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Abstract

The niche graph of a digraph D has V (D) as the vertex set and an
edge uv if and only if (u,w) ∈ A(D) and (v, w) ∈ A(D), or (w, u) ∈ A(D)
and (w, v) ∈ A(D) for some w ∈ V (D). The notion of niche graphs was
introduced by Cable et al. [Niche graphs, Discrete Appl. Math. 23 (1989),
231–241] as a variant of competition graphs. If a graph is the niche graph
of a digraph D, it is said to be niche-realizable through D. If a graph G
is niche-realizable through a k-partite tournament for an integer k ≥ 2,
then we say that the pair (G, k) is niche-realizable. Bowser et al. [Niche
graphs and mixed pair graphs of tournaments, J. Graph Theory 31 (1999)
319–332] studied the graphs that are niche-realizable through a tournament
and Eoh et al. [The niche graphs of bipartite tournaments, Discrete Appl.
Math. 282 (2020) 86–95] recently studied niche-realizable pairs (G, k) for
k = 2. In this paper, we extend their work for k ≥ 3. We show that the
niche graph of a k-partite tournament has at most three components if k ≥ 3
and is connected if k ≥ 4. Then we find all the niche-realizable pairs (G, k)
in each case: G is disconnected; G is a complete graph; G is connected and
triangle-free.
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1. Introduction

In this paper, a graph means a simple graph. For all undefined graph theory
terminology, see [2].

Cohen [7] introduced the notion of competition graph while studying predator-
prey concepts in ecological food webs. The competition graph of a digraphD is the
graph having the vertex set V (D) and an edge uv if and only if (u,w) ∈ A(D) and
(v, w) ∈ A(D) for some w ∈ V (D). Cohen’s empirical observation that real-world
competition graphs are usually interval graphs has led to a great deal of research
on the structure of competition graphs and on the relation between the struc-
ture of digraphs and their corresponding competition graphs. In the same vein,
various variants of competition graphs have been introduced and studied, one of
which is the notion of niche graphs introduced by Cable et al. [5] (see [3,4,6,9–14]
for various variants of competition graph).

The niche graph of a digraphD, denoted byN (D), has V (D) as the vertex set
and an edge uv if and only if (u,w) ∈ A(D) and (v, w) ∈ A(D), or (w, u) ∈ A(D)
and (w, v) ∈ A(D) for some w ∈ V (D). If a graph is the niche graph of a digraph
D, then it is said to be niche-realizable through D. If a graph G is niche-realizable
through a k-partite tournament for an integer k ≥ 2, then we say that the pair
(G, k) is niche-realizable for notational convenience.

Bowser et al. [4] studied the graphs that are niche-realizable through a tour-
nament and Eoh et al. [8] studied the graphs that are niche-realizable through a
bipartite tournament. We extend their work by studying niche-realizable pairs
(G, k) for a graph G and an integer k ≥ 3.

Multipartite tournaments have been actively studied by graph theorists (see
survey work such as [1, 16], and [17]).

We first show that the niche graph of a k-partite tournament is connected
if k ≥ 4 and has at most three components if k ≥ 3 (Theorem 2.6 and Corol-
lary 2.8). Then we find all the niche-realizable pairs (G, k) when G is disconnected
(Theorems 3.1 and 3.8). We show that the niche graph of a k-partite tournament
contains no induced path of length 5 (Theorem 4.4). Finally, we find all the niche-
realizable pairs (G, k) when G is a complete graph (Theorem 4.1) and when G is
a connected triangle-free graph (Theorem 4.12).

2. Preliminaries

For a digraph D, a digraph is said to be the converse of D and denoted by D←

if its vertex set is V (D) and its arc set is {(u, v) | (v, u) ∈ A(D)}.

By the definition of niche graphs, the following lemmas are immediately true.
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Lemma 2.1. For a digraph D, the niche graph of D and the niche graph of D←

are the same.

Lemma 2.2. Let D be a digraph and D′ be a subdigraph of D. Then the niche

graph of D′ is a subgraph of the niche graph of D.

Lemma 2.3. For a digraph D, if the niche graph of D is Km-free, then d+D(u) ≤
m− 1 and d−D(u) ≤ m− 1 for each vertex u in D.

It is easy to check that the following lemma is true.

Lemma 2.4. Let D be an orientation of K3. Then the niche graph of D is

isomorphic to
{

I3 if D is a directed cycle;

P3 otherwise.

Bowser et al. [4] have shown that the complement of the niche graph of a
tournament is one of the following: a cycle of odd order, a path of even order,
a forest of odd order consisting of two paths, a forest of even order consisting
of three paths, or a forest of four or more paths. By this result, we have the
following lemma.

Lemma 2.5. The niche graph of an orientation of K4 is connected.

Theorem 2.6. For k ≥ 4, the niche graph of a k-partite tournament is connected.

Proof. Let G be the niche graph of the k-partite tournament D. We denote the
partite sets of D by (X1, X2, . . . , Xk). Take two vertices x and y in G. It suffices
to show that x and y are connected in G.

Suppose that x and y belong to different partite sets in D. Without loss of
generality, we may assume that x ∈ X1 and y ∈ X2. Since k ≥ 4, we may take
z ∈ X3 and w ∈ X4. Let D1 be the subdigraph of D induced by {x, y, z, w}.
Then D1 is an orientation of K4. Thus, by Lemma 2.5, the niche graph of D1 is
connected. By Lemma 2.2, the niche graph of D1 is a subgraph of G and so x
and y are connected in G.

Now suppose that x and y belong to the same partite set in D. Then, without
loss of generality, we may assume that {x, y} ⊂ X4. Take a vertex z in Xi for
some i ∈ {1, 2, 3}. Since x (respectively, y) and z belong to different partite set
in D, x (respectively, y) and z are connected in G by the previous argument.
Therefore x and y are connected in G.

A stable set of a graph is a set of vertices no two of which are adjacent. A
stable set in a graph is maximum if the graph contains no larger stable set. The
cardinality of a maximum stable set in a graph G is called the stability number

of G, denoted by α(G).
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Theorem 2.7. For k ≥ 3, the niche graph of a k-partite tournament has stability

number at most 3.

Proof. Let G be the niche graph of a k-partite tournament D. Suppose, to the
contrary, α(G) ≥ 4. Then we may take a stable set of size 4 in G. We denote it
by {x1, x2, x3, x4}.

Suppose that there exist partite setsX1 andX2 ofD such that {x1, x2, x3, x4}
⊂ X1∪X2. Since k ≥ 3, we may take a vertex x5 in a partite set X3 of D distinct
from X1 and X2. Since D is a k-partite tournament, {x1, x2, x3, x4} ⊂ N+

D (x5)∪
N−D (x5). Therefore |N

+

D (x5)∩{x1, x2, x3, x4}| ≥ 2 or |N−D (x5)∩{x1, x2, x3, x4}| ≥
2. Yet, each of N+

D (x5) ∩ {x1, x2, x3, x4} and N−D (x5) ∩ {x1, x2, x3, x4} forms a
clique in G, which is a contradiction to the assumption that {x1, x2, x3, x4} is a
stable set of G. Hence there are three elements in {x1, x2, x3, x4} belonging to dis-
tinct partite sets. Then there is a partite setX satisfying |X∩{x1, x2, x3, x4}| = 1.
Without loss of generality, we may assume that X∩{x1, x2, x3, x4} = {x4}. Then
{x1, x2, x3} ⊂ N+

D (x4)∪N−D (x4) and so |N+

D (x4)∩ {x1, x2, x3}| ≥ 2 or |N−D (x4)∩
{x1, x2, x3}| ≥ 2. Since each of N+

D (x4) ∩ {x1, x2, x3} and N−D (x4) ∩ {x1, x2, x3}
forms a clique in G, {x1, x2, x3} cannot be a stable set of G, which is a contra-
diction. This completes the proof.

