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Abstract

If H = (V, E) is a hypergraph, its edge intersection hypergraph EI(H) =
(V, EEI) has the edge set EEI = {e1∩ e2 | e1, e2 ∈ E ∧ e1 6= e2 ∧ |e1∩ e2| ≥
2}. Besides investigating several structural properties of edge intersection
hypergraphs, we prove that all trees but seven exceptional ones are edge
intersection hypergraphs of 3-uniform hypergraphs.

Using the so-called clique-fusion, as a conclusion we obtain that nearly
all cacti are edge intersection hypergraphs of 3-uniform hypergraphs, too.
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1. Introduction and Basic Definitions

All hypergraphs H = (V (H), E(H)) and (undirected) graphs G = (V (G), E(G))
considered in the following may have isolated vertices but no multiple edges or
loops. A hypergraph H = (V, E) is k-uniform if all hyperedges e ∈ E have the
cardinality k. Trivially, any 2-uniform hypergraph H is a graph. The degree d(v)
(or dH(v)) of a vertex v ∈ V is the number of hyperedges e ∈ E being incident to
the vertex v. H is linear if any two distinct hyperedges e, e′ ∈ E have at most one
vertex in common. In standard terminology we follow Berge [1].
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If H = (V, E) is a hypergraph, its edge intersection hypergraph EI(H) =
(V, EEI) has the same vertex set V as the original hypergraph H and the edge
set EEI = {e1 ∩ e2 | e1, e2 ∈ E ∧ e1 6= e2 ∧ |e1 ∩ e2| ≥ 2}. Our motivation for
defining EI(H) with V (EI(H)) = V = V (H) results from certain applications; as
an example a communication system will be described below. (Obviously, another
natural approach would be to delete those vertices v ∈ V which become isolated
in the edge intersection hypergraph.)

For k ≥ 1, the k-th iteration of the EI-operator is defined to be EIk(H) :=
EI(EIk−1(H)), where EI0(H) := H. Moreover, the EI-number kEI(H) is the
smallest k ∈ IN such that E(EIk(H)) = ∅.

Let e = {v1, v2, . . . , vl} ∈ EEI be a hyperedge in EI(H). By definition, in H
there exist (at least) two hyperedges e1, e2 ∈ E(H) both containing all the vertices
v1, v2, . . . , vl, more precisely {v1, v2, . . . , vl} = e1 ∩ e2. In this sense, the hyper-
edges of EI(H) describe sets {v1, v2, . . . , vl} of vertices having a certain,“strong”
neighborhood relation in the original hypergraph H.

As an application, we consider a hypergraph H = (V, E) representing a
communication system. The vertices v1, v2, . . . , vn ∈ V and the hyperedges
e1, e2, . . . , em ∈ E correspond to n people and to m (independent) communication
channels, respectively. A group {vi1 , vi2 , . . . , vik} ⊆ V of people can communicate
in a conference call if and only if their members use one and the same communi-
cation channel, i.e., there is a hyperedge e ∈ E such that {vi1 , vi2 , . . . , vik} ⊆ e.
If we ask whether or not vi1 , vi2 , . . . , vik can continue to communicate in a con-
ference call after the breakdown of an arbitrarily chosen communication channel,
then this question is equivalent to the problem of the existence of a hyperedge
eEI ∈ EEI in the edge intersection hypergraph EI(H) containing all these vertices,
i.e., {vi1 , vi2 , . . . , vik} ⊆ eEI.

Note that our notion differs significantly from the well-known notions of the
intersection graph (cf. [5]) or edge intersection graph (cf. [8]) G = (V (G), E(G))
of linear hypergraphs H = (V (H), E(H)), since there we have V (G) = E(H).

In [2, 4] and [3] the same notation is used for so-called edge intersection graphs

of paths, but there the authors consider paths in a given graph G and the vertices
of the resulting edge intersection graph correspond to these paths in the original
graph G.

Obviously, for certain hypergraphs H the edge intersection hypergraph EI(H)
can be 2-uniform; in this case EI(H) is a simple, undirected graph G. In order
to delimit our notion from the intersection graphs or edge intersection graphs
mentioned above, we consistently use our notion “edge intersection hypergraph”
also when this hypergraph is 2-uniform.

First of all, in Section 2 we investigate structural properties of edge intersec-
tion hypergraphs.

To answer the question, which hypergraphs are edge intersection hypergraphs,
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seems to be very difficult. As a first step, in Sections 3 and 5 we consider some
classes of 2-uniform edge intersection hypergraphs, i.e., graphs.

In Section 3, we will show that all but a few trees are edge intersection
hypergraphs of 3-uniform hypergraphs; the exceptional graphs have at most 6
vertices. Whereas the proofs for paths and stars are simple, in the case of arbitrary
trees we will make use of a special kind of induction. In the subsequent sections,
the characterization of the trees being edge intersection hypergraphs (see Theorem
6) will be used as a basis to enlarge our investigations to the class of cacti. A
simple, connected graph G = (V,E) is referred to as a cactus if and only if every
edge e ∈ E is contained in at most one cycle of G.

In Section 4 we introduce a powerful tool for the construction of edge inter-
section hypergraphs, the so-called clique-fusion.

At the beginning of Section 5, we describe a special decomposition of cacti
into trees and cycles. Note that Corollary 4 (see Section 2) and Theorem 6 char-
acterize the cycles and the cycle-free cacti, respectively, being edge intersection
hypergraphs of 3-uniform hypergraphs.

The circumference ci(G) of a graph G is the length of a longest cycle in G.
Using the clique-fusion, we prove that cacti, having either a circumference of at
least 5 or containing (in the decomposition mentioned above) a tree T being none
of the “forbidden trees” given in Theorem 6, are edge intersection hypergraphs of
3-uniform hypergraphs.

At the end of the introduction, let us mention a tool, which is useful for the
investigation of small examples. For this end let G = (V,E) and H = (V, E) be
a graph and a hypergraph, respectively, having one and the same vertex set V .
The verification of E(EI(H)) = E(G) can be done by hand or by computer, e.g.,
using the computer algebra system MATHEMATICA R© [10] with the function

EEI[eh_] := Complement[Select[Union[Flatten[Outer[

Intersection, eh, eh, 1], 1]], Length[#] > 1&], eh],

where the argument eh has to be the list of the hyperedges of H in the form
{{a, b, c}, . . . , {x, y, z}}. Then EEI[eh] provides the list of the hyperedges of
EI(H).

2. Some Structural Properties

Theorem 1. (i) For each linear hypergraph H = (V, E) with V /∈ E there is a

hypergraph H′ = (V, E ′) with EI(H′) = H.

(ii) Let H = (V, E) be a hypergraph containing e1, e2 ∈ E with |e1 ∩ e2| ≥ 2,
e1 6⊆ e2, e2 6⊆ e1 and H′ = (V, E ′) be a hypergraph with H = EI(H′). Then there

is an ẽ ∈ E \ {e1, e2} with e1 ∩ e2 ⊆ ẽ.
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(iii) Not every hypergraph H = (V, E) with V /∈ E is an edge intersection hyper-

graph of some hypergraph H′ = (V, E ′).

Proof. (i) Choosing E ′ = E ∪ {V } we have H = EI(H′).

(ii) There are vertices v1 ∈ e1 \ e2 and v2 ∈ e2 \ e1 and edges e′1, e
′′
1, e

′
2, e

′′
2 ∈ E ′

with e′1 ∩ e′′1 = e1 and e′2 ∩ e′′2 = e2. Clearly

∃ e1 ∈ {e′1, e
′′
1} : v2 /∈ e1 ∧ ∃e2 ∈ {e′2, e

′′
2} : v1 /∈ e2.

Without loss of generality let e1 = e′1, e
2 = e′2. Then

ẽ = e′1 ∩ e′2 ⊇ (e′1 ∩ e′′1) ∩ (e′2 ∩ e′′2) = e1 ∩ e2.

Hence ẽ ∈ E and e1 6⊆ ẽ, e2 6⊆ ẽ.

(iii) This follows from (ii); a minimal example is H = (V, E) with V =
{1, 2, 3, 4}, E = {{1, 2, 3}, {2, 3, 4}}.

In the introduction, we shortly discussed in which way the edge intersection
hypergraph EI(H) mirrors certain neighborhood relations between vertices of the
original hypergraph H. In this context, it is interesting that the Helly property
of the hypergraph H is hereditary if we go over to EI(H).

A hypergraph H = (V, E) has the Helly property (Berge [1]) if

∀E ′ ⊆ E : (∀e1, e2 ∈ E ′ : e1 ∩ e2 6= ∅) →
⋂

e′∈E ′

e′ 6= ∅.

Theorem 2. If H = (V, E) has the Helly property, then EI(H) = (V, EEI) has

this property, too.

Proof. Let EEI
S = {e1, . . . , et} ⊆ EEI with t ≥ 1 and ei ∩ ej 6= ∅ for i, j ∈

{1, . . . , t}. Clearly, for all i ∈ {1, . . . , t} there exists e′i, e
′′
i ∈ E such that ei = e′i∩e

′′
i

and e′i 6= e′′i . Let ES = {e′1, . . . , e
′
t, e

′′
1, . . . , e

′′
t }. By ei ∩ ej 6= ∅, for i, j ∈ {1, . . . , t},

we have ē ∩ ¯̄e 6= ∅ for arbitrary ē, ¯̄e ∈ ES .

