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Abstract

A graph G is a DTDP-graph if it has a pair (D,T ) of disjoint sets of
vertices of G such that D is a dominating set and T is a total dominating
set of G. Such graphs were studied in a number of research papers. In this
paper we study further properties of DTDP-graphs and, in particular, we
characterize minimal DTDP-graphs without loops.
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1. Introduction

The theory of domination in graphs is well studied in the literature. For recent
books on the topic we refer the reader to [5,6]. Let G = (VG, EG) be a graph with
vertex set VG and edge set EG, where multi-edges and multi-loops are allowed.
We remark that such a graph is also called a multigraph in the literature. A set
of vertices D ⊆ VG in G is a dominating set of G if every vertex in VG \ D is
adjacent to a vertex in D, while D is a total dominating set, abbreviated TD-set,
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of G if every vertex has a neighbor in D. We note that a vertex incident with
a loop totally dominates all its neighbors (and therefore also itself).

A DT-pair in a graph G is a pair (D,T ) of disjoint sets of vertices of G
such that D ∪ T = VG, where D is a dominating set and T is a TD-set of G.
A graph that has a DT-pair is called a DTDP-graph (standing for “dominating,
total dominating, partitionable graph”). A connected graph G is a minimal

DTDP-graph, if G is a DTDP-graph and no proper spanning subgraph of G is a
DTDP-graph.

In this paper we study further properties of DTDP-graphs. We proceed
as follows. The necessary graph theory notation and terminology is given in
Section 1.1. In Section 2, we present selected known results on DTDP-graphs.
In Section 3, elementary properties of DTDP-graphs are presented. We define an
important class of DTDP-graphs, which we call 2-subdivision graphs, in Section 4.
In Section 5, we define what we have coined a “good subgraph” of a graph, and
show that these subgraphs play a role in determining non-minimal DTDP-graphs.
Our main results, namely Theorems 6.1 and 6.2, are presented in Section 6. These
results provide a structural characterization of minimal DTDP-graphs without
loops. We conclude the paper with an open problem section to stimulate further
research in the area.

1.1. Notation and terminology

For notation and graph theory terminology we generally follow [5,6,14]. Let G =
(VG, EG) be a graph with possible multi-edges and multi-loops. The neighborhood,
denoted by NG(v), of a vertex v in G is the set of vertices adjacent to v, while its
closed neighborhood, denoted by NG[v], is the set NG(v)∪{v}. (Observe that if G
has a loop incident with v, then NG(v) = NG[v].) In general, for a subset X ⊆ VG

of vertices, the neighborhood of X, denoted by NG(X), is the set
⋃

v∈X NG(v),
and the closed neighborhood of X, denoted by NG[X], is the set NG(X) ∪ X.
Two vertices are neighbors if they are adjacent. A spanning supergraph F of the
graph G is a graph with the same vertex set as G and whose edge set contains
EG as a subset, that is, VG = VF and EG ⊆ EF .

The degree of a vertex v in G, denoted by dG(v), is the number of edges
incident with v plus twice the number of loops incident with v. A vertex of
degree one is called a leaf, and the only neighbor of a leaf is called its support

vertex (or simply, its support). A strong support vertex is a support vertex with
at least two leaves as neighbors. A weak support vertex is a support vertex with
exactly one leaf neighbor. The set of leaves, the set of weak supports, the set of
strong supports, and the set of all supports of G is denoted by LG, S

′
G, S

′′
G, and

SG, respectively. We denote by EG(v) the set of edges incident with a vertex v
in G.

If A and B are disjoint sets of vertices of G, then we denote by EG(A,B) the
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set of edges in G joining vertices in A and vertices in B. For one-element sets we
write EG(v,B), EG(A, u), and EG(u, v) instead of EG({v}, B), EG(A, {u}), and
EG({u}, {v}), respectively.

For n ≥ 1, we denote a complete graph, a path, and a cycle on n vertices by
Kn, Pn and Cn, respectively. We emphasize that Kn and Pn are simple graphs,
as is the cycle Cn when n ≥ 3. However, the cycle C1 is the graph of order 1 with
one loop, and the cycle C2 is the graph of order and size 2 with two (repeated)
edges. The corona G ◦K1 of a graph G, also denoted cor(G) in the literature, is
the graph obtained from G by adding for each vertex v ∈ VG a new vertex v′ and
the edge vv′. For an integer k ≥ 1 we let [k] = {1, . . . , k}.

2. Known Results

In this section, we present selected known results on DTDP-graphs. Beginning
with the classical 1962 result of Ore [16], who was the first to observe that the
vertex set of a graph without isolated vertices can be partitioned into two domi-
nating sets, various graph theoretic properties and parameters of graphs having
disjoint dominating sets of different types were studied in a large number of
papers. Properties of DTDP-graphs (and properties of graphs with disjoint TD-
sets) were extensively studied, for example, in [1–4,8,9,12–15,17], to mention just
a few. In particular, it was proved in [12] that every connected graph with mini-
mum degree at least two and different from C5 is a DTDP-graph. A constructive
characterization of all DTDP-graphs was given in [13].

3. Elementary Properties of DTDP-Graphs

In this section, we present some elementary properties of DTDP-graphs that we
will need when presenting our main results. As an immediate consequence of the
definition of a DT-pair, we have the following observations, which we shall use
throughout the paper and at times without referencing.

Observation 3.1. If (D,T ) is a DT-pair in a graph G, then every leaf of G
belongs to D, while every support of G is in T , that is, LG ⊆ D and SG ⊆ T .

Observation 3.2. If every component of a graph G is a DTDP-graph, then G
is a DTDP-graph.

Observation 3.3. A DTDP-graph is not a minimal DTDP-graph if it contains

parallel edges.

We observe that every spanning supergraph of a DTDP-graph is a DTDP-
graph, and every DTDP-graph is a spanning supergraph of some minimal DTDP-
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graph. Hence, minimal DTDP-graphs can be viewed as skeletons of DTDP-
graphs, in the sense that every DTDP-graph contains as a spanning subgraph
a skeleton.

Let G be a graph and let v be a support vertex in G. If G′ is obtained from
G by adding a new leaf, say v′, adjacent to v, then (D,T ) is a DT-pair in G if
and only if (D∪{v′}, T ) is a DT-pair in G′. This yields the following observation,
which shows that the addition of new leaves adjacent to an existing support vertex
of a graph preserves the property of being a (minimal) DTDP-graph.

Observation 3.4. Let v be a support vertex in a graph G. If G′ is a graph

obtained from G by adding a new leaf, say v′, adjacent to v, then G is a (minimal )
DTDP-graph if and only if G′ is a (minimal ) DTDP-graph.

4. 2-Subdivision Graphs of a Graph

In this section, we define 2-subdivision graphs of a graph, and show that this
class of graphs is important when discussing DTDP-graphs. Informally, given
a multigraph H, we consider a 2-subdivision (obtained by adding two vertices on
each edge and each loop) of H called H ′. Then we contract some vertices in the
neighborhoods of the original vertices, that is, vertices in NH′(v) where v ∈ VH .
Finally, we multiply certain leaves where desired.

More formally, let H = (VH , EH) be a graph with possible multi-edges and
multi-loops. By ϕH we denote a function from EH to 2VH that associates with
each e ∈ EH , the set ϕH(e) of vertices incident with e. Let X2 be a set of 2-
element subsets of an arbitrary set (disjoint with VH ∪EH), and let ξ : EH → X2

be a function such that ξ(e) ∩ ξ(f) = ∅ if e and f are distinct elements of EH .
If e ∈ EH and ϕH(e) = {u, v} (ϕH(e) = {v}, respectively), then we write ξ(e) =
{ue, ve} (ξ(e) = {v1e , v

2
e}, respectively). If ϕH(e) = {u, v} and ξ(e) = {ue, ve},

then we name the vertex ue the co-vertex of u and the vertex ve the far -vertex
of u. Consequently, ve is the co-vertex of v and the vertex ue the far -vertex of
v. Let S2(H) denote the graph obtained from H by inserting two new vertices
into each edge and each loop of H. Thus for each vertex v ∈ VH , the neighbors
of v in S2(H) are the set of co-vertices of v, that is, NS2(H)(v) = {ve : ϕH(e) =
{u, v} and ξ(e) = {ue, ve}}. A graph H and its associated 2-subdivision graph
S2(H) are illustrated in Figure 1.

Formally, the graph S2(H) has vertex set

VS2(H) = VH ∪
⋃

e∈EH

ξ(e)
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Figure 1. A graph H and 2-subdivision graphs S2(H), S2(H,P), and S2(H,P, θ).

and edge set ES2(H) = E1 ∪ E2, where

E1 =
⋃

e∈EH

{ueve : ξ(e) = {ue, ve}}, and

E2 =
⋃

v∈VH

({

vve : e ∈ EH(v)
}

∪
{

vv1e , vv
2
e : e is a loop incident with v

})

.

