# EXTREMAL GRAPHS FOR EVEN LINEAR FORESTS IN BIPARTITE GRAPHS 

Long-Tu Yuan<br>School of Mathematical Sciences<br>Shanghai Key Laboratory of PMMP<br>East China Normal University<br>Shanghai 200241, P. R. China<br>e-mail: ltyuan@math.ecnu.edu.cn

AND
Xiao-Dong Zhang ${ }^{1}$
School of Mathematical Sciences
MOE-LSC, SHL-MAC
Shanghai Jiao Tong University
Shanghai 200240, P. R. China
e-mail: xiaodong@sjtu.edu.cn


#### Abstract

Zarankiewicz proposed the problem of determining the maximum number of edges in an ( $n, m$ )-bipartite graph containing no complete bipartite graph $K_{a, b}$. In this paper, we consider a variant of the Zarankiewicz problem and determine the maximum number of edges of an ( $n, m$ )-bipartite graph without containing a linear forest consisting of even paths. Moveover, all these extremal graphs are characterized in a recursion way.


Keywords: bipartite graph, linear forest, extremal graph, Turán number. 2020 Mathematics Subject Classification: 05C35, 05C38.

## 1. Introduction

Our notation in this paper is standard. Let $G=(V(G), E(G))$ be a simple graph, where $V(G)$ is the vertex set with size $v(G)$ and $E(G)$ is the edge set

[^0]with size $e(G)$. The degree of $v \in V(G)$, the number of edges incident to $v$, is denoted by $d_{G}(v)$ and the set of neighbors of $v$ is denoted by $N_{G}(v)$. For a given set $X \subseteq V(G)$, let $N_{X}(v)=N_{G}(v) \cap X$ and $d_{X}(v)=\left|N_{X}(v)\right|$. Moreover, for $S \subseteq V(G)$, the induced subgraph of $G$ by $S$ is denoted by $G[S]$. Let $G$ and $H$ be two disjoint graphs, denote by $G \cup H$ the disjoint union of $G$ and $H$, and by $k G$ the disjoint union of $k$ copies of a graph $G$. Denote by $G+H$ the graph obtained from $G \cup H$ by adding edges between all vertices of $G$ and all vertices of $H$. Denote by $P_{k}$ a path on $k$ vertices ( $P_{0}$ denotes the empty graph). We often refer to a path by the natural sequence of its vertices, writing, $P_{k}=x_{1} x_{2} \cdots x_{k}$ and calling $P_{k}$ a path from $x_{1}$ to $x_{k}$. We call a path even if it contains even number of vertices and odd otherwise. Similarly, denote by $C_{k}$ a cycle on $k$ vertices, writing, $C_{k}=x_{1} x_{2} \cdots x_{k} x_{1}$. For $1 \leq i \leq j \leq k$, we use $x_{i} P_{k} x_{j}$ to denote the sub-path $x_{i} x_{i+1} \cdots x_{j-1} x_{j}$ of $P_{k}$ and $x_{i} C_{k} x_{j}$ denote the path $x_{i} x_{i+1} \cdots x_{j-1} x_{j}$ in $C_{k}$. An ( $n, m$ )-bipartite graph $B_{n, m}$ is a bipartite graph of order $n+m$ whose vertices can be divided into two disjoint sets $X$ and $Y$ with $|X|=n$ and $|Y|=m$ such that every edge joins one vertex in $X$ to the other vertex in $Y$. Moreover, denote by $K_{n, m}$ the complete ( $n, m$ )-bipartite graph (if $n \geq m=0$, then $K_{n, m}$ denote the independent set on $n$ vertices).

The Turán number of a graph $H, \operatorname{ex}(n, H)$, is the maximum number of edges in a graph of order $n$ which does not contain $H$ as a subgraph. Denote by $\mathbf{E X}(n, H)$ the set of graphs on $n$ vertices with ex $(n, H)$ edges containing no $H$ as a subgraph and call a graph in it an extremal graph for $H$. Often, there are several extremal graphs. Similarly, for a given bipartite graph $H$, the maximum value $e\left(B_{n, m}\right)$ under the condition that $B_{n, m}$ does not contain $H$ as a subgraph is denoted by ex $(n, m ; H)$. Furthermore, if a bipartite graph $B_{n, m}$ with ex $(n, m ; H)$ edges does not contain $H$ as a subgraph, then this bipartite graph is called a $b i$ partite extremal graph for $H$. We say that a graph is $H$-free if it does not contain $H$ as a subgraph.

In 1941, Turán [14] proved that the extremal graph without containing $K_{r}$ as a subgraph is the Turán graph $T_{r-1}(n)$, i.e., the complete $(r-1)$-partite graph on $n$ vertices with partite sizes as equal as possible. Later, Moon [12] (only when $r-1$ divides $n-k+1)$ and Simonovits [13] showed that $K_{k-1}+T_{r-1}(n-k+1)$ is the unique extremal graph containing no copy of $k K_{r}$ for sufficiently large $n$.

In 1959, Erdős and Gallai [3] proved the following well-known result.
Theorem 1 (Erdős and Gallai, [3]). If $G$ is a graph on $n \geq k$ vertices, then

$$
\begin{equation*}
\operatorname{ex}\left(n, P_{k}\right) \leq \frac{1}{2}(k-2) n \tag{1}
\end{equation*}
$$

with equality if and only if $n=(k-1) t$, where $t$ is an integer.
Furthermore, Erdős and Gallai in [3] also determined ex $\left(n, M_{k}\right)$ for all values of $n$ and $k$, where $M_{k}$ is the union of $k$ disjoint edges. Recently, Bushaw and

Kettle in [2] also determined the Turán number of $k$ disjoint copies of $P_{\ell}$ with $\ell \geq 3$ and also characterized all extremal graphs for sufficiently large $n$. Furthermore, Gorgol [6] studied the Turán number of disjoint copies of connected graphs. Let $H$ be a connected graph on $\ell$ vertices; with the aid of the two graphs $\operatorname{Ex}(n-$ $k \ell+1, H) \cup K_{k \ell-1}$ and $\operatorname{Ex}(n-k+1, H)+K_{k-1}$, she presented a lower bound for $\operatorname{ex}(n, k H)$, where $\operatorname{Ex}(n-k \ell+1, H) \in \mathbf{E X}(n-k \ell+1, H)$ and $\operatorname{Ex}(n-k+1, H) \in$ $\mathbf{E X}(n-k+1, H)$.

