THE NICHE GRAPHS OF MULTIPARTITE TOURNAMENTS

Soogang Eoh, Myungho Choi
AND
Suh-Ryung Kim
Seoul National University
e-mail: oops_creep@hanmail.net
nums8080@naver.com
srkim@snu.ac.kr

Abstract

The niche graph of a digraph D has $V(D)$ as the vertex set and an edge $u v$ if and only if $(u, w) \in A(D)$ and $(v, w) \in A(D)$, or $(w, u) \in A(D)$ and $(w, v) \in A(D)$ for some $w \in V(D)$. The notion of niche graphs was introduced by Cable et al. [Niche graphs, Discrete Appl. Math. 23 (1989), 231-241] as a variant of competition graphs. If a graph is the niche graph of a digraph D, it is said to be niche-realizable through D. If a graph G is niche-realizable through a k-partite tournament for an integer $k \geq 2$, then we say that the pair (G, k) is niche-realizable. Bowser et al. [Niche graphs and mixed pair graphs of tournaments, J. Graph Theory 31 (1999) 319-332] studied the graphs that are niche-realizable through a tournament and Eoh et al. [The niche graphs of bipartite tournaments, Discrete Appl. Math. 282 (2020) 86-95] recently studied niche-realizable pairs (G, k) for $k=2$. In this paper, we extend their work for $k \geq 3$. We show that the niche graph of a k-partite tournament has at most three components if $k \geq 3$ and is connected if $k \geq 4$. Then we find all the niche-realizable pairs (G, k) in each case: G is disconnected; G is a complete graph; G is connected and triangle-free.

Keywords: niche graph, multipartite tournament, niche-realizable pair, true twins, triangle-free graph.
2020 Mathematics Subject Classification: 05C20, 05C38.

1. Introduction

In this paper, a graph means a simple graph. For all undefined graph theory terminology, see [2].

Cohen [7] introduced the notion of competition graph while studying predatorprey concepts in ecological food webs. The competition graph of a digraph D is the graph having the vertex set $V(D)$ and an edge $u v$ if and only if $(u, w) \in A(D)$ and $(v, w) \in A(D)$ for some $w \in V(D)$. Cohen's empirical observation that real-world competition graphs are usually interval graphs has led to a great deal of research on the structure of competition graphs and on the relation between the structure of digraphs and their corresponding competition graphs. In the same vein, various variants of competition graphs have been introduced and studied, one of which is the notion of niche graphs introduced by Cable et al. [5] (see [3, 4, 6, 9-14] for various variants of competition graph).

The niche graph of a digraph D, denoted by $\mathcal{N}(D)$, has $V(D)$ as the vertex set and an edge $u v$ if and only if $(u, w) \in A(D)$ and $(v, w) \in A(D)$, or $(w, u) \in A(D)$ and $(w, v) \in A(D)$ for some $w \in V(D)$. If a graph is the niche graph of a digraph D, then it is said to be niche-realizable through D. If a graph G is niche-realizable through a k-partite tournament for an integer $k \geq 2$, then we say that the pair (G, k) is niche-realizable for notational convenience.

Bowser et al. [4] studied the graphs that are niche-realizable through a tournament and Eoh et al. [8] studied the graphs that are niche-realizable through a bipartite tournament. We extend their work by studying niche-realizable pairs (G, k) for a graph G and an integer $k \geq 3$.

Multipartite tournaments have been actively studied by graph theorists (see survey work such as $[1,16]$, and $[17])$.

We first show that the niche graph of a k-partite tournament is connected if $k \geq 4$ and has at most three components if $k \geq 3$ (Theorem 2.6 and Corollary 2.8). Then we find all the niche-realizable pairs (G, k) when G is disconnected (Theorems 3.1 and 3.8). We show that the niche graph of a k-partite tournament contains no induced path of length 5 (Theorem 4.4). Finally, we find all the nicherealizable pairs (G, k) when G is a complete graph (Theorem 4.1) and when G is a connected triangle-free graph (Theorem 4.12).

2. Preliminaries

For a digraph D, a digraph is said to be the converse of D and denoted by D^{\leftarrow} if its vertex set is $V(D)$ and its arc set is $\{(u, v) \mid(v, u) \in A(D)\}$.

By the definition of niche graphs, the following lemmas are immediately true.

Lemma 2.1. For a digraph D, the niche graph of D and the niche graph of D^{\leftarrow} are the same.

Lemma 2.2. Let D be a digraph and D^{\prime} be a subdigraph of D. Then the niche graph of D^{\prime} is a subgraph of the niche graph of D.
Lemma 2.3. For a digraph D, if the niche graph of D is K_{m}-free, then $d_{D}^{+}(u) \leq$ $m-1$ and $d_{D}^{-}(u) \leq m-1$ for each vertex u in D.

It is easy to check that the following lemma is true.
Lemma 2.4. Let D be an orientation of K_{3}. Then the niche graph of D is isomorphic to

$$
\begin{cases}I_{3} & \text { if } D \text { is a directed cycle } ; \\ P_{3} & \text { otherwise. }\end{cases}
$$

Bowser et al. [4] have shown that the complement of the niche graph of a tournament is one of the following: a cycle of odd order, a path of even order, a forest of odd order consisting of two paths, a forest of even order consisting of three paths, or a forest of four or more paths. By this result, we have the following lemma.

Lemma 2.5. The niche graph of an orientation of K_{4} is connected.
Theorem 2.6. For $k \geq 4$, the niche graph of a k-partite tournament is connected.
Proof. Let G be the niche graph of the k-partite tournament D. We denote the partite sets of D by $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$. Take two vertices x and y in G. It suffices to show that x and y are connected in G.

