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Abstract

We study the Cage Problem for biregular planar graphs. This problem
has being widely studied for biregular graphs (without the planarity hypoth-
esis). An ({r,m}; g)-graph is a biregular graph whose vertices have degrees
r and m, for 2 ≤ r < m, and girth g. An ({r,m}; g)-cage is an ({r,m}; g)-
graph of minimum order. In this paper, we determine the triplets of values
({r,m}; g) for which there exist planar ({r,m}; g)-graphs and for all values
we construct examples. Furthermore, we bound the order of the ({r,m}; g)-
cages and in many instances we build examples that reach the bounds.
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1. Introduction

We only consider finite simple graphs. The girth of a graph is the length of a
smallest cycle. An (r, g)-graph is a r-regular graph with girth g. An (r, g)-cage
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is an (r, g)-graph of minimum order, n(r, g). These graphs were introduced by
Tutte in 1947 (see [21]). The Cage Problem consists of finding the (r, g)-cages
for any pair integers r ≥ 2 and g ≥ 3. However, this challenge has proven to be
very difficult even though the existence of (r, g)-graphs was proved by Erdős and
Sachs in 1963 (see [12]).

There is a known natural lower bound for the order of a cage, called Moore’s
lower bound and denoted by n0(r, g). It is obtained by counting the vertices of
a rooted tree, T(g−1)/2 with radius (g − 1)/2, if g is odd; or the vertices of a
“double-tree” rooted at an edge (that is, two different rooted trees T(g−3)/2 with
the root vertices incident to an edge), if g is even (see [11, 13]). Consequently, the
challenge is to find (r, g)-graphs with minimum order. In each case, the smallest
known example is called a record graph. For a complete review about known
cages, record graphs, and different techniques and constructions see [13] and for
some specific constructions related with finite geometries see [5]. To consult other
new approaches to the Cage Problem see [6, 8, 15, 17].

As a generalization of this problem, in 1981, Chartrand, Gould and Kapoor
introduced in the concept of biregular cage [10]. A biregular ({r,m}; g)-cage, for
2 ≤ r < m, is a graph of girth g ≥ 3 whose vertices have degrees r and m and are
of the smallest order among all such graphs. See [2, 3, 4, 14] for record biregular
graphs and the bounds given by those.

Let n0({r,m}; g) be the order of an ({r,m}; g)-cage. There is also a Moore
lower bound tree construction for biregular cages (see [10]), which gives the fol-
lowing bounds.

Theorem 1. For r < m the following bounds hold.

n0({r,m}; g) ≥ 1 +

t−1∑
i=1

m(r − 1)i for g = 2t+ 1,

n0({r,m}; g) ≥ 1 +

t−2∑
i=1

m(r − 1)i + (r − 1)t−1 for g = 2t,

Also, in the same paper Chartrand, et al. proved the following result.

Theorem 2. For 2 < m the following hold.

n({2,m}; g) =
m(g − 2) + 4

2
for g = 2t,

n({2,m}; g) =
m(g − 1) + 2

2
for g = 2t+ 1.

Theorem 3. For r < m, n({r,m}; 4) = r +m.

Moreover, there are different generalizations of this problem. For example,
those introduced by Filipovski, Ramos Rivera and Jajcay in 2019 [16], that consist



in the construction and study of biregular bipartite cages: in this case they also
have two vertex degrees but all the vertices in each part have the same degree
(see also [7]).

Finally, we would like to mention the closely related degree diameter problem;
determine the largest graphs or digraphs of given maximum degree and given
diameter. This problem has also been studied in the context of embeddability,
namely.

Let S be an arbitrary connected, closed surface (orientable or not) and let
n∆,D(S) be the largest order of a graph of maximum degree at most ∆ and
diameter at most D, embeddable in S.

For a good survey on both the degree diameter problem and its embedded
version see [19].

1.1. Our contributions

In this paper we study a variation of the cage problem, namely we want to find
the minimum order of regular and biregular planar cages.

The g parameter of a planar cage is a lower bound for the minimum length
of a face in the graph’s embedding. It is not difficult to prove that, besides to
the cycles, the unique regular planar cages are the Platonic Solids (Section 2).

Given a triad {r,m, g}, with 2 ≤ r < m and 3 ≤ g, for which a planar
({r,m}; g)-graph exists, we denote as np({r,m}; g) the order of an ({r,m}; g)-
planar cage. In Section 3, we discover that the set of triads ({r,m}; g) for which
planar ({r,m}; g)-graphs may exist is

{({r,m}, 3) | 2 ≤ r ≤ 5, r < m}, {({r,m}, 4) | 2 ≤ r ≤ 3, r < m},

{({r,m}, 5) | 2 ≤ r ≤ 3, r < m}, {({2,m}, g) | 2 < m, 6 ≤ g}.

We provide upper and lower bounds for all np({r,m}; g). We construct planar
({r,m}; g)-graphs for all possible triads and construct planar ({r,m}; g)-cages for

({2,m}, 3), ({3,m}, 3), ({4,m}, 3), ({5, 6}, 3), ({5, 7}, 3),

({2,m}, 4), ({3, 4 ≤ m ≤ 13}, 4), ({3,m = 5k − 1}, 4) with k ≥ 3,

({2,m}, 5) and ({2,m}, 6).

We also remark that, for the triplets of the form ({5,m}; 3) and ({3,m}; 4)
for which we cannot assert that we have found a planar biregular cage, we provide
constructions with a small excess (i.e., the upper bounds provided by the con-
structions and the lower bounds for np({5,m}; 3) and np({3,m}; 4), respectively,
differ only by a small constant).

For completeness and comparison, at the end of each section or subsection we
include the order of the known (r; g)-cages and ({r,m}; g)-cages in the classical
problem (that is, when the cages are not necessarily planar).



In Section 4 we provide the proofs for some technical lemmas that we will
use throughout the paper. Finally, in Section 5 we state some conclusions and
further research directions.

