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Abstract

We provide upper bounds on the L(p, q)-labeling number of graphs which
have interval (or circular-arc) representations via simple greedy algorithms.
We prove that there exists an L(p, q)-labeling with a span at most max{2(p+
q−1)∆−4q+2, (2p−1)µ+(2q−1)∆−2q+1} for interval k-graphs, max{p, q}∆
for interval graphs, 3max{p, q}∆+p for circular-arc graphs, 2(p+q−1)∆−
2q+1 for permutation graphs and (2p− 1)∆+ (2q− 1)(µ− 1) for cointerval
graphs. In particular, these improve existing bounds on L(p, q)-labeling of
interval graphs and L(2, 1)-labeling of permutation graphs. Furthermore,
we provide upper bounds on the coloring of the squares of aforementioned
classes.
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1. Introduction

All graphs considered in this paper are simple. If G is a graph, V (G) and E(G)
(or simply V and E) denote the vertex and edge set of G, respectively. For a
vertex v ∈ V , the set NG(v) = {u : uv ∈ E} is called the open neighborhood of
the vertex v, while the set NG[v] = NG(v) ∪ {v} is the closed neighborhood of v.
The cardinality of NG(v) is the degree of v, denoted by dG(v). A vertex v of G is
called a leaf if dG(v) = 1, otherwise it is called non-leaf. The clique number and
the maximum degree of G are denoted by ω(G) and ∆(G), respectively. When
the graph G is clear in the context, we simply abbreviate them to ω and ∆. The
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complement G of a graph G = (V,E) is the graph on V such that two vertices
are adjacent in G if and only if they are not adjacent on G.

We let mG(u, v) := |NG(u) ∩ NG(v)| for any two distinct vertices u, v ∈ V ,
and define the multiplicity of G by µ(G) = max{mG(u, v) : u, v ∈ V }. Note that
the parameter µ(G) is firstly introduced in [11] and proved to be useful especially
when the gap between µ and ∆ is large.

For non-negative integers p and q, an L(p, q)-labeling of a graphG is a labeling
of its vertices with non-negative integers such that adjacent vertices receive labels
with difference at least p and the vertices at distance 2 from each other get labels
with difference at least q. The span of an L(p, q)-labeling of G is the difference
between the smallest and the largest label used. L(p, q)-labeling number λp,q(G)
of G is the least integer k such that G admits an L(p, q)-labeling with span k.

The problem of L(p, q)-labeling is a generalization of the problem of L(2, 1)-
labeling introduced by Griggs and Yeh in [14] and mainly motivated by its appli-
cation to radio channel assignment problem. Radio channel assignment problem
basically concerns about finding a feasible assignment of frequencies to radio
transmitters in order to avoid the signal interference, when the transmitters are
close to each other.

In [14], Griggs and Yeh proved that λ2,1(G) ≤ ∆2+2∆ and conjectured that
λ2,1(G) ≤ ∆2 holds for every graph G. Although the conjecture has been con-
firmed for various graph classes, it is widely open in general and it became a main
motivation for the most of the recent studies on the subject. The current best
upper bound on λ2,1(G) is ∆2 +∆− 2 which is due to GonĂ§alves [13]. On the
other hand, Havet et al. [15] verified the conjecture asymptotically. Griggs and
Yeh’s conjecture has been confirmed for many graph classes including paths, cy-
cles, wheels, complete k-partite graphs [14]; trees [9, 14], cographs, OSF-chordal,
SF-chordal [9], regular tiling [1], chordal, unit interval [22], outerplanar, split,
permutation [2], cocomparability [7], Hamiltonian cubic [17], weakly chordal [8]
and generalized Petersen [16] graphs. We refer the reader to [6] for a recent up
to date survey.

The existence of a special vertex/edge ordering in graphs is used for many
algorithmic purposes, including graph coloring problems. In particular, an ap-
propriate choice of an ordering of the vertices of a graph provides optimal results
when it is an input of a greedy algorithm. For instance, Panda and Goel [20] used
vertex ordering characterizations to obtain upper bounds for L(2, 1)-labeling of
dually chordal graphs and strongly orderable graphs by executing some greedy
algorithms. In [7], Calamoneri et al. provided upper bounds on the L(p, q)-
labeling of cocomparability, interval and unit interval graphs by making use of
their ordering structure in not a greedy but a more direct way of labeling. In this
paper, we use simple and natural greedy algorithms to produce L(p, q)-labeling
of certain classes of graphs with interval representations. We perform constant
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approximation algorithms which are slightly modified versions of those proposed
in [20]. As an input of these algorithms, we use orderings of the vertices of these
graphs supplied from their interval representation.

Our main result is summarized in the following.

Theorem 1. Let G be a graph. Then,

λp,q(G) ≤































2(p+ q − 1)∆− 2q + 1, if G is an interval k-graph,

max{p, q}∆, if G is an interval graph,

3max{p, q}∆+ p, if G is a circular-arc graph,

2(p+ q − 1)∆− 2q + 1, if G is a permutation graph,

(2p− 1)∆ + (2q − 1)(µ− 1), if G is a cointerval graph.

We divide the proof of Theorem 1 into several steps by providing a detailed
analysis of each graph class in the subsequent sections. Meantime, we recall
that Ceroli and Posner [8] proved the Griggs and Yeh’s conjecture for weakly
chordal graphs by showing that λ2,1(G) ≤ ∆2 − ∆ + 2. Our main theorem
refines this result by linearizing upper bounds in terms of ∆ for interval k-graphs,
interval, permutation and cointerval graphs, as these graphs are contained in
weakly chordal graphs. Among these graphs, we provide first known linear upper
bounds on λ2,1 for interval k-graphs and cointerval graphs. To be more specific,
we show that λ2,1(G) ≤ max{4∆−2,∆+3µ−1} whenG is an interval k-graph and
λ2,1(G) ≤ 3∆+µ−1 if G is a cointerval graph. Observe that each of these upper
bounds cannot exceed 4∆ − 1. On the other hand, in the case of permutation
graphs, we improve the best known upper bound max{4∆ − 2, 5∆ − 8} of Paul
et al. [21] to 4∆− 1. Note that 4∆− 1 ≤ max{4∆− 2, 5∆− 8} = 5∆− 8 when
∆ ≥ 7.