The related results on the Turán number of paths, forests may be referred to $[1,4,9,10,15]$ and the references therein.

On the other hand, Zarankiewicz in [16] proposed a variant of Turán's problem: determine the maximum number of edges of an $(n, m)$-bipartite graph containing no copy of $K_{a, b}$. This problem has attracted wide attention (see [5] and the references therein). Later, Gyárfás, Rousseau and Schelp [7] considered a variant of the Zarankiewicz problem for paths. Their result can be stated as follows:
Theorem 2 (Gyárfás, Rousseau and Schelp, [7]). Let $n \geq m$. Then
(2) ex $\left(n, m ; P_{2 \ell}\right)= \begin{cases}n m, & \text { for } m \leq \ell-1 ; \\ (\ell-1) n, & \text { for } \ell-1<m<2(\ell-1) ; \\ (\ell-1)(n+m-2 \ell+2), & \text { for } m \geq 2(\ell-1) .\end{cases}$

Furthermore,
(a) If $m \leq \ell-1$, then the unique extremal graph is $K_{n, m}$.
(b) If $\ell-1<m<2(\ell-1)$, then the unique extremal graph is $K_{\ell-1, n} \cup K_{m-\ell+1,0}$.
(c) If $m \geq 2(\ell-1)$, then the extremal graphs are $K_{\ell-1, m-\ell+1} \cup K_{\ell-1, n-\ell+1}$; or $K_{\ell-1, i} \cup K_{\ell-1, n-i}$ for $i=0,1, \ldots,\lfloor n / 2\rfloor$, when $m=2(\ell-1)$.

Remark 3. In [7], Gyárfás, Rousseau and Schelp also determined the bipartite Turán numbers for odd paths. Moreover, Li, Tu and Jin [11] determined ex $\left(n, m ; M_{k}\right)$ for all values of $n, m$ and $k$, where $M_{k}$ is the union of $k$ disjoint edges.
Theorem 4 (Li, Tu, and Jin, [11]). Let $n \geq m \geq k$. Then

$$
\operatorname{ex}\left(n, m ; M_{k}\right)=(k-1) n
$$

Moreover, the unique extremal graph is $K_{k-1, n} \cup K_{m-k+1,0}$.
A linear forest is a graph consisting of paths. Motivated by the above results, we will study the bipartite Turán numbers of linear forests.

Let $r_{j}=\sum_{i=1}^{j} k_{i}$ with $k_{1} \geq k_{2} \geq \cdots \geq k_{j}$. Define $f\left(n, m ; k_{1}, \ldots, k_{j}\right)=$

$$
\begin{cases}n m, & \text { for } m \leq r_{j}-1 ; \\ \left(r_{j}-1\right) n, & \text { for } r_{j} \leq m \leq 2\left(r_{j}-1\right) ; \\ \left(r_{j}-1\right)\left(n-k_{j}+1\right)+\left(k_{j}-1\right)\left(m-r_{j}+1\right), & \text { for } m \geq 2 r_{j}-1\end{cases}
$$

The main result of this paper can be stated as follows.
Theorem 5. Let $n \geq m$ and $k_{1} \geq \cdots \geq k_{\ell} \geq 1$ with $\ell \geq 1$. Then
$\operatorname{ex}\left(n, m ; P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell}}\right)=\max \left\{f\left(n, m ; k_{1}\right), f\left(n, m ; k_{1}, k_{2}\right), \ldots, f\left(n, m ; k_{1}, \ldots, k_{\ell}\right)\right\}$.
Furthermore, we have $\mathbf{E X}\left(n, m ; P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell}}\right)$

$$
=\mathbf{E X}\left(n, m ; P_{2 k_{1}}\right) \cup \cdots \cup \mathbf{E X}\left(n, m ; P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell-1}}\right) \cup \mathcal{B},
$$

where

$$
\mathcal{B}= \begin{cases}K_{n, m}, & \text { when } m \leq r_{\ell}-1 \\ K_{\ell_{\ell}-1, n} \cup \bar{K}_{m-r_{\ell}+1}, & \text { when } r_{\ell} \leq m \leq 2 r_{\ell}-3 \\ K_{\ell_{\ell}-1, i} \cup K_{r_{\ell}-1, n-i}: i \in\left\{0,1, \ldots, k_{\ell}-1\right\}, & \text { when } m=2 r_{\ell}-2 \\ K_{r_{\ell}-1, n-k_{\ell}+1} \cup K_{k_{\ell}-1, m-r_{\ell}+1}, & \text { when } m \geq 2 r_{\ell}-1\end{cases}
$$

In other words, all extremal graphs are characterized in a recursive way.
The rest of this paper is organized as follows. In Section 2, several technical lemmas are presented. In Section 3, we will prove Theorem 5. In Section 4, we give an open problem for conclusion.

## 2. Several Technical Lemmas

In 1981, Jackson [8] proved the following theorem which is useful in the proof of our main theorem.

Theorem 6 (Jackson, [8]). Let $k \geq 2$ and $B_{n, m}$ be a bipartite graph with partite sets $X$ and $Y$ such that $|X|=n \geq 2$ and $|Y|=m \geq k$. Assume that each vertex of $X$ has degree at least $k$. If $m \leq n$, then $B_{n, m}$ contains a cycle of length at least $2 k$.

The following simple lemmas are also needed.
Lemma 7. Let $k_{1}>k_{2} \geq 1$ and $B_{n, m}$ be a bipartite graph with partite sets $X$ and $Y$. Let $C=x_{0} y_{0} \cdots x_{k_{1}+k_{2}-1} y_{k_{1}+k_{2}-1} x_{0}$ be a cycle of length $2 k_{1}+2 k_{2}$ in $B_{n, m}$ with $\left\{x_{0}, \ldots, x_{k_{1}+k_{2}-1}\right\} \in X,\left\{y_{0}, \ldots, y_{k_{1}+k_{2}-1}\right\} \in Y$. If there is a vertex $z \in V\left(B_{n, m}\right) \backslash V(C)$ with $d_{V(C)}(z) \geq k_{1}+1$, then $B_{n, m}[V(C) \cup\{z\}]$ contains a cycle $C_{2 \ell}$ with $k_{1} \leq \ell<k_{1}+k_{2}$.