2. Regular Planar Cages

The (2, g)-graphs are cycles on g vertices. Since these graphs are both planar
and known to be cages, it follows that these graphs are the (2, g)-planar cages.
In this section we will investigate the existence of (r, g)-planar graphs for r ≥ 3,
and find the smallest ones.

It is well known that any planar graph has at least one vertex of degree at
most 5, hence 3 ≤ r ≤ 5. Recall that if G is a planar (r, g)-graph, then its planar
dual G∗ is also planar, all its faces are of size r, and its girth is bounded above
by r; while the degree of its vertices is bounded below from g. Using these, when
r ≥ 3, we can deduce that g ≤ 5. Thus, 3 ≤ g ≤ 5, and (r, g)-planar graphs may
only exist for r, g ∈ {3, 4, 5}.

We would like to highlight that if G is an (r, g)-graph, then G∗ is not neces-
sarily a (g, r)-graph.

Let G be an embedded planar graph. Then we will denote as v = v(G) its
order, as e = e(G) its size and its number of faces as f = f(G). We will now
argue the following.

Theorem 4. The planar (r, g)- cages are the five platonic solids: the tetrahedron,
the cube, the octahedron, the dodecahedron and the icosahedron.

Figure 1. The five platonic solids.

Proof. Let G be a planar (r, g)-cage. From our discussion above r, g ∈ {3, 4, 5}.
By the Handshaking lemma e = vr

2 . Using the Euler’s characteristic equation, we



find that the number of faces of an embedding is such that f = v(r−2)
2 + 2. Also

note that the face lengths (i.e., the number of edges of each face) are bounded
below by g and the sum of the lengths of all faces of the embedding equals 2e,
this is 2e ≥ g(v(r−2)

2 + 2).

Hence v, r and g have to satisfy the inequality

(1) v(2r − g(r − 2))− 4g ≥ 0.

Thus we must have

(2) 2r − g(r − 2) > 0.

It is easy to check that if r, g ∈ {3, 4, 5}, then only the pairs (r, g) satisfying (2)
are (3, 3), (3, 4), (3, 5), (4, 3) and (5, 3).

Note that (1) can be rewritten as

v ≥ 4g

2r − g(r − 2)
.

Also, note that each of the feasible pairs from above provides a lower bound
for v. We argue that these lower bounds are in fact tight and the resulting
(r, g, v = np(r, g)) triplet possibilities for (r, g)-cages are

(a) (3, 3, 4) (b) (3, 4, 8) (c) (3, 5, 20) (d) (4, 3, 6) (e) (5, 3, 12).

This follows as, v(2r− g(r− 2))− 4g = 0 if and only if the size of all faces is
precisely g. Thus, case (a) corresponds to a map on the plane with vertex degree
3 and face size 3, this is an embedding of the tetrahedron. Similarly, we can see
that cases (b), (c), (d) and (e) are the cube, the dodecahedron the octahedron
and the icosahedron, respectively.

For comparison, the (r; 3)-cages are the complete graphs Kr for r = {3, 4, 5}
out of which only K4 is planar (the tetrahedron). Obviously, neither the (3; 4)-
cage nor the (3; 5)-cage are planar, for the first is K3,3 and the second is the
Petersen Graph.

It is interesting to note that intuitively, a cage is a graph with few vertices but
with many edges, as many as the fixed girth allows. This observation is confirmed
in [1], where the authors proved that the cages with order of the Moore’s lower
bound are extremal graphs; they have the maximum number of possible edges
for an r-regular graph with order n0(r, g) and fixed girth g. Because of the later,
it is natural that most known cages, including biregular ones, are not planar.



3. Biregular Planar Cages

Now, we turn our attention to planar ({r,m}; g)-cages . We may assume without
loss of generality that 2 ≤ r < m and 3 ≤ g, as we only consider simple graphs.
Also, as we have argued before, a planar graph must have a vertex of degree less
than or equal to 5, thus, 2 ≤ r ≤ 5.

Here we start again by noticing that if y is the number of vertices of G with
degree r and x is the number of vertices of degree m, then, by the Handshaking
lemma, 2e = yr + xm. Also, as before, we have 2e ≥ gf and f = 2 − v + e.
Combining these three relations together we have

(3) y[r(2− g) + 2g] + x[m(2− g) + 2g]− 4g ≥ 0.

Using this equation, we may prove the following lemma.

Lemma 5. An ({r,m}, g)-graph can be planar if and only if the triplet ({r,m}, g)
is in one of the sets

{({r,m}, 3) | 2 ≤ r ≤ 5, r < m}, {({r,m}, 4) | 2 ≤ r ≤ 3, r < m},

{({r,m}, 5) | 2 ≤ r ≤ 3, r < m}, {({2,m}, g) | 2 < m, 6 ≤ g}.

Proof. Notice that, for equation (3) to hold, we need at least one of the following:
r(2 − g) + 2g > 0 or m(2 − g) + 2g > 0. This is, an inequality of the form
t < 2g

g−2 = 2 + 4
g−2 must be satisfied for either t = r or t = m. As r < m, if

the inequality is satisfied by m, then it is automatically satisfied by r. Hence, r
satisfies the inequality.

From these inequalities, it is easy to compute that the triplets ({r,m}, g) ∈ N3

for which r < 2 + 4
g−2 , with 2 ≤ r and 2 ≤ g, are as stated (see Figure 2).

3.0.1. Lower bounds for the orders of planar biregular cages

Recall that np({r,m}; g) denotes the order of an ({r,m}; g)-planar cage. In this
section we will provide some easy lower bounds on np({r,m}; g).

Lemma 6. For each fixed triad ({r,m}; g) listed in one of the sets in Lemma 5,
the minimum number of vertices np({r,m}; g) that an ({r,m}; g)-planar cage has
to have increases as the number of vertices of degree m increases.

Proof. Recall Equation 3, y[r(2− g) + 2g] + x[m(2− g) + 2g]− 4g ≥ 0, where x
is the number of vertices of degree m and y is the number of vertices of degree r.
Here we may write y = np − x, were np = np({r,m}; g), to obtain

(4) np ≥
4g + ([r(2− g) + 2g]− [m(2− g) + 2g])x

[r(2− g) + 2g]
.