The Helly property of H yields

∅ 6=
⋂

ē∈ES

ē = e′1∩· · ·∩e
′
t∩e

′′
1∩· · ·∩e

′′
t = (e′1∩e

′′
1)∩· · ·∩(e

′
t∩e

′′
t ) = e1∩· · ·∩et =

⋂

e∈EEI
S

e,

i.e., EI(H) has the Helly property.

From the definition of edge intersection hypergraphs it follows immediately
that for k ≥ 1

max
{

|e|
∣

∣ e ∈ E
(

EIk(H)
)}

< max
{

|e|
∣

∣ e ∈ E
(

EIk−1(H)
)}

.



Edge Intersection Hypergraphs 105

Hence the EI-number kEI(H) is well defined. In the following we determine the
edge intersection hypergraph and the EI-number kEI for some special classes
of hypergraphs. The strong d-uniform hypercycle Ĉd

n and the strong d-uniform

hyperpath P̂d
n both have the vertex set {v1, . . . , vn} and the edge sets

E(Ĉd
n) = {ei = {vi, vi+1, . . . , vi+d−1}

∣

∣ i = 1, . . . , n} (indices taken modulo n)

and

E(P̂d
n) = {ei = {vi, vi+1, . . . , vi+d−1}

∣

∣ i = 1, . . . , n− d+ 1}.

We consider only those strong d-uniform hypercycles Ĉd
n with n ≥ 2d − 1.

This condition implies that for different edges ei, ej ∈ E(Ĉd
n) the intersection is

empty or contains only vertices being consecutive on the cycle, i.e., ei ∩ ej =
{vs, vs+1, . . . , vs+t} for s = 1, . . . , n and t = 0, . . . , d−2 (indices taken modulo n).
For “small” cycles Ĉd

n with n < 2d−1 the edge intersection hypergraph is confusing
in the sense that it contains edges of other types, too, and the following structural
results, which are partly contained in the Bachelor Thesis [7] of a student of the
second author, are not true.

Theorem 3. Let Ĉd
n and P̂d

n be a strong d-uniform hypercycle and a strong d-

uniform hyperpath, respectively.

(i) EIk(Ĉd
n) = Ĉd−k

n ∪Ĉd−k−1
n ∪· · ·∪Ĉ2

n for d ≥ 3, n ≥ 2d−1 and k = 1, . . . , d−2.

(ii) kEI(Ĉd
n) = d− 1 for d ≥ 2 and n ≥ 2d− 1.

(iii) kEI(P̂d
n) =

{

d− 1 for d ≥ 2 and n ≥ 2d− 1,

n− d+ 1 for d ≥ 2 and n < 2d− 1.

Proof. (i) In strong d-uniform hypercycles Ĉd
n with n ≥ 2d − 1 there are in-

tersections of cardinalities at least two between the edges ei, ei+1, . . . , ei+d−2;
i = 1, . . . , n (indices taken modulo n). Hence EI(Ĉd

n) contains the following
edges (see Figure 1).

ej,i = ei ∩ ei+j = {vi+j , . . . , vi+d−1},

with i = 1, . . . , n and j = 1, . . . , d − 2 (indices taken modulo n). This yields
EI(Ĉd

n) = Ĉd−1
n ∪ Ĉd−2

n ∪ · · · ∪ Ĉ2
n, i.e., by using the EI-operator the maximum

edge cardinality decreases by one. For the k-th iteration we obtain

EIk(Ĉd
n) = Ĉd−k

n ∪ · · · ∪ Ĉ2
n, k = 1, . . . , d− 2.

(ii) The case d = 2 is trivial; for d ≥ 3 it follows with (i) that EId−2(Ĉd
n) =

Ĉ2
n = Cn and hence kEI(Ĉd

n) = d− 1.
(iii) The result is trivial for d = 2 in both cases; in the following we assume

d ≥ 3.
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v4

v5

v6

v7

v8

v9

v10

Ĉ4
10 EI1(Ĉ4

10) = Ĉ3
10 ∪ Ĉ2

10

Figure 1. The strong 4-uniform hypercycle Ĉ4

10
and the edge intersection hypergraph

EI1(Ĉ4

10
). Obviously, EI2(Ĉ4

10
) = Ĉ2

10
= C10 and E(EI3(Ĉ4

10
)) = ∅.

For n ≥ 2d − 1 we have |e1 ∩ en−d+1| ≤ 1, i.e., the intersection of the first
edge and of the last edge of P̂d

n does not generate an edge in EI(P̂d
n). The edges

of EI(P̂d
n) are generated by the following intersections (see Figure 2).

e1,i = ei ∩ ei+1 = {vi, vi+1, . . . , vi+d−1} ∩ {vi+1, vi+2, . . . , vi+d}

= {vi+1, . . . , vi+d−1} for i = 1, . . . , n− d,

e2,i = ei ∩ ei+2 = {vi, vi+1, . . . , vi+d−1} ∩ {vi+2, vi+3, . . . , vi+d+1}

= {vi+2, . . . , vi+d−1} for i = 1, . . . , n− d− 1,
...

ed−2,i = ei ∩ ei+d−2 = {vi, vi+1, . . . , vi+d−1} ∩ {vi+d−2, vi+d−1, . . . , vi+d+1}

= {vi+d−2, vi+d−1} for i = 1, . . . , n− 2d+ 3.

Hence EI(P̂d
n) has edges of cardinalities d− 1, d− 2, . . . , 2 and the edge set

E(EI(P̂d
n))

= {e1,1, . . . , e1,n−d, e2,i, . . . , e2,n−d−1, ed−2,1, . . . , ed−2,n−2d+3}

= E(P̂d−1
n ) \ {{v1, . . . , vd−1}, {vn−d+2, . . . , vn}}

∪ E(P̂d−2
n ) \ {{v1, . . . , vd−2}, {v2, . . . , vd−1}, {vn−d+2, . . . , vn−1},{vn−d+3, . . . , vn}}

∪ · · · ∪ E(P̂2
n) \ {{v1, v2}, . . . , {vd−2, vd−1}, {vn−d+2, vn−d+3}, . . . , {vn−1, vn}}.

The reapplication of the EI-operator yields a hypergraph without the edges
of maximum cardinality (d− 1), while all other edges of EI(P̂d

n) remain (because
they are contained in the edges of cardinality (d− 1)). After (d− 2) iterations we
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

P̂4
10

EI1(P̂4
10)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

EI2(P̂4
10)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

EI3(P̂4
10)

Figure 2. The strong 4-uniform hyperpath P̂4

10
and the corresponding edge intersection

hypergraphs.

obtain EId−2(P̂d
n) = Pn−2d+4∪ I2d−4, where It denotes a set of t isolated vertices;

hence kEI(P̂d
n) = d− 1.

For n < 2d−1 we have |e1∩ en−d+1| ≥ 2, i.e., the intersection of the first and

the last edge of P̂d
n generates in EI(P̂d

n) the edge of minimum cardinality (2d−n).

All edges of EI(P̂d
n) are generated by the following intersections (see Figure 3).

e1,i = ei ∩ ei+1 = {vi, vi+1, . . . , vi+d−1} ∩ {vi+1, vi+2, . . . , vi+d}

= {vi+1, . . . , vi+d−1} for i = 1, . . . , n− d,

e2,i = ei ∩ ei+2 = {vi, vi+1, . . . , vi+d−1} ∩ {vi+2, vi+3, . . . , vi+d+1}

= {vi+2, . . . , vi+d−1} for i = 1, . . . , n− d− 1,
...

en−d−1,i = ei ∩ ei+n−d−1 = {vi, vi+1, . . . , vi+d−1} ∩ {vi+n−d−1, . . . , vi+n−2}

= {vi+n−d−1, . . . , vi+d−1} for i = 1, 2,

en−d,1 = e1 ∩ en−d+1 = {v1, v2, . . . , vd} ∩ {vn−d+1, . . . , vn}

= {vn−d+1, . . . , vd}.
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e1

e2

e3

v1 v2 v3 v4 v5 v6 v7 v1 v2 v3 v4 v5 v6 v7

P̂5
7 EI1(P̂5

7 )

v1 v2 v3 v4 v5 v6 v7 v1 v2 v3 v4 v5 v6 v7

EI2(P̂5
7 )

EI3(P̂5
7 )

Figure 3. The strong 5-uniform hyperpath P̂5

7
and the corresponding edge intersection

hypergraphs.

Hence EI(P̂d
n) has edges of cardinalities d− 1, d− 2, . . . , 2d− n and the edge

set

E(EI(P̂d
n)) = {e1,1, . . . , e1,n−d, e2,1, . . . , e2,n−d−1, en−d−1,1, en−d−1,2, en−d,1}

= E(P̂d−1
n ) \ {{v1, . . . , vd−1}, {vn−d+2, . . . , vn}}

∪ E(P̂d−2
n ) \ {{v1, . . . , vd−2}, {v2, . . . , vd−1}, {vn−d+2, . . . , vn−1},

{vn−d+3, . . . , vn}}

∪ · · · ∪ E(P̂2d−n
n ) \ {{v1, . . . , v2d−n}, . . . , {vn−d, . . . , vd−1},

{vn−d+2, . . . , vd+1}, . . . , {v2(n−d)+1, . . . , vn}}.