Proof. Without loss of generality, we may assume $z \in X$. Since $d_{V(C)}(z) \geq$ $k_{1}+1 \geq 3$, it is easy to see $y_{i}, y_{i+j} \in N_{V(C)}(z)$ with $2 \leq j \leq k_{2}-1$ for some $i \in\left\{0, \ldots, k_{1}+k_{2}-1\right\}$, where the indices are take under the additive group $\mathbb{Z}_{k_{1}+k_{2}}$. Hence, $z y_{i} x_{i} y_{i-1} \cdots y_{i+j+1} x_{i+j+1} y_{i+j} z$ is a cycle in $B_{n, m}\left[V\left(C_{2 k_{1}+2 k_{2}}\right) \cup\{z\}\right]$ with length $2 \ell$, where $k_{1} \leq \ell<k_{1}+k_{2}$. The assertion holds.

Lemma 8. Let $B_{n, m}$ be a bipartite graph. Let $P^{1}=u_{1} u_{2} \cdots u_{2 \ell}$ be an even path in $B_{n, m}$. If $d_{V\left(P^{1}\right)}\left(u_{1}\right)+d_{V\left(P^{1}\right)}\left(u_{2 \ell}\right) \geq \ell+1$, then $B_{n, m}\left[V\left(P^{1}\right)\right]$ contains a copy of $C_{2 \ell}$.

Proof. Since $d_{V\left(P^{1}\right)}\left(u_{1}\right)+d_{V\left(P^{1}\right)}\left(u_{2 \ell}\right) \geq \ell+1$, there exists an integer $j$ such that $u_{j}$ is adjacent to $u_{2 \ell}$ and $u_{j+1}$ is adjacent to $u_{1}$. Thus $u_{1} u_{j+1} P^{1} u_{2 \ell} u_{j} P^{1} u_{1}$ is a cycle of length $2 \ell$, and we are done.

The following two lemmas follows easily in a similar way like in the proof of Lemma 8. We omit their proofs.

Lemma 9. Let $B_{n, m}$ be a bipartite graph with partite sets $X$ and $Y$. Let $P^{1}=$ $u_{1} u_{2} \cdots u_{k_{1}}$ be an odd path in $B_{n, m}$ with both end vertices in $X$ and $y \in Y \backslash V\left(P^{1}\right)$. If $d_{V\left(P^{1}\right)}\left(u_{1}\right)+d_{V\left(P^{1}\right)}(y) \geq\left\lfloor k_{1} / 2\right\rfloor+1$, then $B_{n, m}\left[V\left(P^{1}\right) \cup\{y\}\right]$ contains a path on $k_{1}+1$ vertices.

Lemma 10. Let $B_{n, m}$ be a bipartite graph with partite sets $X$ and $Y$. Let $C^{1}=$ $u_{1} u_{2} \cdots u_{2 k_{1}}$ be a cycle in $B_{n, m}, x \in Y \backslash V\left(C^{1}\right)$ and $y \in Y \backslash V\left(C^{1}\right)$. If $d_{V\left(C^{1}\right)}(x)+$ $d_{V\left(C^{1}\right)}(y) \geq k_{1}+1$, then $B_{n, m}\left[V\left(C^{1}\right) \cup\{x, y\}\right]$ contains a path on $2 k_{1}+2$ vertices.

Lemma 11. Let $B_{n, m}$ be a bipartite graph with partite sets $X$ and $Y$. Let $P^{1}=u_{1} u_{2} \cdots u_{k_{1}}$ and $P^{2}=v_{1} v_{2} \cdots v_{k_{2}}$ be two vertex-disjoint paths in $B_{n, m}$. If $d_{V\left(P^{2}\right)}\left(u_{1}\right)+d_{V\left(P^{2}\right)}\left(u_{k_{1}}\right) \geq \ell$ with $\ell \leq\left\lfloor k_{2} / 2\right\rfloor$, then $B_{n, m}\left[V\left(P^{1}\right) \cup V\left(P^{2}\right)\right]$ contains a path on $2\left\lfloor k_{1} / 2\right\rfloor+2 \ell$ vertices.

Proof. Let $k_{1}$ be even. If $v_{i}$ is adjacent to $u_{1}$, then $v_{i-1}$ and $v_{i+1}$ are not adjacent to $u_{k_{1}}$. Otherwise, there is a path $v_{1} P^{2} v_{i-1} u_{k_{1}} P^{1} u_{1} v_{i} P^{2} v_{k_{2}}$ (or $v_{k_{2}} P^{2} v_{i+1} u_{k_{1}} P^{1}$ $u_{1} v_{i} P^{2} v_{1}$ ) on $k_{1}+k_{2}$ vertices, and we are done. Let $v_{j}$ be the vertex of $P^{2}$ which is adjacent to $u_{1}$ or $u_{k_{1}}$ with $j$ maximum. Note that $v_{1}$ and $v_{k_{2}}$ are not adjacent to $u_{1}$, as otherwise we are done. Since $d_{V\left(P^{2}\right)}\left(u_{1}\right)+d_{V\left(P^{2}\right)}\left(u_{k_{1}}\right) \geq \ell$, we have $j \geq 2 \ell$. Thus, $u_{1} P^{1} u_{k_{1}} v_{j} P^{2} v_{1}$ (or $u_{k_{1}} P^{1} u_{1} v_{j} P^{2} v_{1}$ ) is a path on at least $k_{1}+2 \ell$ vertices and hence we are done when $k_{1}$ is even. Now assume that $k_{1}$ is odd. Without loss of generality, let $u_{1}, u_{k_{1}} \in X$. If $v_{i}$ is adjacent to $u_{1}$, then $v_{i-2}$ and $v_{i+2}$ is not adjacent to $u_{k_{1}}$. Otherwise, there is a path on $k_{1}+k_{2}-1 \geq 2\left\lfloor k_{1} / 2\right\rfloor+2 \ell$ vertices, and we are done. Thus, if $v_{p}$ is adjacent to $u_{1}$ and $v_{q}$ is adjacent to $u_{k_{1}}$ with $p \neq q$, then we have $|p-q| \geq 4$ and $|p-q|$ is even. (1) $k_{2}$ is even. Without loss of generality, let $v_{1} \in X$. Then $v_{2}$ is not adjacent to $u_{1}$ and $u_{k_{1}}$, as otherwise we are done. As the previous case, we choose $v_{j}$ of $P^{2}$ which is adjacent to $u_{1}$ or $u_{k_{1}}$ with $j$ maximum. Hence, by $d_{V\left(P^{2}\right)}\left(u_{1}\right)+d_{V\left(P^{2}\right)}\left(u_{k_{1}}\right) \geq \ell$, we have $j \geq 4\lceil\ell / 2\rceil \geq 2 \ell$. Thus, $v_{1} P^{2} v_{j} u_{1} P^{1} u_{k_{1}}$ (or $v_{1} P^{2} v_{j} u_{k_{1}} P^{1} u_{1}$ ) is a path on $k_{1}+2 \ell$ vertices, and we are done. (2) $k_{2}$ is odd. If both end-vertices of $P^{2}$ belong to $X$, then the result follows similarly as the previous proof when $k_{2}$ is even. Let $v_{1}, v_{k_{2}} \in Y$. Then $v_{3}$ is adjacent to neither $u_{1}$ nor $u_{k_{1}}$. Otherwise, it is easy to see that $u_{1} P^{1} u_{k_{1}} v_{3} P^{2} v_{k_{2}}$ (or $u_{k_{1}} P^{1} u_{1} v_{3} P^{2} v_{k_{2}}$ ) is a path on $2\left\lfloor k_{1} / 2\right\rfloor+2 \ell$ vertices,
and we are done. The rest proof of this case is similar as before (taking $v_{j}$ as previous cases). The proof of the lemma is complete.

