, k3 = k4, k5 = k6,
and k7 = k8 in Conjecture 1 of [4].) Without loss of generality, label the 8
appended vertices with pi1 and ℓi1 and the edges with qi1 and mi1. Then since
ki = pi + qi = ℓi +mi, we have ki0 = pi1 + qi1 = ℓi1 +mi1. We know that the
sum condition for the 8-vertex subgraph is satisfied as well since we have merely
extended it by 0. Therefore T is set-sequential.

To construct an explicit labeling of the T in the proof above, we start from
the labeling of the 8-vertex subgraph as given in the proof of Lemma 2.1. Then,
using the vertex labels given in the above proof, we have k1 = 0011, k2 = 1011,
k3 = 0101, and k4 = 1101. Even though the construction leading to Conjecture
1 in [4] was not given, through some trial and error, and following in some ways
the style of the proof of Conjecture 2 in the same work, we can obtain that
0011 = 0100 + 0111 = 0101 + 0110, 1011 = 0000 + 1011 = 0001 + 1010, 0101 =
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1000+ 1101 = 1001+ 1100, and 1101 = 0010+ 1111 = 0011+ 1110. It is an easy
exercise to verify that the vectors in the sums form a partition of F4

2. So label
the appended vertices with one of the summands in each of the 8 sums and the
edge with the other, both extended by 1.

This special case of Conjecture 2.9 given above seems to be of significant
use, so we endeavor to prove it for all n (we know now only that it is true for
n ≤ 5). Note here that we chose this particular case in order to ensure oddness
is preserved. Since applying the method shown above adds in all cases an even
number of pendent edges to a vertex of presently odd degree, the resulting larger
tree still contains vertices of only odd degree.

Conjecture 2.11 (Pairing Conjecture). Take nonzero vectors v1, v2, . . . , v2n−1 ∈
F
n
2 , where n ≥ 2, and v2i+1 = v2i+2, for i = 0, . . . , 2n−2 − 1. We may partition

F
n
2 into pairs (pi, qi) such that vi = pi + qi for all i.

A useful case of the Pairing Conjecture (which is also a case of Conjecture 1
in [4]) is the following, which appeared as Theorem 4 in [4].

Theorem 2.12 (Balister, Győri, Schelp [4]). Given 2n−1 non-zero vectors v1, . . . ,
v2n−1 ∈ F

n
2 , n ≥ 2, with v1 = v2 = · · · = v2n−2 and v2i+1 = v2i+2 for all

i = 0, . . . , 2n−2 − 1, there exists a partition of Fn
2 into pairs of vectors {pi, qi},

i = 1, . . . , 2n−1 such that for all i, vi = pi − qi.

The proof of this theorem that appeared in [4] only dealt with a single (rather
neat) case and did not provide details as to how one might alter the proof to
account for the other cases. We present here a proof of Theorem 4 that uses the
same basic idea as the proof in [4], but we do so more rigorously in an effort to
eliminate any confusion regarding its validity.

Proof. This proof contains similar ideas to those found in the proof in [4], though
it allows for v1 to be chosen to be some vector other than ~01. First partition F

n
2

into 2n−1 pairs {rm, sm} so that v1 = rm + sm for m = 1, . . . , 2n−1. (If n = 2, set
p1 = r1, q1 = s1, p2 = r2, q2 = s2, and we are done.) Observe that for j = 2n−2,
we may express vj+1 as 2n−1 distinct sums, so set pj+1, qj+1, pj+2, qj+2 according
to the following cases.

1. vj+1 = ra + rb, a 6= b. Then we have

vj+2 = vj+1 = ra + rb = (v1 + sa) + (v1 + sb) = sa + sb,

so let pj+1 = ra, qj+1 = rb, pj+2 = sa, qj+2 = sb.

2. vj+1 = sa + sb, a 6= b. Then, similarly to the previous case, we have

vj+2 = vj+1 = sa + sb = (v1 + ra) + (v1 + rb) = ra + rb,

so let pj+1 = sa, qj+1 = sb, pj+2 = ra, qj+2 = rb.
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3. vj+1 = ra + sb, a 6= b. Then we have

vj+2 = vj+1 = ra + sb = (v1 + sa) + (v1 + rb) = sa + rb,

so let pj+1 = ra, qj+1 = sb, pj+2 = sa, qj+2 = rb.