From the above theorem, the following corollary immediately follows.

Corollary 2.8. For k ≥ 3, the niche graph of a k-partite tournament has at most

three components.

3. Niche-Realizable Pairs (G, k) When G is Disconnected

In this section, we completely characterize the niche graphs of k-partite tourna-
ments for k ≥ 3 which are disconnected.

Theorem 2.6 tells us that, for a disconnected graph G and k ≥ 3, if (G, k) is
niche-realizable, then k = 3. In addition, the niche graph of a k-partite tourna-
ment has at most three components for k ≥ 3 by Corollary 2.8.

We first characterize the niche-realizable pair (G, k) for a graph G with three
components.

Theorem 3.1. Let G be a graph with three components and k be an integer

greater than or equal to 3. Then (G, k) is niche-realizable if and only if k = 3
and G is isomorphic to Kp ∪Kq ∪Kr for positive integers p, q, and r.

Proof. Suppose that (G, k) is niche-realizable. If there exists a component which
is not isomorphic to a complete graph, then α(G) ≥ 4, which contradicts Theo-
rem 2.7. Therefore G is isomorphic to Kp ∪ Kq ∪ Kr for positive integers p, q,
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and r. Since Kp ∪Kq ∪Kr is disconnected, k ≤ 3 by Theorem 2.6. Therefore the
“only if” part is true.

To show the “if” part, let D be a digraph with the vertex set

{x1, . . . , xp, y1, . . . , yq, z1, . . . , zr}

and the arc set

{(xi, yj) | i ∈ [p] and j ∈ [q]} ∪ {(yj , zl) | j ∈ [q] and l ∈ [r]}

∪ {(zl, xi) | l ∈ [r] and i ∈ [p]}.

Then it is easy to check that D is a 3-partite tournament and the niche graph of
D is isomorphic to Kp ∪Kq ∪Kr. Hence the “if” part is true.

Let G be a graph. Two vertices u and v of G are said to be true twins if
they have the same closed neighborhood, and are denoted by u ≡G v. We may
introduce an analogous notion for a digraph. Let D be a digraph. Two vertices u
and v of D are said to be true twins if they have the same open out-neighborhood
and open in-neighborhood, and are denoted by u ≡D v.

The following lemma is true by definitions of niche graphs and true twins.

Lemma 3.2. Let D be a digraph without isolated vertices. If vertices u and v
are true twins in D, then u and v are true twins in N (D).

Proof. Suppose that two vertices u and v are true twins in D. Then N+

D (u) =
N+

D (v) and N−D (u) = N−D (v). Therefore, by the definition of niche graphs, u and
v have the same open neighborhood in N (D). Since D has no isolated vertices,
N+

D (u) 6= ∅ or N−D (u) 6= ∅. Thus u and v have a common out-neighbor or a
common in-neighbor in D and so they are adjacent in N (D). Hence u and v have
the same closed neighborhood in N (D).

Lemma 3.3. Let D be a multipartite tournament. If vertices u and v are true

twins in D, then u and v are in the same partite set.

Proof. Suppose that vertices u and v are true twins in D. If u and v are not
in the same partite set, then we may assume (u, v) ∈ A(D) and so, by the
definition of true twins, (v, v) ∈ A(D), which contradicts the hypothesis that D
is a multipartite tournament.

Proposition 3.4. Given a graph G with at least four vertices, suppose that G is

niche-realizable through a k-partite tournament D for k ≥ 3, and vertices u and

v are true twins in D. Then D − v is a k-partite tournament whose niche graph

is G− v.
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Proof. Let D′ = D − v. By Lemma 3.3, D′ is a k-partite tournament. Since
D′ is a subdigraph of D, N (D′) is a subgraph of G by Lemma 2.2. Therefore
N (D′) is a subgraph of G − v. To show that G − v is a subgraph of N (D′),
take an edge xy in G − v. Then xy is an edge in G, so N+

D (x) ∩ N+

D (y) 6= ∅ or
N−D (x) ∩ N−D (y) 6= ∅. By symmetry, we assume that N+

D (x) ∩ N+

D (y) 6= ∅. If
v ∈ N+

D (x) ∩ N+

D (y), then u ∈ N+

D (x) ∩ N+

D (y) and so u ∈ N+

D′(x) ∩ N+

D′(y). If
v /∈ N+

D (x)∩N+

D (y), then N+

D (x)∩N+

D (y) = N+

D′(x)∩N+

D′(y). Therefore we may
conclude that xy is an edge in N (D′). Thus G − v is a subgraph of N (D′) and
so N (D′) = G− v.

Lemma 3.5. Let D be an orientation of K2,1,1 with true twins. Then the niche

graph of D either is connected or has three components.

Proof. We denote the partite sets of D by (X1, X2, X3). Then we may assume
that X1 = {x1, x2}, X2 = {x3}, and X3 = {x4}. By the hypothesis, D has true
twins and so, by Lemma 3.3, x1 and x2 are true twins. By Lemma 2.1, there
are two cases to consider: d+D(x1) = 2; d+D(x1) = 1. We first consider the case
d+D(x1) = 2. Then N+

D (x1) = {x3, x4}. Since x1 and x2 are true twins, N+

D (x2) =
{x3, x4}. Therefore N−D (x3) ∩ N−D (x4) 6= ∅. Thus x3 is adjacent to x4 in N (D).
By symmetry, we may assume N+

D (x3) = {x4}. Then N−D (x4) = {x1, x2, x3}, so
{x1, x2, x3} forms a clique in N (D). Therefore N (D) is connected.

Now we consider the case d+D(x1) = 1. Without loss of generality, we may
assume that N+

D (x1) = {x3}. Then N+

D (x2) = {x3} and N−D (x1) = N−D (x2) =
{x4}. If (x3, x4) ∈ A(D), then N (D) ∼= K2 ∪ K1 ∪ K1. Therefore N (D) has
three components. Suppose that (x3, x4) /∈ A(D), i.e. (x4, x3) ∈ A(D). Then
N−D (x3) = {x1, x2, x4}, so {x1, x2, x4} forms a clique in N (D). Since N+

D (x4) =
{x1, x2, x3}, {x1, x2, x3} forms a clique inN (D). ThereforeN (D) is connected.

Lemma 3.6. Let D be an orientation of K2,1,1 whose niche graph is disconnected.

Suppose that no two vertices are true twins in D. Then the niche graph of D is

isomorphic to P3 ∪K1.

Proof. Let {x1, x2}, {x3}, and {x4} be the partite sets of D. First we consider
the case |N+

D (x1)| = 2 or |N+

D (x2)| = 2, i.e., N+

D (x1) = {x3, x4} or N+

D (x2) =
{x3, x4}. By symmetry, we may assume that N+

D (x1) = {x3, x4}. Then x3 and
x4 are adjacent in N (D). Since x1 and x2 are not true twins in D, at least one
of x3 and x4 is an in-neighbor of x2. We may assume that x4 is an in-neighbor
of x2. Suppose, to the contrary, that x1 and x2 are adjacent in N (D). Then
x3 is a common out-neighbor of x1 and x2. If (x3, x4) ∈ A(D) (respectively,
(x4, x3) ∈ A(D)), then x3 (respectively, x4) is adjacent to x1 in N (D). In either
case, N (D) is connected and we reach a contradiction. Thus x1 and x2 are not
adjacent in N (D) and so N−D (x2) = {x3, x4}.
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We denote D1 the subdigraph of D induced by {x1, x3, x4}. Since N
+