Lemma 12. Let $B_{n, m}$ be a bipartite graph with partite sets $X$ and $Y$. Let $P^{1}=$ $u_{1} u_{2} \cdots u_{k_{1}}$ and $P^{2}=v_{1} v_{2} \cdots v_{k_{2}}$ be two vertex-disjoint paths in $B_{n, m}$ such that $u_{1}, u_{k_{1}} \in X$. Assume that there is a vertex $y \in Y \backslash\left(V\left(P^{1}\right) \cup V\left(P^{2}\right)\right)$ which is not adjacent to end-vertices of $P^{2}$. If $d_{V\left(P^{2}\right)}(y)+d_{V\left(P^{2}\right)}\left(u_{1}\right) \geq \ell+1$ with $2 \ell \leq k_{2}$, then $B_{n, m}\left[V\left(P^{1}\right) \cup V\left(P^{2}\right)\right]$ contains either $P_{k_{1}+2 \ell-1}$ or $P_{k_{1}-1} \cup P_{k_{2}+2}$ or $P_{k_{1}} \cup C_{2 \ell^{\prime}}$ as a subgraph, where $\ell^{\prime} \geq \ell$.

Proof. Let $U$ be the set of neighbors of $u_{1}$ in $P_{2}$ and $V$ be the set of neighbors of $y$ in $P_{2}$. Then we have $U \subseteq\left\{v_{k_{2}-2 \ell+3}, v_{k_{2}-2 \ell+4}, \ldots, v_{2 \ell-3}, v_{2 \ell-2}\right\}$. Otherwise, $B_{n, m}$ contains a copy of $P_{k_{1}+2 \ell-1}$, and we are done. Moreover, we have $V \subseteq$ $\left\{v_{i}, v_{i+2}, \ldots, v_{i+2 \ell-6}, v_{i+2 \ell-4}\right\}$ for some $i \in\left\{2,3, \ldots, k_{2}-2 \ell+3\right\}$. Otherwise, $B_{n, m}$ contains a copy of $P_{k_{1}} \cup C_{2 \ell^{\prime}}$ with $\ell^{\prime} \geq \ell$, and we are done. Note that $U \cap V=\emptyset$. We have $U \subseteq\left\{v_{i+1}, v_{i+3}, \ldots, v_{i+2 \ell-7}, v_{i+2 \ell-5}\right\}$. Since $d_{V\left(P^{2}\right)}(y)+d_{V\left(P^{2}\right)}\left(u_{1}\right) \geq \ell+1$, there exist $j_{1}$ and $j_{2}$ such that $v_{j_{1}}, v_{j_{2}} \in U$ and $v_{j_{1}+1}, v_{j_{2}+1} \in V$. Hence $u_{2} P^{1} u_{k_{1}}$ and $v_{1} P^{2} v_{j_{1}} u_{1} v_{j_{2}} P^{2} v_{j_{1}+1} y v_{j_{2}+1} P^{2} v_{k_{2}}$ form a copy of $P_{k_{1}-1} \cup P_{k_{2}+2}$. We finish the proof of the lemma.

Given a bipartite graph $B_{n, m}$ with partite sets $X$ and $Y$, denote by $L(x, y)$ the set of edges incident with vertices $x \in X$ and $y \in Y$ and $e(x, y)$ the size of $L(x, y)$. We will prove the main lemma of this section.

Lemma 13. Let $k_{1} \geq \cdots \geq k_{\ell} \geq 1, \ell \geq 2$ and $n \geq 2 \sum_{i=1}^{\ell} k_{i}-1$. Let $B_{n, n}$ be a bipartite graph with partite sets $X$ and $Y$. Assume that $B_{n, n}$ contains $P_{2 k_{1}} \cup$ $\cdots \cup P_{2 k_{\ell-1}} \cup P_{2 k_{\ell}-2}$ as a subgraph. If

$$
\begin{equation*}
e(x, y) \geq \sum_{i=1}^{\ell} k_{i}+k_{\ell}-1 \text { for every } x \in X \text { and for every } y \in Y \tag{3}
\end{equation*}
$$

