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Abstract

We say that two n-vertex hypergraphs H1 and H2 pack if they can
be found as edge-disjoint subhypergraphs of the complete hypergraph Kn.
Whilst the problem of packing of graphs (i.e., 2-uniform hypergraphs) has
been studied extensively since seventies, much less is known about pack-
ing of k-uniform hypergraphs for k ≥ 3. Naroski [Packing of nonuniform

hypergraphs - product and sum of sizes conditions, Discuss. Math. Graph
Theory 29 (2009) 651–656] defined the parameter mk(n) to be the smallest
number m such that there exist two n-vertex k-uniform hypergraphs with
total number of edges equal to m which do not pack, and conjectured that
mk(n) = Θ(nk−1). In this note we show that this conjecture is far from
being truth. Namely, we prove that the growth rate of mk(n) is of order
nk/2 exactly for even k’s and asymptotically for odd k’s.
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1. Introduction

By a hypergraph H we mean a pair (V (H), E(H)) where V (H) is a finite set
(elements of V (H) are called vertices) and E(H) is a family of subsets of V (H)
(members of E(H) are called edges). A hypergraph is complete if its set of edges
consists of all subsets of V (H). The complete hypergraph on n vertices is denoted
Kn. Furthermore, we use the term k-uniform hypergraph to refer to hypergraphs
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with all edges consisting of exactly k vertices. Let H1 and H2 be two hypergraphs
such that |V (H1)| = |V (H2)| = n.

We say that H1 and H2 pack into Kn (in short pack) if H1 and H2 can be
found as edge-disjoint subhypergraphs in Kn. Clearly, the more edges H1 and
H2 have, the harder is to pack them. Hence a natural question is to determine
the bound on the common number of edges that guarantees the packing property
of any two hypergraphs satisfying the bound. To this end let us define mk(n) to
be the least integer m such that there exist two n-vertex k-uniform hypergraphs
H1 and H2 with |E(H1)|+ |E(H2)| = m which do not pack. It is trivial that

m1(n) = n+ 1

and it was shown by Sauer and Spencer [9] that

m2(n) =

⌈

3

2
n

⌉

− 1,

(see also, among others, [1, 2, 4, 8] for generalizations). For k ≥ 3, Naroski [5]
proved that

mk(n) ≥ 2

√

(

n

k

)

,(1)

and conjectured that mk(n) = Θ(nk−1) (earlier Piĺsniak and Woźniak [7] con-
jectured the same for k = 3). It turns out that this is far from being truth.
In this note we establish the growth order of mk(n) exactly for even k’s, and
asymptotically for odd k’s by proving the following theorem.

Theorem 1. If k is even then

mk(n) ≤

(

n− k/2

k/2

)

+

(

n+kk/2−1
k/2

)

(

k
k/2

) .

If k is odd then, as n tends to infinity,

mk(n) ≤

(

kk−1 + 1

(k − 1)!
+ o(1)

)

n(k2−k−1)/(2k−3).

Note that for k = 2, the bound agrees with the result of Sauer and Spencer.

2. Proof of Theorem 1

For any positive integer n let [n] = {1, . . . , n}. In the proof we will use the
following famous results, one very old and one relatively new.
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Theorem 2 (Chinese Remainder Theorem [6]). Let ai, bi, i = 1, . . . , r, be any

integers. If ai ≡ aj mod gcd(bi, bj), then there exists exactly one 0 ≤ x <
lcm(b1, . . . , br) satisfying

x ≡ ai mod bi i = 1, . . . , r.

A t-(n, k, λ)-design on a set X of size n is a collection T of k-element subsets
ofX such that every t elements ofX are contained in exactly λ sets of T . Recently
Keevash [3] proved the following deep existence theorem.

Theorem 3 ([3]). A t-(n, k, λ)-design on a set X exists if and only if for every

0 ≤ i ≤ t− 1

(

k − i

t− i

)

divides λ

(

n− i

t− i

)

,(2)

apart from a finite number of exceptional n given fixed k, t, λ.

In the sequel we will identify the design with the hypergraph (X,T ). Note
that if (X,T ) is a t-(n, k, λ)-design, then

|T | =
λ
(

n
t

)

(

k
t

)(3)

since each t-subset of X is contained in exactly λ edges (i.e., elements of T ), and
each such edge is counted

(

k
t

)

many times.

Now we are ready to give a proof of Theorem 1.

Proof of Theorem 1. We are going to construct two n-vertex hypergraphs H1

and H2 which do not pack and have few edges. Let V (H1) = V (H2) = [n].

Consider first the case when k is even, i.e., k = 2t. Then let

E(H1) =

{

e ∈

(

[n]

k

)

: [t] ⊂ e

}

.

If n satisfies the divisibility conditions (2), then let

H2 be a t-(n, k, 1)-design.