Figure 2. The curve is the graph of the function f(α) = 2 + 4
α−2 . The dots represent the

integer pairs (α, β) for which y < f(α), α ≥ 2, β ≥ 2.

As we have mentioned before, since r < m, we have [m(2 − g) + 2g] <
[r(2− g) + 2g]. Also, from Lemma 5 we have [r(2− g) + 2g] > 0 for the triplets
allowed. Given that x > 0, this implies that the right-hand side of Equation 4 is
positive, furthermore np increases as x increases.

As an easy corollary of Lemma 6 we have the following general lower bound.

Corollary 7. For all ({r,m}; g) triplets in Lemma 5,

np({r,m}; g) ≥ 1 +
m(g − 2) + 2g

r(2− g) + 2g
.

Corollary 8. The following lower bounds for np({r,m}; g) hold for the triplets
({r,m}; g) in Lemma 5.

r m g np({r,m}; g)
(a) 2 m 3 ≥ m+ 1,
(b) 3 m 3 ≥ m+ 1,
(c) 4 m 3 ≥ max{m+ 1, m2 + 4},
(d) 5 m 3 ≥ m+ 7,
(e) 2 m 4 ≥ m+ 2,
(f) 3 m 4 ≥ m+ 5,
(g) 2 m 5 ≥ 2m+ 1,
(h) 3 m 5 ≥ 3m+ 11,

(i) 2 m 6 ≤ g even ≥ m(g−2)+4
2 ,

(j) 2 m 6 ≤ g odd ≥ m(g−1)+2
2 .

Proof. For each case, we will enlist the lemma or theorem that implies the better
bound.
(a) Theorem 1, (b) Theorem 1, (c) Theorem 1 and Corollary 7, (d) Corollary 7,
(e) Theorem 1, (f) Corollary 7, (g) Theorem 1, (h) Corollary 7, (i) Theorem 2,
(j) Theorem 2.



3.1. Some properties of planar graphs

In this section we will state some technical properties of planar graphs, which will
come in handy when presenting the biregular planar cages constructed in later
sections. In particular, Lemmas 10 to 16 provide structural insight that will be
used systematically for the constructions in Theorems 5 to 8.

We include the proofs to all properties in Section 4.

Lemma 9. A planar graph with at least one vertex of degree m ≥ 3 that has
exactly m+ 1 vertices satisfies one of the following.

(a) It has four vertices of degree m and m = 3.

(b) It has three vertices of degree m and m = 4.

(c) It has at most two vertices of degree m.

An outerplanar graph is a graph that has a planar drawing for which all
vertices belong to the outer face of the drawing.

Lemma 10. Let G be an ({r,m}; g)-planar graph. Then the subgraph of G in-
duced by all the vertices in the faces incident to a vertex x, linkG(x), is an out-
erplanar graph consisting of a (not necessarily disjoint) union of cycles (with or
without chords) and paths, with at least deg(x) vertices.

Let linkG(x) =
(⋃k

i=1Ci

)
∪
(⋃k′

j=1 Pj

)
, where the Ci are the maximal in-

duced cycles of linkG(x) and Pj are its maximally induced trees in the sense
that they cannot be extended further without acquiring edges of some other
Pj or Ci. Define the intersection graph of linkG(x), Ix; whose set of vertices is
{c1, . . . , ck, p1, . . . , pk′} and where we put an edge cicj or cipj every time the cy-
cles Ci, Cj or Ci, Pj intersect in a vertex. Here we note that we do not consider
Pi to Pj incidences as it would be redundant by the definition of the P ′js.

Lemma 11. The intersection graph, Ix, where deg(x) = m is a simple graph,
furthermore it is a forest.

Lemma 12. If G is an outerplanar graph of order at least 4 such that all of its
vertices have degree at least 2, then it has at least two non-adjacent vertices of
degree exactly 2.

3.2. Girth 3

The next theorem states bounds for the ({r,m}; 3)-cages and introduces the
record graphs. The proofs and descriptions of each graph family are distributed
in the following subsections.

Theorem 13. The ({r,m}; 3)-cages are as follows.



r m np({r,m}, 3) Graphs Full list

2 m = m+ 1 T ′m−1, Tm
2

yes

3 m = m+ 1 Wm,Mm,W3 for m = 4 yes
4 m = m+ 2 Wm -
5 m = 6, 7 = 2m+ 2 Im -
5 8 ≤ m ≤ 13 m+ 7 ≤ np({r,m}, 3) ≤ 2m+ 2 Im -
5 14 ≤ m m+ 7 ≤ np({r,m}, 3) ≤ m+ 15 Am -

3.2.1. Planar ({2,m}; 3)-cages

First note that ({2,m}; 3)-cage has at least m + 1 vertices. Let m = 2l, and let
Tl be the graph consisting of l triangles sharing a common vertex. We will refer
to it as the windmill graph (see Figure 3). Then V (Tl) = 2l+ 1 = m+ 1, and Tl
has exactly one vertex of degree m, m vertices of degree 2 and by construction it
has girth 3.

Let l be even or odd, we denote by T ′l the graph consisting of l− 1 triangles
sharing a common edge, which we will refer to as the pinwheel graph (see Fig-
ure 3). Then V (T ′l ) = l + 1, and T ′l has exactly two vertices of degree l, l − 1
vertices of degree 2 and by construction it has girth 3.

Figure 3. The graphs T3 and T ′4, respectively.

Both T ′l and Tl are clearly planar graphs, thus, they are clearly ({2,m}; 3)-
cages. The following lemma proves that they are the only planar cages.

Lemma 14. Let m ≥ 3. The graphs T ′m−1 and Tm/2, for m even, are the only
planar ({2,m}; 3)-cages.

Proof. The graphs are clearly planar ({2,m}; 3)-cages. By Lemma 9, we can
assume that any planar ({2,m}; 3)-cage has at most two vertices of degree m.