4. vj+1 = ra + sa. Then, for some b 6= a, we have

vj+2 = vj+1 = ra + sa = rb + sb,

so let pj+1 = ra, qj+1 = sa, pj+2 = rb, qj+2 = sb.

In all cases, then, we have {pj+1, qj+1, pj+2, qj+2} = {ra, sa, rb, sb}, a 6= b. (If
n = 3, we are done.)

Consider now the next pair of equal vectors, vj+3, vj+4. As in the case of
vj+1 = vj+2, we may express vj+3 as 2n−1 distinct sums. Here, as many as
four sums may contain one of the vectors ra, sa, rb, sb, so since 2n−1 − 4 > 0, for
n ≥ 4, by the same process as above, we may assign pj+3, qj+3, pj+4, qj+4 so that
{pj+3, qj+3, pj+4, qj+4} = {rc, sc, rd, sd}, where c and d are distinct and are not
equal to a or b. (If n = 4, we are done.)

The next pair of equal vectors, vj+5, vj+6 can be again expressed as 2n−1 dis-
tinct sums, but this time as many as 8 sums may contain one of ra, sa, rb, sb, rc, sc,
rd, sd. In a similar manner to the above, since 2n−1 − 8 > 0 for n ≥ 5, we may
assign pj+5, qj+5, pj+6, qj+6 so that {pj+5, qj+5, pj+6, qj+6} = {re, se, rf , sf} for e
and f distinct and not equal to a, b, c or d.

After each assignment of the pairs {pk, qk} and {pk+1, qk+1}, we have 4
fewer “available” sums for the remaining pairs of vectors. The last pair of
vectors for which we need to assign pk, qk is v2n−1

−1 = v2n−1 . By this time,
we have 2n−1 − 4 · (2n−3 − 1) possible sums not containing vectors used in
a previous partitioning step, since each of the 2n−3 pairs after the first re-
duces the number of “available” sums by 4. Now 2n−1 − 4 · (2n−3 − 1) =
2n−1 − 2n−1 + 4 > 0, so it is still possible to set p2n−1

−1, q2n−1
−1, p2n−1 , q2n−1

so that
{

p2n−1
−1, q2n−1

−1, p2n−1 , q2n−1

}

= {ry, sy, rz, sz} for y and z distinct and
not equal to any of the a, b, c, d, e, f, . . . used previously.

There remain 2n−2 pairs {rk, sk} such that v1 = rk + sk that have not yet
been assigned as some pair {pℓ, qℓ}. So let each pair {pm, qm} for m = 1, . . . , 2n−2

be given by one of the pairs {rk, sk}. We have now partitioned F
n
2 as desired.

The collection of techniques and constructions given here allows us to make
substantial progress on the Odd Tree Conjecture, but most graphs cannot be
obtained using one of the operations or constructions we have given. For example,
the graph in Figure 16 is not a caterpillar, nor can it be obtained via either the
splicing method we proposed or the method that arises from partitioning F

n
2 in

any way.
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Figure 16. A tree that cannot be obtained via the preceding methods.

3. Additional Results Involving Bipartite Graphs

In addition to pursuing the proof of the Odd Tree Conjecture, we also studied
a technique presented in [4] that involves joining four copies of a set-sequential
bipartite graph (not necessarily an odd tree) in such a way as to produce a larger
graph that is set-sequential. This raises the following question. Given four copies
of a set-sequential bipartite graph, how can we join them by three single edges
so that the resulting graph is set-sequential?

Lemma 3.1. Let G be a set-sequential graph on n vertices that is either a cater-

pillar or a bipartite graph with at least two vertices of degree 1 in each color class.

Let G1, G2, G3, G4 be copies of G. In each Gi, choose two pendent vertices vi and
ui, i = 1, 2, 3, 4, that are in the same color class. The graph constructed by adding

the edges (v1, v2), (u2, u3), and (v3, v4) is set-sequential.