D (x1) =
{x3, x4}, D1 is not a directed cycle. Thus, by Lemma 2.4, N (D1) is connected,
and so, by Lemma 2.2, the subgraph ofN (D) induced by {x1, x3, x4} is connected.
By applying a similar argument to the subdigraph induced by {x2, x3, x4}, we may
show that the subgraph of N (D) induced by {x2, x3, x4} is connected. There-
fore N (D) is connected and we reach a contradiction. Thus |N+

D (x1)| = 2 or
|N+

D (x2)| = 2 cannot happen. Then, by Lemma 2.1, the case N+

D (x1) = ∅ or
N+

D (x2) = ∅ cannot happen. Thus |N+

D (x1)| = |N+

D (x2)| = 1. If N+

D (x1) =
N+

D (x2), then N−D (x1) = N−D (x2) and so x1 and x2 are true twins, which is a
contradiction. Therefore N+

D (x1) 6= N+

D (x2). Thus either N+

D (x1) = {x3} and
N+

D (x2) = {x4} or N+

D (x1) = {x4} and N+

D (x2) = {x3}. By symmetry, we may
assume N+

D (x1) = {x3} and N+

D (x2) = {x4}. Since x3 and x4 belong to different
partite sets in D, (x3, x4) ∈ A(D) or (x4, x3) ∈ A(D). By symmetry again, we
may assume that (x3, x4) ∈ A(D). Then D is isomorphic to the digraph given in
Figure 1. Hence the niche graph of D is isomorphic to P3 ∪K1.

x1

x2

x3

x4

x1

x2

x3

x4

Figure 1. An orientation of K2,1,1 and its niche graph isomorphic to P3 ∪K1.

Lemma 3.7. For positive integers n1, n2, and n3 satisfying n1 + n2 + n3 ≥ 5,
suppose that an orientation D of Kn1,n2,n3

has no true twins. Then the niche

graph of D is connected.

Proof. Without loss of generality, we may assume that n1 ≥ n2 ≥ n3. We first
consider the case n1 + n2 + n3 = 5. Then n1 = 2 or n1 = 3. We will show that
N (D) is connected in each of the following cases.

Case 1. n1 = 2. Then n2 = 2 and n3 = 1. Let {u1, u2}, {v1, v2}, and {w}
be the partite sets of D. By Lemma 2.1, we may assume d+D(w) ≥ 2. Suppose
d+D(w) = 4. Then u1, u2, v1, and v2 form a clique in N (D). If (u1, v1) ∈ A(D)
(respectively, (v1, u1) ∈ A(D)), then v1 (respectively, u1) is a common out-neigh-
bor of u1 (respectively, v1) and w and so N (D) is connected.

We consider the case d+D(w) = 3. Then N+

D (w) = {u2, v1, v2}, {u1, v1, v2},
{u1, u2, v2}, or {u1, u2, v1}. By symmetry, we may assume N+

D (w) = {u1, u2, v1}.
Then N−D (w) = {v2}. Moreover, the subdigraphs D1 and D2 of D induced
by {w, u1, v1} and by {w, u2, v1}, respectively, are orientations of K3 which are
not directed cycles. Thus, by Lemma 2.4, N (D1) and N (D2) are connected.
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Since D1 and D2 are subdigraphs of D, by Lemma 2.2, the subgraphs of N (D)
induced by {w, u1, v1} and by {w, u2, v1} are connected respectively and so the
subgraph of N (D) induced by {w, u1, u2, v1} is connected. If (v2, u1) ∈ A(D) or
(v2, u2) ∈ A(D), then w and v2 are adjacent in N (D) and we are done. Suppose
that (u1, v2) ∈ A(D) and (u2, v2) ∈ A(D). If (v1, u1) ∈ A(D) and (v1, u2) ∈ A(D),
thenN+

D (u1) = N+

D (u2) andN−D (u1) = N−D (u2), which contradicts the hypothesis.
Therefore (u1, v1) ∈ A(D) or (u2, v1) ∈ A(D), and so v1 is adjacent to v2 inN (D).
Thus N (D) is connected.

We consider the case d+D(w) = 2. Then one of the following is true.

• |N+

D (w) ∩ {u1, u2}| = 1 and |N+

D (w) ∩ {v1, v2}| = 1;

• N+

D (w) = {u1, u2} or N+

D (w) = {v1, v2}.

We first suppose that |N+

D (w)∩{u1, u2}| = 1 and |N+

D (w)∩{v1, v2}| = 1. By sym-
metry, we may assume that N+

D (w) = {u1, v1}. Then N−D (w) = {u2, v2}. There-
fore the subdigraphs D3 and D4 of D induced by {w, u1, v1} and by {w, u2, v2}
are orientations of K3 which are not directed cycles. Then, by Lemma 2.4, both
N (D3) and N (D4) are connected. Therefore, by Lemma 2.2, the subgraphs of
N (D) induced by {w, u1, v1} and by {w, u2, v2} are connected, respectively. Thus
N (D) is connected. Now suppose N+

D (w) = {u1, u2} or N+

D (w) = {v1, v2}. By
symmetry, we may assume that N+

D (w) = {u1, u2}. Then N−D (w) = {v1, v2}.
Then u1 and u2 are adjacent and v1 and v2 are adjacent in N (D). If (uj , vi) ∈
A(D) for all 1 ≤ i, j ≤ 2, then N+

D (u1) = N+

D (u2) and N−D (u1) = N−D (u2), which
contradicts the hypothesis. Thus (vi, uj) ∈ A(D) for some i and j in {1, 2}.
Then uj (respectively, vi) is a common out-neighbor (respectively, common in-
neighbor) of vi and w (respectively, uj and w) in D. Thus each of vi and uj is
adjacent to w in N (D) and so N (D) is connected. Hence we have shown that
N (D) is connected if n1 = 2.

Case 2. n1 = 3. Then n2 = n3 = 1. Let {x1, x2, x3}, {y}, and {z} be the
partite sets ofD. We note that N+

D (xi) = N+

D (xj) if and only if N−D (xi) = N−D (xj)
for each 1 ≤ i < j ≤ 3. Therefore, by the hypothesis, N+

D (xi) 6= N+

D (xj) for
each 1 ≤ i < j ≤ 3. Then, since N+

D (xi) is one of ∅, {y}, {z}, and {y, z} for
each i = 1, 2, and 3, d+D(xi) = 1 for some i ∈ {1, 2, 3} and d+D(xj) 6= 1 for
some j ∈ {1, 2, 3} \ {i}. By symmetry, we may assume that d+D(x1) = 1 and
d+D(x2) ∈ {0, 2}. In addition, by Lemma 2.1, we may assume that d+D(x2) = 2,
i.e., N+

D (x2) = {y, z}. Then x1 and x2 have a common out-neighbor in D, so
x1 and x2 are adjacent in N (D). On the other hand, since y and z belong to
different partite sets, there is an arc between y and z and so the subdigraph D5

of D induced by {x2, y, z} is an orientation of K3. Since N+

D (x2) = {y, z}, D5

is not a directed cycle, and so, by Lemma 2.4, N (D5) is connected. Thus, by
Lemma 2.2, the subgraph of N (D) induced by {x2, y, z} is connected. Since x1
and x2 are adjacent in N (D), the subgraph of N (D) induced by {x1, x2, y, z}
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is connected. We will show that x3 is adjacent to a vertex in {x1, x2, y, z} in
N (D) to take care of this case. If x3 has an out-neighbor in D, then x2 and
x3 are adjacent in N (D) and so we are done. Suppose that d+D(x3) = 0. Then
the subdigraph of D induced by {x3, y, z} is an orientation of K3 which is not
a directed cycle. By applying the same argument for D5, we may show that
N (D) is connected. Hence we have shown that N (D) is connected in the case
n1 + n2 + n3 = 5.