In the general case, our main result improves the best known upper bound
on λp,q for interval graphs. We recall that Calamoneri et al. [7] show that λp,q(G)
≤ max{p, 2q}∆ when G is an interval graph. We also provide an upper bound on
λp,q for circular-arc graphs by making use of our result for interval graphs. Fur-
thermore, we point out that our main result provides first known upper bounds on
the number λp,q for interval k-graphs, permutation graphs and cointerval graphs.
Finally, we obtain as a by-product tight upper bounds on the chromatic number
of squares of graphs we consider.

The rest of the paper is organized as follows. In Section 2, we give preliminary
definitions and notations and provide a greedy L(p, q)-labeling algorithm which
is needed in sequel. In Section 3, we draw attention to a generalization of interval
graphs so-called interval k-graphs and prove there the corresponding claim of our
main theorem. In Section 4, we use an improved greedy labeling algorithm to
find an L(p, q)-labeling of interval graphs and prove Theorem 1 for interval and
circular-arc graphs. Section 5 deals with L(p, q)-labeling of permutation graphs
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by implementing the algorithm given in Section 2. In the last section, we observe
the equivalence between cointerval graphs and comparability graphs of interval
orders, and complete the proof of our main result.

2. Preliminaries

We first recall some general notions and notations needed throughout the paper,
and repeat some of the definitions mentioned in the introduction more formally.

For any two vertices u, v ∈ V , the distance dG(u, v) between u and v is the
length of a shortest path between u and v. We call the vertex u a (first) neighbor
of v if uv ∈ E and a second neighbor if dG(u, v) = 2. The square G2 of the graph
G = (V,E) is the graph with the vertex set V such that u and v are adjacent
in G2 if and only if dG(u, v) ≤ 2. A k-coloring of the graph G is a labeling of
its vertices with k colors such that adjacent vertices receive distinct colors. χ(G)
denotes the chromatic number of G, which is the least integer k such that G
admits a k-coloring.

If I is a closed interval on the real line, we denote by l(I) and r(I), the left
and the right endpoint of I, respectively. If a vertex v ∈ V is assigned to a closed
interval Iv on the real line, we use notations l(v) := l(Iv) and r(v) := r(Iv) for
the left and right endpoint of the corresponding interval.

At this point, it is worth noting that there are three variations of the notion
L(p, q)-labeling of graphs in the literature (see [6, 7]). Let us denote by λi

p,q(G),
the Li(p, q)-labeling number of G, for each i ∈ {1, 2, 3}, and summarize them
in the following way: For each i, an Li(p, q)-labeling of a graph G is a function
fi : V → Z

+ ∪ {0} such that

|f1(u)− f1(v)| ≥

{

p, if uv ∈ E,

q, if dG(u, v) = 2,

|f2(u)− f2(v)| ≥

{

p, if uv ∈ E,

q, if mG(u, v) ≥ 1,

|f3(u)− f3(v)| ≥

{

p, if uv ∈ E,

q, if dG(u, v) ≤ 2.

Notice that λ1
p,q(G) ≤ λ2

p,q(G) ≤ λ3
p,q(G), since any Li(p, q)-labeling of G

yields an Lj(p, q)-labeling of G for 1 ≤ j < i ≤ 3. When p ≥ q, these three def-
initions coincide, as they varies otherwise. Note that the condition for adjacent
vertices in the third definition becomes redundant when p < q. It is also worth
noting that there is a common and natural assumption that p ≥ q, stemming from
the assignment of frequencies. Thus we prefer to consider the common definition
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and set L(p, q) = L1(p, q). For graph classes under consideration, it is also possi-
ble to produce an L2(p, q) or L3(p, q)-labeling with larger spans, by modifying the
algorithms we use. We also note that the definition of L3(p, q)-labeling is used
for interval and circular-arc graphs in [7]. Fortunately, our algorithm for interval
graphs produces that kind of labeling as well. So we do not distinguish these two
definitions of L1(p, q) and L3(p, q) in the case of interval and circular-arc graphs.

We remark that an L(1, 1)-labeling of a graph G naturally provides a proper
coloring of G2. In the rest of our work, we will assume p, q ≥ 1. In other words,
we do not consider either of the cases p = 0 or q = 0, as q = 0 corresponds to
the proper vertex coloring problem. Since L(p, q)-labeling allows a vertex to be
assigned with ”0”, we have the obvious equality χ(G2) = λ1,1(G) + 1. Observe
further that the lower bound λp,q(G) ≥ ∆ trivially holds for p, q ≥ 1.

We now introduce an L(p, q)-labeling algorithm which is a slightly modified
version of the one proposed in [19]. Given a linear ordering of the vertices of a
graph, Algorithm 1 labels the vertices one by one with the smallest label available
such that current vertex will have a label with difference at least p apart from
the labels of its prelabeled neighbors and with the difference at least q apart from
the labels of already labeled vertices at distance two.

Algorithm 1 Greedy L(p, q)-labeling (G, σ)

Input: a graph G with an ordering σ = (v1, v2, . . . , vn) of its vertices;
Output: an L(p, q)-labeling f of G.
set S := ∅,
for all i from n to 1
Find the smallest non-negative integer j such that j /∈ {f(v)−p+1, . . . , f(v)+
p−1 : v ∈ NG(vi)∩S}∪{f(u)−q+1, . . . , f(u)+q−1 : u ∈ S and dG(vi, u) = 2},
f(vi) := j,
S := S ∪ {vi},

end for

Output(f)

Fact 2. Algorithm 1 yields an L(p, q)-labeling of G.