Assume that G is a planar ({2,m}; 3)-cage with exactly one vertex of degree
m, then G−{v} is a 1-regular graph with m vertices. Hence G−{v} is a perfect
matching, and necessarily m is even. Clearly, G must be isomorphic to Tm/2.

Now, assume that G is a planar ({2,m}; 3)-cage that has two vertices of
degree m, say u, v. Since G has order m+ 1, then G−{u, v} is a 0-regular graph
with m− 1 vertices; that is, an independent set of size m− 1, where each vertex



is adjacent to both u and v in G and uv is also an edge of G. Clearly, G must be
isomorphic to T ′m−1.

3.2.2. Planar ({3,m}); 3-cages

Let l ≥ 3, we denote by Wl the wheel graph on l + 1 vertices, see Figure 4. This
graph has one vertex of degree l and l vertices of degree 3.

Figure 4. From left to right, wheels W5, W6 and W7, respectively.

Let Wl be the a graph obtained from the wheel graph Wl by duplicating its
vertex of degree l; we will refer to Wl as a biwheel. Notice that, W3 is isomorphic
to K5 minus one edge.

Let Ml, the double windmill, be the graph obtained from the windmill graph
Tl−1 by duplicating its vertex of degree l − 1 and making these two vertices
adjacent.

Lemma 15. Let m ≥ 4. Then the only planar ({3,m}; 3)-cages are the double
wheel W3 when m = 4, the double windmill Mm for m odd and the wheels Wm,
for all m.

Proof. Let G be a planar ({3,m}; 3)-cage with m+ 1 vertices. By Lemma 9, we
may have the following cases.

Case 1. G has three vertices of degree 4, m = 4 and it has two vertices of
degree 3. Hence G is the biwheel, W3.

Case 2. G has two vertices of of degree m, say {u, v}, and m− 1 vertices of
degree 3. Then G−{u, v} is a 1-regular graph. This is only possible if G−{u, v}
is a perfect matching, hence m− 1 is even and G is the double windmill Mm.

Case 3. G has one vertex of degree m, say v, and m vertices of degree 3.
Then G− {v} is a 2-regular graph with m vertices, this is an m-cycle or a union
of cycles whose size adds to m. Then G is clearly the wheel Wm.

3.2.3. Planar ({4,m}; 3)-cages

Lemma 16. The graph Wm is a planar ({4,m}; 3)-cage, with m ≥ 5.



Figure 5. The family of planar ({5,m}; 3)-graphs, Im. For each case, all vertices in the
boundary are adjacent to an external vertex, to complete the graph.

Proof. It is clear that Wm is a planar ({4,m}; 3)-graph on m+ 2 vertices. Thus
it remains to argue that m+ 2 is indeed the minimum number of vertices that a
planar ({4,m}; 3)-graph can have.

Suppose for a contradiction that there exists a planar ({4,m}; 3)-cage G that
has fewer than m+ 2 vertices. Thus, G has exactly m+ 1 vertices. By Lemma 9,
since m ≥ 5, the graph G must either have two vertices of degree m and m − 1
vertices of degree 4, or one vertex of degree m and m vertices of degree 4. We
will deal with each case separately.

Case 1. Suppose that G has two vertices of degree m, say u and v, and
m − 1 vertices of degree 4, say x1, . . . , xm−1. Note that in this case uv ∈ E(G)
and uxi, vxi ∈ E(G) for 1 ≤ i ≤ m− 1. Since G− {u, v} is a 2-regular graph, it
must contain a cycle C, which is also a cycle in G. We succesively contract edges
of C in G until we obtain a triangle, say a, b, c in the graph G′. But now note
that G′[u, v, a, b, c] is isomorphic to K5, thus G contains K5 as a minor, which
contradicts the planarity of G.

Case 2. Now assume that G has exactly one vertex u of degree m. Observe
that H = G−u is a planar 3-regular graph. Furthermore, H is outerplanar since
in any planar drawing of G every vertex is visible from u, thus all vertices of
H are incident to the region of the plane that contained vertex u. Thus H is a
3-regular outerplanar graph and this contradicts Lemma 12.

3.2.4. Planar ({5,m}; 3)-cages

We start by describing the family Im of planar ({5,m}; 3)-graphs. In Figure 5
we show schematics for Im for m = 6, 7, 8.

Let Im be the graph on 2m+2 vertices, V (Im) = {x, x0, . . . , xm−1, x
′, x′0, . . . ,

x′m−1} with the following set of edges, taking the subindices module m,

E(Im) = {x, xi | 0 ≤ i ≤ m− 1} ∪ {xi, xi+1 | 0 ≤ i ≤ m− 1}

∪ {x′, x′i | 0 ≤ i ≤ m− 1} ∪ {x′i, x′i+1 | 0 ≤ i ≤ m− 1}

∪ {xi, x′i | 0 ≤ i ≤ m− 1} ∪ {xi, x′i+1 | 0 ≤ i ≤ m− 1}.



This construction proves the following.

Proposition 17. For all 6 ≤ m, np({5,m}; 3) ≤ 2m+ 2.

In order to explore the bound m + 7 given in Corollary 8, we implement
a brief but exhaustive computer search that proves the non-existence of planar
({5, 6}; 3)-graphs with 13 vertices and planar ({5, 7}; 3)-graphs with 14 vertices,
showing that in both of these cases np({5,m}; 3) = 2m+ 2. These computations
were performed using McKay’s plantri graph generator [9] via Sagemath [20].

Additionally, consider the family of graphs depicted in Figure 6, A′m, each
of these graphs has 10 vertices at each end and l = m − 8 vertices in between
the ends. In total it has m + 14 vertices of which m have degree 4 and 14 have
degree 5. Let Am be the graph constructed by adding a vertex to A′m which is
connected to all vertices of degree 4. This construction proves the following.

Proposition 18. For m ≥ 13, np({5,m}, 3) ≤ m+ 15.

