
Discussiones Mathematicae
Graph Theory 44 (2024) 35–46
https://doi.org/10.7151/dmgt.2432

AN IMPROVED BOUND ON THE CHROMATIC NUMBER

OF THE PANCAKE GRAPHS

Leen Droogendijk

and

Elena V. Konstantinova

Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia

Novosibirsk State University, Novosibirsk, 630090, Russia

e-mail: drooge001@kpnmail.nl
e konsta@math.nsc.ru

Abstract

In this paper, an improved bound on the chromatic number of the Pan-
cake graph Pn, n > 9, is presented. The bound is obtained using a subad-
ditivity property of the chromatic number of the Pancake graph. We also
investigate an equitable coloring of Pn. An equitable (n− 1)-coloring based
on efficient dominating sets is given and optimal equitable 4-colorings are
considered for small n. It is conjectured that the chromatic number of Pn

coincides with its equitable chromatic number for any n > 2.
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1. Introduction

The Pancake graph Pn, n > 2, is defined as the Cayley graph over the symmetric
group Symn with the generating set of all prefix-reversals ri, 2 6 i 6 n, inverting
the order of any initial substring of length 1 · · · i of a permutation when multiplied
on the right. It is a connected, vertex-transitive, (n − 1)-regular graph without
loops and multiple edges of order n!. It contains all cycles Cl of length l, where
6 6 l 6 n! [15, 25].

A mapping c : V (Γ) → {1, 2, . . . , k} is called a proper k-coloring of a graph
Γ = (V,E) if c(u) 6= c(v) whenever the vertices u and v are adjacent. The
chromatic number χ(Γ) of a graph Γ is the least number of colors needed to
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properly color vertices of Γ. A subset of vertices assigned to the same color forms
an independent set, i.e., a proper k-coloring is the same as a partition of the
vertex set into k independent sets. The trivial lower and upper bounds on the
chromatic number of the Pancake graphs are given as follows

(1) 3 6 χ(Pn) 6 n− 1 for any n > 4.

Indeed, the graph Pn is (n−1)-regular, hence by Brooks’ theorem [4] we have
the upper bound. Moreover, χ(P3) = 2 since P3

∼= C6, and χ(P4) = 3 since there
are 7-cycles in Pn for any n > 4 [20] which gives us the lower bound. The Brooks’
bound is improved by 1 for graphs with ω 6 (∆ − 1)/2, where ω and ∆ are the
size of the maximum clique and the maximum degree of the graph (see [5, 6]).
Since ω(Pn) = 2, χ(Pn) 6 n − 2 for any n > 6. Moreover, there is a proper
3-coloring of P5 [19]. Thus, we have

(2) χ(Pn) 6 n− 2 for any n > 5.

Catlin’s bound for C4-free graphs [7], that is χ 6
2
3 (∆ + 3), gives one more

bound for any n > 8,

(3) χ(Pn) 6
2

3
(n+ 2) .

Using structural properties of Pn, the following bounds were obtained in [19].

(4) For 5 6 n 6 8, χ(Pn) 6

{

n− k, if n ≡ k (mod 4) for k = 1, 3;
n− 2, if n is even;

(5) for 9 6 n 6 16, χ(Pn) 6

{

n− (k + 2), if n ≡ k (mod 4) for k = 1, 3;
n− 4, if n is even;

(6) for n > 17, χ(Pn) 6

{

n− (k + 4), if n ≡ k (mod 4) for k = 1, 2, 3;
n− 8, if n ≡ 0 (mod 4).

These bounds improve (2) for n > 7, however Catlin’s bound (3) is still better
for all n > 28 and some smaller n (for example, n = 21, 25, 26, 27). Thus, they are

far from good. Meanwhile, the asymptotic bound χ(Pn) 6 O
(

n−1
log(n−1)

)

holds for

the Pancake graphs which follows from the results for C3, C4-free graphs [10, 16].
In Section 2 of this paper, we present a new upper bound which improves

Catlin’s bound (3). By using a subadditivity property of the chromatic number of
Pn and known chromatic numbers for n 6 9, the new bound is obtained. We have
χ(P3) = 2 since P3

∼= C6, and χ(P4) = 3 since there are 7-cycles in Pn, n > 4. An
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n 2 3 4 5 6 7 8 9

χ(Pn) 2 2 3 3 4 4 4 4

Table 1. Chromatic numbers of the Pancake graphs Pn, 2 6 n 6 9.