Theorem 3 [19]. Algorithm 1 can be implemented to run in O(∆(|V | + |E|))
time.

3. Interval k-Graphs

The family of interval k-graphs is a relatively new class, firstly introduced in [5]
as a generalization of (probe) interval graphs and interval bigraphs. Brown [3]
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provides a characterization of interval k-graphs in terms of consecutive ordering of
its complete r-partite subgraphs. As there is no further characterization known
for this class, the recent works concentrate on the possible characterization of
its subclasses such as cocomparability interval k-graphs [4] and AT-free interval
k-graphs [12].

Recall that interval graphs are the intersection graphs of line segments on a
straight line. A graph is called an interval graph if its vertices can be assigned
to closed intervals on the real line such that two vertices are adjacent if and only
if their corresponding intervals intersect. In a similar vein, a bipartite graph is
called an interval bigraph if its vertices can be assigned to closed intervals on the
real line such that two vertices from different parts are adjacent if and only if
their corresponding intervals intersect.

A graph G is an interval k-graph if each vertex v ∈ V can be assigned
to an ordered pair (Iv, κ(v)), where Iv is a closed interval on the real line and
κ(v) ∈ {1, 2, . . . , k} such that uv ∈ E if and only if Iu ∩ Iv 6= ∅ and κ(u) 6= κ(v).
Such an assignment of a graph G is called an interval k-representation of G. We
may refer C1, . . . , Ck as color classes, where Ci := κ−1(i) for each 1 ≤ i ≤ k (see
Figure 1).

b

cd

e

a

(a)

Ia

Ib
Ic

Id
Ie

C1

C2

C3

(b)

Figure 1. An interval 3-graph and its interval 3-representation.

If G is an interval k-graph, then χ(G) ≤ k, which is also why we will use
the word color class (or interval class) for each part of k-partition of G. Interval
2-graphs coincide with the class of interval bigraphs. On the other hand, even
though every interval graph G is an interval k-graph with k = χ(G), the converse
is not true in general.

Next we present the labeling algorithm for the graphs which admit an inter-
val representation.

Algorithm 2 consists of two stages. In the first stage, it labels the non-leaf
vertices, starting from the vertex with the largest right endpoint until reaching
the vertex with the smallest right endpoint. Therefore, at the step in which it
labels the vertex vi, all the vertices in {v1, v2, . . . , vi−1} remains unlabeled. Thus
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Algorithm 2 Improved greedy L(p, q)-labeling of G which admits an interval
representation.

Input: a graph G with an ordering σ = (v1, v2, . . . , vn) of its vertices such that
r(v1) ≤ r(v2) ≤ · · · ≤ r(vn) in the interval representation of G;
Output: an L(p, q)-labeling f of G.
set S := ∅,
set T := ∅,
# Stage 1: Label the non-leaf vertices

for all i from n to 1 do

if dG(vi) = 1 then

T := T ∪ {vi}
else

Find the smallest non-negative integer j such that j /∈ {f(v) − p +
1, . . . , f(v) + p − 1 : v ∈ NG(vi) ∩ S} ∪ {f(u) − q + 1, . . . , f(u) + q − 1 :
u ∈ S and dG(vi, u) = 2},
f(vi) := j,
S := S ∪ {vi},

end if

end for

# Stage 2: Label the leaf vertices

for all vi in T do

Find the smallest non-negative integer j such that j /∈ {f(v)−p+1, . . . , f(v)+
p−1 : v ∈ NG(vi)∩S}∪{f(u)−q+1, . . . , f(u)+q−1 : u ∈ S and dG(vi, u) =
2},
f(vi) := j,
S := S ∪ {vi},

end for

Output(f)

it is sufficient to investigate those vertices having larger right endpoints among the
first and the second neighbors of vi, in order to compute the number of forbidden
labels for vi. Hence we may simply consider the vertex v1 in this manner, while
computing the forbidden labels. In the second stage of the algorithm, it labels the
remaining unlabeled vertices each of which has degree one in G, in an arbitrary
order. As it can be inferred from the proof of the next theorem, the first stage
of Algorithm 2 enables us to put the parameter µ into use, by excluding the leaf-
vertices. One may easily observe that Algorithm 2 has the same running time as
Algorithm 1.

Theorem 4. If an ordering σ = (v1, v2, . . . , vn) of the vertices of an interval

k-graph G such that r(v1) ≤ r(v2) ≤ · · · ≤ r(vn) in an interval k-representation
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of G is given as the input, then Algorithm 2 produces an L(p, q)-labeling of G
with a span at most

max{2(p+q−1)∆−4q+2, (2p−1)µ+(2q−1)∆−2q+1} ≤ 2(p+q−1)∆−2q+1.

Proof. Let G be an interval k-graph and C1, . . . , Ck be its color classes. We
may first observe that Algorithm 2 produces an optimal L(p, q)-labeling of G, if
G consists of disjoint edges. Therefore we may assume that ∆(G) ≥ 2 and thus
µ(G) ≥ 1.

Assume that, in the first stage, the non-leaf vertices from the set {vi+1, vi+2,
. . . , vn} have been labeled by the Algorithm 2. We now compute the number of
forbidden labels for the vertex vi. Since all the vertices from v1, v2, . . . , vi are
unlabeled so far, this process is equivalent to counting the forbidden labels for
the vertex v1 (with the assumption that dG(v1) > 1), that is, the vertex with the
minimum right endpoint. Now assume without loss of generality that v1 belongs
to the color class C1.