In addition 2m+ 2 ≥ m+ 15 when m ≥ 13. This completes the proof of the
bounds. Finally, we remark that the families given in Propositions 17 and 18 give
two non-isomorphic ({5, 13}; 3)-planar cages of order 28.

In order to compare these values with the values for usual cages, we may
remark that in [18] the authors prove that the ({r,m}; 3)-cages have order m+1.
That is, the order coincides with the planar ({r,m}; 3)-cages only for r = {2, 3}.

Figure 6. A depiction of the graphs A′m with 16 ≤ m.

3.3. Girth 4

Theorem 19. The planar ({r,m}; 4)-cages are as follows.

r m np({r,m}, 4) Graphs Full list
2 m m + 2 K2,m yes
3 4 ≤ m ≤ 13 np({3,m}, 4) = 2m + 2 Dm -

3 14 ≤ m m +
4(m+1)

5
+ 3 ≤ np({3,m}, 4) ≤ m + 4

⌈
m+1

5

⌉
+ 3 - -

3 m = 5k − 1 for k ≥ 3 np({3,m}, 4) = m +
4(m+1)

5
+ 3 Zk -

.

The statement of the theorem is a summary of the results presented in the
coming subsections. We may begin by remarking that Lemma 5 implies that
2 ≤ r ≤ 3, r < m and Corollary 8 yields that m+ 2 ≤ np({2,m}, 4) and m+ 5 ≤
np({3,m}, 4).



3.3.1. Planar ({2,m}; 4)-cages

Lemma 20. The complete bipartite graph K2,m is the ({2,m}, 4)-planar cage.

Proof. By Corollary 8, we have that np({2,m}, 4) ≥ m+2. Therefore, we require
at least m+2 vertices and this bound is achieved by the complete bipartite graph
K2,m, which is clearly planar.

To prove uniqueness, it suffices to prove that if G is a ({2,m}, 4)-planar cage,
then it must have two vertices of degree m. Assume, to the contrary, that it only
has one vertex v of degree m. Then G \ {v} would be a graph with m vertices of
degree 1 and one vertex of degree 2, where two vertices adjacent to v in G cannot
be adjacent, or there would be a triangle. It is obvious that such a graph does
not exist. Thus G has at least two vertices of degree m, m vertices of degree 2,
and it has no triangles, which characterizes K2,m.

3.3.2. Planar ({3,m}; 4)-cages

In this section we will first show the lower bound for all cases and then we will
introduce families of graphs for which the lower bounds are attained for some
values of m.

Lemma 21. Let G be a ({3,m}, 4)-planar graph with only one vertex x of de-
gree m, and let k be the number of cycles in the decomposition of linkG(x) =(⋃k

i=1Ci

)
∪
(⋃k′

j=1 Pj

)
, c the number of connected components of linkG(x) and

let ends(Ix) be the number of ends of Ix. Then v(G) ≥ 2m−k+ c+ ends(Ix) + 1.

Proof. Notice that in linkG(x) two consecutive vertices cannot both be neigh-
bours of x, this implies that each of the cycles and trees in the decomposition
linkG(x) =

(⋃k
i=1Ci

)
∪
(⋃k′

j=1 Pj

)
, inherits this property. Hence, for each Ci and

Pj we have that v(Ci) ≥ 2mi and v(Pi) ≥ 2mj + 1, respectively, where mi,mj

represent the number of vertices adjacent to x. Here
∑k

i=1mi +
∑k′

j=1mj = m.

By Lemma 11 we know that Ix is a forest, this implies that the number
of vertices belonging to the pairwise intersections Ci ∩ Pj or Ci ∩ Cj is exactly

k+k′− c. Thus, we have v(linkG(x)) ≥
∑k

i=1 v(Ci) +
∑k′

j=1 v(Pj)− (k+k′− c) =
2m+ k′ − (k + k′ − c) = 2m− k + c.

As v(G) = v(linkG(x)) + v(G \ linkG(x)), we now look at how the structure
of Ix helps to bound v(G \ linkG(x)).

Claim 1. The end vertices of Ix are vertices that represent a cycle-type compo-
nent.

Otherwise, there would be terminal vertices in linkG(x), which would be
vertices of degree 2 in G.



Figure 7. The graphs F,E4 and a depiction of El for l ≥ 8.

Claim 2. In Ix edges only exist among pairs of vertices representing one tree
and one cycle.

If two components representing cycles in the decomposition of linkG(x) inter-
sect, the intersecting vertex would have degree four, but the vertices in linkG(x)
have degree 3 or 2. Recall that, by Lemma 11, cycles cannot intersect in more
than one vertex.

Claim 3. v(G \ linkG(x)) ≥ ends(Ix) + 1.

Notice that for each Ci we have at least mi vertices of degree 2 which are
not adjacent to x. This implies that in the embedding of the graph there must
be some edges emanating from said vertices, either reaching some other vertices
in Ci, vertices in the components of linkG(x) adjacent to Ci or some vertices not
in Ci (lying in the area enclosed by Ci in the embedding).

Suppose there are some chords (non-crossing in the embedding) among the
vertices of Ci non adjacent to x. As there are no triangles in G, these vertices
have to be at distance at least three in the cycle. So, there would have to be at
least two vertices in Ci not adjacent to x and not adjacent to any other vertex
in Ci. Thus, if there are no additional vertices of G in the area enclosed by Ci,
then Ci has exactly 2mi vertices, mi− 2 which are paired by non-crossing chords
and two which have to be connected to other parts of linkG(x). (See the graphs
in the center and right side in Figure 7.)

Thus, for Ci to represent an end vertex of Ix there is no remedy but to have
one additional vertex of G in the area enclosed by Ci, connected to three vertices
of Ci non adjacent to x and exactly one vertex of Ci non adjacent to x which
connects to another part of linkG(x). (See the leftmost graph in Figure 7.) The
result follows from Claim 3.

Corollary 22. Let G be a ({3,m}, 4)-planar graph. Then for 4 ≤ m ≤ 13 we
have that 2m + 2 ≤ v(G), and for 14 ≤ m we have the following lower bound
9m+19

5 ≤ v(G).