then $B_{n, n}$ contains $P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell}}$ as a subgraph.
Proof. Let $F_{\ell}=P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell}}$ and $F_{\ell}^{\prime}=P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell-1}} \cup P_{2 k_{\ell}-2}$ (for $k_{\ell}=1$, let $\left.F_{\ell}^{\prime}=P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell-1}} \cup P_{2 k_{\ell-1}}\right)$. Let $\mathcal{F}$ be the set of subgraphs of $B_{n, n}$ consisting of paths and cycles and containing $F_{\ell}^{\prime}$ as a subgraph. By the condition of the lemma, $\mathcal{F}$ is not empty. Choose $F \in \mathcal{F}$ with minimum number of components and maximum number of cycles. Let $F=C^{1} \cup \cdots \cup$ $C^{s} \cup P^{1} \cup \cdots \cup P^{t}$. Moreover, we choose $F$ with $v\left(P^{1} \cup \cdots \cup P^{t}\right)$ as large as possible and $v\left(C^{1} \cup \cdots \cup C^{s}\right)$ as small as possible. Let $C^{i}$ contains a copy of $P_{2 x_{i}}$ for $i \in\{1, \ldots, s\}$ and $P^{j}$ contains a copy of $P_{2 x_{s+j}}$ for $j \in\{1, \ldots, t\}$, where $x_{i}=\sum_{x \in X_{i}} x$ and $\left\{X_{1}, \ldots, X_{s+t}\right\}$ is a partition of $\left\{k_{1}, \ldots, k_{\ell-1}, k_{\ell}-1\right\}$. Let $X^{\prime}=X \backslash V(F), Y^{\prime}=Y \backslash V(F)$ and $B^{\prime}=B_{n, n} \backslash V(F)$. Suppose that $B_{n, n}$ does
not contain $F_{\ell}$ as a subgraph. We will prove the lemma by contradictions. Note that if $k_{\ell}-1 \notin X_{i}$, then $v\left(C^{i}\right) \leq 2 x_{i}+2 k_{\ell}-2$ or $v\left(P^{i-s}\right) \leq 2 x_{i}+2 k_{\ell}-1$. If $k_{\ell}-1 \in X_{i}$, then $v\left(C^{i}\right)=2 x_{i}$ or $v\left(P^{i-s}\right) \leq 2 x_{i}+1$. Thus, we have

$$
\begin{equation*}
\min \{|V(F) \cap X|,|V(F) \cap Y|\} \geq \sum_{i=1}^{\ell} k_{i}+(\ell-1) k_{\ell}, \tag{4}
\end{equation*}
$$

with equality holds if and only if $k_{1}=\cdots=k_{\ell}, s=0, v\left(P^{1}\right)=2 k_{\ell}-1$, $v\left(P^{i}\right)=4 k_{\ell}-1$ for $i=2, \ldots, \ell$ and all end-vertices of $P^{i}$ lie in $X$ (suppose that $k_{\ell}-1 \in X_{1}$ ). Since $|X|=|Y| \geq 2 \sum_{i=1}^{\ell} k_{i}-1$, we have $\min \left\{\left|X^{\prime}\right|,\left|Y^{\prime}\right|\right\} \geq k_{\ell}-1$. Without loss of generality, let $\left|X^{\prime}\right| \leq\left|Y^{\prime}\right|$. If $\left|X^{\prime}\right| \geq k_{\ell}$, then there is a vertex in $Y^{\prime}$ with degree less than $k_{\ell}$. Otherwise, it follows from Theorem 6 that there is a cycle of length at least $2 k_{\ell}$, and hence $B_{n, n}$ contains a copy of $F_{\ell}$. If $\left|X^{\prime}\right|=k_{\ell}-1$, then the equality of (4) holds. Hence we have $\left|Y^{\prime}\right| \geq 1$ and each vertex in $Y^{\prime}$ has degree less than $\left|X^{\prime}\right| \leq k_{\ell}-1$. Thus, in both cases, there is a vertex, say $y^{\prime}$, in $Y^{\prime}$ with degree less than $k_{\ell}$. We divide the proof into the following two cases.

Case 1. $t \geq 1$.
Case 1(a). There is an even path in $P^{1}, \ldots, P^{t}$. Without loss of generality, let $P^{1}$ be an even path and $x \in X, y \in Y$ be two end-vertices of $P^{1}$. Then, by the maximality of $v\left(P^{1} \cup \cdots \cup P^{t}\right), x$ and $y$ are not adjacent to each vertex of $B^{\prime}$. Moreover, by the minimality of $s+t, x$ and $y$ are not adjacent to each vertex of $C^{1} \cup \cdots \cup C^{s}$. If $k_{\ell}-1 \notin X_{s+1}$ and $v\left(P^{1}\right)=2 x_{s+1}+2 k_{\ell}-2$, then we can repartition $\left\{k_{1}, \ldots, k_{\ell}\right\}$ into $X_{1}^{*}, \ldots, X_{s+t}^{*}$ such that $k_{\ell}-1 \in X_{s+1}^{*}$. Thus, we may assume that $v\left(P^{1}\right) \leq 2 x_{s+1}+2 k_{\ell}-4$ for $k_{\ell}-1 \notin X_{s+1}$ (i.e., $k_{\ell}-1$ belongs to $\left.X_{1} \cup \cdots \cup X_{s}\right)$ and $v\left(P^{1}\right)=2 x_{s+1}$ for $k_{\ell}-1 \in X_{s+1}$. Hence, we have $d_{V\left(P^{1}\right)}(x)+d_{V\left(P^{1}\right)}(y) \leq x_{s+1}+k_{\ell}-2$ for $k_{\ell}-1 \notin X_{s+1}$ and $d_{V\left(P^{1}\right)}(x)+$ $d_{V\left(P^{1}\right)}(y) \leq x_{s+1}$ for $k_{\ell}-1 \in X_{s+1}$. Otherwise, by Lemma 8 , there is a cycle on $v\left(P^{1}\right)$ in $B_{n, n}\left[V\left(P_{1}\right)\right]$, contradicting our choice of $F$. For $i=2, \ldots, t$, we have $d_{V\left(P^{i}\right)}(x)+d_{V\left(P^{i}\right)}(y) \leq x_{s+i}-1$. Otherwise, by Lemma 11, there is an $F \in \mathcal{F}$ with $s+t-1$ components, contradicting the minimality of $s+t$. Combining the above arguments, since either $k_{\ell}-1 \in X_{s+1}$ or $k_{\ell}-1 \in X_{1}$ with $v\left(P_{1}\right) \leq 2 x_{1}+2 k_{\ell}-2$, we have

$$
e(x, y) \leq \max \left\{\sum_{i=s+1}^{s+t} x_{i}, \sum_{i=s+1}^{s+t} x_{i}+k_{\ell}-3\right\} \leq \sum_{i=1}^{s+t} x_{i}+k_{\ell}-1=\sum_{i=1}^{\ell} k_{i}+k_{\ell}-2
$$

contradicting (3). Hence, we finish the proof of Case 1 when $P^{1}, \ldots, P^{t}$ contains an even path.