Case 1. NG(v1) ⊆ Cj for some j 6= 1. If all the neighbors of v1 are leaf
vertices, then there is no forbidden label for v1, hence the algorithm assigns the
label zero to v1. Thus we may assume that v1 has at least one non-leaf (labeled)
neighbor, that is, NG(v1) ∩ S 6= ∅. Let z, w ∈ NG(v1) be the vertices such that
r(z) = min{r(u) : u ∈ NG(v1) ∩ S} and r(w) = max{r(u) : u ∈ NG(v1)}
(possibly z = w). Choose an arbitrary neighbor y ∈ NG(z) \ {v1} (which exists
since dG(z) > 1). We first claim that all the labeled neighbors of v1 are also
adjacent to y (note that y is not adjacent to unlabeled neighbors of v1, as they
are leaf vertices). Recall that r(v1) ≤ r(y) by the choice of v1. It then follows that
[r(v1), r(z)]∩ Iy 6= ∅. On the other hand, the inclusion [r(v1), r(z)] ⊆ Iu holds for
every u ∈ NG(v1)∩S, by the choice of z. Therefore, we have ∅ 6= [r(v1), r(z)]∩Iy ⊆
Iu ∩ Iy, hence yu ∈ E for every u ∈ NG(v1) ∩ S, as claimed. Furthermore, all
the second neighbors of v1 are adjacent to w, because of the choice of w (see
Figure 2). Thus, v1 has at most mG(v1, y) ≤ µ labeled neighbors and at most
dG(w) − 1 second neighbors. Since for each labeled neighbor of v1, there are
2(p− 1)+1 = 2p− 1 labels that are forbidden for v1, and for each labeled second
neighbor of v1, there are 2(q−1)+1 = 2q−1 labels that are forbidden for v1; totally
we have at most (2p−1)mG(v1, y)+(2q−1)(dG(w)−1) ≤ (2p−1)µ+(2q−1)(∆−1)
labels, which are forbidden for v1.

Case 2. NG(v1)∩Cα 6= ∅ and NG(v1)∩Cβ 6= ∅ for some α, β ∈ {2, 3, . . . , k}.
Let c be a vertex such that r(c) = max{r(u) : u ∈ NG(v1)}, and suppose that c ∈
Cj for some j 6= 1. Observe thatNG(c) contains the first and the second neighbors
of v1 except for those in Cj . Now choose v ∈ NG(v1) such that r(v) = max{r(u) :
u ∈ NG(v1)\Cj}. The set NG(v) contains the first and the second neighbors of v1
in Cj (see Figure 3). Consequently, the set (NG(c)\{v1})∪(NG(v)\{v1}) contains
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Iv1

Iw

Iz

Cl

C1

Cj

(first) neighbors of v1

second neighbors of v1

Figure 2. Case 1. All the neighbors of v1 belong to one particular color class.

Iv1

Ic

Iv Cl

C1

Cj

(first) neighbors of v1

second neighbors of v1

Figure 3. Case 2. v1 has neighbors from at least two color classes.

all the first and second neighbors of v1 in G. If dG(v1) = s, then the number of the
second neighbors of v1 is at most dG(c)−1+dG(v)−1−s = dG(c)+dG(v)−s−2.
Thus, the number of labels that are forbidden for v1 is at most

(2p− 1)s+ (2q − 1)(dG(c) + dG(v)− s− 2)

= 2ps− s+ (2q − 1)(dG(c) + dG(v))− 2qs+ s− 4q + 2

= 2(p− q)s+ (2q − 1)(dG(c) + dG(v))− 4q + 2

≤ 2(p− q)∆ + (2q − 1)2∆− 4q + 2

= 2(p+ q − 1)∆− 4q + 2.

Let m be the maximum value of the number of forbidden labels gathered
from the corresponding two cases, that is,

m = max{2(p+q−1)∆−4q+2, (2p−1)µ+(2q−1)∆−2q+1} ≤ 2(p+q−1)∆−2q+1.

Then there is at least one available label from the set {0, 1, . . . ,m} in order to
assign to vertex v1.

For the second stage of the algorithm, assume that dG(vi) = 1. There are at
most (2p− 1) + (2q− 1)(∆− 1) forbidden labels for the vertex vi, because it has
one neighbor and at most (∆− 1) vertices at distance 2. However, we have

(2p− 1) + (2q − 1)(∆− 1) < (2p− 1)µ+ (2q − 1)(∆− 1)

= (2p− 1)µ+ (2q − 1)∆− 2q + 1 ≤ m.
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This means that we always have an available label for a degree one vertex.
This completes the proof.

An immediate consequence of the proof of Theorem 4 is that the upper bound
on λp,q becomes (2p− 1)µ+ (2q − 1)∆− 2q + 1 for interval bigraphs, since there
are only two color classes. It is also possible to achieve another upper bound
for interval bigraphs in the following manner. Firstly recall that every interval
bigraph is chordal bipartite. Furthermore, a strong T -elimination ordering of the
vertices of chordal bipartite graphs was used (in reverse) to get an L(2, 1)-labeling
with a span at most 2∆ in [20]. Using the same ordering as an input in Algorithm
1, we may obtain an L(p, q)-labeling of a chordal bipartite graph with a span at
most 2(2q − 1)(∆− 1) + p.

We also have the following two corollaries as a result of Theorem 4.

Corollary 5. If G is an interval k-graph, then

λ2,1(G) ≤ max{4∆− 2,∆+ 3µ− 1} ≤ 4∆− 1.

Notice that Corollary 5 implies that Algorithm 2 for L(2, 1)-labeling of in-
terval k-graphs is a 4-approximation algorithm.

Corollary 6. χ(G2) ≤ max{2∆− 1,∆+ µ} ≤ 2∆ for every interval k-graph G.