Proof. As we have proved in Lemma 6, for a fixed triad ({r,m}, g), the value
of v(G) increases as the number of vertices of degree m increases, then we will
assume for this lower bound that G has exactly one vertex of degree m called x.



Let G be a ({3,m}, 4)-planar graph and x be a vertex of degree m in G. From
the equation v(G) ≥ 2m − k + c + ends(Ix) + 1 in the previous lemma, we can
observe that, when G is the smallest possible ({3,m}, 4)-planar graph, then G is
connected, has big k and small ends(Ix).

As ends(Ix) ≥ 1, we have that v(G) ≥ 2m− k+ ends(Ix) + 2. Obviously this
bound will decrease as k increases.

For Ix to have few ends the optimal case is when it is a path where each Pj

represents a path of length two or one. Thus, we observe that, for the extremally
small ({3,m}, 4)-planar graphs, ends(Ix) = 1 or 2.

Claim 1. For 4 ≤ m ≤ 13, 2m+ 2 ≤ v(G).

From the proof of Lemma 21 we can observe that the smallest Ci that can
represent an end vertex of Ix has 9 vertices and mi = 4 and the smallest Ci that
can represent a non-end of Ix has 8 vertices and mi = 4 (see Figure 7). That is,
if m is small enough, we have no alternative but to have k = 1, ends(Ix) = 1, and
v(G) ≥ 2m+ 2, this also holds if k = 2, ends(Ix) = 2, for example.

On the other hand, for 2m − k + ends(Ix) + 2 < 2m + 1 to be satisfied we
need k ≥ 3. As each Ci is followed by Pj then, for a given m, the best possible
situation is to have as many Pj of length 2 between each Ci of size 8. This implies
that for k ≥ 3 we must be able to have at least three cycles of size 8 and two
paths of length two in the decomposition of linkG(x). Thus, the total degree of
x is m ≥ 4(3) + 2 = 14. This implies the claim.

Claim 2. For 14 ≤ m, 9m+19
5 ≤ v(G).

Here, by Claim 1, we may have k ≥ 3 and ends(Ix) = 2. Thus, we need
to find the greatest k such that m ≥ 4k + (k − 1) = 5k − 1 or, equivalently,
the greatest k ≤ m+1

5 and the result follows by plugging in this values into the
bound’s equation.

Let Dm be the graph whose set of vertices is {x0, . . . , x2m−1, y0, y1} and whose
set of edges is {xixi+1 | i = 0, . . . , 2m−2}∪{x1, x2m−1}∪{y0x2j | j = 0, . . . ,m}∪
{y1x2j−1 | j = 0, . . . ,m}, see Figure 8. This graph is clearly a ({3,m}, 4)-planar
graph with 2m+ 2 vertices, implying the following result.

Proposition 23. For 4 ≤ m ≤ 13, np({3,m}, 4) = 2m+ 2.

Let F be the graph whose set of vertices is {x, x0, . . . , x7} and whose set
of edges is {xixi+1 | i = 0, . . . , 6} ∪ {x0x7} ∪ {xx2i | i = 0, 1, 2}. Let E4 be the
graph whose set of vertices is {x0, . . . , x7} and whose set of edges is {xixi+1 | i =
0, . . . , 6}∪{x0x7}∪{x0x4}. A depiction of these graphs can be found in Figure 7.

For k ≥ 3, let Z ′k be the graph resulting from joining two copies of F, k − 2
copies of E4 and k − 1 paths of length 2, P as follows. Start with a copy of F,
and join it to a copy of the path P by identifying its only even labeled vertex



Figure 8. Dm graphs for m = 4, 5. In each case, all vertices of degree two in the boundary
are adjacent to an external vertex.

of degree two with an end of P , join the remaining end of P to a copy of E4

by one of its two even labeled vertices of degree two. Now repeat this procedure
subsequently joining copies of E4 to copies of P and ending with the second copy
of F (the dotted lines indicate the subsequently join between copies of E4 and
copies of P ). This graph has 9k+ 1 vertices, out of which 5k− 1 have degree two
and the remaining vertices have degree three. A depiction of Z ′k can be found in
Figure 9.

Figure 9. A graph Z ′k with k = 4. In order to build Zk we may join all degree two vertices
in Z ′k to the same vertex of degree m = 9k + 1.

Let Zk be the graph whose set of vertices is V (Z ′k) ∪ {x∗} and whose set of
edges is E(Z ′k) ∪ {x∗y | y ∈ V (Z ′k) and deg(y) = 2}. Observe that Zk is clearly a
planar graph that has 9k+ 2 vertices, out of which one has degree 5k− 1 and the
remaining vertices have degree 3. This construction proves the next result.

Proposition 24. np({3,m}, 4) ≤ 9m+19
5 , for m = 5k − 1 and k ≥ 3.

Finally, note that in the previous construction we may delete up to two
degree 2 (diametrically opposite) vertices from each E4 or F, without violating
the girth condition in Z ′k. Thus, for m > 14 we may find the smallest m∗ such
that m < m∗ and m∗ = 5k∗−1 for some k∗, make the construction Z ′k∗ and then
remove m∗−m degree two vertices from such construction to obtain an improved
upper bound for any m. A simple computation proves m∗ = 5

⌈
m+1

5

⌉
− 1 and the

number of vertices of such construction will be m+ 4
⌈
m+1

5

⌉
+ 3. Hence, we have

the following.

Proposition 25. np({3,m}, 4) ≤ m+ 4
⌈
m+1

5

⌉
+ 3, for m > 14.



In order to compare these values with the values for usual cages, we remark
that in [10] the authors prove that n0({r,m}; 4) = r + m and this bound is
attained by the biregular bipartite complete graphs Kr,m. Clearly, these graphs
are planar only for r = 1 or r = 2.

Figure 10. A family of planar ({3,m}; 5)-graphs. In all cases, the vertices of degree two
in the boundary are adjacent to an external vertex.