Case 1(b). There is no even path in $P^{1}, \ldots, P^{t}$. Since $\left|X^{\prime}\right| \geq\left|Y^{\prime}\right|$, without loss of generality, assume that $P^{1}$ is an odd path with both end-vertices in $X$. As in Case 1(a), we may assume that $v\left(P^{1}\right) \leq 2 x_{s+1}+2 k_{\ell}-3$ for $k_{\ell}-1 \notin X_{s+1}$
and $v\left(P^{1}\right)=2 x_{s+1}+1$ for $k_{\ell}-1 \in X_{s+1}$. Let $x$ be an end-vertex of $P^{1}$ and $y^{\prime}$ be a vertex in $Y^{\prime}$ with $d_{B^{\prime}}\left(y^{\prime}\right) \leq k_{\ell}-1$.

Clearly, $x$ is not adjacent to any vertex of $C^{i}$ for $i=1, \ldots, s$. Otherwise, we will get a contradiction to the minimality of $s+t$. By Lemma 7, we have $d_{V\left(C_{i}\right)}\left(y^{\prime}\right) \leq 2 x_{i}$. Otherwise there is an $F^{\prime} \in \mathcal{F}$ with smaller $v\left(C^{1} \cup \cdots \cup C^{s}\right)$, contradicting our choice of $F$. For the path $P^{1}$, we have $d_{V\left(P^{1}\right)}(x)+d_{V\left(P^{1}\right)}\left(y^{\prime}\right) \leq$ $\left\lfloor v\left(P^{1}\right) / 2\right\rfloor$. Otherwise, by Lemma 9 , the subgraph of $B_{n, n}$ induced by $V\left(P^{1}\right) \cup\left\{y^{\prime}\right\}$ contains path on $v\left(P^{1}\right)+1$ vertices, contradicting the choice of $F$. Moreover, we have $d_{V\left(P^{i}\right)}(x)+d_{V\left(P^{i}\right)}\left(y^{\prime}\right) \leq x_{s+i}$ for $i=2, \ldots, t$. Otherwise, it follows from Lemma 12 that the subgraph of $B_{n, m}$ induced by $V\left(P^{1}\right) \cup V\left(P^{i}\right) \cup\left\{y^{\prime}\right\}$ contains $P_{k_{1}+2 x_{i}-1}$ or $P_{k_{1}-1} \cup P_{k_{2}+2}$ or $P_{k_{1}} \cup C_{2 x_{s+i}^{\prime}}$ as a subgraph $\left(x_{s+i}^{\prime} \geq x_{s+i}\right)$, contradicting our choice of $F$. Combining the above arguments, since either $k_{\ell}-1 \in X_{s+1}$ or $k_{\ell}-1 \notin X_{s+1}$ with $v\left(P_{1}\right) \leq 2 x_{1}+2 k_{\ell}-3$, we have
$e\left(x, y^{\prime}\right) \leq \sum_{i=1}^{s} x_{i}+\max \left\{\sum_{i=s+1}^{s+t} x_{i}, \sum_{i=s+1}^{s+t} x_{i}+k_{\ell}-2\right\} \leq \sum_{i=1}^{s+t} x_{i}+k_{\ell}-1=\sum_{i=1}^{\ell} k_{i}+k_{\ell}-2$,
contradicting (3). Thus, the proof of Case 1 is complete.
Case 2. $t=0$. Clearly, $P_{2 k_{\ell}-2}$ of $F_{\ell}^{\prime}$ is contained in a cycle of $F$. Without loss of generality, let $k_{\ell}-1 \in X_{1}$. Then the length of $C_{1}$ is $2 x_{1}$, the length of $C_{i}$ is at most $2 x_{i}+2 k_{\ell}-2$ for $i=2, \ldots, p$. Otherwise, $G$ contains $F_{\ell}$ as a subgraph, and hence we are done. First, we have that $C_{i}$ is not connected to any $C_{\ell \neq i}$. Otherwise, it is easy to see that $G$ contains a copy $F^{\prime} \in \mathcal{F}$ with smaller number of components than $F$, contradicting our choice of $F$. Note that $\left|X^{\prime}\right|=\left|Y^{\prime}\right| \geq k_{\ell}$. There is a vertex $x^{\prime} \in X^{\prime}$ and a vertex $y^{\prime} \in Y^{\prime}$ such that $d_{B^{\prime}}\left(x^{\prime}\right) \leq k_{\ell}-1$ and $d_{B^{\prime}}\left(y^{\prime}\right) \leq k_{\ell}-1$. If there is a vertex $x \in X^{\prime}$ which is adjacent to $C_{1}$, then $d_{B^{\prime}}(x)=0$. Otherwise, it is easy to see that $B_{n, n}$ contains a copy of $F_{\ell}$. Moreover, by the minimality of $s+t, x$ is not adjacent to each vertex of $C^{i}$ for $i=2, \ldots, p$. Furthermore, we have $d_{V\left(C_{1}\right)}(x)+d_{V\left(C_{1}\right)}\left(y^{\prime}\right) \leq x_{1}$. Otherwise, it follows from Lemma 10 that $B_{n, n}$ contains a copy of $F_{\ell}$. Combining the above arguments, we have

$$
e\left(x, y^{\prime}\right) \leq \sum_{i=1}^{s} x_{i}+k_{\ell}-1=\sum_{i=1}^{\ell} k_{i}+k_{\ell}-2
$$

contradicting (3).
Now, assume that each vertex of $B^{\prime}$ is not adjacent to $C_{1}$. Take a vertex $y \in Y \cup V\left(C_{1}\right)$. Hence, we have

$$
e\left(x^{\prime}, y\right) \leq \sum_{i=1}^{s} x_{i}+k_{\ell}-1=\sum_{i=1}^{\ell} k_{i}+k_{\ell}-2
$$

contradicting (3). Thus, the proof of the lemma is complete.

## 3. Proof of Theorem 5

In this section, we are ready to present the proof of the main theorem in this paper.