Suppose that x and y belong to different partite sets in D. Without loss of generality, we may assume that $x \in X_{1}$ and $y \in X_{2}$. Since $k \geq 4$, we may take $z \in X_{3}$ and $w \in X_{4}$. Let D_{1} be the subdigraph of D induced by $\{x, y, z, w\}$. Then D_{1} is an orientation of K_{4}. Thus, by Lemma 2.5 , the niche graph of D_{1} is connected. By Lemma 2.2, the niche graph of D_{1} is a subgraph of G and so x and y are connected in G.

Now suppose that x and y belong to the same partite set in D. Then, without loss of generality, we may assume that $\{x, y\} \subset X_{4}$. Take a vertex z in X_{i} for some $i \in\{1,2,3\}$. Since x (respectively, y) and z belong to different partite set in D, x (respectively, y) and z are connected in G by the previous argument. Therefore x and y are connected in G.

A stable set of a graph is a set of vertices no two of which are adjacent. A stable set in a graph is maximum if the graph contains no larger stable set. The cardinality of a maximum stable set in a graph G is called the stability number of G, denoted by $\alpha(G)$.

Theorem 2.7. For $k \geq 3$, the niche graph of a k-partite tournament has stability number at most 3.

Proof. Let G be the niche graph of a k-partite tournament D. Suppose, to the contrary, $\alpha(G) \geq 4$. Then we may take a stable set of size 4 in G. We denote it by $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Suppose that there exist partite sets X_{1} and X_{2} of D such that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ $\subset X_{1} \cup X_{2}$. Since $k \geq 3$, we may take a vertex x_{5} in a partite set X_{3} of D distinct from X_{1} and X_{2}. Since D is a k-partite tournament, $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subset N_{D}^{+}\left(x_{5}\right) \cup$ $N_{D}^{-}\left(x_{5}\right)$. Therefore $\left|N_{D}^{+}\left(x_{5}\right) \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right| \geq 2$ or $\left|N_{D}^{-}\left(x_{5}\right) \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right| \geq$ 2. Yet, each of $N_{D}^{+}\left(x_{5}\right) \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $N_{D}^{-}\left(x_{5}\right) \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ forms a clique in G, which is a contradiction to the assumption that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a stable set of G. Hence there are three elements in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ belonging to distinct partite sets. Then there is a partite set X satisfying $\left|X \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right|=1$. Without loss of generality, we may assume that $X \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\left\{x_{4}\right\}$. Then $\left\{x_{1}, x_{2}, x_{3}\right\} \subset N_{D}^{+}\left(x_{4}\right) \cup N_{D}^{-}\left(x_{4}\right)$ and so $\left|N_{D}^{+}\left(x_{4}\right) \cap\left\{x_{1}, x_{2}, x_{3}\right\}\right| \geq 2$ or $\mid N_{D}^{-}\left(x_{4}\right) \cap$ $\left\{x_{1}, x_{2}, x_{3}\right\} \mid \geq 2$. Since each of $N_{D}^{+}\left(x_{4}\right) \cap\left\{x_{1}, x_{2}, x_{3}\right\}$ and $N_{D}^{-}\left(x_{4}\right) \cap\left\{x_{1}, x_{2}, x_{3}\right\}$ forms a clique in $G,\left\{x_{1}, x_{2}, x_{3}\right\}$ cannot be a stable set of G, which is a contradiction. This completes the proof.

From the above theorem, the following corollary immediately follows.
Corollary 2.8. For $k \geq 3$, the niche graph of a k-partite tournament has at most three components.

3. Niche-Realizable Pairs (G, k) When G is Disconnected

In this section, we completely characterize the niche graphs of k-partite tournaments for $k \geq 3$ which are disconnected.

Theorem 2.6 tells us that, for a disconnected graph G and $k \geq 3$, if (G, k) is niche-realizable, then $k=3$. In addition, the niche graph of a k-partite tournament has at most three components for $k \geq 3$ by Corollary 2.8.

We first characterize the niche-realizable pair (G, k) for a graph G with three components.

Theorem 3.1. Let G be a graph with three components and k be an integer greater than or equal to 3 . Then (G, k) is niche-realizable if and only if $k=3$ and G is isomorphic to $K_{p} \cup K_{q} \cup K_{r}$ for positive integers p, q, and r.

Proof. Suppose that (G, k) is niche-realizable. If there exists a component which is not isomorphic to a complete graph, then $\alpha(G) \geq 4$, which contradicts Theorem 2.7. Therefore G is isomorphic to $K_{p} \cup K_{q} \cup K_{r}$ for positive integers p, q,
and r. Since $K_{p} \cup K_{q} \cup K_{r}$ is disconnected, $k \leq 3$ by Theorem 2.6. Therefore the "only if" part is true.

To show the "if" part, let D be a digraph with the vertex set

$$
\left\{x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{r}\right\}
$$

and the arc set

$$
\begin{aligned}
\left\{\left(x_{i}, y_{j}\right) \mid i \in[p] \text { and } j \in[q]\right\} & \cup\left\{\left(y_{j}, z_{l}\right) \mid j \in[q] \text { and } l \in[r]\right\} \\
& \cup\left\{\left(z_{l}, x_{i}\right) \mid l \in[r] \text { and } i \in[p]\right\} .
\end{aligned}
$$

Then it is easy to check that D is a 3 -partite tournament and the niche graph of D is isomorphic to $K_{p} \cup K_{q} \cup K_{r}$. Hence the "if" part is true.

Let G be a graph. Two vertices u and v of G are said to be true twins if they have the same closed neighborhood, and are denoted by $u \equiv_{G} v$. We may introduce an analogous notion for a digraph. Let D be a digraph. Two vertices u and v of D are said to be true twins if they have the same open out-neighborhood and open in-neighborhood, and are denoted by $u \equiv_{D} v$.