In such a graph S2(H), we let P = {P(v) : v ∈ VH} be a family in which
P(v) is a partition of the set NS2(H)(v) for each v ∈ VH ⊂ VS2(H). Further, we
let S2(H,P) denote the graph (possibly with multi-loops and multi-edges) with
vertex set

VS2(H,P) = VH ∪
⋃

v∈VH

({v} × P(v))

and edge set ES2(H,P) defined as follows. A vertex v ∈ VH is adjacent to (v,A),
for every A ∈ P(v), by a single edge. Further, if u and v are adjacent vertices in
H, then for A ∈ P(v) and B ∈ P(u), the vertices (v,A) and (u,B) are joined in
S2(H,P) by |{e ∈ EH : ϕH(e) = {u, v}, ve ∈ A, ue ∈ B}| edges. In particular, if
u and v are vertices in H that are not adjacent, and A ∈ P(v) and B ∈ P(u),
then the vertices (v,A) and (u,B) are not adjacent in S2(H,P). Similarly, we can
determine the number of edges between vertices (v,A) and (u,B) (and the number
of loops incident with (v,A) and (u,B)) if A,B ∈ P(v). As an illustration, the
graph S2(H,P) associated with a graph H and a given partition P is shown
in Figure 1. We remark that

NS2(H,P)(v) = {(v,A) : A ∈ P(v)}
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if v ∈ VH ⊆ VS2(H,P), and

NS2(H,P)((v,A)) = {v} ∪
⋃

u∈NH(v)

{(u,B) : B ∈ P(u) andNS2(H)(A) ∩B 6= ∅}

if (v,A) ∈
⋃

v∈VH
({v} × P(v)). Intuitively, S2(H,P) is the graph obtained from

S2(H) as follows: for every vertex v ∈ VH and every set A ∈ P(v), we replace the
vertices in the set A ∈ P(v) with a new vertex (v,A), which becomes adjacent
to all former neighbors of the vertices belonging to A. We remark that in the
special case when P = {P(v) : v ∈ VH} and P(v) = {{x} : x ∈ NH(v)} for each
v ∈ VH , the graph S2(H,P) is isomorphic to S2(H).

For a positive function θ : LS2(H,P) → N, we let

Lθ : LS2(H,P) → LS2(H,P) × N

be a function such that Lθ(x) = {(x, i) : i ∈ [θ(x)]} for x ∈ LS2(H,P). Finally, let
S2(H,P, θ) denote the graph obtained from S2(H,P) by replacing each leaf x of
S2(H,P) by its copies (x, 1), . . . , (x, θ(x)) and adding an edge joining each newly
added vertex to the support vertex adjacent to x in S2(H,P). As an illustration,
the graph S2(H,P, θ) associated with a graph H, a given partition P and a given
function θ, is shown in Figure 1. We remark that in the special case when θ(x) = 1
for every leaf x of S2(H,P), the graph S2(H,P, θ) is isomorphic to S2(H,P).

The graphs S2(H), S2(H,P), and S2(H,P, θ) are said to be 2-subdivision
graphs ofH (for a family P = {P(v) : v ∈ VH} of partitions P(v) of neighborhoods
NS2(H)(v) where v ∈ VH ⊂ VS2(H), and for a positive function θ : LS2(H,P) → N).
Let V o

S2(H), V
o
S2(H,P), and V o

S2(H,P,θ) be sets of vertices such that

V o
S2(H) = VS2(H) \ V

n
S2(H) = VH ,

V o
S2(H,P) = VS2(H,P) \ V

n
S2(H,P) = VH ,

V o
S2(H,P,θ) = VS2(H,P,θ) \ V

n
S2(H,P,θ),

where V n
S2(H) =

⋃

e∈EH
ξ(e), and V n

S2(H,P) = V n
S2(H,P,θ) =

⋃

v∈VH
({v} × P(v)).

As a consequence of the definition of the 2-subdivision graphs S2(H) and
S2(H,P), we have the following observation.

Observation 4.1. If H is a graph with no isolated vertex and P = {P(v) : v ∈
VH} is a family in which P(v) is a partition of the neighborhood NS2(H)(v) for

each v ∈ VH ⊂ VS2(H), then the following statements hold.

(1) If v ∈ VH , then NS2(H)(v) and NS2(H,P)(v) are nonempty subsets of VS2(H) \
VH and VS2(H,P) \ VH , respectively.

(2) If v ∈ VH , then dS2(H)(v) = dH(v) and dS2(H,P)(v) = |P(v)|.
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(3) If x ∈ VS2(H) \ VH , then |NS2(H)(x) ∩ VH | = |NS2(H)(x) ∩ (VS2(H) \ VH)| = 1.

(4) If v ∈ VH and A ∈ P(v), then |NS2(H,P)((v,A)) ∩ (VS2(H,P) \ VH)| = |A| and
|NS2(H,P)((v,A)) ∩ VH | = 1.

The next result follows trivially from the construction of the 2-subdivision
graph S2(H,P, θ).

Observation 4.2. If no vertex of a graph H is an isolated vertex, then the 2-
subdivision graph S2(H,P, θ) is a DTDP-graph for every family P = {P(v) : v ∈
VH} of partitions P(v) of neighborhoods NS2(H)(v) where v ∈ VH , and for every

positive function θ : LS2(H,P) → N. In addition,
(

V o
S2(H,P,θ), V

n
S2(H,P,θ)

)

is a DT-

pair in S2(H,P, θ).

It follows from Observation 4.2 that
(

V o
S2(H),V

n
S2(H)

)

,
(

V o
S2(H,P),V

n
S2(H,P)

)

,

and
(

V o
S2(H,P,θ), V

n
S2(H,P,θ)

)

are DT-pairs in S2(H), S2(H,P), and S2(H,P, θ),

respectively. Consequently, every 2-subdivision graph S2(H,P, θ) is a DTDP-
graph. Simple examples presented in Figures 2 and 3 illustrate the fact that if
S2(H,P, θ) is a minimal DTDP-graph depends on the family of partitions P. In
Figure 3 we present examples of possible 2-subdivision graphs S2(K

2
1 ,P, θ) of K2

1 ,
where Ks

1 denotes a graph of order 1 and size s. We remark that of all the graphs
in Figures 2 and 3, only S2(C2), S2(P4), and S2(K

2
1 ,P4) are minimal DTDP-

graphs. In the next two propositions we study these relations more precisely.

C2 S2(C2) S2(C2,P′) S2(C2,P′′) S2(P4) S2(P4,P′) S2(P4,P′′)

Figure 2. Graphs C2, S2(C2), S2(C2,P
′), S2(C2,P

′′), S2(P4), S2(P4,P
′), and S2(P4,P

′′).
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Figure 3. Possible 2-subdivision graphs of K2

1
.

Proposition 4.3. Let H be a graph without isolated vertices and let P = {P(v) :
v ∈ VH} be a family in which P(v) is a partition of the set NS2(H)(v) for v ∈
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VH . Then the 2-subdivision graph S2(H,P) (and S2(H,P, θ) for every positive

function θ : LS2(H,P) → N) is a DTDP-graph but not a minimal DTDP-graph if

there exists a vertex v ∈ VH and a set A ∈ P(v) such that A contains at least two

elements belonging to different edges or loops and at least one of them is not a

pendant edge of H.

Proof. By Observation 4.2, S2(H,P) is a DTDP-graph and the pair (D,T ) =
(

V o
S2(H,P), V

n
S2(H,P)

)

is a DT-pair in S2(H,P). It suffices to observe that some

proper spanning subgraph of S2(H,P) is a DTDP-graph. We consider two pos-
sible cases.

Case 1. Assume there exists a non-pendant edge e in H, say ϕH(e) = {v, u},
and let f be an edge (or a loop) incident with v and such that ve and vf (ve and
v1f or ve and v2f , if f is a loop) belong to the same set A which is an element of the
partition P(v). Let B be the only set belonging to P(u) that contains ue. Now
from the properties of the DT-pair (D,T ) in S2(H,P) it follows that if {ue}  B,
then (D,T ) is a DT-pair in the proper spanning subgraph S2(H,P)\ (v,A)(u,B)
of S2(H,P). Similarly, if B = {ue}, then (D ∪ {(u, {ue})}, T \ {(u, {ue})}) is
a DT-pair in the proper spanning subgraph S2(H,P) − u(u, {ue}) of S2(H,P),
where u(u, {ue}) is the edge joining the vertex u and the vertex (u, {ue}).