4. Interval and Circular-Arc Graphs

Regarding the labeling of interval graphs, the first known result is due to Chang
and Kuo [9]. In their paper, they show that λ2,1(G) ≤ 2∆ when G is an interval
graph. Such a bound is generalized for an arbitrary p ≥ 2 in [10] by showing that
λp,1(G) ≤ p∆ holds. In fact, these results are a consequence of a more general
result. The inequality λp,1(G) ≤ p∆ holds for odd-sun-free chordal graphs, which
constitutes a superclass of interval graphs. A further generalization in the case
of interval graphs appeared in [7].

Theorem 7 [7]. λp,q ≤ max{p, 2q}∆ holds for every interval graph G.

Our next target is to improve the upper bound on λp,q for interval graphs
given in Theorem 7.

The next algorithm we implement for L(p, q)-labeling of interval graphs can
also be applied to any graph in general. It will clearly produce an L(p, q)-labeling
of a given graph with an arbitrary ordering of its vertices. However, unlike many
graph classes, it works efficiently for particularly chosen classes as in the example
of dually chordal graphs in [20], where the idea of the algorithm is borrowed from.



L(p, q)-Labeling of Graphs with Interval Representations 1225

Algorithm 3 Improved greedy L(p, q)-labeling of (G, σ)

Input: a graph G with an ordering σ = (v1, v2, . . . , vn) of its vertices;
Output: an L(p, q)-labeling f of G.
set S := ∅,
for all i from n to 1 do

Find the smallest non-negative integer j such that jmax{p, q} /∈ {f(v) : v ∈
NG(vi) ∩ S} ∪ {f(u) : u ∈ S and dG(vi, u) = 2},
f(vi) := jmax{p, q},
S := S ∪ {vi},

end for

Output(f)

Lemma 8. Let v be a vertex of an interval graph G such that the interval Iv has

the minimum right endpoint in an interval representation of G. If w is a neighbor

of v with the maximum right endpoint, then NG2(v) ⊆ NG[w] \ {v}.

Proof. Since r(v) ∈ Iu for all u ∈ NG(v), it is clear that the inclusion NG(v) ⊆
NG[w] \ {v} holds. Now, let u be any vertex at distance 2 from v. Then u must
be adjacent to some neighbor z of v and satisfies l(u) > r(v) (see Figure 4). Then
we have that ∅ 6= Iu ∩ Iz ⊆ Iu ∩ Iw since r(z) ≤ r(w).

Iv

Iw

(first) neighbors of v

second neighbors of v

Figure 4. An illustration for the proof of Lemma 8.

Theorem 9. If an ordering σ = (v1, v2, . . . , vn) of the vertices of an interval

graph G such that r(v1) ≤ r(v2) ≤ · · · ≤ r(vn) in an interval representation of G
is given as the input, then Algorithm 3 finds an L(p, q)-labeling of G with a span

at most max{p, q}∆.

Proof. Let m = max{p, q} and assume that the vertices vi+1, vi+2, . . . , vn of G
has been labeled by the Algorithm 3. Similar to the proof of Theorem 4, it suffices
only to consider the vertex v1 instead of vi. By Lemma 8, we have dG2(v1) ≤ ∆,
i.e., the number of vertices at distance at most 2 from v1 is at most ∆. Since the
set {0,m, 2m, . . . ,∆m} contains ∆ + 1 distinct labels, there is an available label
for v1. If we assign such an available label to v1, adjacent vertices receive labels
at least m = max{p, q} ≥ p apart, while the vertices at distance 2 from each
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other get labels at least m = max{p, q} ≥ q apart. Hence, λp,q(G) ≤ max{p, q}∆
as claimed.

Corollary 10. χ(G2) = ∆+ 1 for every interval graph G.

Our final move in this section is to prove the relevant claim of Theorem
1 for circular-arc graphs. Recall that circular-arc graphs are the intersection
graphs of arcs on a circle and thus constitute a superclass of interval graphs.
In [7], Calamoneri et al. considered the L(p, q)-labeling of a circular-arc graph
by dividing it into two parts and labeling them seperately. In more detail, they
partition the vertex set of a circular-arc graph G into two sets S and C such that
the subgraph G[S] induced by S is an interval graph, while C induces a clique in
G. Observe that this can be done by excluding a set C of vertices corresponding
to arcs having a common point X on the circle (see Figure 5). Obviously C
corresponds to a clique in G, while taking projection from the point X onto x or
y axis provides an interval representation from the remaining arcs corresponding
to S. Hence, Calamoneri et al. [7] concluded that G can be L(p, q)-labeled by
labeling the subgraph induced by S via Theorem 7 and using additional labels
for C. The upper bound proposed in [7, Theorem 6] is max{p, 2q}∆+ pω .

C

A1
A2

A3 A4

A5

A8

A9

A6

A7

A13

A10

A11

A12

A15

A14

I8I9

I4

I12I13

I7

I3

I11

I6

I2

I10 I14

I5

I1

I15
C

Figure 5. Partition of a circular-arc graph into an interval graph and a clique.