The following lemma is true by definitions of niche graphs and true twins.
Lemma 3.2. Let D be a digraph without isolated vertices. If vertices u and v are true twins in D, then u and v are true twins in $\mathcal{N}(D)$.

Proof. Suppose that two vertices u and v are true twins in D. Then $N_{D}^{+}(u)=$ $N_{D}^{+}(v)$ and $N_{D}^{-}(u)=N_{D}^{-}(v)$. Therefore, by the definition of niche graphs, u and v have the same open neighborhood in $\mathcal{N}(D)$. Since D has no isolated vertices, $N_{D}^{+}(u) \neq \emptyset$ or $N_{D}^{-}(u) \neq \emptyset$. Thus u and v have a common out-neighbor or a common in-neighbor in D and so they are adjacent in $\mathcal{N}(D)$. Hence u and v have the same closed neighborhood in $\mathcal{N}(D)$.

Lemma 3.3. Let D be a multipartite tournament. If vertices u and v are true twins in D, then u and v are in the same partite set.

Proof. Suppose that vertices u and v are true twins in D. If u and v are not in the same partite set, then we may assume $(u, v) \in A(D)$ and so, by the definition of true twins, $(v, v) \in A(D)$, which contradicts the hypothesis that D is a multipartite tournament.

Proposition 3.4. Given a graph G with at least four vertices, suppose that G is niche-realizable through a k-partite tournament D for $k \geq 3$, and vertices u and v are true twins in D. Then $D-v$ is a k-partite tournament whose niche graph is $G-v$.

Proof. Let $D^{\prime}=D-v$. By Lemma $3.3, D^{\prime}$ is a k-partite tournament. Since D^{\prime} is a subdigraph of $D, \mathcal{N}\left(D^{\prime}\right)$ is a subgraph of G by Lemma 2.2. Therefore $\mathcal{N}\left(D^{\prime}\right)$ is a subgraph of $G-v$. To show that $G-v$ is a subgraph of $\mathcal{N}\left(D^{\prime}\right)$, take an edge $x y$ in $G-v$. Then $x y$ is an edge in G, so $N_{D}^{+}(x) \cap N_{D}^{+}(y) \neq \emptyset$ or $N_{D}^{-}(x) \cap N_{D}^{-}(y) \neq \emptyset$. By symmetry, we assume that $N_{D}^{+}(x) \cap N_{D}^{+}(y) \neq \emptyset$. If $v \in N_{D}^{+}(x) \cap N_{D}^{+}(y)$, then $u \in N_{D}^{+}(x) \cap N_{D}^{+}(y)$ and so $u \in N_{D^{\prime}}^{+}(x) \cap N_{D^{\prime}}^{+}(y)$. If $v \notin N_{D}^{+}(x) \cap N_{D}^{+}(y)$, then $N_{D}^{+}(x) \cap N_{D}^{+}(y)=N_{D^{\prime}}^{+}(x) \cap N_{D^{\prime}}^{+}(y)$. Therefore we may conclude that $x y$ is an edge in $\mathcal{N}\left(D^{\prime}\right)$. Thus $G-v$ is a subgraph of $\mathcal{N}\left(D^{\prime}\right)$ and so $\mathcal{N}\left(D^{\prime}\right)=G-v$.

Lemma 3.5. Let D be an orientation of $K_{2,1,1}$ with true twins. Then the niche graph of D either is connected or has three components.

Proof. We denote the partite sets of D by $\left(X_{1}, X_{2}, X_{3}\right)$. Then we may assume that $X_{1}=\left\{x_{1}, x_{2}\right\}, X_{2}=\left\{x_{3}\right\}$, and $X_{3}=\left\{x_{4}\right\}$. By the hypothesis, D has true twins and so, by Lemma 3.3, x_{1} and x_{2} are true twins. By Lemma 2.1, there are two cases to consider: $d_{D}^{+}\left(x_{1}\right)=2 ; d_{D}^{+}\left(x_{1}\right)=1$. We first consider the case $d_{D}^{+}\left(x_{1}\right)=2$. Then $N_{D}^{+}\left(x_{1}\right)=\left\{x_{3}, x_{4}\right\}$. Since x_{1} and x_{2} are true twins, $N_{D}^{+}\left(x_{2}\right)=$ $\left\{x_{3}, x_{4}\right\}$. Therefore $N_{D}^{-}\left(x_{3}\right) \cap N_{D}^{-}\left(x_{4}\right) \neq \emptyset$. Thus x_{3} is adjacent to x_{4} in $\mathcal{N}(D)$. By symmetry, we may assume $N_{D}^{+}\left(x_{3}\right)=\left\{x_{4}\right\}$. Then $N_{D}^{-}\left(x_{4}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$, so $\left\{x_{1}, x_{2}, x_{3}\right\}$ forms a clique in $\mathcal{N}(D)$. Therefore $\mathcal{N}(D)$ is connected.

Now we consider the case $d_{D}^{+}\left(x_{1}\right)=1$. Without loss of generality, we may assume that $N_{D}^{+}\left(x_{1}\right)=\left\{x_{3}\right\}$. Then $N_{D}^{+}\left(x_{2}\right)=\left\{x_{3}\right\}$ and $N_{D}^{-}\left(x_{1}\right)=N_{D}^{-}\left(x_{2}\right)=$ $\left\{x_{4}\right\}$. If $\left(x_{3}, x_{4}\right) \in A(D)$, then $\mathcal{N}(D) \cong K_{2} \cup K_{1} \cup K_{1}$. Therefore $\mathcal{N}(D)$ has three components. Suppose that $\left(x_{3}, x_{4}\right) \notin A(D)$, i.e. $\left(x_{4}, x_{3}\right) \in A(D)$. Then $N_{D}^{-}\left(x_{3}\right)=\left\{x_{1}, x_{2}, x_{4}\right\}$, so $\left\{x_{1}, x_{2}, x_{4}\right\}$ forms a clique in $\mathcal{N}(D)$. Since $N_{D}^{+}\left(x_{4}\right)=$ $\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, x_{2}, x_{3}\right\}$ forms a clique in $\mathcal{N}(D)$. Therefore $\mathcal{N}(D)$ is connected.