Again, the reapplication of the EI-operator yields a hypergraph without the edges
of maximum cardinality (d − 1), while all the other edges remain. After (n − d)
iterations we obtain EIn−d(P̂d

n) = (V (P̂d
n), {ẽ}), where ẽ = {vn−d+1, . . . , vd} with

cardinality |ẽ| = 2d − n is the only hyperedge in EIn−d(P̂d
n). Hence kEI(P̂d

n) =
n− d+ 1.

For n ≥ 5, d = 3 and k = 1, Theorem 3(i) provides the following.

Corollary 4. For n ≥ 5 the cycle Cn is an edge intersection hypergraph of a

3-uniform hypergraph, namely Cn = EI(Ĉ3
n).

Berge [1] generalized the complete graph Kn by the definition of the complete

d-uniform hypergraph Kd
n as follows

V (Kd
n) = {v1, . . . , vn} , E(Kd

n) = {T ⊆ V (Kd
n)

∣

∣ |T | = d}.

Theorem 5. Let Kd
n be a complete d-uniform hypergraph with n− 1 ≥ d ≥ 3.

(i) EIk(Kd
n) = Kd−k

n ∪ Kd−k−1
n ∪ · · · ∪ Ktk

n for 1 ≤ k ≤ d − 2, where tk =
max{2, 2k(d− n) + n} for 1 ≤ k ≤ d− 2.

(ii) kEI(Kd
n) = d− 1 for d ≥ 2.
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Proof. (i) The intersections (with cardinality of a least two) of edges in Kd
n

are all subsets T ⊆ V (K)dn with cardinalities in the range d − 1 ≥ |T | ≥ t1 =
max{2, 2d− n}; hence

EI(Kd
n) = Kd−1

n ∪ Kd−2
n ∪ · · · ∪ Kt1

n .

Using induction, the reapplication of the EI-operator to EIk(Kd
n) yields all sub-

sets T ⊆ V (Kd
n) of cardinalities in the range

d− (k + 1) ≥ |T | ≥ max{2, 2(2k(d− n) + n)− n} = max{2, 2k+1(d− n) + n}.

(ii) From (i) we know that EId−2(Kd
n) = K2

n = Kn, hence kEI(Kd
n) = d−1.

3. Trees

In the following, for the trees up to 8 vertices we often use the notations T1, T2,
. . . , T48 corresponding to [6]. Moreover, for brevity we will conveniently write ij
instead of {i, j} and ijk instead of {i, j, k} for edges and hyperedges, respectively.

The main result of the section is that all but seven exceptional trees are
edge intersection hypergraphs of 3-uniform hypergraphs. The exceptional trees
have at most 6 vertices, namely the paths Pn with n ∈ {2, 3, 4, 5, 6} vertices
and the trees T7 and T12 with 5 and 6 vertices, respectively. In detail, T7 =
(V = {v1, v2, . . . , v5}, E = {{v1, v2}, {v2, v3}, {v3, v4}, {v3, v5}}) and T12 = (V =
{v1, v2, . . . , v6}, E = {{v1, v2}, {v2, v3}, {v3, v4}, {v2, v5}, {v5, v6}}) (see Figure 4).

v1

v2

v3

v4v5

v1

v2

v5 v3

v4v6

T7 : T12 :

Figure 4. Two exceptional trees.

Theorem 6. All trees but T2 = P2, T3 = P3, T5 = P4, T8 = P5, T14 = P6, T7
and T12 are edge intersection hypergraphs of a 3-uniform hypergraph H.

The proof will be done by induction. The induction basis includes the inves-
tigation of all 48 trees having at most 8 vertices (see Lemmas 7–9 below). Note
that this set of trees contains the seven exceptional cases mentioned above.

The remaining part of the section consists of the inductive step of the proof.
In the inductive step we will make use of the deletion of a (shortest) so-called leg

in a tree.
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Proof of Theorem 6.

Induction basis.

Above all, for two simple classes of trees, namely paths and stars, we easily
obtain a first result.

Lemma 7. (i) For n ≥ 3, the star K1,n is an edge intersection hypergraph of a

3-uniform hypergraph.

(ii) For n = 1 and for n ≥ 7, the path Pn is an edge intersection hypergraph of a

3-uniform hypergraph.

Proof. (i) Let K1,n = (V,E) with V ={1, 2, . . . , n, n+1}, E={{1, 2}, {1, 3}, . . . ,
{1, n}, {1, n + 1}} and H = (V, E) with E = {{1, 2, 3}, {1, 3, 4}, . . . , {1, n, n +
1}, {1, n+ 1, 2}}. Then K1,n = EI(H).

(ii) Let n ≥ 7 and Pn = P̂2
n = (V,E); for simplicity we identify the vertices

vi ∈ V with their indices: vi = i. With H = (V, E), where E = {{1, 2, 3}, {2, 3, 4},
. . . , {n− 2, n− 1, n}, {1, 2, n− 2}, {n− 1, n, 3}}, we have Pn = EI(H).

Now we discuss the seven exceptional trees.

Lemma 8. T2 = P2, T3 = P3, T5 = P4, T8 = P5, T14 = P6, T7 and T12 are not

edge intersection hypergraphs of a 3-uniform hypergraph.

Proof. In the following, we give the most effortful proofs for P6, T7 and T12,
respectively. All other cases can be shown in a similar, but easier way.

(P6) Note that we have E(P6) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}. For any
graph G, to generate the edges of G = EI(H), in H we need only hyperedges e
which contain at least two of the adjacent vertices of G. Such hyperedges will be
called useful hyperedges.

In the present case, we have G = P6 and a useful hyperedge e has to fulfil
{i, i+1} ⊂ e, where i ∈ {1, 2, . . . , 5}. Therefore, the useful hyperedges which may
occur in H = (V, E) are the following.

123, 124, 125, 126 — to generate 12 in P6;
234, 235, 236 — to generate 23 (should the occasion arise, in connection with
123);
134, 345, 346 — to generate 34 (. . . with 234);
145, 245, 456 — to generate 45 (. . . with 345);
156, 256, 356 — to generate 56 (. . . with 456).

Clearly, each of the edges {i, i + 1} in P6 is contained in exactly four useful
hyperedges and at least two of these hyperedges have to appear in H to generate
{i, i+ 1} in EI(H) = P6.
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By case distinction, we discuss the possible combinations of useful hyperedges
in H and will obtain a contradiction (abbreviated by the symbol  ) in every case.
We have six possibilities to generate 12 ∈ E(EI(H)) = E(P6).

(a) If 123, 124 ∈ E , then 134 /∈ E (otherwise 13 ∈ E(P6)  ) and 234 /∈ E
(otherwise 24 ∈ E(P6)  ). Therefore, 345, 346 ∈ E in order to generate 34 ∈
E(P6). On the other hand, 145 /∈ E (otherwise 14 ∈ E(P6)  ) and 245 /∈ E
(otherwise 24 ∈ E(P6)  ). Hence, 456 ∈ E in order to generate 45 ∈ E(P6). This
includes 346 ∩ 456 = 46 ∈ E(EI(H)) = E(P6)  .

(b) If 123, 125 ∈ E , then 145 /∈ E (otherwise 15 ∈ E(P6)  ) and 245 /∈ E
(otherwise 25 ∈ E(P6)  ). Therefore, 345, 456 ∈ E in order to generate 45 ∈
E(P6). On the other hand, 156 /∈ E (otherwise 15 ∈ E(P6)  ) and 256 /∈ E
(otherwise 25 ∈ E(P6)  ). Hence, 356 ∈ E in order to generate 56 ∈ E(P6). This
includes 345 ∩ 356 = 35 ∈ E(EI(H)) = E(P6)  .

(c) If 123, 126 ∈ E , then 156 /∈ E (otherwise 16 ∈ E(P6)  ) and 256 /∈ E
(otherwise 26 ∈ E(P6)  ). Therefore, 356, 456 ∈ E in order to generate 56 ∈
E(P6). On the other hand, 134 /∈ E (otherwise 13 ∈ E(P6)  ), 345 /∈ E (otherwise
35 ∈ E(P6)  ) and 346 /∈ E (otherwise 46 ∈ E(P6)  ). Hence, 34 /∈ E(EI(H)) =
E(P6)  .

(d) If 124, 125 ∈ E , then 123 /∈ E (because of (a), (b)), 234 /∈ E (otherwise
24 ∈ E(P6)  ) and 235 /∈ E (otherwise 25 ∈ E(P6)  ). Consequently, 23 /∈
E(EI(H)) = E(P6)  .

(e) If 124, 126 ∈ E , then 123 /∈ E (because of (a), (c)), 234 /∈ E (otherwise
24 ∈ E(P6)  ) and 236 /∈ E (otherwise 26 ∈ E(P6)  ). Consequently, 23 /∈
E(EI(H)) = E(P6)  .

(f) If 125, 126 ∈ E , then 123 /∈ E (because of (b), (c)), 235 /∈ E (otherwise
25 ∈ E(P6)  ) and 236 /∈ E (otherwise 26 ∈ E(P6)  ). Consequently, 23 /∈
E(EI(H)) = E(P6)  .

This implies that 12 cannot be generated in EI(H) = P6  . Therefore, P6 is not
an edge intersection hypergraph of a 3-uniform hypergraph.

(T7) We investigate the graph T7 = (V,E) with E = {{1, 2}, {2, 3}, {3, 4}, {3, 5}}.
Here are the possible useful hyperedges in H = (V, E).