example of a proper 3-coloring for P5 was given in [19]. An optimal coloring of a
graph is a proper coloring with the fewest number of colors. An optimal 4-coloring
for P6 was computed by Pisanski (University of Primorska, Koper, Slovenia) [23]
and Azarija (University of Ljubljana, Slovenia), so χ(P6) = 4. Since Pn−1 is an
induced subgraph of Pn, then χ(P7) is at least 4, and from (4) we have χ(P7) = 4.
Optimal 4-colorings for P8 and P9 were computed by Ghodrati (Sharif University,
Tehran, Iran) [13]. By (5), 4 6 χ(Pn) 6 12, where 10 6 n 6 16, however,
proper 4-colorings in these cases are unknown. The known chromatic numbers
are presented in the Table 1.

In Section 3 an equitable coloring is considered. A graph Γ is said to be
equitably k-colorable if Γ has a proper k-coloring such that the sizes of any two
color classes differ by at most one. Such coloring is said to be strongly equitable if
all color classes have the same size. The equitable chromatic number χ=(Γ) is the
smallest integer k such that Γ is equitably k-colorable. Equitable coloring was
introduced by Meyer in 1973 in the context of scheduling problems [22]. Moreover,
it was conjectured that every connected graph with maximum degree ∆ has an
equitable coloring with ∆ or fewer colors, with the exceptions of complete graphs
and odd cycles. A strengthened version [8] of the conjecture states that each
such graph has an equitable coloring with exactly ∆ colors, with one additional
exception, a complete bipartite graph in which both sides of the bipartition have
the same odd number of vertices. A survey on equitable colorings can be found
in [21].

In Section 3.1 an equitable (n−1)-coloring based on efficient dominating sets
in the Pancake graphs Pn, n > 2, is presented. Moreover, in Section 3.2 optimal
equitable 4-colorings for P5, P6 and P7 are described.

Let us note that any equitable coloring of Pn with at most n colors has the
property that the sizes of all color classes are equal since every integer at most n
divides n!. Thus, we have a strongly equitable coloring [12].

Since equitable coloring is a proper coloring with an additional condition, the
inequality χ(Pn) 6 χ=(Pn) holds for any n > 2. However, since all above optimal
colorings are strongly equitable we have conjectured.

Conjecture 1. For any n > 2,

χ(Pn) = χ=(Pn).
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2. Improved Upper Bound

Our main result is given by the following theorem.

Theorem 1. For any n > 9, the following bound holds for the Pancake graph

Pn.

(7) χ(Pn) 6 4
⌊n

9

⌋

+ χ (Pm) ,

where m is the remainder when n is divided by 9.

To prove this result, we need more notation. Let [n] = {1, 2, . . . , n}. We
consider a permutation π = [π1π2 · · ·πn] written as a string in one-line notation,
where πi = π(i) for any i ∈ [n]. For K ⊂ [n], let Pn,K be the induced subgraph of
Pn whose vertex set consists of all permutations π with π1 ∈ K. By the symmetry
of Pn, for any k-element subset K of [n], the induced subgraph Pn,K is isomorphic
to Pn,[k], which is abbreviated to Pn,k.

We define a map fn,k : Pn,k → Pk by removing the elements that are not in
[k]. For example, for n = 5 and k = 3, the vertex [14352] of P5,3 is mapped to
the vertex [132] of P3. It is clear that this mapping is a graph homomorphism.
Note that fn,k is surjective, but not necessarily an isomorphism. In fact, Pn,k is
not even connected unless k = n or n = 2.

Since an r-coloring of a graph Γ is equivalent to a graph homomorphism from
Γ to the complete graph Kr, this property implies that

(8) χ(Pn,k) 6 χ(Pk).

Since Pn,k always contains a subgraph isomorphic to Pk (e.g., the subgraph of all
vertices that end with k + 1, k + 2, . . . , n) it even follows that χ(Pn,k) = χ(Pk).

One more useful property says that all fibers fn+1,n : Pn+1,n → Pn are of

size n, which means that
∣

∣

∣
f−1
n+1,n(v)

∣

∣

∣
= n for every v ∈ V (Pn). Indeed, for any

permutation of length n, one can insert n + 1 at n different positions: the first
position is forbidden since the vertices of Pn+1,n start with an element from [n].

The following theorem immediately gives the general upper bound of (7) with
taking into account χ(P9) = 4.