Lemma 3.6. Let D be an orientation of $K_{2,1,1}$ whose niche graph is disconnected. Suppose that no two vertices are true twins in D. Then the niche graph of D is isomorphic to $P_{3} \cup K_{1}$.

Proof. Let $\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\}$, and $\left\{x_{4}\right\}$ be the partite sets of D. First we consider the case $\left|N_{D}^{+}\left(x_{1}\right)\right|=2$ or $\left|N_{D}^{+}\left(x_{2}\right)\right|=2$, i.e., $N_{D}^{+}\left(x_{1}\right)=\left\{x_{3}, x_{4}\right\}$ or $N_{D}^{+}\left(x_{2}\right)=$ $\left\{x_{3}, x_{4}\right\}$. By symmetry, we may assume that $N_{D}^{+}\left(x_{1}\right)=\left\{x_{3}, x_{4}\right\}$. Then x_{3} and x_{4} are adjacent in $\mathcal{N}(D)$. Since x_{1} and x_{2} are not true twins in D, at least one of x_{3} and x_{4} is an in-neighbor of x_{2}. We may assume that x_{4} is an in-neighbor of x_{2}. Suppose, to the contrary, that x_{1} and x_{2} are adjacent in $\mathcal{N}(D)$. Then x_{3} is a common out-neighbor of x_{1} and x_{2}. If $\left(x_{3}, x_{4}\right) \in A(D)$ (respectively, $\left(x_{4}, x_{3}\right) \in A(D)$), then x_{3} (respectively, x_{4}) is adjacent to x_{1} in $\mathcal{N}(D)$. In either case, $\mathcal{N}(D)$ is connected and we reach a contradiction. Thus x_{1} and x_{2} are not adjacent in $\mathcal{N}(D)$ and so $N_{D}^{-}\left(x_{2}\right)=\left\{x_{3}, x_{4}\right\}$.

We denote D_{1} the subdigraph of D induced by $\left\{x_{1}, x_{3}, x_{4}\right\}$. Since $N_{D}^{+}\left(x_{1}\right)=$ $\left\{x_{3}, x_{4}\right\}, D_{1}$ is not a directed cycle. Thus, by Lemma $2.4, \mathcal{N}\left(D_{1}\right)$ is connected, and so, by Lemma 2.2, the subgraph of $\mathcal{N}(D)$ induced by $\left\{x_{1}, x_{3}, x_{4}\right\}$ is connected. By applying a similar argument to the subdigraph induced by $\left\{x_{2}, x_{3}, x_{4}\right\}$, we may show that the subgraph of $\mathcal{N}(D)$ induced by $\left\{x_{2}, x_{3}, x_{4}\right\}$ is connected. Therefore $\mathcal{N}(D)$ is connected and we reach a contradiction. Thus $\left|N_{D}^{+}\left(x_{1}\right)\right|=2$ or $\left|N_{D}^{+}\left(x_{2}\right)\right|=2$ cannot happen. Then, by Lemma 2.1, the case $N_{D}^{+}\left(x_{1}\right)=\emptyset$ or $N_{D}^{+}\left(x_{2}\right)=\emptyset$ cannot happen. Thus $\left|N_{D}^{+}\left(x_{1}\right)\right|=\left|N_{D}^{+}\left(x_{2}\right)\right|=1$. If $N_{D}^{+}\left(x_{1}\right)=$ $N_{D}^{+}\left(x_{2}\right)$, then $N_{D}^{-}\left(x_{1}\right)=N_{D}^{-}\left(x_{2}\right)$ and so x_{1} and x_{2} are true twins, which is a contradiction. Therefore $N_{D}^{+}\left(x_{1}\right) \neq N_{D}^{+}\left(x_{2}\right)$. Thus either $N_{D}^{+}\left(x_{1}\right)=\left\{x_{3}\right\}$ and $N_{D}^{+}\left(x_{2}\right)=\left\{x_{4}\right\}$ or $N_{D}^{+}\left(x_{1}\right)=\left\{x_{4}\right\}$ and $N_{D}^{+}\left(x_{2}\right)=\left\{x_{3}\right\}$. By symmetry, we may assume $N_{D}^{+}\left(x_{1}\right)=\left\{x_{3}\right\}$ and $N_{D}^{+}\left(x_{2}\right)=\left\{x_{4}\right\}$. Since x_{3} and x_{4} belong to different partite sets in $D,\left(x_{3}, x_{4}\right) \in A(D)$ or $\left(x_{4}, x_{3}\right) \in A(D)$. By symmetry again, we may assume that $\left(x_{3}, x_{4}\right) \in A(D)$. Then D is isomorphic to the digraph given in Figure 1. Hence the niche graph of D is isomorphic to $P_{3} \cup K_{1}$.

Figure 1. An orientation of $K_{2,1,1}$ and its niche graph isomorphic to $P_{3} \cup K_{1}$.
Lemma 3.7. For positive integers n_{1}, n_{2}, and n_{3} satisfying $n_{1}+n_{2}+n_{3} \geq 5$, suppose that an orientation D of $K_{n_{1}, n_{2}, n_{3}}$ has no true twins. Then the niche graph of D is connected.