Now suppose that n1 + n2 + n3 > 5. To show that N (D) is connected, take
two vertices w1 and w2 in D. Then we may take three vertices w3, w4, and w5 in
D such that the induced subdigraph D6 of D induced by {w1, w2, w3, w4, w5} is a
3-partite tournament. By the above argument, N (D6) is connected, so there is a
(w1, w2)-path P in N (D6). Since D6 is a subdigraph of D, N (D6) is a subgraph
of N (D) by Lemma 2.2. Thus P is a (w1, w2)-path in N (D) and hence N (D) is
connected. This completes the proof.

For a graph G, a vertex v of G, and a finite set K disjoint from V (G), we
say that v is replaced with a clique formed by K to obtain a new graph with the
vertex set (V (G) ∪K) \ {v} and the edge set

E(G− v) ∪ {wx | w 6= x, {w, x} ⊂ K} ∪ {uw | uv ∈ E(G), w ∈ K}.

See Figure 2 for an illustration. We call a graph an expansion of a graph G if it
is obtained by replacing each vertex in G with a clique (possibly of size 1).

v
K

Figure 2. The vertex v of the graph on the left is replaced with a clique K of size 3 to
yield the graph on the right.

Theorem 3.8. Let G be a graph having exactly two components. For k ≥ 3,
(G, k) is niche-realizable if and only if k = 3 and G is isomorphic to an expansion

of P3 ∪K1.

Proof. To show the “if” part, suppose that G is isomorphic to an expansion of
P3∪K1. We will show that (G, 3) is niche-realizable. Let D be the digraph given
in Figure 1. Then N (D) is isomorphic to P3 ∪K1. Let Xi be the set of vertices
of G which are true twins to the vertex corresponding to xi in N (D) for each
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1 ≤ i ≤ 4. We construct a digraph D∗ from D in the following way:

V (D∗) = V (G);

A(D∗) = {(v, w) | v ∈ Xi, w ∈ Xj , (i, j) ∈ {(1, 3), (2, 4), (3, 2), (3, 4), (4, 1)}}.

Then D∗ is a 3-partite tournament, and

• N+

D∗(u1) = X3, N
−

D∗(u1) = X4;

• N+

D∗(u2) = X4, N
−

D∗(u2) = X3;

• N+

D∗(u3) = X2 ∪X4, N
−

D∗(u3) = X1;

• N+

D∗(u4) = X1, N
−

D∗(u4) = X2 ∪X3

for each vertex ui ∈ Xi; for each 1 ≤ i ≤ 4. Thus Xi forms a clique in N (D∗) for
each 1 ≤ i ≤ 4. Take v and w in G. We first consider the case in which v and w
are adjacent in G. Then v and w belong to Xi for some i ∈ {1, 2, 3, 4} or exactly
one of v and w belongs to X2 and the other one belongs to X3∪X4. If the former
is true, then v and w are adjacent in N (D∗) by above observation. Suppose the
latter. Then, without loss of generality, we may assume that v belongs to X2 and
w belongs to X3 ∪X4. If w belongs to X3 (respectively, X4), then v and w have
a common out-neighbor (respectively, common in-neighbor) in D∗ by the above
observation, and so they are adjacent in N (D∗).

Now we consider the case where v and w are not adjacent in G. Then,
without loss of generality, we may assume that v belongs to X1 and w does not
belong to X1 or v and w belong to X3 and X4, respectively. If the former is true,
N+

D∗(v) = X3, N
−

D∗(v) = X4, N
+

D∗(w) ⊂ X1∪X2∪X4, andN−D∗(w) ⊂ X1∪X2∪X3

by the above observation, and so v and w are not adjacent in N (D∗). If the latter
is true, N+

D∗(v) = X2∪X4, N
−

D∗(v) = X1, N
+

D∗(w) = X1, and N−D∗(w) = X2∪X3

by the above observation, and so v and w are not adjacent in N (D∗). Hence we
have shown that G is isomorphic to N (D∗).

To show the “only if” part, suppose that (G, k) is a niche-realizable. Let D
be a k-partite tournament whose niche graph is G. Since G is not connected,
k < 4 by Theorem 2.6 and so k = 3. Thus D is an orientation of Kn1,n2,n3

for
positive integers n1, n2, and n3. If |V (G)| = 3, then D is an orientation of K3 and
so, by Lemma 2.4, G is connected or has three components, which contradicts
the hypothesis that G has exactly two components. Therefore |V (G)| ≥ 4. In
the following, we show that G is isomorphic to an expansion of P3 ∪ K1 by
induction on |V (G)|. First we consider the case where |V (G)| = 4. Then D is
an orientation of K2,1,1. If D has true twins, then G is connected or has three
components by Lemma 3.5, which is a contradiction. Therefore D has no true
twins, so G ∼= P3 ∪K1 by Lemma 3.6. Thus the basis step is true.

We assume that the statement is true for any niche-realizable graph on l
vertices which has exactly two components for a positive integer l ≥ 4. Now we
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assume |V (G)| = l+1. Then n1+n2+n3 = l+1 ≥ 5. Since G is not connected,
D has true twins by Lemma 3.7. Let u and v be true twins in D. Then D − v is
a 3-partite tournament and G− v is the niche graph of D− v by Proposition 3.4.
On the other hand, u and v are true twins in G by Lemma 3.2. Then, G, G− u,
and G−v have the same number of components. Since G has two components by
the hypothesis, G − v has exactly two components. Therefore, by the induction
hypothesis, G− v is an expansion of P3 ∪K1. Since v and u are true twins in G,
G is an expansion of P3 ∪K1.

4. Niche-Realizable Pairs (G, k) When G is Connected

In this section, we study the niche graphs of k-partite tournaments for k ≥ 3
which are connected. The niche graphs of multipartite tournaments come in
many different forms, which makes it hard to give a general characterization, if
they are connected. Yet, we identify niche-realizable pairs for complete graphs
and connected triangle-free graphs. We first find all the niche-realizable pairs
(Kn, k) for positive integers n ≥ k ≥ 3.

Theorem 4.1. For positive integers n ≥ k ≥ 3, (Kn, k) is niche-realizable if and

only if (n, k) ∈ {(4, 4)} ∪ {(n, k) | n ≥ 5}.

Proof. To show the “if” part, we construct a digraph D in the following way.
Let V (D) = {v1, v2, . . . , vn}. If k = 3 and n ≥ 5, then let D be any 3-partite
tournament with partite sets {v1}, {v2, v3}, and {v4, v5, . . . , vn} whose arc set
includes the following arc set (the remaining arcs have an arbitrary orientation):

{(v1, vi) | 2 ≤ i ≤ n} ∪ {(v2, v4), (v4, v3), (v3, v5), (v5, v2)} ∪ {(vi, v2) | 6 ≤ i ≤ n}.

If k ≥ 4 and n ≥ 4, then let D be any k-partite tournament with partite sets
{v1}, {v2}, . . . , {vk−1}, {vk, vk+1, . . . , vn} whose arc set includes the following arc
set (the remaining arcs have an arbitrary orientation):

{(v1, vi) | 2 ≤ i ≤ n} ∪
k−2
⋃

i=2

{(vi, vi+1)} ∪
n
⋃

i=k

{(vk−1, vi), (vi, v2)} .

In both cases, v1 is a common in-neighbor of the remaining vertices, so the set
{v2, v3, . . . , vn} forms a clique in N (D). Moreover, since vi has at least one
out-neighbor in {v2, v3, . . . , vn} for each 2 ≤ i ≤ n, v1 and vi have a common out-
neighbor in D, and so they are adjacent in N (D). Therefore N (D) is a complete
graph with n vertices.