Remark 11. It is natural to ask whether the upper bound of Theorem 9 can be
used to improve the mentioned upper bound for circular-arc graphs. However, as
one of the referees pointed out, the proof of Theorem 6 in [7] turns out to have a
gap. For any distinct two vertices u, v ∈ S with dG[S](u, v) > 2, it may be the case
that u and v have a mutual neighbor from C, implying that dG(u, v) = 2. But,
an L(p, q)-labeling of G[S] may assign even the same label for u and v, although
they must get labels with difference at least q in an L(p, q)-labeling of G. Hence,
an arbitrary L(p, q)-labeling of the induced subgraph G[S] cannot be directly
extended to that of G. For instance, let G be the graph which is obtained from
an 8-path P8 by joining its end vertices with the vertices of a P2 (see Figure 6).
If we choose C = {x, y} as in the figure, then G[S] is isomorphic to P8. For an
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L(2, 1)-labeling of G[S], the vertices v1, v2, . . . , v8 can be assigned with the labels
in the order (0, 2, 4, 6, 1, 3, 5, 0), as described in [7, Lemma 3]. On the other hand,
such a labeling is not admissible for an L(2, 1)-labeling of G, since dG(v1, v8) = 2.
(Here, we note that we set ∆ := ∆(G) = 3 for the labeling of the vertices of
G[S]. If the desired setting is ∆ := ∆(G[S]) for the L(2, 1)-labeling of G[S], then
a similar argument can be repeated for the graph constructed from a P6 in the
same way.)

v1v2

v3

v4

v5

v6 v7

v8

x

y

C
Av1

Av3

Av5

Av7

Ay

Ax

Av2

Av4

Av6

Av8

Figure 6. A graph and its circular-arc representation.

However, we are able to establish an upper bound for the L(p, q)-labeling of
circular-arc graphs. Our proof benefits the same technique, with an additional
relabeling procedure on the subgraph G[S] so that the newly created L(p, q)-
labeling of G[S] can be extended to an L(p, q)-labeling of the whole graph G.

When the circular-arc representation of a circular-arc graph is considered,
we use clockwise direction for traversing the circle. We denote by Av, the arc
corresponding to a vertex v and use the notations s(Av) and t(Av) for the be-
ginning and ending point of the arc Av in a clockwise traversal, respectively. In
other words, an arc Av is defined by traversing the circle from s(Av) to t(Av) in
the clockwise direction.

Theorem 12. A circular-arc graph G with at least one edge has an L(p, q)-
labeling with a span at most 3max{p, q}∆+ p.

Proof. Let {Av : v ∈ V } be the set of arcs in a circular-arc representation of G.
We first note that if there is an arc covering the whole circle, then it is clear that
|V | = ∆+1. If there are two arcs Au and Av covering the circle, then |V | ≤ 2∆,
since V = NG(u) ∪ NG(v). In both cases, an L(p, q)-labeling of G with a span
at most 3max{p, q}∆ + p can be trivially achieved by assigning each vertex of
G with a distinct label from the set {0,m, 2m, . . . , 3∆m}, where m = max{p, q}.
We may therefore suppose that there is neither an arc nor two arcs covering the
circle in the circular-arc representation of G.
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Choose a subset C of V such that corresponding arcs have a common point
on the circle. Let r be the size of C. Since G has at least one edge, we may assume
without loss of generality that C is chosen such that r ≥ 2. Recall that if we set
S = V \C, then the subgraph G[S] is an interval graph. Pick an L(p, q)-labeling
of G[S] with a span λ ≤ m∆ provided from Theorem 9, such that the greatest
label used is λ.

Next, we consider the set

S′ :=
{

u ∈ S : dG[S](u, v) > 2 and dG(u, v) = 2 for some v ∈ S
}

.

If S′ is nonempty, then we relabel any (|S′| − 1) of the vertices in S′, so that
any two vertices of S′ receive labels which differ by at least m. Subsequently,
we extend the current L(p, q)-labeling of G[S] to an L(p, q)-labeling of G, by
assigning additional labels to the vertices of C. It is clear that if S′ = ∅, then we
may proceed the proof without a relabeling process and assign the vertices of C
with the same additional labels used in the case when S′ 6= ∅. Therefore, it is
sufficient to consider only the case S′ 6= ∅. Then, |S′| ≥ 2 by the choice of S′.

Among all the vertices in C, let x, y ∈ C be such that s(Ax) appears first
and t(Ay) appears last, while traversing the arcs corresponding to the vertices of
C (see, for instance, the arcs A5 and A15 in Figure 5). We now have two cases
depending on whether x = y or not.

Case 1. x 6= y. It is easy to see that if u ∈ S′, then u is adjacent to at least
one of x and y. Therefore we have S′ ⊆ NG(x)∪NG(y). If we set k := mG(x, y),
then it follows that |S′| ≤ dG(x) + dG(y) − k ≤ 2∆ − k. Note that any two
vertices in S′ may also be adjacent. Therefore, we use a distinct label from the
set {λ+m,λ+ 2m, . . . , λ+ (2∆− k − 1)m} for each vertex except one in S′.

In the final step, we label the vertices in C. Let λ′ = λ + (2∆ − k − 1)m.
Here, we remark that the label λ′ + p may not be admissible for a vertex c ∈
C, because it may be the case that p < q and that c may be at distance 2
from a vertex (from S′) which have the label λ′. Therefore we assign the labels
λ′ + m,λ′ + m + p, . . . , λ′ + m + (r − 1)p to the vertices of C, in an arbitrary
order. Such a labeling clearly ensures that the vertices of C receive labels with
difference at least p amongst each other. Hence we obtain an L(p, q)-labeling of
G. Since each of the vertices in C\{x, y} (if any) is a common neighbor of x and
y, we have |C| = r ≤ 2 + k. Then, the largest label we use is at most

λ′ +m+ (r − 1)p = λ+ (2∆− k − 1)m+m+ (r − 1)p

≤ 3m∆− km+ (k + 1)p = 3m∆− k(m− p) + p

≤ 3m∆+ p = 3max{p, q}∆+ p.

Case 2. x = y. In such a case, let t be the number of the neighbors of x in
C. Note that t ≥ 1 by the choice of C, and |C| = t+ 1. We may further observe
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that |S′| ≤ dG(x) − t ≤ ∆ − t, since all the vertices in S′ are adjacent to x.
Then we use a distinct label from the set {λ+m,λ+ 2m, . . . , λ+ (∆− t− 1)m}
for each vertex except one in S′, and let λ′ = λ + (∆ − t − 1)m. Finally, we
label the vertices of C. Similar to the previous case, we may assign the labels
λ′ + m,λ′ + m + p, . . . , λ′ + m + tp to the vertices of C, in an arbitrary order.
Thus, the largest label we use is at most

λ′ +m+ tp = λ+ (∆− t− 1)m+m+ tp

≤ 2m∆− tm−m+m+ tp

= 2m∆− t(m− p) ≤ 2m∆− (m− p)

= m(2∆− 1) + p = max{p, q}(2∆− 1) + p.