Proof. Without loss of generality, we may assume that $n_{1} \geq n_{2} \geq n_{3}$. We first consider the case $n_{1}+n_{2}+n_{3}=5$. Then $n_{1}=2$ or $n_{1}=3$. We will show that $\mathcal{N}(D)$ is connected in each of the following cases.

Case 1. $n_{1}=2$. Then $n_{2}=2$ and $n_{3}=1$. Let $\left\{u_{1}, u_{2}\right\},\left\{v_{1}, v_{2}\right\}$, and $\{w\}$ be the partite sets of D. By Lemma 2.1, we may assume $d_{D}^{+}(w) \geq 2$. Suppose $d_{D}^{+}(w)=4$. Then u_{1}, u_{2}, v_{1}, and v_{2} form a clique in $\mathcal{N}(D)$. If $\left(u_{1}, v_{1}\right) \in A(D)$ (respectively, $\left(v_{1}, u_{1}\right) \in A(D)$), then v_{1} (respectively, u_{1}) is a common out-neighbor of u_{1} (respectively, v_{1}) and w and so $\mathcal{N}(D)$ is connected.

We consider the case $d_{D}^{+}(w)=3$. Then $N_{D}^{+}(w)=\left\{u_{2}, v_{1}, v_{2}\right\},\left\{u_{1}, v_{1}, v_{2}\right\}$, $\left\{u_{1}, u_{2}, v_{2}\right\}$, or $\left\{u_{1}, u_{2}, v_{1}\right\}$. By symmetry, we may assume $N_{D}^{+}(w)=\left\{u_{1}, u_{2}, v_{1}\right\}$. Then $N_{D}^{-}(w)=\left\{v_{2}\right\}$. Moreover, the subdigraphs D_{1} and D_{2} of D induced by $\left\{w, u_{1}, v_{1}\right\}$ and by $\left\{w, u_{2}, v_{1}\right\}$, respectively, are orientations of K_{3} which are not directed cycles. Thus, by Lemma $2.4, \mathcal{N}\left(D_{1}\right)$ and $\mathcal{N}\left(D_{2}\right)$ are connected.

Since D_{1} and D_{2} are subdigraphs of D, by Lemma 2.2, the subgraphs of $\mathcal{N}(D)$ induced by $\left\{w, u_{1}, v_{1}\right\}$ and by $\left\{w, u_{2}, v_{1}\right\}$ are connected respectively and so the subgraph of $\mathcal{N}(D)$ induced by $\left\{w, u_{1}, u_{2}, v_{1}\right\}$ is connected. If $\left(v_{2}, u_{1}\right) \in A(D)$ or $\left(v_{2}, u_{2}\right) \in A(D)$, then w and v_{2} are adjacent in $\mathcal{N}(D)$ and we are done. Suppose that $\left(u_{1}, v_{2}\right) \in A(D)$ and $\left(u_{2}, v_{2}\right) \in A(D)$. If $\left(v_{1}, u_{1}\right) \in A(D)$ and $\left(v_{1}, u_{2}\right) \in A(D)$, then $N_{D}^{+}\left(u_{1}\right)=N_{D}^{+}\left(u_{2}\right)$ and $N_{D}^{-}\left(u_{1}\right)=N_{D}^{-}\left(u_{2}\right)$, which contradicts the hypothesis. Therefore $\left(u_{1}, v_{1}\right) \in A(D)$ or $\left(u_{2}, v_{1}\right) \in A(D)$, and so v_{1} is adjacent to v_{2} in $\mathcal{N}(D)$. Thus $\mathcal{N}(D)$ is connected.

We consider the case $d_{D}^{+}(w)=2$. Then one of the following is true.

- $\left|N_{D}^{+}(w) \cap\left\{u_{1}, u_{2}\right\}\right|=1$ and $\left|N_{D}^{+}(w) \cap\left\{v_{1}, v_{2}\right\}\right|=1$;
- $N_{D}^{+}(w)=\left\{u_{1}, u_{2}\right\}$ or $N_{D}^{+}(w)=\left\{v_{1}, v_{2}\right\}$.

We first suppose that $\left|N_{D}^{+}(w) \cap\left\{u_{1}, u_{2}\right\}\right|=1$ and $\left|N_{D}^{+}(w) \cap\left\{v_{1}, v_{2}\right\}\right|=1$. By symmetry, we may assume that $N_{D}^{+}(w)=\left\{u_{1}, v_{1}\right\}$. Then $N_{D}^{-}(w)=\left\{u_{2}, v_{2}\right\}$. Therefore the subdigraphs D_{3} and D_{4} of D induced by $\left\{w, u_{1}, v_{1}\right\}$ and by $\left\{w, u_{2}, v_{2}\right\}$ are orientations of K_{3} which are not directed cycles. Then, by Lemma 2.4, both $\mathcal{N}\left(D_{3}\right)$ and $\mathcal{N}\left(D_{4}\right)$ are connected. Therefore, by Lemma 2.2 , the subgraphs of $\mathcal{N}(D)$ induced by $\left\{w, u_{1}, v_{1}\right\}$ and by $\left\{w, u_{2}, v_{2}\right\}$ are connected, respectively. Thus $\mathcal{N}(D)$ is connected. Now suppose $N_{D}^{+}(w)=\left\{u_{1}, u_{2}\right\}$ or $N_{D}^{+}(w)=\left\{v_{1}, v_{2}\right\}$. By symmetry, we may assume that $N_{D}^{+}(w)=\left\{u_{1}, u_{2}\right\}$. Then $N_{D}^{-}(w)=\left\{v_{1}, v_{2}\right\}$. Then u_{1} and u_{2} are adjacent and v_{1} and v_{2} are adjacent in $\mathcal{N}(D)$. If $\left(u_{j}, v_{i}\right) \in$ $A(D)$ for all $1 \leq i, j \leq 2$, then $N_{D}^{+}\left(u_{1}\right)=N_{D}^{+}\left(u_{2}\right)$ and $N_{D}^{-}\left(u_{1}\right)=N_{D}^{-}\left(u_{2}\right)$, which contradicts the hypothesis. Thus $\left(v_{i}, u_{j}\right) \in A(D)$ for some i and j in $\{1,2\}$. Then u_{j} (respectively, v_{i}) is a common out-neighbor (respectively, common inneighbor) of v_{i} and w (respectively, u_{j} and w) in D. Thus each of v_{i} and u_{j} is adjacent to w in $\mathcal{N}(D)$ and so $\mathcal{N}(D)$ is connected. Hence we have shown that $\mathcal{N}(D)$ is connected if $n_{1}=2$.