Proof of Theorem 5. Let $k_{1} \geq k_{2} \geq \cdots \geq k_{\ell} \geq 1, n \geq m \geq 1$ and $\ell \geq 1$. Let $r_{j}=\sum_{i=1}^{j} k_{i}$. Let $F_{\ell}=P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell}}$ and $F_{\ell}^{\prime}=P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell}-2}$ (for $k_{\ell}=1$, let $\left.F_{\ell}^{\prime}=P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell-1}}\right)$. Let $\mathcal{B}$ be the set of bipartite graphs defined in Theorem 5. We will show that EX $\left(n, m ; P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell}}\right)$

$$
=\mathbf{E X}\left(n, m ; P_{2 k_{1}}\right) \cup \cdots \cup \mathbf{E X}\left(n, m ; P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell-1}}\right) \cup \mathcal{B} .
$$

Hence, the bipartite extremal graphs for $F_{\ell}$ are characterized by induction on $\ell$.
The theorem holds trivially for $m \leq r_{\ell}-1$. For $r_{\ell} \leq m \leq 2 r_{\ell}-2$, since $B_{n, m}$ contains $P_{2 r_{\ell}}$ as a subgraph implies that $B_{n, m}$ contains $F_{\ell}$ as a subgraph, the theorem follows from Theorem 2 by an easy observation (consider the extremal graphs in Theorem 2).

Now, let $m \geq 2 r_{\ell}-1$. We will prove the theorem by induction on $\ell, r_{\ell}$ and $n+m$. Roughly speaking, we apply induction on $\ell$ to show that $B_{n, m}$ may belong to $\mathbf{E X}\left(n, m ; P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell-1}}\right)$ and on $r_{\ell}$ to deduce that $B_{n, m}$ contains a copy of $F_{\ell}^{\prime}$. Finally, we apply induction on $n+m$ to characterize the remaining extremal graphs. The theorem holds for $\ell=1$ by Theorem 2 . Let $\ell \geq 2$ and assume that the theorem is true for $\ell^{\prime}<\ell$. For $\ell \geq 2$, the theorem holds for $r_{\ell}=\ell$ by Theorem 4. Assume that the theorem is true for $r_{\ell}^{\prime}<r_{\ell}$. Let $B_{n, m}$ be a bipartite graph with a partition $X \cup Y$ such that $|X|=n$ and $|Y|=m$. Assume that

$$
\begin{equation*}
e\left(B_{n, m}\right) \geq \max \left\{f\left(n, m ; k_{1}\right), f\left(n, m ; k_{1}, k_{2}\right), \ldots, f\left(n, m ; k_{1}, \ldots, k_{\ell}\right)\right\} \tag{5}
\end{equation*}
$$

A basic calculation shows that $f\left(n, m ; k_{1}, \ldots, k_{\ell}\right)>f\left(n, m ; k_{1}, \ldots, k_{\ell-1}, k_{\ell}-1\right)$ when $k_{\ell} \geq 2\left(\right.$ for $k_{\ell}=1$, we set $\left.f\left(n, m ; k_{1}, \ldots, k_{\ell-1}, k_{\ell}-1\right)=f\left(n, m ; k_{1}, \ldots, k_{\ell-1}\right)\right)$. Then, by (5), we have
(6) $e\left(B_{n, m}\right) \geq \max \left\{f\left(n, m ; k_{1}\right), f\left(n, m ; k_{1}, k_{2}\right), \ldots, f\left(n, m ; k_{1}, \ldots, k_{\ell}-1\right)\right\}$.

Thus, by induction hypothesis, either $B_{n, m}$ contains $F_{\ell}^{\prime}$ as a subgraph or we have $B_{n, m} \in \mathbf{E X}\left(n, m ; P_{2 k_{1}}\right) \cup \cdots \cup \mathbf{E X}\left(n, m ; P_{2 k_{1}} \cup \cdots \cup P_{2 k_{\ell-1}}\right)$. In fact, we apply induction on $\ell$ for $k_{\ell}=1$ and we apply induction on $r_{\ell}$ for $k_{\ell} \geq 2$. Assume that $B_{n, m}$ contains $F_{\ell}^{\prime}$ as a subgraph. We prove the theorem in the following three cases. The following case is the basis of induction.

Case 1. $n=m=2 r_{\ell}-1$. By Lemma 13, there exist a vertex $x \in X$ and a vertex $y \in Y$ such that $e(x, y) \leq r_{\ell}+k_{\ell}-2$. Otherwise, we will get a contradiction
to the fact that $B_{n, n}$ is $F_{\ell}$-free. Let $B_{n-1, n-1}=B_{n, n}-\{x, y\}$. By (5), we have

$$
\begin{aligned}
e\left(B_{n-1, n-1}\right) & \geq r_{\ell}\left(k_{\ell}-1\right)+\left(2 r_{\ell}-k_{\ell}\right)\left(r_{\ell}-1\right)-\left(r_{\ell}+k_{\ell}-2\right) \\
& =\left(2 r_{\ell}-2\right)\left(r_{\ell}-1\right)
\end{aligned}
$$

Since $B_{n-1, n-1}$ does not contain $F_{\ell}$ as a subgraph and $n-1=2 r_{\ell}-2$, we have $B_{n-1, n-1}=K_{r_{\ell}-1, n-1-i} \cup K_{r_{\ell}-1, i}$ for $i \in\left\{0, \ldots, k_{\ell}-1\right\}$. So we have $e(x, y)=r_{\ell}+k_{\ell}-2$. Note that $x, y$ can not be adjacent to the larger partite vertex set of $K_{r_{\ell}-1, n-1-i}$ in $B_{n-1, n-1}$. Otherwise, $B_{n, n}$ contains $F_{\ell}$ as a subgraph, a contradiction. Thus, we must have $B_{n-1, n-1}=K_{r_{\ell}-1, n-k_{\ell}} \cup K_{r_{\ell}-1, k_{\ell}-1}$. Therefore, we have $B_{n, n}=K_{r_{\ell}-1, n-k_{\ell}+1} \cup K_{r_{\ell}, k_{\ell}-1}$. We finish the proof of our main theorem for $n=m=2 r_{\ell}-1$.

From now on, we may suppose that the theorem holds for smaller $n+m$. Clearly, by Case 1 and $n \geq m$, the theorem holds for $n+m \leq 4 r_{\ell}-2$.