Since [t] forms an edge with every t-subset of V (H1) \ [t] and every t-subset of
V (H2) is contained in exactly one edge of H2, it is not possible to find edge
disjoint copies of H1 and H2 in Kn. Hence H1 and H2 do not pack. In the case
when (2) is not satisfied, we have to modify a bit the construction of H2. First
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we will find the smallest possible number x such that n + x satisfies (2) with n
replaced by n+ x. Note that

(

k − i

t− i

) ∣

∣

∣

∣

(

n+ x− i

t− i

)

⇔
(n+ x− i)!

(t− i)!(n+ x− t)!
= p

(k − i)!

(t− i)!(k − t)!

⇔ (n+ x− i) · · · (n+ x− t+ 1) = p(k − i) · · · (k − t+ 1)

for some integer p. Hence, in order to assure that n + x satisfies (2) it suffices
that

k − i|n+ x− i for i = 0, . . . , t− 1.(4)

In other words

x ≡ i− n mod (k − i) for i = 0, . . . , t− 1.(5)

Note that if g|(k − i) and g|(k − j), then g|(i− j). Thus, i− n ≡ j − n mod g.
Hence, by the Chinese Remainder Theorem, there exist

x ≤ kt − 1(6)

that satisfies (4). Thus, by Theorem 3, as H ′
2 we can take a t-(n+ x, k, 1)-design

on the set [n+x]. In order to construct H2 we replace each k-subset e′ of H ′
2 such

that e′ 6⊂ [n] by a k-set e = (e′ ∩ [n]) ∪ f where f is an arbitrary |e′ \ [n]|-subset
of [n] \ e′. Thus

|E(H2)| = |E(H ′
2)| and(7)

each t-subset of V (H2) is contained in at least one edge of H2.(8)

Hence, H1 and H2 do not pack. Furthermore, by (7), (6) and (3), we have

|E(H1)|+ |E(H2)| ≤

(

n− k/2

k/2

)

+

(

n+kk/2−1
k/2

)

(

k
k/2

) ,

which proves the statement in the case when k is even.
In the case when k is odd one can obtain the bound mk(n) = O(n(k+1)/2) in

a similar way. However, we can do better via a different construction. Let

s = ⌊n(k−2)/(2k−3)⌋(9)

and a, b be non-negative integers satisfying

n = a⌊n/s⌋+ b⌈n/s⌉, a+ b = s.(10)
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Define

E(H1) =

{

e ∈

(

[n]

k

)

: |e ∩ [s(k − 2) + 1]| ≥ k − 1

}

.

By a similar reasoning as in the construction of H2, we can deduce the existence
of a (k− 1)-(⌈n/s⌉+x, k, 1)-design with x < kk−1. We identify the design with a
hypergraph H ′ on ⌈n/s⌉+x vertices and then modify it (again in the same way as
before) to get a ⌊n/s⌋-vertex hypergraph H⌊n/s⌋ and a ⌈n/s⌉-vertex hypergraph
H⌈n/s⌉ satisfying

|E(H)| = |E(H ′)| and(11)

each (k − 1)-subset of V (H) is contained in at least one edge of H,(12)

where H ∈
{

H⌊n/s⌋, H⌈n/s⌉

}

. Now let

H2 = aH⌊n/s⌋ + bH⌈n/s⌉,

that means H2 is a disjoint union of a hypergraphs H⌊n/s⌋ and b hypergraphs
H⌈n/s⌉. By a Pigeonhole Principle, the subset [s(k − 2) + 1] of the vertex set of
every copy of H1 in Kn intersects the vertex set of some H⌊n/s⌋ or H⌈n/s⌉ in every
copy of H2 in Kn in at least k−1 vertices. Let I be such an intersection for fixed
copies of H1 and H2 in Kn. By the construction of H1, every k-subset containing
I is an edge of H1, while by (11), at least one k-subset containing I is an edge of
H2. Hence, the copies have at least one common edge. Thus, H1 and H2 do not
pack. Furthermore, by (9), (3) and (6),

|E(H1)|+ |E(H2)| ≤

(

s(k − 2) + 1

k − 1

)

(n− s(k − 2)− 1) + s

(

⌈n/s⌉+ x− 1

k − 1

)

≤
(ks)k−1

(k − 1)!
n+ s

(n/s+ x)k−1

(k − 1)!

=
kk−1 + 1

(k − 1)!
n(k2−k−1)/(2k−3) + o

(

n(k2−k−1)/(2k−3)
)

.

This proves the statement in the case when k is odd.
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[7] M. Piĺsniak and M. Woźniak, A note on packing of two copies of a hypergraph,
Discuss. Math. Graph Theory 27 (2007) 45–49.
https://doi.org/10.7151/dmgt.1343
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