Proof. Note that caterpillars are bipartite graphs, so we may express G as a
bipartite graph with color classes X and Y . Take four copies G1, G2, G3, G4 of
G with color classes X1, Y1, X2, Y2, X3, Y3, X4, Y4, respectively. We must extend
the (n+1)-dimensional vectors labeling G by two digits so they are of the proper
dimension to form a set-sequential labeling for the larger graph consisting of
G1, G2, G3, G4 with three edges added. Extend the vectors in X1 and Y1 by 00,
the vectors in X2 and Y4 by 11, the vectors in X3 and Y2 by 10, and the vectors
in X4 and Y3 by 01. Note that these extensions produce all nonzero vectors of
dimension (n + 3) with the exceptions of ~001, ~010, and ~011. The edge (v1, v2)
will be labeled with ~011, the edge (u2, u3) will be labeled with ~001, but the edge
(v3, v4) will also be labeled with ~011, which does not fulfill the requirements for a
set-sequential labeling. We may alter this labeling to be set-sequential, however.
The vector labeling v3 ends in 10, and the vector labeling its pendent edge ends in
11. Since v3 is a leaf, we may “swap” the last two digits of these vectors with each
other without violating the sum condition that is necessary for a set-sequential
labeling. Now then the edge (v3, v4) is labeled with ~010, so the graph consisting
of G1, G2, G3, G4 together with the three indicated edges is has a labeling and so
is set-sequential.

We give now a modification of Theorem 3 in [4], imposing two extra conditions
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that allow us to present a more complete proof of the theorem than was originally
given in [4].

Theorem 3.2. Let G be a strongly set colorable bipartite graph with color classes

X, Y and edge set E. Let G1, G2, G3, G4 be four disjoint copies of G with color

classes X1, Y1, X2, Y2, X3, Y3, X4, Y4 and edge sets E1, E2, E3, E4, respectively. Let

G0 denote the graph obtained from the disjoint union of the graphs G1, G2, G3, G4

by adding edges e1, e2, e3 with the following four properties:

1. each ei joins two copies of the same vertex;

2. one of the following three possibilities occurs:

(a) the edges join X1 and X2, X2 and X3, X3 and X4, respectively; or

(b) the edges join X1 and Y2, X2 and Y3, X3 and Y4, respectively; or

(c) the edges join X1 and X2, Y2 and Y4, Y1 and Y3, respectively;

3. there are two pendent vertices in G, namely u1, u2, u3, u4, v1, v2, v3, v4 in cor-

responding G1, G2, G3, G4;

4. all the edges are joining leaves in partite sets.

Then G0 is strongly set colorable.

Proof. For Case (a), consider extensions 00 to X1, Y1, 11 on X2, Y4, 10 on Y2, Y3
and 01 on X3, X4. This is a set-sequential labeling for all vertices and edges
except for the edge from X3 to X4. As in the proof of Lemma 3.1, switch the
extension of the vector labeling the vertex with connecting edges to X3 in X4

with the extension of the vector labeling its pendent edge in X4.
For Case (b), consider extensions 00 to X1, Y1, 11 on X2, Y4, 10 on Y2, Y3 and

01 on X3, X4. This is a set-sequential labeling for all vertices and edges except
for the edge from X3 to Y4. As before, switch the extension of the vector labeling
the vertex with connecting edges to X3 in Y4 with the extension of the vector
labeling its pendent edge in Y4.

For Case (c), consider extensions 00 to X1, Y1, 11 on X2, Y4, 10 on Y2, Y3 and
01 on X3, X4. This is a set-sequential labeling for all vertices and edges except
the edge from Y2 to Y4. Again, switch the extension of the vector labeling the
vertex with connecting edges to Y2 in Y4 with the extension of the vector labeling
its edge pendent in Y2.

4. Conclusion

One object of immediate interest is resolving the Pairing Conjecture. With that
proof in hand, we would then have found a large class of odd trees that is set-
sequential. This combined with our results on caterpillars and splicing small
trees together represents substantial progress toward the Odd Tree Conjecture.
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As explained at the end of Section 2, though, this set of constructions does
not prove the Odd Tree Conjecture in its entirety. Further study may produce
additional constructions and techniques that would allow us to join smaller trees
together in ways that preserve both oddness and set-sequentialness. This may
still fall short of proving the Odd Tree Conjecture as presently stated, but it is
thought that larger classes of set-sequential trees may be obtained in this manner.
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