Theorem 2. The chromatic number of the Pancake graph is subadditive, i.e.,

(9) χ(Pn+m) 6 χ(Pn) + χ(Pm)

for all positive integers n and m.

Proof. Let the vertices of Pn+m be partitioned into sets U and W such that U
contains permutations whose first element is in [n] and W contains permutations
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whose first element is in {n+1, . . . , n+m}. The subgraphs Pn+m,U and Pn+m,W

are isomorphic to Pn+m,n and Pn+m,m, respectively. Hence, by (8) the graph
Pn+m,U is χ(Pn)-colorable, and Pn+m,W is χ(Pm)-colorable. Using disjoint color
sets on both subgraphs proves the desired inequality.

3. Equitable Coloring and Optimal Colorings

It was shown in the Introduction that there are optimal colorings of the Pancake
graphs found by computer experiments. Such computations do not provide us any
structural insight. In this section, we consider colorings of the Pancake graphs
Pn, n > 3, using their structural properties. More precisely, we present equitable
colorings of Pn in (n − 1) colors. Let us note that a proper (n − 1)-coloring of
Pn was first considered in [19]. The new equitable (n − 1)-coloring avoids some
incorrectness in description with having an easy and visual representation.

An equitable coloring is not the same as a perfect coloring for which the
multiset of colors of all neighbors of a vertex depends only on its own color [11].
A perfect coloring gives a partition known as an equitable partition [14] which
is used in algebraic combinatorics, graph theory and coding theory. In coding
theory, such kind of partitions are known as perfect codes [1, 17]. Some general
information about equitable partitions can be found in [2].

The notion of perfect codes was generalized to the Pancake graphs in a nat-
ural way in [9]. An independent set D of vertices in a graph Γ is an efficient

dominating set (or 1-perfect code) if each vertex not in D is adjacent to exactly
one vertex in D. There are n efficient dominating sets in Pn [9, 24] given by

(10) Di = {[i π2 · · ·πn]},

where πk ∈ [n]\{i}, k ∈ [n]\{1}, i ∈ [n]. It is obvious that |Di1 ∩ Di2 | = ∅,
i1, i2 ∈ [n], i1 6= i2, which immediately gives a proper n-coloring. Moreover, this
coloring is perfect and equitable.

To present a proper (n− 1)-coloring of the Pancake graphs based on efficient
dominating sets we need to define such sets for induced subgraphs Pn−1 of Pn.

Due to the hierarchical structure, for any n > 3 the graph Pn has n copies of
Pn−1(i) with the vertex set Vi = {[π1 · · ·πn−1i]}, where πk ∈ [n]\{i}, k ∈ [n− 1],
|Vi| = (n− 1)!. Any two copies Pn−1(i), Pn−1(j), i 6= j, are connected by (n− 2)!
edges {[iπ2 · · ·πn−1j], [jπn−1 · · ·π2i]}, where [iπ2 · · ·πn−1j]rn = [jπn−1 · · ·π2i].
Prefix-reversals rj , 2 6 j 6 n − 1, define internal edges in all n copies Pn−1(i),
and the prefix-reversal rn defines external edges between copies.

Efficient dominating sets of Pn−1(j), j ∈ [n], contain all permutations with
the last element fixed to j and the first element fixed [18], namely

(11) Dj
i = {[i π2 · · ·πn−1 j]} ,



40 L. Droogendijk and E.V. Konstantinova

where i, j ∈ [n], i 6= j, πk ∈ [n]\{i, j}, k ∈ [n]\{1, n}. For any i ∈ [n], the
sets (10) and (11) are given by the following obvious relationship

(12) Di =

n
⋃

j=1,j 6=i

Dj
i .

3.1. Equitable (n − 1)-coloring

We now present an equitable (n− 1)-coloring based on efficient dominating sets.
Let

(13) D =
{

Dj
i : i, j ∈ [n], i 6= j

}

, |D| = n (n− 1),

and

(14) Dj =
{

Dj
i : i ∈ [n], i 6= j

}

, j ∈ [n], |Dj | = n− 1,

where

(15) |Dj
i | = (n− 2)!.

Note that D partitions the vertices of Pn, and Dj partitions the vertices of
Pn that end with j. We now define a graph Qn whose vertices are the elements
of D, and X,Y ∈ D are adjacent in Qn if and only if a vertex of X is adjacent
to a vertex of Y in Pn. According to the properties of the Pancake graphs, we

immediately see that vertices Dj
i and Dj′

i′
are adjacent in Qn if and only if one of

the following statements is true.