123, 124, 125 — to generate 12 in T7;
234, 235 — to generate 23 in T7 (should the occasion arise, in connection with
123);
134, 345 — to generate 34 in T7 (. . . with 234);
135 — to generate 35 in T7 (. . . with 235 or 345).

Clearly, each of the edges {i, j} in T7 is contained in exactly three useful hyper-
edges and at least two of these hyperedges have to appear in H to generate {i, j}
in EI(H) = T7. We have three possibilities to generate 12 ∈ E(EI(H)) = E(T7).
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(a) If 123, 124 ∈ E , then 134 /∈ E (otherwise 13 ∈ E(EI(H)) = E(T7)  ) and
234 /∈ E (otherwise 24 ∈ E(EI(H)) = E(T7)  ). This includes 34 /∈ E(EI(H)) =
E(T7)  .

(b) If 123, 125 ∈ E , then 135 /∈ E (otherwise 13 ∈ E(EI(H)) = E(T7)  ) and
235 /∈ E (otherwise 25 ∈ E(EI(H)) = E(T7)  ). This includes 35 /∈ E(EI(H)) =
E(T7)  .

(c) If 124, 125 ∈ E , then 123 /∈ E (because of (a)) and 234 /∈ E (otherwise
24 ∈ E(EI(H)) = E(T7)  ). This includes 23 /∈ E(EI(H)) = E(T7)  .

Thats why, 12 cannot be generated in EI(H) = T7  . Therefore, T7 is not an
edge intersection hypergraph of a 3-uniform hypergraph.

(T12) The most laborious case is the graph T12 = (V,E) with E = {{1, 2}, {2, 3},
{3, 4}, {2, 5}, {5, 6}}. The useful hyperedges which may occur in H = (V, E) are
the following.

123, 124, 125, 126 — to generate 12 in T12;
234, 235, 236 — to generate 23 (should the occasion arise, in connection with
123);
134, 345, 346 — to generate 34 (. . . with 234);
245, 256 — to generate 25 (. . . with 125 or 235);
156, 356, 456 — to generate 56 (. . . with 256).

Again, we discuss the combinations of useful hyperedges in H and will obtain a
contradiction in every case. Obviously, we have six possibilities to generate 12 ∈
E(EI(H)) = E(T12) and in some cases several subcases have to be investigated.

(a) If 123, 124 ∈ E , then 134 /∈ E (otherwise 13 ∈ E(T12)  ) and 234 /∈ E
(otherwise 24 ∈ E(T12)  ). Therefore, 345, 346 ∈ E in order to generate 34 ∈
E(T12). Hence, 235 /∈ E (otherwise 35 ∈ E(T12)  ). In order to generate 23 ∈
E(T12) it follows 236 ∈ E . This includes 236∩346 = 36 ∈ E(EI(H)) = E(T12)  .

(b) If 123, 125 ∈ E , then 134 /∈ E (otherwise 13 ∈ E(T12)  ) and 156 /∈ E
(otherwise 15 ∈ E(T12)  ). In order to generate the edge 23 ∈ E(T12), the three
subcases (b1), (b2) and (b3) have to be considered.

(b1) If 234 ∈ E , then for 34 ∈ E(T12) we need 345 ∈ E or 346 ∈ E . Assume,
345 ∈ E . Then 356 /∈ E (otherwise 35 ∈ E(T12)  ) and 456 /∈ E (otherwise
45 ∈ E(T12)  ). Together with 156 /∈ E (see (b) above), we obtain 56 /∈ E(T12)
 . So assume 346 ∈ E . Then 356 /∈ E (otherwise 36 ∈ E(T12)  ) and 456 /∈ E
(otherwise 46 ∈ E(T12)  ). As above, 56 /∈ E(T12)  . Consequently, (b1) cannot
occur.

(b2) If 235 ∈ E , then 345 /∈ E follows (otherwise 35 ∈ E(T12)  ). Since
134 /∈ E (see (b)) and 234 /∈ E (see (b1)), we easily get 34 /∈ E(T12)  .

So the only possibility in case (b) would be the next one.



Edge Intersection Hypergraphs 113

(b3) Let 236 ∈ E . We have 256 /∈ E (otherwise 26 ∈ E(T12)  ) and, addi-
tionally, since (b2) is impossible, also 235 /∈ E . Hence for 25 ∈ E(T12) we need
245 ∈ E . Since 156 /∈ E(T12) (see at the beginning of (b)) for 56 ∈ E(T12)
necessarily 356, 456 ∈ E . This provides 245 ∩ 456 = 45 ∈ E(EI(H)) = E(T12)  .

Thus case (b) cannot occur.

(c) If 123, 126 ∈ E , then 125 /∈ E (because of (b)), 156 /∈ E (otherwise
16 ∈ E(T12)  ) and 256 /∈ E (otherwise 26 ∈ E(T12)  ). Therefore, it follows
235, 245 ∈ E in order to generate 25 ∈ E(T12) as well as 356, 456 ∈ E in order to
generate 56 ∈ E(T12). But then 235 ∩ 356 = 35 ∈ E(EI(H)) = E(T12)  .

(d) If 124, 125 ∈ E , then 123 /∈ E (because of (a), (b)), 134 /∈ E (otherwise
14 ∈ E(T12)  ) and 234 /∈ E (otherwise 24 ∈ E(T12)  ). Consequently, we need
345, 346 ∈ E in order to generate 34 ∈ E(T12). Thus 236 /∈ E (otherwise 36 ∈
E(T12)  ). Together with 123, 234 /∈ E we obtain 23 /∈ E(EI(H)) = E(T12)  .

(e) If 124, 126 ∈ E , then 123 /∈ E (because of (a), (c)), 234 /∈ E (otherwise
24 ∈ E(T12)  ) and 236 /∈ E (otherwise 26 ∈ E(T12)  ). Consequently, 23 /∈
E(EI(H)) = E(T12)  .

(f) If 125, 126 ∈ E , then 123 /∈ E (because of (b), (c)) and 236 /∈ E (otherwise
26 ∈ E(T12)  ). So we need 234, 235 ∈ E in order to generate 23 ∈ E(T12).
On the other hand, 156 /∈ E (otherwise 15 ∈ E(T12)  ) and 256 /∈ E (otherwise
26 ∈ E(T12)  ). Hence necessarily 356, 456 ∈ E in order to generate 56 ∈ E(T12).
This leads to 235 ∩ 356 = 35 ∈ E(EI(H)) = E(T12)  .

This implies that 12 cannot be generated in EI(H) = T12  . Therefore, T12 is
not an edge intersection hypergraph of a 3-uniform hypergraph and Lemma 8 is
proved.

Lemma 9. All trees with at most eight vertices are edge intersection hypergraphs

of a 3-uniform hypergraph, but T2 = P2, T3 = P3, T5 = P4, T8 = P5, T14 =
P6, T7 and T12.

Proof. Because of Lemma 7 and Lemma 8 for the trees T1−T9, T12, T14, T15,
T25, T26 and T48 there is nothing to show.

For the remaining 33 trees Tn = (Vn, En) in each case we give the edge set
En and the set of hyperedges En of a 3-uniform hypergraph Hn = (Vn, En) with
Tn = EI(Hn). The verification of E(EI(Hn)) = E(Tn) can be done by hand
for all n or by computer, e.g. using the MATHEMATICA R©-function EEI[eh_]
given at the end of the introduction.

n = 6 vertices:

E10 = {12, 23, 34, 35, 36}, E10 = {123, 124, 235, 236, 345, 346}.
E11 = {12, 23, 24, 45, 46}, E11 = {123, 124, 234, 245, 246, 456}.
E13 = {12, 23, 34, 45, 46}, E13 = {123, 125, 234, 345, 346, 456}.
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n = 7 vertices:

E16 = {12, 23, 34, 35, 36, 37}, E16 = {123, 125, 234, 237, 345, 356, 367}.
E17 = {12, 23, 24, 25, 56, 57}, E17 = {123, 124, 234, 256, 257, 567}.
E18 = {12, 23, 24, 25, 56, 67}, E18 = {123, 124, 167, 234, 245, 256, 567}.
E19 = {12, 23, 34, 35, 36, 67}, E19 = {123, 124, 235, 236, 345, 346, 367, 567}.
E20 = {12, 23, 24, 45, 56, 57}, E20 = {123, 124, 234, 456, 457, 567}.
E21 = {12, 23, 34, 36, 45, 47}, E21 = {123, 125, 234, 236, 345, 346, 347, 457}.
E22 = {12, 23, 24, 45, 56, 67}, E22 = {123, 124, 167, 234, 245, 456, 567}.
E23 = {12, 23, 34, 45, 46, 57}, E23 = {123, 126, 157, 234, 345, 346, 456, 457}.
E24 = {12, 23, 34, 36, 45, 67}, E24 = {123, 127, 145, 234, 236, 345, 367, 567}.

n = 8 vertices:

E27 = {17, 18, 27, 37, 47, 57, 67}, E27 = {127, 138, 167, 178, 237, 347, 457, 567}.
E28 = {15, 25, 35, 45, 56, 67, 68}, E28 = {125, 145, 235, 345, 567, 568, 678}.
E29 = {14, 24, 34, 45, 56, 57, 58}, E29 = {124, 145, 234, 345, 567, 568, 578}.
E30 = {16, 17, 26, 36, 46, 56, 78}, E30 = {126, 156, 167, 178, 236, 278, 346, 456}.
E31 = {16, 17, 26, 28, 36, 46, 56}, E31 = {126, 137, 156, 167, 236, 248, 268, 346, 456}.
E32 = {15, 16, 25, 35, 45, 67, 68}, E32 = {125, 145, 167, 168, 235, 345, 678}.
E33 = {15, 16, 17, 25, 35, 45, 78}, E33 = {156, 157, 167, 178, 235, 245, 278, 345}.
E34 = {12, 18, 23, 24, 25, 56, 57}, E34 = {123, 124, 168, 178, 234, 256, 257, 567}.
E35 = {12, 23, 24, 45, 48, 56, 57}, E35 = {123, 124, 234, 248, 456, 457, 458, 567}.
E36 = {12, 23, 24, 28, 45, 56, 67}, E36 = {123, 124, 128, 167, 234, 238, 245, 456, 567}.
E37 = {12, 23, 24, 25, 38, 56, 67}, E37 = {123, 124, 167, 234, 238, 245, 256, 378, 567}.
E38 = {12, 23, 34, 36, 38, 45, 67}, E38 = {123, 127, 145, 234, 236, 345, 348, 367, 368,

567}.
E39 = {12, 23, 24, 45, 48, 56, 67}, E39 = {123, 124, 167, 234, 245, 248, 456, 458, 567}.
E40 = {12, 23, 24, 45, 56, 67, 68}, E40 = {123, 124, 167, 234, 245, 456, 567, 568, 678}.
E41 = {12, 23, 24, 45, 56, 57, 68}, E41 = {123, 124, 168, 234, 456, 457, 567, 568}.
E42 = {12, 23, 34, 38, 45, 46, 57}, E42 = {123, 126, 157, 234, 238, 345, 346, 348, 456,

457}.
E43 = {12, 23, 28, 34, 36, 45, 67}, E43 = {123, 127, 128, 145, 234, 236, 238, 345, 367,

567}.
E44 = {12, 23, 24, 45, 56, 67, 78}, E44 = {123, 124, 178, 234, 245, 456, 567, 678}.
E45 = {12, 23, 34, 36, 45, 67, 78}, E45 = {123, 127, 145, 234, 236, 345, 367, 578, 678}.
E46 = {12, 23, 24, 38, 45, 56, 67}, E46 = {123, 124, 167, 234, 238, 245, 378, 456, 567}.
E47 = {12, 23, 34, 45, 46, 57, 78}, E47 = {123, 126, 178, 234, 345, 346, 456, 457, 578}.

This completes the induction basis and we have to define some notions in
order to prepare the inductive step.

Let G = (V,E) be a graph and s ≥ 1.
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Definition. A path L = (v0, e1, v1, . . . , vs−1, es, vs) is referred to as a leg (of length

s) in G if and only if

(i) V (L) = {v0, . . . , vs} ⊆ V ;

(ii) E(L) = {e1, . . . , es} ⊆ E;

(iii) dG(v0) ≥ 3, dG(v1) = · · · = dG(vs−1) = 2, dG(vs) = 1.

The vertex v0 is the joint or joint vertex and vs is the end vertex of L. Clearly,
every graph G with minimum degree δ(G) = 1 and maximum degree ∆(G) ≥ 3
has a leg. Moreover, each tree T being not a path Pn (n ≥ 1) has at least three
legs.

Definition. The graph G ⊖ L = (V ′, E′) results from G = (V,E) by deleting

the leg L = (v0, e1, v1, . . . , vs−1, es, vs) if and only if V ′ = V \ {v1, . . . , vs} and
E′ = E \ {e1, . . . , es}.

Obviously, G ⊖ L is connected if and only if G is connected, since the joint
vertex v0 is not deleted by the deletion of the leg L in G.

Inductive step.

Note that all trees T = (V,E) with 7 or 8 vertices are edge intersection
hypergraphs of a 3-uniform hypergraph (cf. Lemma 9).

Induction hypothesis. Every tree T = (V,E) with 7 ≤ |V | ≤ n is an edge intersec-
tion hypergraph of a 3-uniform hypergraph.

Let n ≥ 8, T ′ = (V ′, E′) be a tree with |V ′| = n + 1 vertices; because of
Lemma 7 we can exclude stars and paths from our considerations. Therefore T ′

has at least three end vertices and also at least three legs. Let v0 and vs be the
joint vertex and the end vertex of a shortest leg L = (v0, v1, . . . , vs), respectively.

We delete the leg L in T ′ and obtain T = (V,E) = T ′⊖L. Obviously, v0 ∈ V
and v1, . . . , vs ∈ V ′ \ V . According to the length s of the leg L we consider two
cases.

Case 1. s = 1. Because of dT (v0) ≥ 2 there are at least two neighbors u 6= u′

of v0 in the tree T . Moreover, we have |V | = n ≥ 8 and the induction basis implies
the existence of a hypergraph H = (V, E) with T = EI(H) and H is 3-uniform.

Consider E ′ = E ∪ {{u, v0, v1}, {u
′, v0, v1}} and the 3-uniform hypergraph

H′ = (V ′, E ′). Then {v0, v1} = {u, v0, v1} ∩ {u′, v0, v1}.

Clearly, {u, v0, v1} ∩ V = {u, v0} and {u′, v0, v1} ∩ V = {u′, v0}. Taking an
arbitrarily chosen hyperedge e ∈ E ′ \ {{u, v0, v1}, {u

′, v0, v1}} = E , the only edge
which can result from the intersection {u, v0, v1} ∩ e and {u′, v0, v1} ∩ e in EI(H′)
is the edge {u, v0} ∈ E(T ) and {u′, v0} ∈ E(T ), respectively. Consequently, the
hypergraph H′ has the edge intersection hypergraph EI(H′) = T ′.
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Case 2. s ≥ 2. Let L,L′, L′′ be three legs in T ′ = (V ′, E′). Deleting the
legs L,L′, L′′ in T ′, we would obtain a new tree with at least one vertex. Since
L = (v0, v1, . . . , vs) is a shortest leg and |V ′| = n + 1 is valid, the leg L contains
at most n

3 vertices. Because of n ≥ 8, the deletion of the leg L corresponds to
the deletion of the vertices v1, . . . , vs in T ′ and leads to the tree T = (V,E) with
|V | = n + 1 − s ≥ n + 1 − n

3 = 2
3n + 1 ≥ 19

3 > 6. Therefore, T has at least
7 vertices; we apply the induction basis and obtain the existence of a 3-uniform
hypergraph H = (V, E) with T = EI(H).

Now we construct the hypergraph H′ = (V ′, E ′) from H = (V, E).

In comparison to T , in T ′ we find the additional edges {v0, v1}, {v1, v2}, . . . ,
{vs−1, vs} which have to be generated by certain hyperedges of H′. We add the
following three types of hyperedges to the hypergraph H.

• The first one is the hyperedge {u, v0, v1}, where u ∈ V is a neighbor of the
vertex v0 in the tree T . Because of v1 /∈ V (T ), the only edge being induced by
this hyperedge and the hyperedges of E(H) in the edge intersection hypergraph
of H0 = (V ∪ {v1}, E ∪ {{u, v0, v1}}) is the edge {u, v0} ∈ E(T ).

• The second set of new hyperedges consists of {v0, v1, v2}, {v1, v2, v3}, . . . , {vs−2,
vs−1, vs}. Adding these hyperedges (and the vertices v2, . . . , vs) to H0 we obtain
a hypergraph H1; in the corresponding edge intersection hypergraph EI(H1) we
find the new edges {v0, v1} = {u, v0, v1} ∩ {v0, v1, v2}, {v1, v2} = {v0, v1, v2} ∩
{v1, v2, v3}, . . . , {vs−2, vs−1} = {vs−3, vs−2, vs−1} ∩ {vs−2, vs−1, vs} and not more
(because of v1, . . . , vs /∈ V (T )).

• To obtain the last edge needed in T ′ = EI(H′), we choose a vertex w ∈ V (T ) \
{v0} being not a neighbor of v0. The existence of such a vertex w becomes clear
since all legs in T ′ have to have a length of at least 2. Therefore, for w we can
choose an end vertex of an arbitrary leg L′ 6= L in T . Considering {w, vs−1, vs},
we see that {w, vs−1, vs} ∩ {vs−2, vs−1, vs} = {vs−1, vs}.

We add the new hyperedge {w, vs−1, vs} to the hypergraph H1 and obtain
the hypergraph H′. For two reasons, {vs−1, vs} is the only edge being generated
by the hyperedge {w, vs−1, vs} in EI(H′).

(i) |V (T ) ∩ {w, vs−1, vs}| = 1, therefore the intersection of {w, vs−1, vs} with
any hyperedge of the original hypergraph H = (V, E) = (V (T ), E) cannot lead to
an additional edge in EI(H′).

(ii) Because of w ∈ V \ {u}, the intersection of {w, vs−1, vs} with one of the
“new” hyperedges {u, v0, v1}, {v0, v1, v2}, {v1, v2, v3}, . . . , {vs−2, vs−1, vs} is always
a subset of {vs−1, vs}. Hence the edge {vs−1, vs} ∈ E(T ′) is the only edge being
induced by {w, vs−1, vs} in EI(H′).

This completes the proof of Theorem 6.
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4. The Clique-Fusion

Let r ≥ 2 and G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) be graphs. More-
over, let k ≥ 1, V ′ = {v1, . . . , vk} = {v | ∃i, j ∈ {1, . . . , r} : i 6= j ∧ v ∈ Vi ∩ Vj}
and E′ = {{v, v′} | v, v′ ∈ V ′ ∧ ∃i ∈ {1, . . . , r} : {v, v′} ∈ Ei}.