Now we show the “only if” part. By Lemma 2.4, (K3, 3) is not niche-realiz-
able. We only need to show that (K4, 3) is not niche-realizable. Suppose, to the
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x y

z w

Figure 3. A subdigraph of D.

contrary, that (K4, 3) is niche-realizable. Then there is an orientation D of K1,1,2

such that N (D) is isomorphic to K4. Let {x}, {y}, and {z, w} be the partite sets
of D. Since N (D) ∼= K4, z and w are adjacent in N (D), and so have a common
out-neighbor or a common in-neighbor in D. By Lemma 2.1, we may assume
that they have a common out-neighbor and, by symmetry, we may assume that
y is a common out-neighbor of z and w. Then, since x and z are adjacent in
N (D), (x, y) ∈ A(D). Thus N−D (y) = {x, z, w}. On the other hand, since y
and z (respectively, w) are adjacent in N (D), they have a common out-neighbor
or a common in-neighbor in D. Yet, y has no out-neighbor in D, so y and z
(respectively, w) have a common in-neighbor that must be x (see Figure 3). Then
A(D) = {(x, y), (x, z), (x,w), (z, y), (w, y)}. Since x has only out-neighbors and
y has only in-neighbors, they are not adjacent in N (D), which is a contradiction
to the supposition that N (D) ∼= K4. Hence the “only if” part is true.

The rest of this paper will be devoted to finding all the niche-realizable pairs
(G, k) when G is connected and triangle-free.

Lemma 4.2. Let D be a digraph with at least three vertices whose niche graph

N (D) is connected. If there are two distinct vertices which are true twins in D,

then N (D) contains a triangle.

Proof. Suppose that u and v are distinct vertices which are true twins in D.
Since N (D) is connected and has at least three vertices, D contains a vertex w
other than u and v that is adjacent to u or v in N (D). Without loss of generality,
we may assume that w is adjacent to v in N (D). Since N (D) is connected, D
has no isolated vertices. Then u and v are true twins in N (D) by Lemma 3.2.
Thus {u, v, w} forms a triangle in N (D).

We make the following rather obvious observation.

Lemma 4.3. Let D be a k-partite tournament for k ≥ 3. Then, for each partite

set X and each x ∈ X, N+

D (x) ∪N−D (x) = V (D) \X.
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Theorem 4.4. Let D be a k-partite tournament for k ≥ 3. Then N (D) contains
no induced path of length 5, that is, N (D) is P6-free.

Proof. We denote the partite sets of D by X1, . . . , Xk−1, and Xk. If N (D)
is disconnected, it contains no induced path of length 5 by Corollary 2.8 and
Theorems 3.1 and 3.8.

Suppose that N (D) is connected. To reach a contradiction, suppose that
N (D) contains an induced path P of length 5. Let P = x1x2x3x4x5x6. Suppose
that |Xi∩V (P )| ≤ 1 for some i ∈ [k]. Without loss of generality, we may assume
that |X1 ∩ V (P )| ≤ 1. Take a vertex x ∈ X1. Then N+

D (x) ∪N−D (x) contains at
least five vertices in V (P ) by Lemma 4.3. Therefore N+

D (x) or N−D (x) contains
at least three vertices in V (P ). Since each of N+

D (x) and N−D (x) forms a clique
in N (D), the subgraph of N (D) induced by V (P ) contains a triangle, which
contradicts the choice of P as an induced path of N (D). Thus |Xi ∩ V (P )| ≥ 2
for each 1 ≤ i ≤ k. Since |V (P )| = 6, k ≥ 3, and X1, . . . , Xk are mutually
disjoint, we obtain k = 3 and

(1) |Xi ∩ V (P )| = 2

for each i = 1, 2, and 3. Now let D1 be the subdigraph of D induced by V (P ).
Then D1 is a 3-partite tournament. By Lemma 2.2, N (D1) is a subgraph of P .
Thus N (D1) is triangle-free and so, by Lemma 2.3, d+D1

(x) ≤ 2 and d−D1
(x) ≤ 2

for all x ∈ V (D1). By (1), d+D1
(x) + d−D1

(x) = 4, so

(2) d+D1
(x) = 2 and d−D1

(x) = 2

for all x ∈ V (D1).

Suppose that N (D1) is disconnected. Then xj and xj+1 are not adjacent in
N (D1) for some j ∈ {1, 2, 3, 4, 5}, so

(3) N+

D1
(x) 6= {xj , xj+1} and N−D1

(x) 6= {xj , xj+1}

for all x ∈ V (D1). Yet, since xj and xj+1 are adjacent in N (D), they have a
common in-neighbor or a common out-neighbor in D. By Lemma 2.1, we may
assume that xj and xj+1 have a common out-neighbor y in D. Obviously y /∈
V (D1). Without loss of generality, we may assume that y ∈ X1. Then xj and xj+1

do not belong to X1. By (1), |V (P ) \X1| = 4, so |(N+

D (y)∪N−D (y)) ∩ V (P )| = 4
by Lemma 4.3. Since P is an induced path of D, |N−D (y) ∩ V (P )| = 2 and
|N+

D (y)∩V (P )| = 2. Thus N−D (y)∩V (P ) = {xj , xj+1}. Since |N
+

D (y)∩V (P )| = 2,
N+

D (y)∩V (P ) also forms an edge inN (D), that is, N+

D (y)∩V (P ) = {xk, xk+1} for
some k ∈ {1, 2, 3, 4, 5}\{j−1, j, j+1}. Therefore V (P )\X1 = {xj , xj+1, xk, xk+1}.
Let z be one of the two vertices in X1 ∩ V (D1). Then z 6= y. By Lemma 4.3,
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N+

D1
(z) ∪N−D1

(z) = {xj , xj+1, xk, xk+1}. By (2), d+D1
(z) = d−D1

(z) = 2. Then, by
(3),

{N+

D1
(z), N−D1

(z)} = {{xj , xk}, {xj+1, xk+1}}

or

{N+

D1
(z), N−D1

(z)} = {{xj , xk+1}, {xj+1, xk}}.

In the former case, xj and xk are adjacent in N (D1) and so in N (D), which is
impossible as P is an induced path in N (D). In the latter case, xj and xk+1 are
adjacent and xj+1 and xk are adjacent in N (D). However, either xj and xk+1 or
xj+1 and xk are not consecutive on P and we reach a contradiction. Thus N (D1)
is connected. Since P is an induced path of N (D) and N (D1) is a spanning
subgraph of P , we may conclude that N (D1) = P .

Let D2 = D1 − x2. Then D2 is a 3-partite tournament by (1) and, by
Lemma 2.2, N (D2) is a subgraph of N (D1) = P . Since P − x2 is disconnected,
N (D2) is disconnected. Without loss of generality, we may assume that x2 ∈ X1.
Then, by (1),

(4) |V (D2) ∩X1| = 1 and |V (D2) ∩X2| = |V (D2) ∩X3| = 2.

Suppose that u and v are true twins in D2 for some distinct vertices u and
v in V (D2), that is, N

+

D2
(u) = N+

D2
(v) and N−D2

(u) = N−D2
(v). Then both u and

v belong to the same partite set by Lemma 3.3. Thus, by (4), u and v belong
to X2 or X3. By (2), either d+D2

(u) = d+D2
(v) = 2 and d−D2

(u) = d−D2
(v) = 1 or

d+D2
(u) = d+D2

(v) = 1 and d−D2
(u) = d−D2

(v) = 2. By Lemma 2.1, we may assume

that d+D2
(u) = d+D2

(v) = 2 and d−D2
(u) = d−D2

(v) = 1. Then x2 is a common in-

neighbor of u and v in D1 by (2). Thus N+

D1
(u) = N+

D1
(v) and N−D1

(u) = N−D1
(v),

that is, u and v are true twins in D1. Since |V (D1)| ≥ 3 and N (D1) is connected,
N (D1) contains a triangle by Lemma 4.2. Yet, N (D1) = P and we reach a
contradiction. Therefore there is no pair of vertices which are true twins in D2.
Thus, by Lemma 3.7, N (D2) is connected and we reach a contradiction. Hence
N (D) contains no induced path of length 5 and we are done.