Hence the result follows, since max{p, q}(2∆− 1)+ p ≤ 3max{p, q}∆+ p for
each values of p, q and ∆.

Theorem 12 has an immediate consequence that λ2,1(G) ≤ 6∆ + 2 holds for
a circular-arc graph G. On the other hand, we have the following upper bound
on the chromatic number of the square of circular-arc graphs.

Corollary 13. χ(G2) ≤ 3∆ + 2 for every circular-arc graph G.

5. Permutation (Interval Containment) Graphs

Permutation graphs constitute a well-studied graph class. Even though they
admit various representations, we here consider the interval representation of
these graphs. In that language, a permutation graph is a graph with interval
representation on the real line such that two vertices are adjacent if and only if
the corresponding intervals are comparable with respect to the inclusion.

Bodlaender et al. [2] gave an O(n∆) time algorithm to show that λ2,1(G) ≤
5∆ − 2 for every permutation graph G. Moreover, Paul et al. [21] improve this
bound to max{4∆−2, 5∆−8} by appealing to the algorithm given in [9]. Notice
that these results were obtained by considering matching diagrams of permutation
graphs. We here provide an upper bound in the general case of L(p, q)-labeling of
permutation graphs and improve the previously known results on L(2, 1)-labeling.

Theorem 14. If an ordering σ = (v1, v2, . . . , vn) of the vertices of a permutation

graph G such that r(v1) ≤ r(v2) ≤ · · · ≤ r(vn) in an interval representation of G
is given as the input, then Algorithm 1 produces an L(p, q)-labeling of G with a

span at most 2(p+ q − 1)∆− 2q + 1.

Proof. Assume that the vertices vi+1, vi+2, . . . , vn of G have been labeled by the
Algorithm 1. Since all these labeled vertices corresponds to intervals with right
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endpoints no less than r(vi), counting the forbidden labels for the vertex vi is
equivalent to counting the forbidden labels for the vertex v1. Therefore, once
again, consider the vertex v1 instead of vi as in the previous proofs. Now we may
observe that if v1 has no neighbor w with r(v1) < r(w), then v1 has no second
neighbor. In such a case, there are at most (2p− 1)dG(v1) ≤ (2p− 1)∆ forbidden
labels for v1. Therefore we may further assume that v1 has at least one neighbor
whose interval has a larger right endpoint. Let vi1 , vi2 , . . . , vis be such neighbors
of v1 in the increasing order with respect to their right endpoints. By the choice
of v1, we have Iv1 ⊆ Ivik for each 1 ≤ k ≤ s.

Claim. NG(vij ) \NG[v1] ⊆ NG(vis) for every j with 1 ≤ j < s.

Proof. Let vij be a neighbor of v1 such that 1 ≤ j < s, and pick a vertex
u ∈ NG(vij ) \ NG[v1]. Since r(v1) ≤ r(u) by the choice of v1, we first have
l(v1) < l(u). Secondly, we need to show that r(u) ≤ r(vis). Because of the facts
Iv1 ⊆ Ivij and Iv1 6⊂ Iu, we have Iu ⊆ Ivij , which means that r(u) ≤ r(vij ). Since

we also have r(vij ) < r(vis), we conclude that r(u) < r(vis). Combining these,
we obtain l(vis) ≤ l(v1) < l(u) < r(u) < r(vis), which yields uvis ∈ E. This
completes the proof of the claim. �

We remark that the above claim implies that all the vertices at distance 2
from v1 are adjacent to vis , which means that the number of second neighbors of
v1 is at most dG(vis)− 1 ≤ ∆− 1 (see Figure 7).

Iv1
(first) neighbors of v1

second neighbors of v1

Figure 7. An illustration for the proof of Theorem 14.

We now compute the number of forbidden labels for v1. For each neighbor of
v1, there are 2(p− 1) + 1 = 2p− 1 labels that are forbidden for v1, and for each
second neighbor of v1, there are 2(q − 1) + 1 = 2q − 1 labels that are forbidden
for v1. So, in total, we have at most

(2p− 1)dG(v1) + (2q − 1)(dG(vis)− 1)

≤ (2p− 1)∆ + (2q − 1)(∆− 1)

≤ 2(p+ q − 1)∆− 2q + 1

labels which are forbidden for v1. This completes the proof.
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Corollary 15. λ2,1(G) ≤ 4∆ − 1 for every permutation graph G. Thus, Algo-

rithm 1 for L(2, 1)-labeling of permutation graphs is a 4-approximation algorithm.

Corollary 16. χ(G2) ≤ 2∆ for every permutation graph G.

6. Cointerval Graphs (Comparability Graphs of Interval Orders)

In this section, we first observe the equivalence between cointerval graphs and the
comparability graphs of interval orders. Then, having the advantages of such an
equivalence, we complete the proof of Theorem 1 by verifying the claimed upper
bound on λp,q for cointerval graphs. We refer readers to [23] for the terminology
of partially ordered sets.

In particular, the set of minimal elements of P is denoted by Min(P ). The
comparability graph of a poset P = (X,≤P ) is the graph G(P ) (or simply G) on
the same set X such that two vertices x, y ∈ X are adjacent in G(P ) if and only
if x and y are comparable in P . A poset P = (X,≤p) is said to be an interval

order if there exists an interval representation IP = {Ix : x ∈ X} of P such
that x <P y if and only if r(Ix) < l(Iy). A graph is called a cointerval graph

if its complement is an interval graph. 2K2 denotes the graph consisting of two
disjoint edges. It is known (see, [18]) that a graph G is a cointerval graph if and
only if it is a comparability graph with no induced 2K2.