Case 2. $2 r_{\ell}-1 \leq m<n$. There exists a vertex $x \in X$ with $d(x) \leq r_{\ell}-1$. Otherwise, it follows from Theorem 6 that $B_{n, m}$ contains $C_{2 r_{\ell}}$ and so $F_{\ell}$ as a subgraph. Let $B_{n-1, m}=B_{n, m} \backslash\{x\}$. By (5), we have

$$
\begin{aligned}
e\left(B_{n-1, m}\right) & =e\left(B_{n, m}\right)-d(x) \\
& \geq\left(m-r_{\ell}+1\right)\left(k_{\ell}-1\right)+\left(n-k_{\ell}\right)\left(r_{\ell}-1\right) .
\end{aligned}
$$

By induction hypothesis, we have $B_{n-1, m}=K_{m-r_{\ell}+1, k_{\ell}-1} \cup K_{n-k_{\ell}, r_{\ell}-1}$ and $d_{B_{n, m}}(y)=r_{\ell}-1$. Hence, we have $B_{n, m}=K_{n-r_{\ell}+1, k_{\ell}-1} \cup K_{m-k_{\ell}+1, r_{\ell}-1}$. Otherwise, $B_{n, m}$ contains $F_{\ell}$ as a subgraph, a contradiction.

Case 3. $n=m \geq 2 r_{\ell}$. By Lemma 13, there exist $x \in X$ and $y \in Y$ such that $e(x, y) \leq r_{\ell}+k_{\ell}-2$. Otherwise $B_{n, m}$ contains $F_{\ell}$ as a subgraph, contradicting that $B_{n, m}$ is $F_{\ell}$-free. Let $B_{n-1, n-1}=B_{n, n} \backslash\{x, y\}$. By (5), we have

$$
\begin{aligned}
e\left(B_{n-1, n-1}\right) & \geq e\left(B_{n, n}\right)-\left(r_{\ell}+k_{\ell}-2\right) \\
& \geq\left(n-r_{\ell}+1\right)\left(k_{\ell}-1\right)+\left(n-k_{\ell}+1\right)\left(r_{\ell}-1\right)-\left(r_{\ell}+k_{\ell}-2\right) \\
& =\left(n-r_{\ell}+1\right)\left(k_{\ell}-1\right)+\left(n-k_{\ell}+1\right)\left(r_{\ell}-1\right) .
\end{aligned}
$$

Since $B_{n-1, n-1}$ does not contain $F_{\ell}$ as a subgraph, by induction hypothesis, we have $B_{n-1, n-1}=K_{n-r_{\ell}, k_{\ell}-1} \cup K_{n-k_{\ell}, r_{\ell}-1}$ and $e(x, y)=r_{\ell}+k_{\ell}-2$. The result follows by an easy observation.

## 4. Conclusion

In [7], Gyárfás, Rousseau and Schelp also characterized the bipartite extremal graphs for $P_{2 \ell+1}$. The bipartite extremal graphs for $P_{2 \ell+1}$ is quit complicate
than the bipartite extremal graphs for $P_{2 \ell}$. Thus, it seems hard to characterize the bipartite extremal graphs for linear forest consisting of at least one odd path. We leave this as an open problem for future research.

## Acknowledgements

Long-Tu Yuan is partily supported by the National Natural Science Foundation of China (No. 11901554) and Science and Technology Commission of Shanghai Municipality (Nos. 18dz2271000, 19jc1420100). Xiao-Dong Zhang is partly supported by the National Natural Science Foundation of China (Nos. 11971311 and 12026230), the Montenegrin-Chinese Science and Technology Cooperation Project (No.3-12).

## References

[1] H. Bielak and S. Kieliszek, The Turán number of the graph $2 P_{5}$, Discuss. Math. Graph Theory 36 (2016) 683-694. https://doi.org/10.7151/dmgt. 1883
[2] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837-853. https://doi.org/10.1017/S0963548311000460
[3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959) 337-356. https://doi.org/10.1007/BF02024498
[4] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolourings, J. Combin. Theory Ser. B 19 (1975) 150-160. https://doi.org/10.1016/0095-8956(75)90080-5
[5] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25, L. Lovász, I.Z. Ruzsa and V.T. Sós (Ed(s)), (Springer, Berlin, 2013) 169-264.
[6] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661-667. https://doi.org/10.1007/s00373-010-0999-5
[7] A. Gyárfás, C.C. Rousseau and R.H. Schelp, An extremal problem for paths in bipartite graphs, J. Graph Theory 8 (1984) 83-95. https://doi.org/10.1002/jgt. 3190080109
[8] B. Jackson, Cycles in bipartite graphs, J. Combin. Theory Ser. B 30 (1981) 332-342. https://doi.org/10.1016/0095-8956(81)90050-2
[9] Y. Lan, Z. Qin and Y. Shi, The Turán number of $2 P_{7}$, Discuss. Math. Graph Theory 39 (2019) 805-814.
https://doi.org/10.7151/dmgt. 2111
[10] J.-Y. Li, S.-S. Li and J.-H. Yin, On Turán number for $S_{\ell_{1}} \cup S_{\ell_{2}}$, Appl. Math. Comput. 385 (2020) 125400.
https://doi.org/10.1016/j.amc.2020.125400
[11] X. Li, J. Tua and Z. Jin, Bipartite rainbow numbers of matchings, Discrete Math. 309 (2009) 2575-2578.
https://doi.org/10.1016/j.disc.2008.05.011
[12] J.W. Moon, On independent complete subgraphs in a graph, Canad. J. Math. 20 (1968) 95-102.
https://doi.org/10.4153/CJM-1968-012-x
[13] M. Simonovits, A method for solving extremal problems in extremal graph theory, in: In Theory of Graphs, P. Erdős and G. Katona (Ed(s)), (Academic Press, 1968) 279-319.
[14] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok. 48 (1941) 436-452, in Hungarian.
[15] L.T. Yuan and X.D. Zhang, The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132-139. https://doi.org/10.1016/j.disc.2016.08.004
[16] K. Zarankiewicz, Problem 101, Colloq. Math. 2 (1951) 301-301.
Received 20 September 2020
Revised 3 August 2021
Accepted 3 August 2021
Available online 24 August 2021

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/


[^0]:    ${ }^{1}$ The corresponding author: Xiao-Dong Zhang.