From the above theorem, the following corollary immediately follows.

Corollary 4.5. Let D be a k-partite tournament for k ≥ 3. Then each component

of N (D) has diameter at most 4.

A graph is said to be triangle extended complete bipartite if it is obtained
from a complete bipartite graph by possibly attaching some P3s to a common
edge of the bipartite graph. A set U ⊆ V dominates a set U ′ ⊆ V if any vertex
v ∈ U ′ either lies in U or has a neighbor in U . We also say that U dominates
G[U ′]. A subgraph H of G is a dominating subgraph of G if V (H) dominates G.
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Hof et al. [15] showed that a graph G is P6-free if and only if each connected
induced subgraph of G has a dominating (not necessarily induced) triangle ex-
tended complete bipartite graph or an induced dominating C6. Thus the following
result immediately follows.

Corollary 4.6. Let D be a k-partite tournament for k ≥ 3. Then each connected

induced subgraph of N (D) has a dominating (not necessarily induced) triangle

extended complete bipartite graph or an induced dominating C6.

By using Theorem 4.4, we may find all the niche-realizable pairs (Pn, k) and
all the niche-realizable pairs (Cn, k) for positive integers n ≥ k ≥ 3.

Lemma 4.7. For positive integers n ≥ k ≥ 3, (Pn, k) is niche-realizable if and

only if (n, k) ∈ {(3, 3), (4, 3), (4, 4), (5, 3)}.

Proof. Let D1, D2, D3, and D4 be the digraphs in Figure 4 which are isomorphic
to some orientations of K1,1,1, K1,1,2, K1,1,1,1, and K1,2,2, respectively. It is easy
to check that N (D1) ∼= P3, N (D2) ∼= P4, N (D3) ∼= P4, and N (D4) ∼= P5. Hence
the “if” part is true.

D1 N (D1)

D2 N (D2)

D3 N (D3)

D4 N (D4)

Figure 4. The digraphs D1, D2, D3, and D4 which are isomorphic to some orientations
of K1,1,1, K1,1,2, K1,1,1,1, and K1,2,2, respectively, and their niche graphs.

Now suppose that (Pn, k) is niche-realizable. By Theorem 4.4, n ≤ 5. Thus
we only need to show that (n, k) is neither (5, 4) nor (5, 5). Let D be a k-
partite tournament such that N (D) ∼= P5. We denote P5 by x1x2x3x4x5. Since
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N (D) ∼= P5, N (D) is triangle-free and so, by Lemma 2.3, every vertex of D has
indegree at most two and outdegree at most two in D. Suppose that {x2} is one
of the partite sets of D. Then N+

D (x2) ∪N−D (x2) = V (D) \ {x2} by Lemma 4.3,
so d+D(x2) = 2 and d−D(x2) = 2. By Lemma 2.1, we may assume that x1 is a
out-neighbor of x2 in D. Since N+

D (x2) forms an edge in N (D), x1 is adjacent
to a vertex in P5 other than x2 and we reach a contradiction. Therefore {x2}
is properly contained in a partite set of D. Thus k 6= 5. By symmetry, {x4} is
properly contained in a partite set of D. Now suppose that k = 4. Then {x1},
{x3}, {x5}, and {x2, x4} are the partite sets of D. Therefore d+D(x2)+d−D(x2) = 3
by Lemma 4.3 and so d+D(x2) = 2 or d−D(x2) = 2. By Lemma 2.1, we may assume
that d+D(x2) = 2. Then the out-neighbors of x2 in D are adjacent in N (D).
However, the possible out-neighbors of x2 in D are x1, x3, x5 no two of which are
consecutive on P5. Hence we have reached a contradiction and so k = 3. This
completes the proof.

Lemma 4.8. For a k-partite tournament D with n vertices for some integers n ≥
k ≥ 3, suppose that N (D) is a connected triangle-free graph. Then k ∈ {3, 4, 5}
and

(5)











3 ≤ n ≤ 6 if k = 3;

4 ≤ n ≤ 5 if k = 4;

n = 5 if k = 5.

Proof. If k ≥ 6, then 5 ≤ d+D(v) + d−D(v) for each vertex v in D by Lemma 4.3,
which contradicts Lemma 2.3. Thus k ≤ 5. Let Xi be a partite set of D for each
1 ≤ i ≤ k. Without loss of generality, we may assume that X1 is a partite set
with the smallest size among the partite sets. Then |X1| ≤

⌊

n
k

⌋

. Take a vertex u
in X1. By Lemma 4.3, n − |X1| = d+D(u) + d−D(u). Since d+D(u) + d−D(u) ≤ 4 by
Lemma 2.3, n− |X1| ≤ 4 and so

n−
⌊n

k

⌋

≤ 4.

It is easy to check that (5) is an immediate consequence of this inequality.

Lemma 4.9. For positive integers n ≥ k ≥ 3, (Cn, k) is niche-realizable if and

only if (n, k) ∈ {(5, 3), (5, 4), (5, 5), (6, 3)}.

Proof. Let D1, D2, and D3 be the digraphs given in Figure 5. Clearly, D1,
D2, and D3 are orientations of K1,1,3, K1,1,1,2, and K1,1,1,1,1, respectively. In
addition, N (Di) ∼= C5 for each i = 1, 2, and 3. Thus (C5, 3), (C5, 4), and (C5, 5)
are niche-realizable. Now let D4 be a digraph with the vertex set V (D4) =
{v0, v1, v2, v3, v4, v5} and the arc set

A(D4) = {(vi−2, vi), (vi−1, vi), (vi, vi+1), (vi, vi+2) | i ∈ {0, 1, 2, 3, 4, 5}}
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where all the subscripts are reduced to modulo 6 (see Figure 5 for an illustration).
Since each vertex vi takes vi+1 and vi+2 as its out-neighbors and vi−1 and vi−2 as
its in-neighbors, D4 is an orientation of K2,2,2 with partite sets {v0, v3}, {v1, v4},
and {v2, v5}. Furthermore, it is easy to see that N (D4) ∼= C6. Hence the “if”
part is true.

D1 N (D1)

D2 N (D2)

D3 N (D3)

D4 N (D4)

Figure 5. The digraphs D1, D2, D3, and D4 which are isomorphic to some orientations
of K1,1,3, K1,1,1,2, K1,1,1,1,1, and K2,2,2, respectively, and their niche graphs.

Suppose that (Cn, k) is niche-realizable. By Theorem 4.4, n ≤ 6. Thus we
need to show that (n, k) /∈ {(3, 3), (4, 3), (4, 4), (6, 4), (6, 5), (6, 6)}. By Lemma 2.4,
(n, k) 6= (3, 3). In addition, by Lemma 4.8, (n, k) /∈ {(6, 4), (6, 5), (6, 6)}.

Suppose that (n, k) ∈ {(4, 3), (4, 4)}. Then there is a k-partite tournament
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D5 such that N (D5) ∼= C4 and so N (D5) is triangle-free. Therefore

(6) d+D5
(x) ≤ 2 and d−D5

(x) ≤ 2

for all x ∈ V (D5). Let X1, . . . , Xk be the partite sets of D5. We take xi ∈ Xi

for each i = 1, 2, and 3. Let x4 be the vertex of D5 that does not belong
to {x1, x2, x3}. Suppose that the subdigraph of D5 induced by {x1, x2, x3} is a
directed cycle. Then, by Lemma 2.1, (6), and the symmetry of the directed cycle,
we may assume that

A(D5) ⊂ {(x1, x2), (x2, x3), (x3, x1), (x1, x4), (x2, x4), (x4, x3)}.