Case 2. Assume now that e is a loop incident with a vertex v in H, and
f is a pendant edge or a loop incident with v in H (f 6= e) and such that
{v1e , v

2
e} ∩ A 6= ∅ and vf ∈ A (or {v1e , v

2
e} ∩ A 6= ∅ and {v1f , v

2
f} ∩ A 6= ∅, if

f is a loop) for some A ∈ P(v). If f is a pendant edge, and, without loss
of generality, if v1e , vf ∈ A, then we consider three subcases: (i) v2e ∈ A; (ii)
v2e 6∈ A and {v2e} ∈ P(v); (iii) v2e 6∈ A and {v2e}  B ∈ P(v). In the first
case (D,T ) is a DT-pair in the spanning subgraph obtained from S2(H,P) by
removing one loop incident with the vertex (v,A). In the second case the pair
(D ∪ {(v, {v2e})}, T \ {(v, {v2e})}) is a DT-pair in S2(H,P) − v(v, {v2e}). In the
third case (D,T ) is a DT-pair in S2(H,P)− (v,A)(u,B).

Finally assume that every set A ∈ P(v) that contains at least two elements is
a subset of the set

⋃

f{v
1
f , v

2
f}, where the summation is over all loops incident with

v in H. LetHv be the subgraph of H generated by all loops incident with v. Then
Hv is isomorphic to Ks

1 (where s is the number of loops incident with v in H), and
we consider the graphs S2(Hv) and S2(Hv,Pv), where Pv = {B∩NS2(Hv)(v) : B ∈
P(v), B ∩NS2(Hv)(v) 6= ∅}. It is obvious that S2(Hv,Pv) is an induced subgraph
of S2(H,P), and ({v}, VS2(Hv ,Pv) \ {v}) is a DT-pair in S2(Hv,Pv). It remains to
prove that some proper spanning subgraph of S2(Hv,Pv) has a DT-pair (Dv, Tv)
such that v ∈ Dv. This is obvious if S2(Hv,Pv) contains parallel edges (see
Observation 3.3) or a loop adjacent to another loop or to at least 2 edges. Thus,
assume that S2(Hv,Pv) contains neither parallel edges nor a loop adjacent to
another loop or to at least 2 edges. We may also assume that no two mutually
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adjacent vertices of degree 2 are adjacent to v. Let u ∈ NS2(Hv)(v) be a vertex of
minimum degree in S2(Hv,Pv). Certainly, dS2(Hv ,Pv)(u) ≥ 2. Let w be a vertex
belonging to NS2(Hv ,Pv)(u)\{v}. The choice of u and the assumption that no two
mutually adjacent vertices of degree 2 are adjacent to v imply that w is of degree
at least 3 in S2(Hv,Pv). Consequently, w has a neighbor in VS2(Hv ,Pv) \ {v, u}.
This implies that ({v, u}, VS2(Hv ,Pv) \{v, u}) is a DT-pair in S2(Hv,Pv)−uv, and
completes the proof.

Proposition 4.4. Let H be a graph without isolated vertices, and let P =
{P(v) : v ∈ VH} be a family in which P(v) is a partition of the set NS2(H)(v)
for every v ∈ VH . If P is such that for every v ∈ VH \LH and every non-pendant

edge e incident with v, the singleton {ve} is an element of P(v), then both 2-
subdivision graphs S2(H) and S2(H,P) are minimal DTDP-graphs or neither of

them is a minimal DTDP-graph.

Proof. For ease of observation, we assume that H has only one support vertex,
say v. Let u1, . . . , uk be the leaves adjacent to v in H. Let H ′ be the subgraph
of H induced by the vertices v, u1, . . . , uk. It follows from the properties of
P that the 2-subdivision graph S2(H,P) results from S2(H) replacing the tree
S2(H

′) rooted at v by the tree S2(H
′,P ′) rooted at v and defined for the family

P ′ = {P ′(x) : x ∈ VH′} in which P ′(v) = {A ∈ P : A ⊆ {vvu1 , . . . , vvuk}} and
P ′(ui) = P(ui) = {ui

vui} (for i ∈ [k]). Now, the fact that both S2(H
′) and

S2(H
′,P ′) are minimal DTDP-graphs implies that both S2(H) and S2(H,P) are

minimal DTDP-graphs or neither of them is a minimal DTDP-graph.

Definition 1. If e is a pendant edge in H and ϕH(e) = {v, u}, where v is
a support vertex of degree at least 2 and u is a leaf, then the edge vve in S2(H) is
called a far part of the pendant edge e in H. If e is a loop incident with a vertex
v in H, then the edges vv1e and vv2e in S2(H) are said to be twin parts of the loop

e in H.

It follows from Propositions 4.3 and 4.4 that if S2(H,P, θ) is a minimal
DTDP-graph, then P can only contract far parts of adjacent pendant edges in H
or twin parts of a loop in H.

Corollary 4.5. If H is a connected graph of size at least 2, then the 2-subdivision
graphs S2(H,P) and S2(H,P, θ) are minimal DTDP-graphs (for every family

P = {P(v) : v ∈ VH} in which P(v) is a partition of the set NS2(H)(v) for each

v ∈ VH and for every positive function θ : LS2(H,P) → N) if and only if H is

a star.

Our aim is to recognize graphs which are present in non-minimal DTDP-
graphs. For this purpose, let F be the family of all graphs defined as follows.
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Definition 2 (The family F).
(1) We start with a rooted tree, say T , in which dT (x) ≤ 2 for every vertex
x ∈ VT \ {r} (where r is a root of T ) and form 2-subdivision graphs S2(T ) and
S2(T,P) for the family P = {P(x) : x ∈ VT } in which P(x) is a partition of the set
NS2(T )(x), and where P(r) = {NS2(T )(r)}, while P(x) = {{y} : y ∈ NS2(T )(x)} if
x ∈ VT \ {r}.

(2) From the choice of P it follows that r is a leaf in S2(T,P) (and (r,NS2(T )(r))
is the only neighbor of r in S2(T,P). Finally, if θ : LS2(T,P) → N is a function
such that θ(r) is a positive integer and θ(x) = 1 for every x ∈ LS2(T,P) \{r}, then
we form the 2-subdivision graph S2(T,P, θ) from S2(T,P) replacing the leaf r by
its copies (r, 1), . . . , (r, θ(r)) (adjacent to (r,NS2(T )(r)) in S2(H,P, θ)).

To illustrate this definition, consider the graphs drawn in Figure 4 that can
be obtained from the tree T in the leftmost drawing. We remark that the graph
S2(T,P, θ) belonging to the family F can be obtained from the graph S2(T ) by
identifying the neighbors of the root r in the graph S2(T ) into one new vertex,
namely the vertex (r,NS2(T )(r)), and joining this new vertex to the vertex r and
to all far-vertices of r, and thereafter replacing the leaf r with θ(r) copies of r,
each of which is joined to the new vertex (r,NS2(T )(r)). From this remark and
from Observation 4.2 we have the following corollary, which we shall use in the
proof of Theorem 5.6. For a graph G, we denote the distance between two vertices
u and v in G by dG(u, v).

Corollary 4.6. Every tree belonging to the family F is a DTDP-tree, that is,

if T is a tree rooted at vertex r, and dT (x) ≤ 2 for every vertex x ∈ VT \ {r},
1 ≤ |NT (r)∩LT | ≤ dT (r)−1, and dT (x, r) ≡ 2 (mod 3) for every x ∈ LT \NT (r),
then T is a DTDP-tree. In particular, if T is a wounded spider rooted at vertex r,
that is, if 1 ≤ |NT (r)∩LT | ≤ dT (r)−1 and dT (x, r) = 2 for every x ∈ LT \NT (r),
then T is a minimal DTDP-tree.

r

T

r

NS2(T )(r)

S2(T )

r

(r,NS2(T )(r))

S2(T,P)

(r,NS2(T )(r))

S2(T,P,θ)

(r,1) (r,θ(r))

Figure 4. A graph S2(T,P, θ) belongs to the family F .
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5. Good Subgraphs of a Graph

In this section, we define what we have coined a “good subgraph” of a graph.
We show that the presence of such subgraphs play a key role in determining
non-minimal DTDP-graphs. Let Q be a subgraph without isolated vertices of
a graph H, and let E−

Q denote the set of edges belonging to EH \ EQ that are

incident with a vertex of Q. Let E be a set such that E−

Q ⊆ E ⊆ EH \ EQ, and
let AE denote a set of arcs obtained by assigning an orientation for each edge in
E. Then by H∗(AE) we denote the partially oriented graph obtained from H by
replacing the edges in E by the arcs belonging to AE . If e ∈ E, then by eA we
denote the arc in AE that corresponds to e. By H0 we denote the subgraph of
H∗(AE) induced by the vertices that are not the initial vertex of an arc belonging
to AE , i.e., by the set {v ∈ VH : d+

H∗(AE)(v) = 0}.