One may also observe that a cointerval graph G admits an interval represen-
tation such that uv ∈ E(G) if and only if Iu∩Iv = ∅, since G is an interval graph.
Therefore it is straightforward that G is the comparability graph of an interval
order P on the set V (G) such that u <P v if r(Iu) < l(Iv) for u, v ∈ V (G).
Conversely, if G is the comparability graph of an interval order P , then P has an
interval representation such that two elements are comparable in P if and only
if corresponding intervals do not intersect. It then follows that G is a cointerval
graph. Thus, we have the following equivalence.

Fact 17. A graph G is a cointerval graph if and only if G is the comparability

graph of an interval order.

Corollary 18. Let G be a graph. Then the following statements are equivalent.

(i) G is a cointerval graph.

(ii) G is the comparability graph of an interval order.

(iii) G is a 2K2-free comparability graph.

We are now ready to prove the relevant claim of Theorem 1 for cointerval
graphs. We note that by an interval representation of a cointerval graph G,
we mean the interval representation of the corresponding interval order whose
comparability graph is G.
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Theorem 19. Algorithm 2 produces an L(p, q)-labeling of a cointerval graph G
with a span at most (2p− 1)∆ + (2q − 1)(µ− 1) ≤ 2(p+ q − 1)∆− 2q + 1.

Proof. Let G be a cointerval graph, that is, the comparability graph of an inter-
val order P , and let v1, v2, . . . , vn be its vertices such that r(v1) ≤ r(v2) ≤ · · · ≤
r(vn) in the interval representation. As in the proof of Theorem 4, we assume
that ∆(G) ≥ 2 and µ(G) ≥ 1. Suppose that the non-leaf vertices from the set
{vi+1, vi+2, . . . , vn} of G have been labeled by the first stage of Algorithm 2. As
earlier, consider the vertex v1 instead of vi. Clearly, v1 is a minimal element in
P . Observe also that we have v1 <P u, and thus v1u ∈ E for every non-minimal
element u in P by the choice of v1. If v1 is the only minimal element of P , then
this means that v1 has no second neighbor. In such a case, the number of forbid-
den labels for v1 is at most (2p− 1)d(v1) ≤ (2p− 1)∆. So, we may assume that
P has at least two minimal elements. A similar argument applies if v1 has no
labeled second neighbor. Thus we may further assume that v1 has at least one
labeled second neighbor, which implies that Min(P )∩S 6= ∅. Let w be a minimal
element such that r(w) = max{r(u) : u ∈ Min(P ) ∩ S}. Since dG(w) ≥ 2, the
vertex w has at least two neighbors in G, say a and b, so that the comparabilities
w <P a and w <P b hold. Observe that the set NG(a) ∩ NG(b) contains all the
labeled minimal elements (labeled second neighbors of v1). However, this implies
that the number of labeled second neigbors of v1 is at most mG(a, b) − 1. Note
that the set NG(a)∩NG(b) does not contain unlabeled second neighbors (if any)
of v1, as they are leaf vertices of G (see Figure 8).

Iv1

Iv6Iw

Ib

Ia
Iv3

Iv2

Iv4

Iv7

(first) neighbors of v1

second neighbors of v1

v1 v2 v3 w

v4

v7 va vb

v6

P

v1 v2 v3 w

v4

v7 va vb

v6

G(P )

Figure 8. An illustration for the proof of Theorem 19.

For each labeled neighbor of v1, there are 2p− 1 labels that are forbidden for
v1; while for each labeled second neighbors of v1, there are 2q− 1 labels that are
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forbidden for v1. Therefore, we have totally at most

(2p− 1)d(v1) + (2q − 1)(mG(a, b)− 1) ≤ (2p− 1)∆ + (2q − 1)(µ− 1)

labels which are forbidden for v1. This means that there exists an available label
from the set {0, 1, 2, . . . , (2p− 1)∆ + (2q − 1)(µ− 1)} for v1.

The proof for the second stage of the algorithm can be proceeded in the
same way as in the proof of Theorem 4, independently from the ordering of leaf
vertices. This completes the proof.

As a result of Theorem 19, the bound λ2,1(G) ≤ 3∆ + µ− 1 ≤ 4∆− 1 holds
for cointerval graphs. On the other hand, Theorem 19 also yields the following
upper bound on the chromatic number of the square of cointerval graphs.

Corollary 20. χ(G2) ≤ ∆+ µ for every cointerval graph G.

7. Concluding Remarks

We have studied the L(p, q)-labeling problem on graphs with interval and circular-
arc representations. We have provided upper bounds on λp,q of interval k-graphs,
circular-arc, permutation and cointerval graphs. In order to achieve that, we have
performed simple yet natural greedy algorithms. While performing these algo-
rithms, we have utilized linear ordering of the vertices of these graphs obtained
from their interval representations on R. The upper bounds given for interval
k-graphs, permutation graphs and cointerval graphs are the first known results,
while the upper bound for interval graphs refine the previous results, in the gen-
eral case of L(p, q)-labeling. On the other hand, we improve the best known
upper bound on λ2,1 of permutation graphs. All the upper bounds we obtained
for L(2, 1)-labeling of these graphs are linear in terms of ∆. As a consequence
of the labeling we have carried out, we have obtained tight upper bounds on the
chromatic number of the square of graphs with interval representations. Note
that the complete bipartite graph Kr,r for each r ≥ 2 attains the upper bounds,
as it is contained in interval k-graphs, permutation graphs and cointerval graphs.
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