3.4. Girth 5

Theorem 26. The ({r,m}; 5)-cages are as follows.

r m np({r,m}, 5) Graphs Full list

2 m 2m+ 1 Om,5 yes
2 m even 2m+ 1 Fm,5 yes
3 4 ≤ m ≤ 5 3m+ 11 ≤ np({3,m}, 5) ≤ 6m+ 2 Pm -
3 6 ≤ m, m even 3m+ 11 ≤ np({3,m}, 5) ≤ 3m+ 2

⌊
m−6

4

⌋
+ 21 Bm -

3 6 ≤ m, m odd 3m+ 11 ≤ np({3,m}, 5) ≤ 3m+ 2
⌊
m−5

4

⌋
+ 22 Bm -

.

The proof of the theorem and description of each graph family is split in
the following subsections. However, we may remark that Lemma 5 implies that
2 ≤ r ≤ 3, r < m and Corollary 8 points that np({2,m}, 4) ≥ 2m + 1 and
np({3,m}, 4) ≥ 3m+ 11.

3.4.1. Planar ({2,m}; 5)-cages

This case will follow as a consequence of a more general construction in the
Subsection 3.5. We will define the graphs Om,g and Fm,g for g ≥ 3, and prove
that they are the only planar cages in Lemma 31.

3.4.2. Planar ({3,m}; 5)-cages

Note that, if we allow two vertices of degree m in ({3,m}; 5)-graphs, from Lemma
6 we obtain that such graphs must have at least 6m+2 vertices. Here we present
an infinite family of ({3,m}; 5)-graphs, Pm, meeting that bound, see Figure 10.
This proves that indeed.

Proposition 27. For 4 ≤ m, np({3,m}, 5) ≤ 6m+ 2.



Furthermore, consider the family of graphs B′m depicted in Figure 11. This
family has v = 3m+ 2

⌊
m−6

4

⌋
+ 20 of which m = 2l + 6 vertices and l ≥ 0, have

degree two and the rest have degree 3. Let Bm be the graph in which we add a
vertex to B′m joined to all its vertices of degree two. This construction proves the
following.

Figure 11. A family of planar ({3,m}; 5)-graphs. In all cases, the vertices of degree two
in the boundary are adjacent to an external vertex.

Proposition 28. For 6 ≤ m, even, np({3,m}, 5) ≤ 3m+ 2
⌊
m−6

4

⌋
+ 21.

Finally, note that in the construction of Bm there are several degree two
vertices that can be deleted without decreasing the girth. Thus for even m ≥
7 we may construct Bm+1 and then delete one vertex to obtain a graph with
3m+ 2

⌊
m−5

4

⌋
+ 22 vertices.

Proposition 29. For 7 ≤ m, odd, np({3,m}, 5) ≤ 3m+ 2
⌊
m−5

4

⌋
+ 22.

As in the previous cases, in order to compare these values with the values
for usual cages, we highlight that in [10] the authors prove that n0({r,m}; 5) =
rm+ 1. Here the bounds only coincide for r = 2.

3.5. Girth g ≥ 6

Theorem 30. The ({r,m}; g)-planar cages with g ≥ 6 are as follows.

r g np({r,m}, g) Graphs Full list

2 even m(g−2)+4
2 Om,g yes

2 odd m(g−1)+2
2 Om,g, Fm,g for even m yes

.

By Lemma 5, we know that the only possible cases are when r = 2 and
m ≥ 3.

For any g and m ≥ 3, let Om,g be the graph on (m − 1)
⌈
g−2

2

⌉
+
⌊
g−2

2

⌋
+ 2

vertices that consists of m independent paths between two vertices u, v, (m− 1)
being of length

⌈g
2

⌉
and one of length

⌊g
2

⌋
. It is easy to see that this is a ({2,m}; g)-

graph which is embeddable in the plane.



For any g and m even, let Fm,g be the graph formed by m
2 cycles of lenght

g all incident in one vertex. This graph has m
2 (g − 1) + 1 vertices and is clearly

planar.
These graphs are also given in [10] as cages, that is, in this case the values

coincide because the usual cages are planar.

Lemma 31. The only possible ({2,m}; g)-planar cages are Om,g for any 2 < m
and g ≥ 6, and Fm,g for any 2 < m even and g ≥ 5 odd.

Proof. It is not difficult to check that the numbers of vertices of Om,g and Fm,g

reach the lower bounds in Corollary 8, for the cases mentioned.
Now, for the characterization part, we will first argue that the number of

vertices x of degree m is at most two. We will proceed by contradiction. By
Corollary 8, if x ≥ 3, then the number of vertices v necessary to have a planar
({2,m}; g)-graph, is such that

v ≥ 3(g − 2)m− 2g

4
+ 3.

It is easy to check that this number is always higher than the number of vertices
of Om,g and Fm,g. Thus, a ({2,m}; g)-planar cage has at most 2 vertices of degree
m.

Let x = 1, G be a planar cage and v be the vertex in G of degree m. Then
G\{v} is a graph with m vertices of degree 1 and V (G)−m−1 vertices of degree
two. Hence, G \ {v} has to be exactly the union of m

2 disjoint paths. This clearly
implies that G is Fm,g.

Let x = 2, G be a planar cage and v, u be the vertices in G of degree m. Then
G \ {v, u} is a graph with 2m vertices of degree 1 and V (G) − 2m − 1 vertices
of degree two. Hence, G \ {v, u} has to be exactly the union of m disjoint paths.
This clearly implies that G is Om,g.

4. Proofs of Lemmas in Section 3.1

In this section we prove Lemmas 9–12. For convenient we also restate them first.

4.1. Proof of Lemma 9

Lemma 9. A planar graph with at least one vertex of degree m ≥ 3 that has
exactly m+ 1 vertices satisfies one of the following.

(a) It has four vertices of degree m and m = 3.

(b) It has three vertices of degree m and m = 4.

(c) It has at most two vertices of degree m.



Proof. Assume G is such a graph.