We say that Q is a good subgraph of H if there exist a set of edges E (where
E−

Q ⊆ E ⊆ EH \ EQ) and a set of arcs AE such that in the resulting graph
H∗(AE), which we simply denote by H∗ for notational convenience, the arcs in
AE form a family F = {Fv : v ∈ VQ} of arc disjoint digraphs Fv indexed by the
vertices of Q and such that the following hold.

(1) For every v in Q, the digraph Fv is the union of a family, say Pv, of arc
disjoint oriented paths that begin at v.

(2) If u ∈ VH∗ \ VQ, then d+H∗(u) ≤ 1.

(3) If u ∈ VH∗ , then d−H∗(u) < dH∗(u).

(4) If x ∈ VFv
∩ VFu

and v 6= u, then d+Fv
(x) = 0 or d+Fu

(x) = 0.

One example of a good subgraph Q is shown in Figure 5. For clarity, the
edges of Q are bold, and the digraphs Fv, Fu, Fw, and Fz are represented by four
types arrows.

v u

wz Fv

Fu

Fw

Fz�

�

	
-

-

6

6 I
	

Figure 5. A bold subgraph is a good subgraph in the host graph.

From the definition of a good subgraph we immediately have the following
observation.

Observation 5.1. Neither a leaf nor a support vertex of a graph H belongs to

a good subgraph in H.
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Observation 5.1 also implies that not every graph has a good subgraph. In
particular, a corona graph (that is, a graph in which each vertex is a leaf or it is
adjacent to exactly one leaf) has no good subgraph. On the other hand, if Q is
a graph with no isolated vertex, and H is the graph obtained from Q by attaching
at least one pendant edge to each vertex of Q and thereafter subdividing these
new edges, then Q is a good subgraph in H. This proves that every graph without
isolated vertices can be a good subgraph of some graph.

Proposition 5.2. If e is a loop incident with a vertex v in a connected graph H,

then the subgraph He of H with vertex set VHe
= {v} and edge set EHe

= {e} is

a good subgraph in H if and only if H 6= C1 and v is not adjacent to a pendant

edge in H.

Proof. If He is a good subgraph in H, then, by Observation 5.1, the only vertex
v of He cannot be a support vertex in H.

Assume now that the vertex v is not a support vertex in H. Then v is
neither a support vertex nor a leaf in H (as e is a loop incident with v). If
NH(v) = {v}, then H = Ks

1 (s ≥ 2) and, certainly, He = K1
1 is a good subgraph

in H. Thus assume that NH(v) 6= {v}. In this case, the set NH(v) \ {v} is
nonempty and it consists of two disjoint subsets N1

v and N2
v , where N1

v = {x ∈
NH(v) \ {v} : NH(x) = {v}} and N2

v = {x ∈ NH(v) \ {v} : {v}  NH(x)}.
Consequently, the set E−

He
of edges or loops belonging to EH \ EHe

= EH \ {e}

that are incident with v, consists of three disjoint subsets El
v, E

1
v , and E2

v , where
El

v is the set of loops incident with v which are distinct from e, E1
v = EH(v,N1

v )
(note that every edge in E1

v is a multi-edge), and E2
v = EH(v,N2

v ). Now we
orient all edges in E−

He
. First, for every s ∈ N1

v we choose two edges belonging

to EH(v, s), say fs and gs. Let AE be the set of arcs obtained from E−

He
by

assigning any orientation to every loop in El
v, every edge in E2

v is oriented toward
a vertex in N2

v , while edges belonging to E1
v are oriented in such a way that for

every vertex s ∈ N1
v one chosen edge joining v and s, say fs, is oriented from

s to v, and all other edges belonging to EH(v, s) \ {fs} are oriented toward s,
see Figure 6. Let Pv be the family of oriented paths that consists of oriented
1-cycles (v, hA, v) (for every h ∈ El

v), oriented 2-cycles (v, gsA, s, f
s
A, v) (for every

s ∈ N1
v ), oriented 1-paths (v, kA, x) (for every x ∈ N2

v and every k ∈ EH(v, x)),
and (v, lA, y) (for every y ∈ N1

v and every l ∈ EH(v, y) \ {fy, gy}). Finally, let
Fv be the digraph with vertex set NH [v] and arc set Ae. From the choice of Pv

one can readily observe that Fv and Pv have the properties (1)–(4) stated in the
definition of a good subgraph. Consequently, He is a good subgraph in H.

For s ≥ 1, by Ks
2 we denote a graph of order 2 and size s in which the vertices

are joined by exactly s edges.
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Figure 6. An example to Proposition 5.2.

Proposition 5.3. If e is an edge joining two vertices, say v and u, in a connected

graph H, then the subgraph He of H with vertex set VHe
= {u, v} and edge set

EHe
= {e} is a good subgraph in H if and only if H 6∈ {C2, C3} and neither v

nor u is adjacent to a pendant edge in H.

Proof. It is easy to observe that if He is a good subgraph in H, then H 6= K2
2 ,

H 6= K3, and, by Observation 5.1, neither v nor u is adjacent to a leaf in H.

Thus assume that H 6= K2
2 , H 6= K3, e is an edge joining vertices v and u

in H, and neither v nor u is adjacent to a leaf in H. We shall prove that He is
a good subgraph in H. We consider two cases, namely NH({v, u}) = {v, u} and
{v, u}  NH({v, u}).

Case 1. NH({v, u}) = {v, u}. In this case, H is a graph of order 2. If e is the
only edge joining v and u in H, then He is a good subgraph in H if and only if
each of the vertices v and u is incident with a loop in H. If v and u are joined by
two parallel edges in H, then He is a good subgraph in H if and only if at least
one of the vertices v and u is incident with a loop in H (or, equivalently, He is
not a good subgraph in H if H = K2

2 ). Finally, if v and u are joined by at least
three parallel edges in H, then He is always a good subgraph in H. In every case
it is straightforward to recognize arcs or directed paths forming the families of
directed paths Pv and Pu and desired digraphs Fv and Fu in graphs H1, . . . , H6

shown in Figure 7.

Case 2. {v, u}  NH({v, u}). In this case, the set N−
vu = NH({v, u}) \ {v, u}

is nonempty, and, by our assumption, no vertex belonging to N−
vu is a leaf in

H. The set N−
vu consists of five subsets: N1

v = {x ∈ N−
vu : NH(x) = {v}},

N1
u = {x ∈ N−

vu : NH(x) = {u}}, N1
vu = {x ∈ N−

vu : NH(x) = {v, u}}, N2
v = {x ∈

N−
vu : {v}  NH(x)}, and N2

u = {x ∈ N−
vu : {u}  NH(x)}. The sets N1

v , N
1
u ,

N1
vu, and N2

v ∪N
2
u are disjoint, and it is possible that some of them are empty. Let

AE be a set of arcs obtained by assigning an orientation to every edge belonging
to the set E−

He
, that is, to every edge incident with v or u and different from

e. The set AE and families Pv and Pu of directed paths that begin at v and u,
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respectively, are defined in the following way.
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u v
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v
e

u v
e

u v
e

u

H1

H3

H6

H2

H5H4

Figure 7. Examples to Case 1.

(1) To every loop f incident with x we assign an arbitrary orientation fA,
and add the 1-cycle (x, fA, x) to Px if x ∈ {v, u}.

(2) If an edge f belongs to EH({v, u}, N2
v ∪N2

u), then by fA we denote the
orientation of f toward N2

v ∪N2
u . In addition, if ϕH(f) = {x, y}, where x ∈ {v, u}

and y ∈ N2
x , then we add the 1-path (x, fA, y) to Px.

(3) If x ∈ N1
v ∪N1

u , and y is the only neighbor of x (belonging to {v, u}), then
(as in the proof of Proposition 5.2) we choose two edges belonging to EH(x, y), say
fx and gx, one of them, say fx, obtain an orientation from x to y, and all other
edges belonging to EH(x, y)\{fx} are oriented toward x. In this case, the 2-cycle
(y, gxA, x, f

x
A, y) and all the 1-paths (y, hA, x), for every h ∈ EH(x, y) \ {fx, gx} (if

this set is nonempty), are added to Py.

(4) If the set N1
vu is nonempty, then we distinguish two cases.

(a) If at least one of the sets EH(v,N1
v ∪N1

u)∪El
v and EH(u,N1

v ∪N1
u)∪El

u

is nonempty, say EH(v,N1
v ∪N1

u)∪El
v 6= ∅, then for every z ∈ N1

vu, we choose two
edges belonging to EH(z, {v, u}), say fz ∈ EH(z, v) and gz ∈ EH(z, u), orient fz

toward v, all other edges belonging to EH(z, {v, u}) \ {fz} are oriented toward z,
and to every edge in EH(v, u)\{e} (if this set is nonempty) we choose an arbitrary
orientation, say from u to v. Now the 2-path (u, gzA, z, f

z
A, v), the 1-paths (u, hA, z)

(for every h ∈ EH(u, z) \ {gz}) and (u, kA, v) (for every k ∈ EH(u, v) \ {e}) are
added to Pu, while the 1-paths (v, lA, z) (for every l ∈ EH(v, z) \ {fz}) to Pv.