Then, by Lemma 2.2, N (D5) is a subgraph of P4 and we reach a contradiction.
Thus the subdigraph of D5 induced by {x1, x2, x3} is not a directed cycle. Then,
without loss of generality, we may assume that (x1, x2), (x1, x3), (x2, x3) ∈ A(D5).
By (6), (x1, x4) /∈ A(D5) and (x4, x3) /∈ A(D5). Thus

A(D5) ⊂ {(x1, x2), (x1, x3), (x2, x3), (x4, x1), (x3, x4), (x2, x4)}

or
A(D5) ⊂ {(x1, x2), (x1, x3), (x2, x3), (x4, x1), (x3, x4), (x4, x2)}.

In both cases, N (D5) is a subgraph of P4 by Lemma 2.2 and we reach a contra-
diction. Thus (n, k) /∈ {(4, 3), (4, 4)}. This completes the proof.

Lemma 4.10. Let G be a connected triangle-free graph with 3 ≤ |V (G)| ≤ 5,
stability number at most 3, and diameter at most 4. Then the following are true.

(1) Each vertex in G has degree at most 3;

(2) G is isomorphic to a path Pi for some i ∈ {3, 4, 5} or cycle Cj for some

j ∈ {4, 5} or the graph Gk for some k ∈ {1, 2, 3, 4} given in Figure 6.

Proof. To show the statement (1) by contradiction, suppose that there exists a
vertex x in G of degree at least 4. Then there exist four distinct vertices x1, x2,
x3, and x4 which are adjacent to x in G. Since G is triangle-free, xi and xj are
not adjacent if i 6= j. Therefore {x1, x2, x3, x4} is a stable set, which contradicts
the hypothesis that G has stability number at most 3. Thus the statement (1) is
true.

To show the statement (2), we first consider the case where G is a tree. If
G is isomorphic to a path, then G ∼= Pi for some i ∈ {3, 4, 5} by the hypothesis.
Suppose that G is not a path graph. Let t be the diameter of G. Then t ≤ 4 by
the hypothesis and there exists an induced path P := x1 · · ·xt+1 of length t in G.
Since G is not a path graph, there exist a vertex of degree at least 3 on P . Let
xi be a vertex of degree at least 3. Then xi has degree 3 by the statement (1).
By the choice of P , i 6= 1 and i 6= t + 1. If t = 1, then G is a complete, which
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is contradiction. Therefore t ≥ 2. If t = 2, then i = 2 and so G is isomorphic to
G1 given in Figure 6. Suppose t = 3. Then i = 2 or i = 3. By symmetry, we
may assume i = 2. Then there exists a vertex x5 not on P which is adjacent to
x2. Since |V (G)| ≤ 5 by the hypothesis, V (G) = {x1, x2, x3, x4, x5}. Then, since
G is a tree, x2 is the only vertex adjacent to x5 in G. Thus G isomorphic to G2

given in Figure 6. If t = 4, then G = P , which is a contradiction.

G1 G2

G3 G4 G5

Figure 6. Connected triangle-free graphs mentioned in Lemmas 4.10 and 4.11.

Now we consider the case where G is not a tree. Then G has a cycle C of
length at least 4 since G is triangle-free and connected. Then 4 ≤ |V (G)|. If
|V (G)| = 4, then G = C, so G is isomorphic to a cycle C4 by the hypothesis
that G is triangle-free. Suppose that |V (G)| = 5. If G is a cycle, then G is
isomorphic to a cycle C5 by the hypothesis. Now we suppose that G is not a
cycle. If |V (C)| = 5, then C is a spanning subgraph of G and so C has a chord,
which contradicts the hypothesis that G is triangle-free. Therefore |V (C)| = 4.
Let y be the vertex in V (G) \ V (C). Then there exists a vertex y′ on C which is
adjacent to y by the hypothesis that G is connected. Therefore y′ has degree 3
by the statement (1). If y has degree 3, then it is easy to check that G contains a
triangle, which is a contradiction. Therefore y has degree 1 or 2. If y has degree
1, then G is isomorphic to a graph G3 given in Figure 6. If y has degree 2, then
G is isomorphic to a graph G4 given in Figure 6. Therefore we have shown that
the statement (2) is true.

Lemma 4.11. Let G be a connected triangle-free graph with six vertices. Then

(G, k) is niche-realizable for some integer k ≥ 3 if and only if k = 3 and G is

isomorphic to the cycle C6 or the graph G5 given in Figure 6.

Proof. Suppose that (G, k) is niche-realizable for some integer k ≥ 3. Then
there exists a k-partite tournament D such that N (D) ∼= G. Since |V (G)| = 6,
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k = 3 by Lemma 4.8. We denote the partite sets of D by (X1, X2, X3). If |Xl| = 1
for some l ∈ {1, 2, 3}, then d+D(x) + d−D(x) = 5 for the vertex x in Xl by Lemma
4.3, which contradicts Lemma 2.3. Therefore each partite set in D has at least
size 2. Since |V (G)| = 6 and k = 3, each partite set in D has size 2. Therefore
d+D(v) + d−D(v) = 4 by Lemma 4.3 and so, by Lemma 2.3,

(7) d+D(v) = d−D(v) = 2

for all v ∈ V (D). Now let X1 = {v1, v2}, X2 = {v3, v4}, and X3 = {v5, v6}.

Case 1. The two vertices in Xi are not adjacent in G for each i = 1, 2, and
3. Then the out-neighbors (respectively, in-neighbors) of each vertex belong to
distinct partite sets. Now, without loss of generality, we may assume N+

D (v1) =
{v3, v5} and N−D (v1) = {v4, v6}. By symmetry, we may assume that (v3, v5) ∈
A(D). Then N−D (v5) = {v1, v3}, so N+

D (v5) = {v2, v4}. By the case assumption,
(v3, v6) /∈ A(D), so (v6, v3) ∈ A(D). Then N−D (v3) = {v1, v6}, so N+

D (v3) =
{v2, v5}. Therefore N−D (v2) = {v3, v5} and N+

D (v2) = {v4, v6}. Thus N−D (v4) =
{v2, v5} and N+

D (v4) = {v1, v6}. Hence N
−

D (v6) = {v2, v4} and N+

D (v6) = {v1, v3}.
NowD is uniquely determined and isomorphic toD4 given in Figure 5 whose niche
graph is a cycle of length 6.

Case 2. The two vertices in Xj are adjacent in G for some j ∈ {1, 2, 3}.
Without loss of generality, we may assume that j = 2. By symmetry and Lemma
2.1, we may assume {v3, v4} ⊂ N+

D (v1). Then

(8) N+

D (v1) = {v3, v4}

and N−D (v1) = {v5, v6} by (7). If N+

D (v2) = {v3, v4}, then v1 and v2 are true twins
and so, by Lemma 4.2, G contains a triangle, which contradicts the hypothesis
that G is triangle-free. Therefore N+

D (v2) 6= {v3, v4} and so N−D (v2)∩{v3, v4} 6= ∅.
Then, there are two subcases to consider: N−D (v2)∩{v3, v4} = {v3, v4}; |N

−

D (v2)∩
{v3, v4}| = 1.

Subcase 1. N−D (v2) ∩ {v3, v4} = {v3, v4}. Then N−D (v2) = {v3, v4} and
N+

D (v2) = {v5, v6} by (7), so

(9) v5v6 ∈ E(G).