(a) Assume that G has four vertices, say {v1, v2, v3, v4}, of degree m. The
graph induced by this four vertices is K4. If m = 3, G is the tetrahedron. If
m ≥ 4, then every vertex in v ∈ V (G − {v1, v2, v3, v4}) is connected to all of
{v1, v2, v3, v4}. Hence {v, v1, v2, v3, v4} induces a K5, making G non planar. Thus
this is only possible when m = 3.

(b) Assume that G has exactly three vertices of degree m, say {v1, v2, v3}.
Then the graph induced by these three vertices is K3. Also, every vertex in v ∈
V (G− {v1, v2, v3}) is connected to all of {v1, v2, v3}. If |V (G− {v1, v2, v3})| = 1,
then m = 3 and we would have the previous case, where all of the four vertices
have degree m. Hence m ≥ 4. We will argue that m = 4.

First assume that m ≥ 5. Then |V (G− {v1, v2, v3})| ≥ 3, and for all triplets
{u1, u2, u3} ∈ V (G−{v1, v2, v3}) we have that the graph induced by {u1, u2, u3}∪
{v1, v2, v3} contains K6,6, hence G would not be planar.

Finally, if m = 4, then |V (G − {v1, v2, v3})| = 2, and G would be the 1-
skeleton of a double pyramid with triangular base. Clearly, a planar graph.

(c) Clearly, the graph must have at most two vertices of degree m.

4.2. Proof of Lemma 10

Lemma 10. Let G be an ({r,m}; g)-planar graph. Then the subgraph of G
induced by all the vertices in the faces incident to a vertex x, linkG(x), is an
outerplanar graph consisting of a (not necessarily disjoint) union of cycles (with
or without chords) and paths, with at least deg(x) vertices.

Proof. We may assume without loss of generality that G \ x has only one con-
nected component.

Let X = {x1, . . . , xl} be an ordered set that labels the vertices in linkG(x),
in the order they appear around x in the embedding. Here, by assumption, we
need to have deg(x) ≤ l where there may be some repetitions of vertices.

Assume that there are indeed some repetitions inX, say xi = xj and xi′ = xj′ .
Then we can never have i < i′ < j < j′, where all subindices are taken mod l,
otherwise we would violate the planarity of G. This proves the lemma.

4.3. Proof of Lemma 11

Lemma 11. The intersection graph, Ix, with deg(x) = m is a simple graph,
furthermore it is a forest.

Proof. We may assume without loss of generality that linkG(x) is connected,
as the result easily generalizes from the connected case to the disconnected case.
Hence, we need to prove that Ix is a simple graph which is a tree.



(a) We will begin by arguing that there are no multiple edges. Suppose cicj
is a multiple edge, then Ci, Cj intersect in more than one vertex, say they are u
and v.

• If these vertices are adjacent in both cycles, then we could have considered
the union of Ci, Cj as a single cycle with a chord.

• Hence, we may assume that u and v are non adjacent in at least one of the two
cycles. This is, there are at least three paths of length at least two between
u and v. These paths divide the plane in at least three regions, thus the
union of Ci, Cj would not be outerplanar, contradicting the outerplanarity of
linkG(x).

The case where we suppose cipj is a multiple edge is proved similarly.

(b) We will now argue that there are no cycles in Ix. Suppose, to the contrary,
that there is a cycle C in Ix. Then there is a cycle of G contained in the union of
the cycles and paths corresponding to each of the vertices in C. This cycle divides
the plane in two connected components, say C+ and C−. We may assume without
loss of generality that x ∈ C+, by construction there can be no vertices of linkG(x)
in C− and all vertices of linkG(x) have to be visible from x in C+. Hence there is
a cycle induced by the cycles and paths corresponding to the vertices of C which
necessarily contains all the vertices of the cycles corresponding to vertices in C,
otherwise outerplanarity would be violated, but this contradicts the maximality
of the cycles represented in Ix.

4.4. Proof of Lemma 12

Lemma 12. If G is an outerplanar graph of order at least 4 such that all of its
vertices have degree at least 2, then it has at least two non-consecutive vertices of
degree exactly 2.

Proof. We will denote the number of vertices of G as n. We will proceed by
induction on n. Note that the graph may have different connected components
and that the result holds trivially for cycles.

(a) n = 4. If G is a cycle the result follows. Assume that G is not a cycle and
let (v1, v2, v3, v4) be the cycle in G that bounds the outer face of the drawing.
Then the only additional edge of G not in (v1, v2, v3, v4) is either v1v3 or v2v4. In
the first instance the two non consecutive vertices of degree two are v2, v4, and
in the second instance they are v1, v3.

(b) n ≤ k. Assume that any outerplanar graph of order at most k such that
all of its vertices have degree at least 2, contains at least two non consecutive
vertices of degree 2.

(c) n = k + 1. If G is a cycle, the result follows trivially. Also, if G has at
least two connected components, the result follows.



Thus, we may assume that G has a unique connected component. Let
(v1, v2, . . . , vn) be the cycle that bounds the outer face of the drawing. As G
is not a cycle, there is an edge vivj that splits the graph in to two smaller outer-
planar subgraphs G1 and G2, which both contain a copy of the edge vivj .

If both G1 and G2 are of order at least 4, then each graph contains a vertex
of degree 2, different from vi and vj , and the result follows.

Thus we only have to prove it for the case when either G1 or G2 is of order 3.
We can assume without loss of generality that G1 is of order 3. Here the vertex
in G1 different from vi and vj , has degree two. As for G2, if its order is at least
4, then the result follows, by the induction hypothesis. Otherwise, the vertex in
G2 different from vi and vj , has degree two.

5. Conclusions

For the ({3,m}; 4)-graphs where we have not reached the lower bound, we believe
it to be unlikely that other constructions can improve the bounds provided. For
all the other cases where there is still room for improvement it would be nice to see
such improvements, either in the form of improved lower bounds or constructions.

Finally we consider that studying the regular or biregular embbeding cage
problem for other surfaces, oriented or non-oriented, will lead to nice discoveries.

The question is: Which is the minimum order of a regular or biregular graph
embbeding in some given surface?
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