(b) If both the sets EH(v,N1
v ∪N1

u)∪El
v and EH(u,N1

v ∪N1
u)∪El

u are empty,
then we consider two subcases.

(b1) If |N1
vu| ≥ 2, and if C is a smallest subset of EH({v, u}, N1

vu) that covers
the vertices in {v, u}∪N1

vu, then we orient the edges in C toward {v, u}, the edges
in EH({v, u}, N1

vu) \ C toward N1
vu, and the edges belonging to EH(v, u) \ {e}

(if this set is nonempty) in an arbitrary way, again say from u to v. We may
assume that N1

vu = {z1, . . . , zk}, C = {fz1 , . . . , fzk}, and ϕH(fzi) = {zi, xi},
where xi ∈ {v, u} for i ∈ [k]. Let D = {gz1 , . . . , gzk}, where ϕH(gzi) = {zi, yi}
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and yi is the only element of {v, u} \ {xi} for i ∈ [k]. Now, we add all 1-paths
(u, lA, v) (for every l ∈ EH(v, u) \ {e}) and 1-paths (u, lA, zi) (if i ∈ [k] and
l ∈ EH(u, zi) \ (C ∪ D)) to Pu, while we add 1-paths (v, pA, zi) (if i ∈ [k] and
p ∈ EH(v, zi) \ (C ∪ D)) to Pv. Finally, we add the 2-path (yi, g

zi
A , zi, f

zi
A , xi),

i ∈ [k], to Pv (Pu, respectively) if and only if yi = v (yi = u, respectively).

(b2) If |N1
vu| = 1, say N1

vu = {z}, then, since VH = {v, u, z} and H 6= K3,
H is a proper spanning supergraph of K3 and, therefore, it has parallel edges
(as El

v = El
u = ∅). Without loss of generality, we assume that v is incident

with parallel edges. There are five cases to consider, and they are sketched in
Figure 8. In each of these cases, let fz and gz be an edge belonging to EH(v, z)
and EH(u, z), respectively. We orient fz toward v, all other edges belonging to
EH({v, u}, z)\{fz} we orient toward z, and the edges belonging to EH(v, u)\{e}
(if EH(v, u)\{e} 6= ∅) are directed toward u. Now, the 2-path (u, gzA, z, f

z
A, v) and

1-paths (u, hA, z) (h ∈ EH(u, z)\{gz}) form the family Pu, while 1-paths (v, lA, z)
(l ∈ EH(v, z) \ {fz}) and (v, pA, u) (p ∈ EH(v, u) \ {e}) form the family Pu.

Let Fv and Fu be digraphs generated by arcs belonging to families Pv and
Pu, respectively. Since families Pv and Pu consist of 1- and 2-paths, we observe
that the digraphs Fv and Fu, and families Pv and Pu have the properties (1)–(4)
stated in the definition of a good subgraph. Consequently, He is a good subgraph
in H.

v
e
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z

v
e

u

z

v
e

u

z

v
e

u

z

v
e

u

z

Figure 8. An example to Observation 5.3.

Remark 1. Let H be a graph without isolated vertices and let I be a proper
subset of VH . Then the induced subgraph H[I] is a good subgraph in H if
1 ≤ dH[I](v) < dH(v) for every v ∈ I, and NH(x) \ I 6= ∅ for every x ∈ NH(I) \ I.

A proof of this statement is similar to the proofs of Propositions 5.2 and 5.3
and is omitted.

As a consequence of Observation 5.1 and Propositions 5.2 and 5.3, we have
the following two corollaries.

Corollary 5.4. A connected graph has a good subgraph if and only if it has a good

subgraph generated by a loop or by an edge, that is, if and only if H 6∈ {C1, C2, C3}
and it has an edge (or a loop) which is neither a pendant edge nor adjacent to

a pendant edge in H.

Corollary 5.5. A tree T of order at least 2 has a good subgraph if and only if it

has an edge which is neither a pendant edge nor adjacent to a pendant edge in T .
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It might be thought that a 2-subdivision graph of a graph having a good
subgraph is not a minimal DTDP-graph, but it is not true in general since, for
example, K2

1 has a good subgraph and its 2-subdivision graph S2(K
2
1 ,P4) shown

in Figure 3 is a minimal DTDP-graph. For this reason in the next theorem
(which is important in our characterization of the minimal DTDP-graphs) we
only consider 2-subdivision graphs without loops, that is, 2-subdivision graphs
in which no twin parts corresponding to a loop are contracted into a single edge
and, in consequence, forming a loop in the 2-subdivision graph.

Theorem 5.6. Let H be a connected graph without isolated vertices, and let

P = {P(v) : v ∈ VH} be a family in which P(v) is a partition of the neighbor-

hood NS2(H)(v) for every v ∈ VH . If H has a good subgraph and P does not

contract in S2(H,P) any twin parts corresponding to a loop in H, then the 2-
subdivision graph S2(H,P, θ) is a non-minimal DTDP-graph (for every positive

function θ : LS2(H,P) → N).

Proof. Let Q be a good subgraph in H. By Corollary 5.4 we may assume
that Q is a good subgraph generated by a loop or by an edge. By Observation
4.2 the 2-subdivision graph S2(H,P, θ) is a DTDP-graph. We shall prove that
S2(H,P, θ) is not a minimal DTDP-graph. By Observation 3.4 it suffices to
show that S2(H,P) is a non-minimal DTDP-graph. By virtue of Proposition
4.3 it suffices to show this non-minimality only in the case when P contracts in
S2(H,P) far parts of adjacent pendant edges in H (since we have assumed that
P does not contract in S2(H,P) any twin parts corresponding to any loop in H).
In such case it is possible to observe that S2(H,P) is a non-minimal DTDP-graph
if and only if S2(H) is a non-minimal DTDP-graph. Thus it remains to prove
that S2(H) is a non-minimal DTDP-graph.

Assume first that the good subgraph Q in H is generated by a loop, say
by a loop e incident with a vertex v. It is obvious that H = Ks

1 has a good
subgraph and S2(K

s
1) is a non-minimal DTDP-graph if and only if s ≥ 2. Thus

assume that H is a connected graph of order at least 2. For simplicity, as far
as possible, we adopt the notation from the proof of Proposition 5.2. For ease
of presentation, we assume that N1

v = {v1, . . . , vk} and EH(v, vi) = {e1i , . . . , e
ji
i }

(where ji ≥ 2 as every edge in EH(v,N1
v ) is a multi-edge) for every vi ∈ N1

v .
We may assume that AE is an orientation of E−

Q (of the set of edges or loops
belonging to EH \ EQ = EH \ {e} that are incident with v) such that every
loop belonging to El

v obtain an arbitrary direction, every edge belonging to E2
v is

directed toward N2
v , and edges belonging to E1

v are oriented in such a way that
for every vertex vi ∈ N1

v the edge e1i is directed from vi to v, and all other edges
belonging to EH(v, vi) are directed toward vi. Let Fv be the digraph generated by
the arcs belonging to AE . Let Pv be the family consisting of all directed 2-cycles
(v, e2i , v

i, e1i , v) (for i ∈ [k]) and of all directed 1-paths (and 1-cycles) generated
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by all other arcs of Fv, see the left part of Figure 9. The digraph Fv and the
family Pv, as in the proof of Proposition 5.2, have the properties (1)–(4) stated
in the definition of a good subgraph, implying that Q is a desired good subgraph
in H.

Let G′ be the proper spanning subgraph obtained from S2(H) by removing
the “middle” edge v1ev

2
e from the 3-cycle corresponding to the loop e of Q, and the

third edge from the 4-path corresponding to the last arc in every directed path in
Pv, as illustrated in the right part of Figure 9. Formally, G′ is the proper spanning
subgraph of S2(H) with edge set EG′ = ES2(H) \ ({v1ev

2
e} ∪ {vv2f : f ∈ El

v}∪

R1
v ∪R2

v), where

R1
v =

k
⋃

i=1

{

vve1i
, vivi

e3i
, . . . , vivi

e
ji
i

}

and R2
v =

⋃

u∈N2
v

{

uug : g ∈ EH(v, u)
}

.

All that remains to prove is that G′ is a DTDP-graph. It suffices to observe
that every component of G′ is a 2-subdivision graph. Let G′

v be the component
of G′ containing the vertex v. We note that G′

v belongs to the family F and,
therefore, it is a DTDP-graph by Corollary 4.6. If the set N2

v is empty, then
G′ = G′

v and the desired result follows. Thus assume that the set N2
v is non-

empty. Then, since every edge belonging to the set

⋃

u∈N2
v

{

uug : g ∈ EH(v, u)
}

joins a vertex in N2
v to a vertex in VG′

v
, while every edge belonging to the set

{

v1ev
2
e

}

∪
{

vv2f : f ∈ El
v

}

∪
k
⋃

i=1

{

vve1i
, vivi

e3i
, . . . , vivi

e
ji
i

}

joins two vertices belonging to VG′

v
, the subgraph G′′ = G′ − VG′

v
is an induced

subgraph of G′ and, in addition, G′′ is a 2-subdivision graph, G′′ = S2(H −VG′

v
).