(A1) j = j′ and i 6= i′.

(A2) i = j′ and j = i′.

It is obvious that a proper coloring c of Qn trivially extends to a proper
coloring of Pn in such a way that any vertex of Pn belongs to exactly one efficient
dominating set X ∈ D and we give it the color c(X).

We now have reduced the problem to find a proper (n − 1)-coloring for Qn.
First, let us show an idea of such colorings for the graphs Q4 and Q6. The graphs
are presented on Figures 1 and 2 such that the vertices corresponding to the set
Dj

i , i, j ∈ [n], i 6= j, are denoted by labels ij. The vertices are arranged in a
Hamiltonian cycle such that all vertices with the same last element are grouped
together and form 3- and 5-cliques, respectively. Within each clique, the first
element of labeling is cyclically incremented. Obviously, the elements of each
clique must all have different colors, but the pictures suggest that we can ‘almost’
cyclically repeat a color pattern chosen on the first clique. The only collisions
occur with the ‘long’ chords that connect antipodal vertices. We see that if we
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exchange the color of one end of each long chord with the color of the vertex
counterclockwise next to it on the cycle, we obtain a proper coloring. It is clear
that the proper colorings of Q4 and Q6 are equitable. Indeed, by (13)–(15) and
from the construction, Q4 has 3 color classes of cardinality 4 each, and Q6 has 5
color classes of cardinality 6 each. However, these colorings are not perfect since
the multisets of colors of all neighbors are different for different vertices having
the same color. For example, in Q4 the red vertex labeled 14 has one blue and
two green neighbors, while the red vertex labeled 32 has one green and two blue
neighbors. In Q6 the green vertex labeled 31 has two blue neighbors, but the
green vertex labeled 64 has only one blue neighbor.

14
24

34

43

13

23
32

42

12

21

31

41

Figure 1. The equitable 3-coloring of Q4.

Note that this coloring is exactly the greedy coloring for the vertex sequence
that starts with the vertex labeled 1n and then counterclockwise follows the cycle.

Now we formalize and prove this observation. First we define a map

(16) f : D → [n− 1]

such that

(17) f(Dj
i ) =

{

i− j, if i > j;
n+ i− j, otherwise.

Note that f indeed has all its values in [n− 1], and that the restriction of f
to Dj is injective, i.e.,

f(Dj
i ) = f(Dj

i′
) if and only if i = i′.

Next we let k = n
2 and define a coloring

(18) c : D → [n− 1]
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Figure 2. The equitable 5-coloring of Q6.

by

(19) c(Dj
i ) = f(Dj

i ) + ε,

where

(20) ε =







+1, if j > k and f(Dj
i ) = k;

−1, if j > k and f(Dj
i ) = k + 1;

0, otherwise.

If n is odd, the first two cases cannot occur, since f(Dj
i ) is an integer, but k

is not. The restriction of c to Dj is still injective, since it is either equal to f for
j 6 k or it is equal to f with at most two adjacent function values exchanged.

In terms of the above intuitive approach, f is the coloring that cyclically
repeats along the cycle, and c is the coloring that exchanges the colors near the
ends of long chords.

Theorem 3. The coloring c is proper and equitable for Pn, n > 2.

Proof. Indeed, suppose that X = Dj
i and Y = Dj′

i′ are adjacent.
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If j = j′, then i 6= i′ by (A1). By the injectivity of c for fixed j, X and Y
must have different colors.

By (A2) the only other possibility is that Y = Di
j . Without loss of generality

we assume that j < i.
First we handle the case that n is odd. Then c(X) = c(Dj

i ) = f(Dj
i ) = i− j,

and c(Y ) = c(Di
j) = f(Di

j) = n + j − i. The equality c(X) = c(Y ) implies
n = 2i− 2j, so n is even. There is a contradiction.

In the last part of the proof, we assume that n is even, so k is an integer. We
do a case analysis based on the position of k.

1. If j < i 6 k, then c(X) = i − j, and c(Y ) = n + j − i. The equality
c(X) = c(Y ) implies 2i = n + 2j = 2k + 2j, so i = k + j > k, and this gives a
contradiction.