Incidentally, if for each i ∈ {1, . . . , r} the graph Gi is connected and Vi∩V ′ 6=
∅, then the union G1 ∪ · · · ∪Gr = (V1 ∪ · · · ∪ Vr, E1 ∪ · · · ∪Er) is connected, too.

Consider the case that E′ = {{vi, vj} | 1 ≤ i < j ≤ k}, i.e., the subgraph
〈V ′〉G1∪···∪Gr

induced by the vertices of V ′ in G1 ∪ · · · ∪ Gr is a k-clique. Then
we refer to the union G1 ∪ · · · ∪Gr as the clique-fusion or k-fusion of the graphs
G1 ∪ · · · ∪Gr and write G1 ⊕ · · · ⊕Gr = G1 ∪ · · · ∪Gr.

For an example, consider three graphs G1 = (V1, E1), G2 = (V2, E2) and
G3 = (V3, E3), where {x, y} ∈ E1, {y, z} ∈ E2 and {x, z} ∈ E3 are edges as well
as V1∩V2 = {y}, V2∩V3 = {z} and V1∩V3 = {x} hold. Then V ′ = {x, y, z} induces
a 3-clique 〈{x, y, z}〉G1∪G2∪G3

in G1 ∪G2 ∪G3 and G1 ⊕G2 ⊕G3 = G1 ∪G2 ∪G3

is the 3-fusion of the graphs G1, G2 and G3 (see Figure 5).
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G3 G1 ⊕G2 ⊕G3

Figure 5. Three graphs and their clique-fusion.

Note that we obtain the same 3-fusion taking the modified graphs G′
1 =

(V1 ∪ {z}, E1 ∪ {{x, z}, {y, z}}) and G′
3 = (V3, E3 \ {{x, z}}) instead of G1 and

G3, i.e., we have G1 ⊕G2 ⊕G3 = G′
1 ⊕G2 ⊕G′

3.
Using the above notations we have a look at a special situation.

Special Case 1. For all i, j ∈ {1, . . . , r} : V ′ = Vi ∩ Vj and 〈V ′〉Gi
is a k-clique.

In this case, all graphs Gi, Gj (i 6= j) have all the vertices v1, . . . , vk (and
only these vertices) in common. Additionally, in each Gi (i ∈ {1, . . . , k}) (as well
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as in 〈V ′〉G1∪···∪Gr
) the vertices v1, . . . , vk induce one and the same k-clique.

Let us mention two further special cases; the first one corresponds to k = 1
and the second one to r = 2, respectively.

Special Case 2. For all i, j ∈ {1, . . . , r} : V ′ = {v} = Vi∩Vj , where v is a uniquely
determined vertex.

Special Case 3. r = 2, i.e., we consider the clique-fusion G1 ⊕G2 of two graphs.

Investigating cacti, we only need Special Case 2 and Special Case 3 in com-
bination, i.e., we have k = 1 as well as r = 2. Only for proof-technical reasons,
in very few exceptions we use the 2-fusion (see G1 ⊕K1,3 in the part (b) of the
proof of Theorem 12).

Remark 10. The clique-fusion can be easily generalized to pairwise vertex-
disjoint graphs G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) by identifying
certain vertices vi ∈ Vi and vj ∈ Vj : vi ≡ vj , where 1 ≤ i < j ≤ r. Ob-

viously, also the edges {vi1, v
i
2} ∈ Ei and {vj1, v

j
2} ∈ Ej have to be identified

({

vi1, v
i
2

}

≡
{

vj1, v
j
2

})

, if the corresponding vertices have been identified
(

vi1 ≡ vj1
and vi2 ≡ vj2

)

.

In the following, we will only make use of the clique-fusion in its original form,
not in the generalized sense described in Remark 10.

Now we prove that the clique-fusion of graphs which are edge intersection
hypergraphs of 3-uniform hypergraphs is an edge intersection hypergraph of a
3-uniform hypergraph, too.

Theorem 11. Let G = (V,E) be the clique-fusion G1 ⊕ · · · ⊕Gr of graphs G1 =
(V1, E1), . . . , Gr = (Vr, Er), where G1 = EI(H1), . . . , Gr = EI(Hr) are edge

intersection hypergraphs of the 3-uniform hypergraphs H1 = (V1, E1), . . . ,Hr =
(Vr, Er). Then H = H1 ∪ · · · ∪ Hr is 3-uniform and G = EI(H).

Proof. The 3-uniformity of H = (V, E) is trivial because of V = V1∪ · · ·∪Vr and
E = E1 ∪ · · · ∪ Er. Owing to G = G1 ⊕ · · · ⊕Gr = G1 ∪ · · · ∪Gr = EI(H1)∪ · · · ∪
EI(Hr) in addition to V = V1∪· · ·∪Vr we have E = E1∪· · ·∪Er = E(EI(H1))∪
· · ·∪E(EI(Hr)) and it suffices to show E(EI(H)) = E(EI(H1))∪· · ·∪E(EI(Hr)).

Part 1. E(EI(H)) ⊇ E(EI(H1)) ∪ · · · ∪ E(EI(Hr)).

We consider an arbitrarily chosen edge {x, y} ∈ E(EI(Hi)), where i ∈ {1, . . . , r}.
Then there are hyperedges ei, e

′
i ∈ E(Hi) ⊆ E(H) with ei ∩ e′i = {x, y}. This

implies {x, y} ∈ E(EI(H)).

Part 2. E(EI(H)) ⊆ E(EI(H1)) ∪ · · · ∪ E(EI(Hr)).

Let e, e′∈E(H) with e∩e′∈E(EI(H)). The 3-uniformity of H includes |e∩e′| = 2.
Assume, there exists an i ∈ {1, . . . , r} such that e, e′ ∈ E(Hi). Then e ∩ e′ ∈

E(EI(Hi)) ⊆ E(EI(H1)) ∪ · · · ∪ E(EI(Hr)).
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Otherwise, for all i, j ∈ {1, . . . , r} from e ∈ E(Hi) and e′ ∈ E(Hj) we get
i 6= j. In this case we have e∩ e′ = {x, y}, with {x, y} ⊆ Vi ∩Vj and x 6= y. Since
G is the clique-fusion G1 ⊕ · · · ⊕Gr, the vertices x and y have to be adjacent in
G and, therefore, e ∩ e′ = {x, y} ∈ E(G) = E = E1 ∪ · · · ∪ Er = E(EI(H1)) ∪
· · · ∪ E(EI(Hr)).

(Note that because of e ∩ e′ = {x, y} ∈ E1 ∪ · · · ∪Er there exist an l ∈ {1, . . . , r}
and hyperedges el, e

′
l ∈ E(Hl) with el ∩ e′l = {x, y}. Therefore, we even get

e ∩ e′ = el ∩ e′l ∈ E(EI(Hl)) = El.)

Theorem 11 is a very useful tool for constructing graphs being edge inter-
section hypergraphs of 3-uniform hypergraphs. But in order to verify our main
result for cacti (cf. Theorem 16 in Section 5), we need also an analog result for
the 1-fusion of graphs G (which are edge intersection hypergraphs of 3-uniform
hypergraphs) with arbitrary trees and cycles, respectively (cf. Theorems 12 and
14).

The attempt to extend Theorems 12 and 14 also for k-fusions, where k > 1,
would lead to an extensive additional effort in the proofs of the corresponding
results. This becomes clear if we look at the verification of Theorems 12 and 14.
For every k, each of the nine exceptional trees and cycles being not the edge inter-
section hypergraph of a 3-uniform hypergraph (P2, P3, P4, P5, P6, T7, T12, C3, C4)
would require a separate case which has to be considered.

Theorem 12. Let the graph G1 = (V1, E1) be the edge intersection hypergraph of

a 3-uniform hypergraph H1 = (V1, E1), v ∈ V1 with dG1
(v) ≥ 2 and T = (V2, E2) be

a tree with V2 = {v1, v2, . . . , vn}, where n ≥ 2. Moreover, let V1∩V2 = {v}. Then

the 1-fusion G1⊕T is an edge intersection hypergraph of a 3-uniform hypergraph.

Proof. If T is an edge intersection hypergraph of a 3-uniform hypergraph H2 =
(V2, E2), owing to Theorem 11 there is nothing to show. So we have to con-
sider only the exceptional trees P2, P3, P4, P5, P6, T7 and T12 from Theorem
6. Note that the one and only case where the condition dG1

(v) ≥ 2 will be
needed is the path P2. At first we investigate the paths Pn = (V2, E2) with
E2 = {{v1, v2}, . . . , {vn−1, vn}}, where n ∈ {2, . . . , 6}.

In advance, we mention that |V1| ≥ 4 is valid, since G1 is an edge intersection
hypergraph of a 3-uniform hypergraph containing the non-isolated vertex v ∈ V1.

(a) T = P2. Let v = v1 and u,w ∈ V1 be two neighbors of v1 in G1. Then
G1 ⊕ P2 = EI(H) with H = (V1 ∪ {v2}, E1 ∪ {{u, v1, v2}, {w, v1, v2}}).

(b) T ∈ {P3, P4, P5, P6}. For 3 ≤ n ≤ 6, let i ≤ n, v = vi and u,w ∈ V1,
where u is a neighbor of vi in G1.