Case 2. $n_{1}=3$. Then $n_{2}=n_{3}=1$. Let $\left\{x_{1}, x_{2}, x_{3}\right\},\{y\}$, and $\{z\}$ be the partite sets of D. We note that $N_{D}^{+}\left(x_{i}\right)=N_{D}^{+}\left(x_{j}\right)$ if and only if $N_{D}^{-}\left(x_{i}\right)=N_{D}^{-}\left(x_{j}\right)$ for each $1 \leq i<j \leq 3$. Therefore, by the hypothesis, $N_{D}^{+}\left(x_{i}\right) \neq N_{D}^{+}\left(x_{j}\right)$ for each $1 \leq i<j \leq 3$. Then, since $N_{D}^{+}\left(x_{i}\right)$ is one of $\emptyset,\{y\},\{z\}$, and $\{y, z\}$ for each $i=1,2$, and $3, d_{D}^{+}\left(x_{i}\right)=1$ for some $i \in\{1,2,3\}$ and $d_{D}^{+}\left(x_{j}\right) \neq 1$ for some $j \in\{1,2,3\} \backslash\{i\}$. By symmetry, we may assume that $d_{D}^{+}\left(x_{1}\right)=1$ and $d_{D}^{+}\left(x_{2}\right) \in\{0,2\}$. In addition, by Lemma 2.1, we may assume that $d_{D}^{+}\left(x_{2}\right)=2$, i.e., $N_{D}^{+}\left(x_{2}\right)=\{y, z\}$. Then x_{1} and x_{2} have a common out-neighbor in D, so x_{1} and x_{2} are adjacent in $\mathcal{N}(D)$. On the other hand, since y and z belong to different partite sets, there is an arc between y and z and so the subdigraph D_{5} of D induced by $\left\{x_{2}, y, z\right\}$ is an orientation of K_{3}. Since $N_{D}^{+}\left(x_{2}\right)=\{y, z\}, D_{5}$ is not a directed cycle, and so, by Lemma 2.4, $\mathcal{N}\left(D_{5}\right)$ is connected. Thus, by Lemma 2.2, the subgraph of $\mathcal{N}(D)$ induced by $\left\{x_{2}, y, z\right\}$ is connected. Since x_{1} and x_{2} are adjacent in $\mathcal{N}(D)$, the subgraph of $\mathcal{N}(D)$ induced by $\left\{x_{1}, x_{2}, y, z\right\}$
is connected. We will show that x_{3} is adjacent to a vertex in $\left\{x_{1}, x_{2}, y, z\right\}$ in $\mathcal{N}(D)$ to take care of this case. If x_{3} has an out-neighbor in D, then x_{2} and x_{3} are adjacent in $\mathcal{N}(D)$ and so we are done. Suppose that $d_{D}^{+}\left(x_{3}\right)=0$. Then the subdigraph of D induced by $\left\{x_{3}, y, z\right\}$ is an orientation of K_{3} which is not a directed cycle. By applying the same argument for D_{5}, we may show that $\mathcal{N}(D)$ is connected. Hence we have shown that $\mathcal{N}(D)$ is connected in the case $n_{1}+n_{2}+n_{3}=5$.

Now suppose that $n_{1}+n_{2}+n_{3}>5$. To show that $\mathcal{N}(D)$ is connected, take two vertices w_{1} and w_{2} in D. Then we may take three vertices w_{3}, w_{4}, and w_{5} in D such that the induced subdigraph D_{6} of D induced by $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$ is a 3-partite tournament. By the above argument, $\mathcal{N}\left(D_{6}\right)$ is connected, so there is a $\left(w_{1}, w_{2}\right)$-path P in $\mathcal{N}\left(D_{6}\right)$. Since D_{6} is a subdigraph of $D, \mathcal{N}\left(D_{6}\right)$ is a subgraph of $\mathcal{N}(D)$ by Lemma 2.2. Thus P is a $\left(w_{1}, w_{2}\right)$-path in $\mathcal{N}(D)$ and hence $\mathcal{N}(D)$ is connected. This completes the proof.

For a graph G, a vertex v of G, and a finite set K disjoint from $V(G)$, we say that v is replaced with a clique formed by K to obtain a new graph with the vertex set $(V(G) \cup K) \backslash\{v\}$ and the edge set

$$
E(G-v) \cup\{w x \mid w \neq x,\{w, x\} \subset K\} \cup\{u w \mid u v \in E(G), w \in K\} .
$$

See Figure 2 for an illustration. We call a graph an expansion of a graph G if it is obtained by replacing each vertex in G with a clique (possibly of size 1).

Figure 2. The vertex v of the graph on the left is replaced with a clique K of size 3 to yield the graph on the right.