Thus, by Observation 4.2, G′′ is DTDP-graph. Consequently, since G′
v and G′′

are DTDP-graphs, the proper spanning subgraph G′ of S2(H) is a DTDP-graph
and, therefore, S2(H) is a non-minimal DTDP-graph. (For example, in Figure 9
it is G′ = S2(C4)∪S2(K

2
1,10,P, θ), where K2

1,10 is a star K1,10 with two subdivided

edges, P in S2(K
2
1,10) contracts all ten neighbors of the vertex corresponding to

the central vertex of K1,10 (or K2
1,10), and finally the “new” pendant edge in

S2(H,P) is replaced by twin pendant edges (using the function θ).)
Assume now that the good subgraph Q in H is generated by an edge, say

by an edge e which joins two vertices v and u in H. We know that S2(H) is
a DTDP-graph and we shall prove that S2(H) is a non-minimal DTDP-graph.
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Figure 9. Graphs H, S2(H), and a spanning subgraph G′ of S2(H).

We already know that S2(H) is a non-minimal DTDP-graph if H has a good
subgraph generated by a loop. Thus assume that no subgraph of H generated
by a loop is a good subgraph in H. Consequently, since H is a connected graph
of order at least 2, every loop in H is incident with a support vertex, and, in
particular, neither v nor u is incident with a loop. Certainly, neither v nor u is
a support vertex in H. As in the proof of Proposition 5.3 we consider two cases,
namely NH({v, u}) = {v, u} and {v, u}  NH({v, u}).

Case 1. NH({v, u}) = {v, u}. In this case, since neither v nor u is incident
with a loop, H = Ks

2 and s ≥ 1. From the fact that Ks
2 has a good subgraph it

follows that s ≥ 3. Certainly, S2(K
s
2) is a non-minimal DTDP-graph if s ≥ 3.

Case 2. {v, u}  NH({v, u}). For simplicity we use the same notation as
in the second part of the proof of Proposition 5.3. Consider the orientation
AE of E−

Q , the families Pv and Pu, and the digraphs Fv and Fu, introduced
in Case 2 of the proof of Proposition 5.3. Let G′ be the spanning subgraph
of S2(H) obtained from S2(H) by removing the middle edge veue from the 4-
path (v, ve, ue, u) corresponding to the edge e, and the third edge from each
4-path corresponding to the last arc in every directed path in Pv or Pu, see the
lower part of Figure 10. As in the first part of the proof, G′ is a DTDP-graph.
Consequently, the proper spanning subgraph G′ of S2(H) is a DTDP-graph and
therefore S2(H) is a non-minimal DTDP-graph.

It follows from Corollary 5.4 that every path Pn (with n ≥ 6) and every
cycle Cm (with m ≥ 4) has a good subgraph, and, therefore, Observation 4.2,
Theorem 5.6, and a simple verification justify the following remark about minimal
DTDP-paths and minimal DTDP-cycles.

Remark 2. If Cm is a cycle of size m, then S2(Cm) is a DTDP-graph for every
positive integer m, but S2(Cm) is a minimal DTDP-graph if and only if m ∈
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Figure 10. Graphs H, S2(H), and a spanning subgraph G′ of S2(H).

{1, 2, 3}. If Pn is a path of order n, then S2(Pn) is a DTDP-graph for every integer
n ≥ 2, while S2(Pn) is a minimal DTDP-graph if and only if n ∈ {2, 3, 4, 5}.

6. Structural Characterization of the DTDP-Graphs

The next theorem presents general properties of DT-pairs in minimal DTDP-
graphs.

Theorem 6.1. A connected minimal DTDP-graph G is a 2-subdivision graph

S2(H,P, θ) of some connected graph H, where P = {P(v) : v ∈ VH} is a family

in which P(v) is a partition of the neighborhood NS2(H)(v) for v ∈ VH , and

θ : LS2(H,P) → N is a positive function.

Proof. Let G be a connected minimal DTDP-graph, and let (D,T ) be a DT-
pair in G. We proceed with the following series of claims, that yield structural
properties of the graph G.

Claim 1. The set D is a maximal independent set in G.
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Proof. If the set D were not independent, then two vertices belonging to D,
say x and y, would be adjacent, and then (D,T ) would be a DT-pair in G− xy,
contradicting the minimality of G. Now, since D is both an independent set and
a dominating set of G, the set D is a maximal independent set in G.

Claim 2. Every component of G[T ] is a star or it is a graph of order 1 and

size 1.

Proof. Since T is a TD-set of G, by definition, G[T ] has no isolated vertex.
Consequently, every component of G[T ] is either of order 1 and size at least 1 or
has order at least 2. From the minimality of G, a component of order 1 in G[T ]
has exactly one loop incident with its only vertex. Now let F be a component
of order at least 2 in G[T ]. To prove that F is a star, it suffices to show that if
distinct vertices are adjacent in G[T ], then at least one of them is a leaf in G[T ].
If x and y are adjacent in G[T ] and neither of them is a leaf in G[T ], then (D,T )
would be a DT-pair in G− xy, violating the minimality of G.

Claim 3. If x ∈ T , then |NG(x) \ T | = 1 or NG(x) \ T is a nonempty subset of

LG. In addition, if x is a leaf in a star of order at least 3 in G[T ], then NG(x)\T
is a nonempty subset of LG.

Proof. Assume that x ∈ T . Then NG(x) \ T is a nonempty subset of D (since
D = VG \ T is a dominating set in G). Therefore, since LG ⊆ D (by Observation
3.1), either NG(x)\T is a nonempty subset of LG or NG(x)\(LG∪T ) is nonempty.
It remains to prove that if NG(x) \ (LG ∪ T ) is nonempty, then |NG(x) \ T | = 1.
Assume that y ∈ NG(x)\(LG∪T ). Then, since D is independent and y ∈ D\LG,
the set NG(y)\{x} is a nonempty subset of T , say x′ ∈ NG(y)\{x}. Now suppose
that |NG(x)\T | ≥ 2, and let y′ be any vertex in (NG(x)\T )\{y}. Then, since x
is dominated by y′ and y is totally dominated by x′, the pair (D,T ) is a DT-pair
in G − xy, contradicting the minimality of G. Assume now that x is a leaf in a
star of order at least 3 in G[T ]. Let x′ be the only neighbor of x in G[T ], and
let y ∈ NG(x) \ {x

′}. It remains to show that y is a leaf in G. Suppose that y is
not a leaf in G. Then NG(y) \ {x} 6= ∅, and, if x′′ ∈ NG(y) \ {x}, then the pair
(D ∪ {x}, T \ {x}) is a DT-pair in G− xy, a contradiction.

We now return to the proof of the theorem. Let G = (VG, EG, ϕG) be a graph
(where, as usually, ϕG(e) denotes the set of vertices incident with e ∈ EG).
Assume that G is a minimal DTDP-graph, and let (D,T ) be a DT-pair in G.
The minimality of G implies that G has neither multi-edges nor multi-loops.
With respect to Observation 3.4 we may assume that G has no strong supports.
This assumption, together with Claim 3, imply that every vertex v belonging to
T has exactly one neighbor in D, and, in addition, this unique neighbor of v is
a leaf in G if v is a leaf of a star of order at least 3 in G[T ]. Consequently, if e
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is an edge in G[T ], then the subset NG(ϕG(e)) \ T of D is of order 1 or 2. This
implies that the triple H = (VH , EH , ϕH) in which VH = D, EH = EG[T ], and

ϕH : EH → 2VH is a function such that ϕH(e) = NG(ϕG(e)) \ T for each edge
e ∈ EH , is a well-defined graph with possible multi-edges or multi-loops. (If e is
an edge in G[T ] and ϕH(e) = {a, b}, then e is an edge which joins the vertices a
and b in H. Similarly, if e is an edge or a loop in G[T ] and ϕH(e) = {a}, then e is
a loop which joins a to itself in H.) Now, to restore the graph G from the multi-
graph H, we first form S2(H) inserting two new vertices into each edge and each
loop of H. More precisely, if an edge e joins vertices a and b in the multi-graph
H (that is, if ϕH(e) = {a, b}), then by ae and be we denote the two mutually
adjacent vertices inserted into the edge e, where ae and be are adjacent to a and
b, respectively. (If e is a loop incident with a vertex a (that is, if ϕH(e) = {a}),
then by a1e and a2e we denote two mutually adjacent vertices inserted into the loop
e and both adjacent to a.) Let P = {P(v) : v ∈ VH} be a family in which the
partition P(v) of the set NS2(H)(v) (for v ∈ VH (⊆ VS2(H)) is defined as follows.