First we consider the situation n = 3 and v = v2, i.e., v is the inner vertex of
P3. Then the 1-fusion G1 ⊕P3 is nothing else than the 2-fusion G1 ⊕K1,3, where
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K1,3 = (V2 ∪ {u}, E2 ∪ {{v2, u}}). Theorem 11 implies that this 2-fusion of G1

and K1,3 has the required properties.
Next we investigate the 1-fusion G1 ⊕ Pn in the end vertex v = v1 of Pn.

For this end, we consider the hypergraph H = (V1 ∪ {v2, . . . , vn}, E1 ∪ {{u, v1,
v2}, {v1, v2, v3}, {v2, v3, v4}, . . . , {vn−2, vn−1, vn}, {w, vn−1, vn}}) and obtain G1⊕
Pn = EI(H).

The remaining cases (n ≥ 4 and the vertex vi ∈ V1 ∩ V2 is an inner vertex of
the path Pn, i.e., 1 < i < n) can be obtained from the results above in two steps.

Let P ′
n = (V ′

2 = {v1, v2, . . . , vi}, E
′
2 = {{v1, v2}, {v2, v3}, . . . , {vi−1, vi}}) and

P ′′
n = (V ′′

2 = {vi, vi+1, . . . , vn}, E
′
2 = {{vi, vi+1}, {vi+1, vi+2}, . . . , {vn−1, vn}}).

Assume, |V ′
2 | ≥ |V ′′

2 |. Then P ′
n contains at least three vertices and the assumption

of case (b) is fulfilled. In a first step, G1⊕P ′
n and, in a second step, (G1⊕P ′

n)⊕P ′′
n

is an edge intersection hypergraph of a 3-uniform hypergraph, respectively. Only
in the second step, when n − i = 1 holds (i.e., P ′′

n contains exactly two vertices)
we have to make use of part (a). In this case, the vertex vi has minimum degree
2 in G1 ⊕ P ′

n; hence part (a) is applicable.

Now we come to the 1-fusion of G1 and the exceptional trees T7 and T12.

(c) T ∈ {T7, T12}. Trivially, every vertex in V2 = V (T ) is included in a path
of length 3 in T . So let P4 be such a path in T containing the vertex v ∈ V1 ∩ V2.
Obviously, T is a 1-fusion of P4 and a second path Pt, such that T = P4 ⊕Pt and
V (P4) ∩ V (Pt) = {v′} for a certain vertex v′ ∈ V2 with dT (v

′) = 3. Clearly, for
T = T7 we have t = 2 and for T = T12 we get t = 3.

Part (b) provides that the 1-fusion G1⊕P4 is an edge intersection hypergraph
of a 3-uniform hypergraph. In order to obtain the final 1-fusion G1 ⊕ T from
G1⊕P4 it suffices to add the path Pt, i.e., G1⊕T = (G1⊕P4)⊕Pt. In dependence
on t, part (a) and part (b), respectively, provides that G1⊕T is an edge intersection
hypergraph of a 3-uniform hypergraph.

Note that the assumption for (a) is fulfilled, since dG1⊕P4
(v′) ≥ dT (v

′)−1 = 2,
i.e., the vertex v′ has at least two neighbours in G1 ⊕ P4.

Remark 13. Because in the above proof the condition dG1
(v) ≥ 2 is needed only

for T = P2, this condition in Theorem 12 can be weakened to dG1
(v) ≥ 1 if we

restrict ourselves to trees with at least 3 vertices.

Theorem 14. Let the graph G1 = (V1, E1) be the edge intersection hypergraph of

a 3-uniform hypergraph H1 = (V1, E1), v ∈ V1 with dG1
(v) ≥ 1 and Cn = (V2, E2)

be the cycle of length n ≥ 3. Moreover, let V1 ∩ V2 = {v} and, for n = 4, the

number of vertices in G1 be at least 5. Then the 1-fusion G1 ⊕ Cn is an edge

intersection hypergraph of a 3-uniform hypergraph.

Proof. For n ≥ 5, Corollary 4 provides that Cn = (V2, E2) is an edge intersec-
tion hypergraph of a 3-uniform hypergraph H2 = (V2, E2). Therefore, owing to
Theorem 11 there is nothing to show in this case.
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So we have to investigate only the cycles C3 and C4. For this end let V2 =
{v1, v2, . . . , vn}, E2 = {{v1, v2}, . . . , {vn−1, vn}, {vn, v1}} and v1 = v ∈ V1 ∩ V2.
Moreover, let u ∈ V1 be a neighbor of v1 in the graph G1. As mentioned at the
beginning of the proof of Theorem 12, we have |V1| ≥ 4 and so we can choose a
vertex x ∈ V1 \ {v1, u}.

(a) n = 3. We consider H = (V1∪{v2, v3}, E1∪{{v1, v2, v3}, {u, v1, v2}, {u, v1,
v3}, {x, v2, v3}}).

In comparison with G1, the new hyperedges {v1, v2, v3}, {u, v1, v2}, {u, v1, v3},
{x, v2, v3} induce no additional edges in (G1⊕C3)\{v2, v3}. Clearly, {u, v1, v2}∩
{u, v1, v3} = {u, v1} is always an edge in G1, namely {u, v1} = {u, v} ∈ E1.
Moreover, the hyperedge {v1, v2, v3} and {x, v2, v3} has only one vertex with G1

in common, namely the vertex v1 and x, respectively.
Hence, we obtain G1 ⊕ C3 = EI(H).

(b) n = 4. Now we have |V1| ≥ 5 and there are two additional vertices y, z ∈
V1 \ {v1, u, x} such that v1, u, x, y, z are pairwise distinct. We use the hypergraph
H = (V1 ∪ {v2, v3, v4}, E(H)) with E(H)) = E1 ∪ {{v1, v2, v3}, {v1, v2, v4}, {u, v1,
v4}, {x, v2, v3}, {y, v3, v4}, {z, v3, v4}}.

Analogously to the previous case, it can be verified that G1 ⊕ C4 = EI(H)
holds.

5. Cacti

The basic idea is to decompose a given cactus G into cycles and (in a certain
sense maximal) trees. After that we begin with a cycle Cn of length n ≥ 5 and
a tree T /∈ {P1, P2, . . . , P6, T7, T12}, respectively, (which is an edge intersection
hypergraph of a 3-uniform hypergraph) and reconstruct the original cactus step by
step using Theorem 12 and Theorem 14. For this purpose, in each step we build a
1-fusion of a (connected) subgraph Gi (which is an edge intersection hypergraph
of a 3-uniform hypergraph Hi) of the original cactus and one of the cycles or trees
described above.

We begin with the decomposition. First of all, let G = (V,E) be a cactus
and V ′ = {v1, . . . , vs} ⊆ V be the set of all vertices having a degree of at least 3
and being contained in a cycle of G. Evidently, the vertices in V ′ are articulation
vertices of G. We refer to these vertices as the decomposition vertices or shortly
d-vertices of G. It is easy to see that V ′ = ∅ is equivalent to the case that the
cactus G is a cycle or a tree, respectively. In this case Theorem 6 and Corollary 4
include the corresponding characterizations. So in the following assume V ′ 6= ∅.

The so-called tree-cycle-decomposition of the cactus G will be carried out in
two consecutive steps.

Step 1. In each cycle of G, we delete all edges and all vertices of degree 2. Thus
we obtain a forest consisting of pairwise vertex-disjoint trees T 1, T 2, . . . , T k, the
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so-called limbs of G. Clearly, every limb contains at least one d-vertex. If the tree
T j is a single vertex, i.e., V (T j) = {vj}, then vj is an articulation vertex that
connects 1

2dG(vj) cycles in G. Note that the limbs are the “(in a certain sense
maximal) trees” mentioned at the beginning of the section.

Step 2. We start again with the original cactus G and delete all edges e ∈
E(T 1), . . . , E(T k). Besides several isolated vertices, this leads to a system of
Eulerian graphs which can be uniquely decomposed into a system C1, . . . , C l of
pairwise edge-disjoint cycles. We denote C1, . . . , C l as the cycles of G.

The next remark is a collection of some simple, but useful properties of the
tree-cycle-decomposition.

Remark 15. (i) The d-vertices v1, . . . , vs, the limbs T 1, . . . , T k as well as the
cycles C1, . . . , C l are uniquely determined.

(ii) The limbs T 1, . . . , T k are pairwise vertex-disjoint.

(iii) Any d-vertex is contained in at least one of the cycles of G.

(iv) Any d-vertex is contained in at most one of the limbs of G.

(v) If V ′ 6= ∅, then every cycle and every limb includes at least one d-vertex.

Now we are ready to formulate our main theorem.

Theorem 16. Let G = (V,E) be a cactus with

(a) circumference ci(G) ≥ 5 or

(b) G contains a limb T /∈ {P1, P2, . . . , P6, T7, T12}.

Then G is an edge intersection hypergraph of a 3-uniform hypergraph.

Proof. Let {G1, G2, . . . , Gk+l} = {C1, C2, . . . , C l, T 1, T 2, . . . , T k}, where C1, C2,
. . . , C l and T 1, T 2, . . . , T k are the cycles and the limbs of G, respectively.