Theorem 3.8. Let G be a graph having exactly two components. For $k \geq 3$, (G, k) is niche-realizable if and only if $k=3$ and G is isomorphic to an expansion of $P_{3} \cup K_{1}$.

Proof. To show the "if" part, suppose that G is isomorphic to an expansion of $P_{3} \cup K_{1}$. We will show that $(G, 3)$ is niche-realizable. Let D be the digraph given in Figure 1. Then $\mathcal{N}(D)$ is isomorphic to $P_{3} \cup K_{1}$. Let X_{i} be the set of vertices of G which are true twins to the vertex corresponding to x_{i} in $\mathcal{N}(D)$ for each
$1 \leq i \leq 4$. We construct a digraph D^{*} from D in the following way:

$$
\begin{gathered}
V\left(D^{*}\right)=V(G) \\
A\left(D^{*}\right)=\left\{(v, w) \mid v \in X_{i}, w \in X_{j},(i, j) \in\{(1,3),(2,4),(3,2),(3,4),(4,1)\}\right\}
\end{gathered}
$$

Then D^{*} is a 3 -partite tournament, and

- $N_{D^{*}}^{+}\left(u_{1}\right)=X_{3}, N_{D^{*}}^{-}\left(u_{1}\right)=X_{4}$;
- $N_{D^{*}}^{+}\left(u_{2}\right)=X_{4}, N_{D^{*}}^{-}\left(u_{2}\right)=X_{3}$;
- $N_{D^{*}}^{+}\left(u_{3}\right)=X_{2} \cup X_{4}, N_{D^{*}}^{-}\left(u_{3}\right)=X_{1}$;
- $N_{D^{*}}^{+}\left(u_{4}\right)=X_{1}, N_{D^{*}}^{-}\left(u_{4}\right)=X_{2} \cup X_{3}$
for each vertex $u_{i} \in X_{i}$; for each $1 \leq i \leq 4$. Thus X_{i} forms a clique in $\mathcal{N}\left(D^{*}\right)$ for each $1 \leq i \leq 4$. Take v and w in G. We first consider the case in which v and w are adjacent in G. Then v and w belong to X_{i} for some $i \in\{1,2,3,4\}$ or exactly one of v and w belongs to X_{2} and the other one belongs to $X_{3} \cup X_{4}$. If the former is true, then v and w are adjacent in $\mathcal{N}\left(D^{*}\right)$ by above observation. Suppose the latter. Then, without loss of generality, we may assume that v belongs to X_{2} and w belongs to $X_{3} \cup X_{4}$. If w belongs to X_{3} (respectively, X_{4}), then v and w have a common out-neighbor (respectively, common in-neighbor) in D^{*} by the above observation, and so they are adjacent in $\mathcal{N}\left(D^{*}\right)$.

Now we consider the case where v and w are not adjacent in G. Then, without loss of generality, we may assume that v belongs to X_{1} and w does not belong to X_{1} or v and w belong to X_{3} and X_{4}, respectively. If the former is true, $N_{D^{*}}^{+}(v)=X_{3}, N_{D^{*}}^{-}(v)=X_{4}, N_{D^{*}}^{+}(w) \subset X_{1} \cup X_{2} \cup X_{4}$, and $N_{D^{*}}^{-}(w) \subset X_{1} \cup X_{2} \cup X_{3}$ by the above observation, and so v and w are not adjacent in $\mathcal{N}\left(D^{*}\right)$. If the latter is true, $N_{D^{*}}^{+}(v)=X_{2} \cup X_{4}, N_{D^{*}}^{-}(v)=X_{1}, N_{D^{*}}^{+}(w)=X_{1}$, and $N_{D^{*}}^{-}(w)=X_{2} \cup X_{3}$ by the above observation, and so v and w are not adjacent in $\mathcal{N}\left(D^{*}\right)$. Hence we have shown that G is isomorphic to $\mathcal{N}\left(D^{*}\right)$.

To show the "only if" part, suppose that (G, k) is a niche-realizable. Let D be a k-partite tournament whose niche graph is G. Since G is not connected, $k<4$ by Theorem 2.6 and so $k=3$. Thus D is an orientation of $K_{n_{1}, n_{2}, n_{3}}$ for positive integers n_{1}, n_{2}, and n_{3}. If $|V(G)|=3$, then D is an orientation of K_{3} and so, by Lemma $2.4, G$ is connected or has three components, which contradicts the hypothesis that G has exactly two components. Therefore $|V(G)| \geq 4$. In the following, we show that G is isomorphic to an expansion of $P_{3} \cup K_{1}$ by induction on $|V(G)|$. First we consider the case where $|V(G)|=4$. Then D is an orientation of $K_{2,1,1}$. If D has true twins, then G is connected or has three components by Lemma 3.5, which is a contradiction. Therefore D has no true twins, so $G \cong P_{3} \cup K_{1}$ by Lemma 3.6. Thus the basis step is true.

We assume that the statement is true for any niche-realizable graph on l vertices which has exactly two components for a positive integer $l \geq 4$. Now we
assume $|V(G)|=l+1$. Then $n_{1}+n_{2}+n_{3}=l+1 \geq 5$. Since G is not connected, D has true twins by Lemma 3.7. Let u and v be true twins in D. Then $D-v$ is a 3-partite tournament and $G-v$ is the niche graph of $D-v$ by Proposition 3.4. On the other hand, u and v are true twins in G by Lemma 3.2. Then, $G, G-u$, and $G-v$ have the same number of components. Since G has two components by the hypothesis, $G-v$ has exactly two components. Therefore, by the induction hypothesis, $G-v$ is an expansion of $P_{3} \cup K_{1}$. Since v and u are true twins in G, G is an expansion of $P_{3} \cup K_{1}$.