• If e is a loop in G[T ] incident with a vertex NG(v), then we let the 2-element
set {v1e , v

2
e} be an element of P(v).

• If e is an edge (not a loop) in G[T ] and ϕG(e) ⊆ NG(v), then we choose both
one-element sets {v1e} and {v2e} to belong to P(v).

• If {e1, . . . , ek} is the edge set of a star in G[T ] and the central vertex of this
star is in NG(v) (or exactly one vertex of this star is in NG(v), if k = 1), then
we select the set {ve1 , . . . , vek} as an element of P(v).

From the above definition of the family P, the 2-subdivision graph S2(H,P)
(= S2(H,P, θ) if θ(x) = 1 for every x ∈ LS2(H,P)) obtained from S2(H) is iso-
morphic to the graph G, see Figure 11 for an illustration.

From Theorem 6.1 every minimal DTDP-graph is a 2-subdivision graph of
some graph. The converse, however, is not true in general. It is easy to check that
neither of the 2-subdivision graphs S2(H), S2(H,P), and S2(H,P, θ) presented
in Figure 1 is a minimal DTDP-graph. In our last theorem we present the main
structural characterization of minimal DTDP-graphs without loops.
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Theorem 6.2. Let G be a connected graph of order at least 3 that has no loops.

Then the following statements are equivalent.

(1) The graph G is a minimal DTDP-graph.

(2) Either (2a) G ∈ {C3, C6, C9} or (2b) G is a 2-subdivision graph, say G =
S2(H,P, θ) (where H is a connected graph of order at least 2, P = {P(v) : v ∈
VH} is a family in which P(v) is a partition of the set NS2(H)(v) for v ∈
VH , and θ : LS2(H,P) → N is a positive function) in which (2b1) the pair

(V o
G, V

n
G ) = (V o

S2(H,P,θ), V
n
S2(H,P,θ)) is the only DT-pair and, in addition, in

which (2b2) every component of G[V n
G ] is a star.

(3) The graph G is a 2-subdivision graph, say G = S2(H,P, θ), where either (3a)
H ∈ {C1, C2, C3} or (3b) H is a connected graph of order at least 2 in which

(3b1) every non-pendant edge (and every loop) is adjacent to a pendant edge,

(3b2) P = {P(v) : v ∈ VH} is a family in which every P(v) is a partition of

the set NS2(H)(v) for every v ∈ VH , and P contracts in S2(H,P) only far

parts of adjacent pendant edges of H (if any), and (3b3) θ : LS2(H,P) → N is

a positive function.

Proof. (1)⇒ (2) Assume first thatG is a connected minimal DTDP-graph. Then
G has no multi-edges and Theorem 6.1 implies that G is a 2-subdivision graph,
i.e., G = S2(H,P, θ) (for some connected graph H without a good subgraph (by
Theorem 5.6), some family P = {P(v) : v ∈ VH} in which P(v) is a partition of
the neighborhood NS2(H)(v) (for v ∈ VH) which contracts at most far parts of
pendant edges (by Proposition 4.3), and a positive function θ : LS2(H,P) → N).
By Observation 3.4 we may assume that G has no strong supports, and therefore
we may assume that G = S2(H,P) (as S2(H,P) and S2(H,P, θ) are isomorphic if
θ(x) = 1 for every x ∈ LS2(H,P)). By Observation 4.2, the pair (D,T ) = (V o

G, V
n
G )

is a DT-pair in G. In addition, the minimality of G, Theorem 6.1 and our
assumption that G has no loop imply that every component of G[V n

G ] is a star.
Thus, it remains to prove that either G is a cycle of length 3, 6 or 9, or the pair
(V o

G, V
n
G ) is the only DT-pair in G. We consider three cases depending on ∆(H).

Case 1. ∆(H) = 1. In this case, H = P2 and G = S2(H,P) = P4 (as by our
assumption G has no strong supports). Moreover, (V o

G, V
n
G ) = (LG, SG) is the

only DT-pair in G.

Case 2. ∆(H) = 2. In this case, either H = Cm (m ≥ 1) or H = Pn

(n ≥ 3). But, since S2(H,P) is a minimal DTDP-graph, Remark 2 implies that
either H = Cm and m ∈ {1, 2, 3}, or H = Pn and n ∈ {3, 4, 5}. Now, depending
on P, S2(C1,P) = C3 or S2(C1,P) = C1 ◦ K1 and only C3 has the desired
properties (as C1 ◦ K1 has a loop). It is also a simple matter to observe that
S2(P3,P) = S2(P3) = P7 or S2(P3,P) = P3 ◦K1 and each of these graphs has the
desired properties. Simple verifications and Proposition 4.3 show that each of the
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graphs S2(C2,P) (see Figure 2), S2(C3,P), S2(P4,P), and S2(P5,P) is a minimal
DTDP-graph if and only if S2(C2,P) = S2(C2) = C6, S2(C3,P) = S2(C3) =
C9, S2(P4,P) = S2(P4) = P10, and S2(P5,P) = S2(P5) = P13, respectively.
Certainly, each of these four graphs has the desired properties.

Case 3. ∆(H) ≥ 3. In this case we claim that (D,T ) = (V o
G, V

n
G ) is the

only DT-pair in G. Suppose, to the contrary, that (D′, T ′) is another DT-pair
in G. Then, since D and D′ are maximal independent sets in G (by Theorem
6.1) and D 6= D′, each of the sets D \ D′ and D′ \ D is a nonempty subset of
T ′ and T , respectively. Let v be a vertex of maximum degree among all vertices
in D \ D′ ⊆ T ′. Since v ∈ T ′, it follows from Theorem 6.1 that dH(v) ≥ 2. If
H = Ks

1 and s ≥ 2 (as dH(v) ≥ 3), then K1
1 would be a good subgraph in H,

which is impossible. Hence, H has order at least 2. We consider two possible
cases.

Case 3.1. There is a loop, say e, at v. In this case, a pendant edge, say f ,
is incident with v, as otherwise, by Proposition 5.2, the subgraph generated by
e would be a good subgraph in H, which again is impossible. Assume that f
joins the vertex v with a leaf u in H. We claim that v belongs to the set D′.
Let A be the only set in P(v) which contains the vertex vf . By Observation 3.1,
u ∈ D′ and (uf , {uf}) ∈ T ′. Thus, (v,A) ∈ T ′ as T ′ is a TD-set of G and (v,A)
is the only neighbor of (uf , {uf}) in T ′. Finally, this implies that v ∈ D′ as D′

is a dominating set of G and v is the only neighbor of (v,A) ∈ T ′ = VG \ D′.
Consequently, v ∈ D′ and v ∈ D \D′ (by the choice of v), a contradiction.

Case 3.2. No loop is incident with v. In this case, let f1, . . . , fk be the edges
incident with v in H, say ϕH(fi) = {v, vi} for i ∈ [k] (k ≥ 2). If at least one of
the edges f1, . . . , fk is a pendant edge in H, then v ∈ D′ (similarly as in Case
3.1) and this again contradicts the choice of v. Thus assume that none of the
edges f1, . . . , fk is a pendant edge in H. Then, since H has no good subgraph, it
follows from Corollary 5.4 that every vertex v1, . . . , vk is incident with a pendant
edge in H. Analogously as in Case 3.1, each of the vertices v1, . . . , vk belongs to
D′ in G. Now, the minimality of G implies in turn that the vertices (vi, {vifi})
belong to T ′ for i ∈ [k]. Consequently, the vertices (v, {vfi}) also belong to T ′,
since T ′ is a TD-set in G and (v, {vfi}) is the only neighbor of (vi, {vifi}) which
is not in D′ (for i ∈ [k]). Finally, since all the neighbors (v, {vfi}) (i ∈ [k]) of the
vertex v are in T ′, the vertex v has to be in D′, a final contradiction proving the
implication (1) ⇒ (2).

(2)⇒ (1) Assume that G = S2(H,P, θ) (for some connected graph H, some
family P = {P(v) : v ∈ VH} in which P(v) is a partition of the neighborhood
NS2(H)(v) (for v ∈ VH), and some positive function θ : LS2(H,P) → N). If G is
a cycle of length 3, 6 or 9, then G is a minimal DTDP-graph. Thus assume
that (V o

G, V
n
G ) is the only DT-pair in G and every component of G[V n

G ] is a star.
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Certainly, G is a DTDP-graph (by Observation 4.2), and we shall prove that G
is a minimal DTDP-graph. Suppose, to the contrary, that G is not a minimal
DTDP-graph. Thus some proper spanning subgraph G′ of G is a DTDP-graph.
Let e be any edge belonging to G but not to G′, say ϕG(e) = {v, u}. Then, since
V o
G is an independent set in G, either |{v, u} ∩ V o

G| = 1 or {v, u} ⊆ V n
G .