2. If j 6 k < i, then c(X) = i − j, and c(Y ) = n + j − i + ε. The equality
c(X) = c(Y ) implies i− j = n+ j − i+ ε, so 2k + 2j = 2i− ε. Then ε must be
even, hence ε = 0, and i = k + j or f(Y ) = f(Di

j) = n + j − i = k. Since i > k
we have ε = 1 by (20) which gives a contradiction.

3. If k < j < i, then c(X) = i−j+ε1 and c(Y ) = n+j− i+ε2. The equality
c(X) = c(Y ) implies i − j + ε1 = n + j − i + ε2, so 2i + ε1 = 2k + 2j + ε2, and
hence ε1 and ε2 have the same parity. There are the following possibilities.

(i) If ε1 = ε2, then i − j = k. Since k < j < i 6 n = 2k, we have k = i − j <
2k − k = k which gives a contradiction.

(ii) If ε1 = −1, ε2 = 1, then as in case (i), we have k + 1 = i − j < 2k − k = k
which leads to a contradiction.

(iii) If ε1 = 1, ε2 = −1, then i− j = k − 1. Again, since k < j < i 6 2k, this is
only possible if j = k + 1 and i = n = 2k. Then f(Dj

i ) = k − 1, so ε1 = 0
by (20), and we have a contradiction.

In all cases, the assumption of color equality leads to a contradiction, which
finishes the proof that c is a proper coloring. Moreover, by (18) we have (n− 1)
color classes each of which has a cardinality |Dj | · |Dj

i | = n(n−2)! (see (14), (15))
which finishes the proof of the statement.

3.2. Optimal colorings

It is obvious that above equitable (n− 1)-coloring produces an optimal coloring
for P3 and P4 (see Table 1). However, for n > 4 a proper coloring of Qn can
never produce an optimal coloring for Pn. Indeed, by (2) for n > 4 we have
χ(Pn) < n− 1 and χ(Qn) > n− 1 since Qn contains an (n− 1)-clique.

Now we give a simple optimal 4-coloring of P5, P6 or P7. We define an even

(odd) prefix-reversal ri, 2 6 i 6 n, if it corresponds to an even (odd) permutation.
By [19, Lemma 4], if i ≡ 0, 1 (mod 4), then ri is an even prefix-reversal. Similar,
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ri is an odd prefix-reversal if i ≡ 2, 3 (mod 4). By [19, Lemma 6], the Pancake
graph Pn, n > 3, has n!/ℓ independent even ℓ-cycles where 6 6 ℓ 6 2n.

Let Γ be one of P5, P6, P7. Then the subgraph H generated by the even
prefix-reversals r4 and r5 is a spanning subgraph of Γ consisting of disjoint 10-
cycles C10 = (r5 r4)

5. Since even prefix-reversals preserve the parity of the
permutation, all vertices of H that are on the same cycle have the same parity.
Since all other edges of Γ correspond to odd permutations, they have one endpoint
on an ‘even’ 10-cycle and the other endpoint on an ‘odd’ 10-cycle. Thus, we can
2-color the even cycles and 2-color the odd cycles using two other colors. This
results in an equitable 4-coloring of Γ where each of the color classes has n!/4
vertices. Since χ(P6) = χ(P7) = 4 this coloring is optimal for P6 and P7.

4. Discussion

Conjecture 1 holds for some simple examples of graphs, such as even cycles,
bipartite graphs with equal parts. Any Cayley graph over the symmetric group
generated by a set of transpositions gives a bipartite graph with two equal color
classes. The statement holds for the Hamming graphs H(d, q) whose (equitable)
chromatic number is q. A regular graph with a Hoffman coloring always gives
a strongly equitable coloring [3]. Hoffman’s lower bound is known as χ(Γ) >

1− λ1/λv, where λ1 and λv are the largest and the smallest eigenvalues of Γ. If
equality holds, an optimal coloring of Γ is called a Hoffman coloring.

The bound given by Theorem 1 depends on exact values of the chromatic
number for the Pancake graph Pn. Its current version uses the known value
χ(P9) = 4. As soon as we would know that χ(P10) = 4, the subadditivity
property given by Theorem 2 implies a stronger version of Theorem 1.

Clearly the subadditivity property only makes sense for graphs that are hier-
archical in some sense. The property trivially holds for hypercube graphs, since
these are 2-colorable. It also holds trivially for a Mycielskian hierarchy. A less
trivial example is given by the Burnt Pancake graphs (the proof is similar to the
proof given above for the Pancake graphs).
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