Moreover, |N−D (v3) ∩ {v5, v6}| = |N−D (v4) ∩ {v5, v6}| = 1 by (7). If N−D (v3) ∩
N−D (v4) ∩ {v5, v6} 6= ∅, then v3 and v4 are true twins, which is a contradic-
tion. Therefore N−D (v3) ∩N−D (v4) ∩ {v5, v6} = ∅. By symmetry, we may assume
that N−D (v3) ∩ {v5, v6} = {v5}. Then N−D (v4) ∩ {v5, v6} = {v6}. Therefore
{v1v5, v1v6} ⊂ E(G) and so, by (9), v1v5v6v1 is a triangle in G, which contradicts
the hypothesis.
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Subcase 2. |N−D (v2) ∩ {v3, v4}| = 1. By symmetry, we may assume N−D (v2) ∩
{v3, v4} = {v4}. Then (v2, v3) ∈ A(D). Therefore N−D (v3) = {v1, v2} by (8) and
so, by (7), N+

D (v3) = {v5, v6}. Moreover, |N+

D (v2) ∩ {v5, v6}| = 1. By symmetry,
we may assume (v2, v5) ∈ A(D). Then N+

D (v2) = {v3, v5}. Therefore N−D (v2) =
{v4, v6} and N−D (v5) = {v2, v3}. Thus N+

D (v5) = {v1, v4}. Hence N−D (v4) =
{v1, v5} and N+

D (v4) = {v2, v6}. Then N−D (v6) = {v3, v4} and N+

D (v6) = {v1, v2}.
Now D is uniquely determined. It is easy to check that N (D) is isomorphic to
the graph G5 given in Figure 6. Therefore the “only if” part is true.

By the way, 3-partite tournaments whose niche graphs are isomorphic to the
cycle C6 and the graph G5 were constructed in Cases 1 and 2, respectively. Thus
the “if” part is true and this completes the proof.

Now we are ready to characterize connected triangle-free niche-realizable
graphs.

Theorem 4.12. Let G be a connected triangle-free graph with at least three

vertices. Then (G, k) is niche-realizable for some integer k ≥ 3 if and only if

k ∈ {3, 4, 5} and G is isomorphic to a graph belonging to the following set











{P3, P4, P5, C5, C6, G4, G5} if k = 3;

{P4, C5} if k = 4;

{C5} if k = 5;

where G4 and G5 are the graphs given in Figure 6.

Proof. Let n denote the number of vertices in G. To show the “only if” part,
suppose that (G, k) is niche-realizable for some integer k ≥ 3. Then there exists a
k-partite tournament D such that N (D) ∼= G. By Lemma 4.8, k ≤ 5 and n ≤ 6.
If n = 6, then k = 3 and G is isomorphic to a cycle C6 or the graph G5 given in
Figure 6 by Lemma 4.11. Now we suppose that n ≤ 5. If G is a path or a cycle,
then, by Lemmas 4.7 and 4.9, G is isomorphic to P3, P4, P5, or C5 when k = 3;
G is isomorphic to P4 or C5 when k = 4; G is isomorphic to C5 when k = 5.

Now we suppose that G is neither a path nor a cycle. By Theorem 2.7
and Corollary 4.5, G has stability number at most 3 and diameter at most 4.
Therefore, by Lemma 4.10, G is isomorphic to the graph Gj given in Figure 6 for
some j ∈ {1, 2, 3, 4}. Thus it remains to show that k = 3 and G ∼= G4. Since G
is neither a path nor a cycle, there exists a vertex v1 of degree at least 3 in G. If
v1 has degree at least 4, then G 6∼= Gi for each 1 ≤ i ≤ 4. Therefore v1 has degree
3. Since each of v1 and its neighbors has indegree at most 2 and outdegree at
most 2 by Lemma 2.3, v1 is adjacent to at most two vertices if d+D(v1) = 0 or
d−D(v1) = 0, which is a contradiction. Therefore d+D(v1) ≥ 1 and d−D(v1) ≥ 1. If
d+D(v1) = 1 and d−D(v1) = 1, then v1 has degree at most 2 for the same reason as
the previous one, which is a contradiction. Therefore d+D(v1) ≥ 2 or d−D(v1) ≥ 2
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and so 3 ≤ d+D(v1) + d−D(v1). By Lemma 2.1, we may assume d+D(v1) ≥ 2 and
then, by Lemma 2.3, d+D(v1) = 2. Now we let

(10) N+

D (v1) = {v3, v4}

and v5 be an in-neighbor of v1 in D. Suppose n ≤ 4. Then n = 4 since degree of
v1 is 3. Therefore G is isomorphic to the graph G1. However, two neighbors v3
and v4 of v1 are adjacent in G by (10), which is a contradiction. Thus n = 5 and
so

G ∼= G2, G ∼= G3, or G ∼= G4.

Let v2 to be a vertex of G other than v1, v3, v4, and v5. Let Xi be the partite
sets of D for each 1 ≤ i ≤ k. We may assume that v1 ∈ X1. Since k ≥ 3 and
n = 5, |X1| = 1, |X1| = 2, or |X1| = 3. Since d−D(v1) ≥ 1 and d+D(v1) ≥ 2,
|X1| = 1 or |X1| = 2. Suppose, to the contrary, that |X1| = 1. Then X1 = {v1},
so N−D (v1) = {v2, v5} and then v2v5 ∈ E(G). By (10), v3v4 ∈ E(G), so G − v1
has at least two edges v3v4 and v2v5 not sharing end points in G, which cannot
happen in any of G2, G3 and G4. Thus |X1| = 2 and

X1 = {v1, v2}.

Then, since v1 has three neighbors which form a stable set, each of v3, v4, and
v5 should be a common out-neighbor or in-neighbor of v1 and a vertex adjacent
to v1. By the way, v3 and v4 are common out-neighbors and v5 is a common
in-neighbor by (10). Therefore N−D (v3), N

−

D (v4), and N+

D (v5) are 2-element sets
which differ from each other. Furthermore, since v3v4 ∈ E(G), one of v3 and v4
is not adjacent to v1. Without loss of generality, we may assume that v3 is the
vertex not adjacent to v1.

Suppose, to the contrary, that v3 and v4 are in different partite sets. Since v1
and v3 are not adjacent in G, (v4, v3) ∈ A(D) by (10). Then N−D (v3) = {v1, v4}
by Lemma 2.3. Since v5 is adjacent to v1, v1 and v5 have common in-neighbor
or out-neighbor. Since N−D (v1) = {v5}, v1 and v5 cannot have any common in-
neighbor and so have a common out-neighbor. Since N+

D (v1) = {v3, v4}, v3 and
v4 are possible common out-neighbors of v1 and v5. However, v3 already has
two in-neighbors distinct from v5. Therefore v4 must be a common out-neighbor
of v1 and v5. Thus (v5, v4) ∈ A(D) and so, by Lemma 2.3, N+

D (v5) = {v1, v4}.
Therefore N−D (v3) = N+

D (v5), which is a contradiction. Thus v3 and v4 belong to
the same partite set and k = 3. Let X2 = {v3, v4} and X3 = {v5}. Then, since v1
and v3 are not adjacent in G, (v3, v5) ∈ A(D). Since d−D(v3) = 2, (v2, v3) ∈ A(D)
and so N−D (v3) = {v1, v2}. Since N−D (v3) 6= N−D (v4) and d−D(v4) = 2, (v5, v4) ∈
A(D). Therefore N−D (v4) = {v1, v5} and so N+

D (v4) = {v2}. Moreover, since
N+

D (v5) = {v1, v4}, (v2, v5) ∈ A(D). Now D is uniquely determined. Then, it is
easy to check that N (D) ∼= G4. Therefore the “only if” part is true.
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The pairs (P3, 3), (P4, 3), (P5, 3) and (P4, 4) are niche-realizable by Lemma 4.7.
The pairs (C5, 3), (C5, 4), (C5, 5), and (C6, 3) are niche-realizable by Lemma 4.9.
The pair (G5, 3) is niche-realizable by Lemma 4.11. The pair (G4, 3) is niche-
realizable as we have constructed a 3-partite tournament D whose niche graph is
isomorphic to G4 while showing the “only if” part of the statement. Hence the
“if” part is true.
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