Let (D′, T ′) be a DT-pair in G′ and, consequently, in G−vu and G. Therefore
(D′, T ′) = (V o

G, V
n
G ) (since (V o

G, V
n
G ) is the only DT-pair in G) and (V o

G, V
n
G ) is

a DT-pair in G − vu. But this is impossible, as we will see below. Assume first
that |{v, u} ∩ V o

G| = 1, say v ∈ V o
G and u ∈ V n

G . Then NG(u) ∩ V o
G = {v} (by

Observation 4.1 (4)) and, therefore, NG−vu(u) ∩ V o
G = ∅, which contradicts the

observation that (V o
G, V

n
G ) is a DT-pair in G−vu. Thus assume that {v, u} ⊆ V n

G .
Because v and u are adjacent in G[V n

G ] and every component of G[V n
G ] is a star,

at least one of the vertices v and u is a leaf in G[V n
G ], say v is a leaf in G[V n

G ].
Hence, u is the only neighbor of v in G[V n

G ] and, therefore, no neighbor of v
belongs to V n

G in G− vu. Thus, V n
G is not a TD-set of G− vu, which contradicts

the observation that (V o
G, V

n
G ) is a DT-pair in G − vu. We conclude that G is

a minimal DTDP-graph.

(1)⇒ (3) Assume again that G is a connected minimal DTDP-graph. Then
the equivalence of (1) and (2) implies that either G ∈ {C3, C6, C9} or G is a
2-subdivision graph, say G = S2(H,P, θ) (where H is a connected graph of
order at least 2, P = {P(v) : v ∈ VH} is a family in which P(v) is a partition
of the set NS2(H)(v) for v ∈ VH , and θ : LS2(H,P) → N is a positive function).
Thus, either G = S2(H) and H ∈ {C1, C2, C3} or G = S2(H,P, θ), where H
is a connected graph of order at least 2 in which every non-pendant edge and
every loop is adjacent to a pendant edge (as otherwise H has a good subgraph
(by Corollary 5.4) and then G = S2(H,P, θ) would be a non-minimal DTDP-
graph (by Theorem 5.6)), P = {P(v) : v ∈ VH} is a family in which every P(v)
is a partition of the set NS2(H)(v) for every v ∈ VH , and P contracts in S2(H,P)
only far parts of adjacent pendant edges ofH (as otherwiseG = S2(H,P, θ) would
be a non-minimal DTDP-graph (by Proposition 4.3)), and θ : LS2(H,P) → N is
a positive function (as we already have observed).

(3)⇒ (1) Assume finally that H, P, and θ have the properties stated in (3).
Then G = S2(H,P, θ) is a DTDP-graph (by Observation 4.2). We shall prove
that G is a minimal DTDP-graph. Since the minimality of S2(H,P, θ) does
not depend on positive values of θ (by Observation 3.4), we may assume that
θ(x) = 1 for every x ∈ LS2(H,P), and therefore we may assume that G = S2(H,P).
By our assumption P contracts at most far parts of adjacent pendant edges in
H, and since the minimality of S2(H,P) does not depend on such contractions
(by Proposition 4.4), we may assume that G = S2(H). We shall prove that
G = S2(H) is a minimal DTDP-graph. In order to prove this it suffices to show
that G has the properties stated in (2). If H ∈ {C1, C2, C3}, then we note that
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G ∈ {C3, C6, C9}. Thus, since every component of G[V n
G ] is a star (in fact, a star

of order 2), it remains to prove that the pair (V o
G, V

n
G ) is the only DT-pair in G

if every non-pendant edge and every loop is adjacent to a pendant edge in H.
Let (D,T ) be a DT-pair in G. We shall prove that (D,T ) = (V o

G, V
n
G ). Since the

pairs (D,T ) and (V o
G, V

n
G ) form partitions of the set VG, it suffices to show that

V o
G ⊆ D and V n

G ⊆ T . We prove these two containments showing that if e is an
edge (a loop, respectively) of H and ϕH(e) = {v, u} (ϕH(e) = {v}, respectively),
then ϕH(e) ⊆ D and {ve, ue} ⊆ T ({v1e , v

2
e} ⊆ T , respectively). We distinguish

three possible cases: (1) e is a pendant edge in H; (2) e joins two support vertices
in H (or e is a loop incident with a support vertex in H); (3) exactly one of the
two end vertices of e is a support vertex in H.

Case 1. The edge e is a pendant edge in H, say ϕH(e) = {v, u}, where u ∈
LH . In this case, (u, ue, ve, v) is a 4-path in G = S2(H) and dG(ue) = dG(ve) = 2.
Now u ∈ D and ue ∈ T (by Observation 3.1), and this implies that ve ∈ T (since
ue belonging to a TD-set T in G has a neighbor in T and ve is the only neighbor
of ue in VG \D) and v ∈ D (since D is a dominating set in G and v is the only
neighbor of ve which is not in D). Consequently, LH ∪ SH ⊆ D and, in addition,
if a pendant edge e joins vertices v and u in H, then {ve, ue} ⊆ T .

Case 2. ϕH(e) = {v, u} ⊆ SH . In this case, ϕH(e) ⊆ D (since SH ⊆ D) and
both ve and ue must be in T (because {v, u} ⊆ D, NG(ve) = {v, ue}, NG(ue) =
{u, ve}, and (D,T ) is a DT-pair in G). Similarly, if e is a loop incident with
a support vertex v in H, then ϕH(e) = {v} ⊆ SH ⊆ D and, certainly, both v1e
and v2e are in T .

Case 3. A non-pendant edge e (which is not a loop) is incident with exactly

one support vertex, say ϕH(e) = {v, u} and ϕH(e)∩SH = {u}. Let EH(v) denote
the set of edges incident with v in H. Since v 6∈ SH and e is a non-pendant edge,
|EH(v)| ≥ 2 and every element of EH(v) is a non-pendant edge (and it is not
a loop). Therefore, since every non-pendant edge is adjacent to a pendant edge in
H, each neighbor of v is a support vertex in H and, consequently, NH(v) ⊆ SH ⊆
D in G. We claim that v also belongs to D in G. Suppose, to the contrary, that
v is in T . Then, since (D,T ) is a DT-pair in G, there is an edge f in EH(v) such
that vf ∈ D. Suppose, without loss of generality, that ϕH(f) = {v, w}. Then
NG(wf ) = {w, vf} ⊆ D, and, therefore, NG(wf ) ∩ T = ∅, which is impossible
as T is a TD-set in G. This proves that v ∈ D and implies that both v and u
are in D. Finally, as in Case 2, we observe that both ve and ue are in T . This
completes the proof.

As an immediate consequence of Theorem 6.2, we have the following corol-
laries.

Corollary 6.3. If H is a graph in which every vertex is a leaf or it is adjacent to
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at least one leaf, then S2(H,P, θ) is a minimal DTDP-graph if and only if P =
{P(v) : v ∈ VH} is a family of partitions P(v) of sets NS2(H)(v) (v ∈ VH) which

contracts only far parts of adjacent pendant edges (if any), and θ : LS2(H,P) → N

is a positive function.

Corollary 6.4. A tree T of order at least 4 is a minimal DTDP-graph if and

only if T is a 2-subdivision graph, say T = S2(R,P, θ), where R is a tree in which

every non-pendant edge is adjacent to a pendant edge, P = {P(v) : v ∈ VH} is

a family of partitions P(v) of sets NS2(R)(v) (v ∈ VR), and P contracts only

far parts of adjacent pendant edges (if any), and θ : LS2(H,P) → N is a positive

function.

7. Open Problems

We close this paper with the following list of open problems that we have yet to
settle.

(1) Characterize the graphs with loops which are minimal DTDP-graphs.

(2) The domatic-total domatic number of a graph G, denoted domγγt(G), is the
maximum number of sets into which the vertex set of G can be partitioned in such
a way that the subgraph induced by the set is a DTDP-graph. It is clear that
domγγt(G) is a positive integer only for DTDP-graphs. We write domγγt(G) = 0
if a graph G is not a DTDP-graph. Give bounds on the domatic-total do-
matic number of a graph in terms of order. It is quite easy to observe that
domγγt(G) ≤ |VG|/3. For which graphs G is domγγt(G) = |VG|/3? If G is a tree,
then domγγt(G) ≤ |VG|/4. For which trees G is domγγt(G) = |VG|/4?

(3) Study relations between the set of minimal DTDP-graphs and the set of
graphs G for which γγt(G) = |VG|. The reader interested in knowing more about
the parameter γγt(G) is recommended to refer to the book [14].
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