Case (a). ci(G) ≥ 5. Let the indices of the subgraphs G1, . . . , Gk+l be chosen
so that G1 = C1 is a cycle of a length of at least 5 and, for every p ∈ {1, 2, . . . , k+
l−1}, the subgraph G1∪· · ·∪Gp of the cactus G has a vertex vp in common with
the subgraph Gp+1. Obviously,

(

V (G1) ∪ · · · ∪ V (Gp)
)

∩ V (Gp+1) = {vp} ⊆ V ′,
where V ′ is the set of the d-vertices of G.

Trivially, G = G1 ∪ · · · ∪ Gk+l and, for any p ∈ {1, 2, . . . , k + l − 1}, from
|V (Gp+1)| = 1 (this is the case if and only if Gp+1 is a trivial tree containing only
one vertex, i.e., V (Gp+1) = {vp}) it follows (G1∪· · ·∪Gp)∪Gp+1 = G1∪· · ·∪Gp.
Owing to our indexing of G1, G2, . . . , Gk+l this is equivalent to (· · · ((G1 ⊕G2)⊕
G3) · · · ⊕Gp)⊕Gp+1 = (· · · ((G1 ⊕G2)⊕G3) · · · ⊕Gp). Note that all the clique-
fusions in this expression are 1-fusions and, additionally, all these clique-fusions
are connected.

To mention the most trivial case, the 1-fusion of any graph G′=(V (G′), E(G′))
with a graph G′′ = (V (G′′) = {v′}, E(G′′) = ∅), with v′ ∈ V (G′), is the original
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graph G′ itself. Therefore, if G′ is an edge intersection hypergraph of a 3-uniform
hypergraph H, then also G′ ⊕G′′ = EI(H) is valid.

According to the assumption, G1 is an edge intersection hypergraph of a 3-
uniform hypergraph H1 containing at least 5 vertices. Therefore G1 fulfills also
the assumptions of Theorems 12 and 14, and G1⊕G2 is also an edge intersection
hypergraph of a 3-uniform hypergraph H2. Since G1 is a cycle, all of its vertices
have degree 2 and it plays no role whether or not G2 is a cycle or a limb.

With two little additional arguments we can argue in the same manner for
arbitrarily chosen p ∈ {2, . . . , k + l − 1} considering (· · · ((G1 ⊕ G2) ⊕ G3) · · · ⊕
Gp)⊕Gp+1.

First, if (· · · ((G1 ⊕G2)⊕G3) · · · ⊕Gp) is an edge intersection hypergraph of
a 3-uniform hypergraph Hp then it contains at least 5 vertices (since |V (G1)| ≥ 5
holds). This implies that the clique-fusion (· · · ((G1 ⊕G2)⊕G3) · · · ⊕Gp)⊕Gp+1

also in the case Gp+1 = C4 is an edge intersection hypergraph of a 3-uniform
hypergraph. Clearly, also for Gp+1 = C3 no problem occurs.

Secondly, in case of Gp+1 = P2, we have to ensure that the vertex vp ∈
(

V (G1)∪· · ·∪V (Gp)
)

∩V (Gp+1) has a degree dG1∪···∪Gp
(vp) ≥ 2 (cf. Theorem 12

and Remark 13). This yields from the definition of the d-vertices and the limbs as
well as from the construction of our tree-cycle-decomposition of the cactus G in
the following way. In case of Gp+1 = P2 the graph Gp+1 is a limb. Remark 15(iv)
includes that the d-vertex vp ∈ V (Gp+1) cannot be contained in another limb of G.
Therefore vp is included in a cycle of (· · · ((G1⊕G2)⊕G3) · · ·⊕Gp) = G1∪· · ·∪Gp

and has a degree dG1∪···∪Gp
(vp) ≥ 2.

This completes the proof of Case (a).

Case (b). ci(G) ≤ 4. We use nearly the same argumentation as in Case (a),
the only modification is that we have to start with G1 = T 1 instead of G1 = C1,
where T 1 /∈ {P1, P2, . . . , P6, T7, T12} is a limb of G. If G = T 1 holds then there
is nothing to show.

So assume k+l > 1 and choose the indices of G2, G3, . . . , Gk+l in the same way
as in Case (a). Thus the graph G1 = T 1 is again an edge intersection hypergraph
of a 3-uniform hypergraph. Moreover, G2 = Cn (n ≥ 3) and it suffices to prove
that any fusion G1 ⊕ G2 = T 1 ⊕ Cn is an edge intersection hypergraph of a
3-uniform hypergraph. The rest of the argumentation can be taking over word-
for-word from Case (a). So let us consider T 1 ⊕ Cn.

Since T 1 is an edge intersection hypergraph of a 3-uniform hypergraph, we
can apply Theorem 14. The only exception is the case |V (T 1)| = 4 and n = 4.
Obviously, this corresponds to T 1 = K1,3 and we have to investigate the two
possible 1-fusions of K1,3 and C4.

For this end, let K1,3 = (V1 = {v1, v2, v3, v4}, E1), C4 = (V2 = {v4, v5, v6, v7},
E2), where E2 = {{v4, v5}, {v5, v6}, {v6, v7}, {v7, v4}}, and look at K1,3 ⊕ C4. In
the following, we discuss both 1-fusions.
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The first 1-fusion we have to investigate is the situation that v4 is not the
center of the star; so without loss of generality let v1 be the center, i.e., E1 =
{{v1, v2}, {v1, v3}, {v1, v4}}. Then the hypergraph H = (V, E) with E = {{v1, v2,
v3}, {v1, v2, v4}, {v1, v3, v4}, {v1, v4, v7}, {v1, v5, v6}, {v2, v6, v7}, {v3, v6, v7}, {v4,
v5, v6}, {v4, v5, v7}} provides the 1-fusion EI(H) = K1,3 ⊕ C4 = (V,E) with V =
V1 ∪ V2 and E = {{v1, v2}, {v1, v3}, {v1, v4}, {v4, v5}, {v5, v6}, {v6, v7}, {v7, v4}}
(see the first picture in Figure 6).

Now let v4 be the center of the star. Thus we have E1 = {{v1, v4}, {v2, v4},
{v3, v4}}. We consider the hypergraph H = (V, E) with E = {{v1, v3, v4}, {v1, v4,
v7}, {v2, v3, v4}, {v2, v4, v5}, {v2, v4, v7}, {v3, v6, v7}, {v4, v5, v6}, {v5, v6, v7}}. H
has the edge intersection hypergraph EI(H) = K1,3 ⊕ C4 = (V,E) with V =
V1 ∪V2 and E = {{v1, v4}, {v2, v4}, {v3, v4}, {v4, v5}, {v5, v6}, {v6, v7}, {v7, v4}}.
This is the second possible 1-fusion of K1,3 and C4 (see the second picture in
Figure 6).

v1

v2 v3

v4

v7

v6

v4

v7

v6

v5

v1 v2 v3

v5

Figure 6. The two 1-fusions of K1,3 and C4.

6. Concluding Remarks

In Corollary 4, Theorem 6 and Theorem 16 we characterized those cycles, trees
and cacti which are edge intersection hypergraphs of 3-uniform hypergraphs. In
connection with these results several interesting problems occur.

Problem 17. Find more classes of graphs being edge intersection hypergraphs
of r-uniform (r ≥ 3) or non-uniform hypergraphs.

In Section 5 we made use of very special clique-fusions, namely the (iterated)
1-fusion of edge intersection hypergraphs of 3-uniform hypergraphs. Since cacti
can be decomposed into limbs and cycles using the d-vertices, the 1-fusion had
been proved to be a suitable tool for our investigations on cacti.
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Besides cycles, trees and cacti, also other classes of graphs are known to be
edge intersection hypergraphs of 3-uniform hypergraphs, e.g. as wheels and com-
plete graphs with at least 5 and 4 vertices, respectively. Having this in mind, the
clique-fusion (k-fusion, for k ≥ 1) may be an appropriate tool to construct other
classes of graphs being edge intersection hypergraphs of 3-uniform hypergraphs.

Remember that in Section 5 we restricted ourselves on the iterated clique-
fusion in the sense, that in each step we applied the 1-fusion only to two graphs
(see the proof of Theorem 16 where we dealt with the clique fusion in the form
(· · · ((G1 ⊕ G2) ⊕ G3) · · · ⊕ Gp) ⊕ Gp+1). The usage of the k-fusion in a more
common sense, namely as G1 ⊕ · · · ⊕ Gr, where r > 2 holds (see the original
definition at the beginning of Section 4) could be interesting for further inves-
tigations. We conjecture that — using the clique-fusion in this common sense
— the construction of corresponding classes of edge intersection hypergraphs of
3-uniform hypergraphs may be much more complicated.

An interesting question is to have a look at the number of hyperedges being
necessary to generate certain graphs as edge intersection hypergraphs.

Problem 18. Let G be a class of graphs, r ≥ 3, n0 ∈ IN+, n ≥ n0 and Gn ∈ G a
graph with n vertices. What is the minimum cardinality |E| of the edge set of an
r-uniform hypergraph Hn = (V, E) with EI(Hn) = Gn?

We conjecture that the solution of Problem 18 becomes difficult for r > 3. A
breadcrumb for this can be found in [9], where for n ≥ 24 we prove that there
is a 3-regular (and, if n is even, 6-uniform) hypergraph H = (V, E) with ⌈n2 ⌉
hyperedges and EI(H) = Cn.

Another direction for further investigations may be to drop the restriction
onto the class of graphs and search for hypergraphs which are edge intersection
hypergraphs.
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