4. Niche-Realizable Pairs (G, k) When G is Connected

In this section, we study the niche graphs of k-partite tournaments for $k \geq 3$ which are connected. The niche graphs of multipartite tournaments come in many different forms, which makes it hard to give a general characterization, if they are connected. Yet, we identify niche-realizable pairs for complete graphs and connected triangle-free graphs. We first find all the niche-realizable pairs $\left(K_{n}, k\right)$ for positive integers $n \geq k \geq 3$.

Theorem 4.1. For positive integers $n \geq k \geq 3$, $\left(K_{n}, k\right)$ is niche-realizable if and only if $(n, k) \in\{(4,4)\} \cup\{(n, k) \mid n \geq 5\}$.

Proof. To show the "if" part, we construct a digraph D in the following way. Let $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If $k=3$ and $n \geq 5$, then let D be any 3 -partite tournament with partite sets $\left\{v_{1}\right\},\left\{v_{2}, v_{3}\right\}$, and $\left\{v_{4}, v_{5}, \ldots, v_{n}\right\}$ whose arc set includes the following arc set (the remaining arcs have an arbitrary orientation):

$$
\left\{\left(v_{1}, v_{i}\right) \mid 2 \leq i \leq n\right\} \cup\left\{\left(v_{2}, v_{4}\right),\left(v_{4}, v_{3}\right),\left(v_{3}, v_{5}\right),\left(v_{5}, v_{2}\right)\right\} \cup\left\{\left(v_{i}, v_{2}\right) \mid 6 \leq i \leq n\right\}
$$

If $k \geq 4$ and $n \geq 4$, then let D be any k-partite tournament with partite sets $\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{k-1}\right\},\left\{v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ whose arc set includes the following arc set (the remaining arcs have an arbitrary orientation):

$$
\left\{\left(v_{1}, v_{i}\right) \mid 2 \leq i \leq n\right\} \cup \bigcup_{i=2}^{k-2}\left\{\left(v_{i}, v_{i+1}\right)\right\} \cup \bigcup_{i=k}^{n}\left\{\left(v_{k-1}, v_{i}\right),\left(v_{i}, v_{2}\right)\right\}
$$

In both cases, v_{1} is a common in-neighbor of the remaining vertices, so the set $\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ forms a clique in $\mathcal{N}(D)$. Moreover, since v_{i} has at least one out-neighbor in $\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ for each $2 \leq i \leq n, v_{1}$ and v_{i} have a common outneighbor in D, and so they are adjacent in $\mathcal{N}(D)$. Therefore $\mathcal{N}(D)$ is a complete graph with n vertices.

Now we show the "only if" part. By Lemma $2.4,\left(K_{3}, 3\right)$ is not niche-realizable. We only need to show that $\left(K_{4}, 3\right)$ is not niche-realizable. Suppose, to the

Figure 3. A subdigraph of D.
contrary, that $\left(K_{4}, 3\right)$ is niche-realizable. Then there is an orientation D of $K_{1,1,2}$ such that $\mathcal{N}(D)$ is isomorphic to K_{4}. Let $\{x\},\{y\}$, and $\{z, w\}$ be the partite sets of D. Since $\mathcal{N}(D) \cong K_{4}, z$ and w are adjacent in $\mathcal{N}(D)$, and so have a common out-neighbor or a common in-neighbor in D. By Lemma 2.1, we may assume that they have a common out-neighbor and, by symmetry, we may assume that y is a common out-neighbor of z and w. Then, since x and z are adjacent in $\mathcal{N}(D),(x, y) \in A(D)$. Thus $N_{D}^{-}(y)=\{x, z, w\}$. On the other hand, since y and z (respectively, w) are adjacent in $\mathcal{N}(D)$, they have a common out-neighbor or a common in-neighbor in D. Yet, y has no out-neighbor in D, so y and z (respectively, w) have a common in-neighbor that must be x (see Figure 3). Then $A(D)=\{(x, y),(x, z),(x, w),(z, y),(w, y)\}$. Since x has only out-neighbors and y has only in-neighbors, they are not adjacent in $\mathcal{N}(D)$, which is a contradiction to the supposition that $\mathcal{N}(D) \cong K_{4}$. Hence the "only if" part is true.

The rest of this paper will be devoted to finding all the niche-realizable pairs (G, k) when G is connected and triangle-free.

Lemma 4.2. Let D be a digraph with at least three vertices whose niche graph $\mathcal{N}(D)$ is connected. If there are two distinct vertices which are true twins in D, then $\mathcal{N}(D)$ contains a triangle.

Proof. Suppose that u and v are distinct vertices which are true twins in D. Since $\mathcal{N}(D)$ is connected and has at least three vertices, D contains a vertex w other than u and v that is adjacent to u or v in $\mathcal{N}(D)$. Without loss of generality, we may assume that w is adjacent to v in $\mathcal{N}(D)$. Since $\mathcal{N}(D)$ is connected, D has no isolated vertices. Then u and v are true twins in $\mathcal{N}(D)$ by Lemma 3.2. Thus $\{u, v, w\}$ forms a triangle in $\mathcal{N}(D)$.

We make the following rather obvious observation.
Lemma 4.3. Let D be a k-partite tournament for $k \geq 3$. Then, for each partite set X and each $x \in X, N_{D}^{+}(x) \cup N_{D}^{-}(x)=V(D) \backslash X$.

Theorem 4.4. Let D be a k-partite tournament for $k \geq 3$. Then $\mathcal{N}(D)$ contains no induced path of length 5 , that is, $\mathcal{N}(D)$ is P_{6}-free.

Proof. We denote the partite sets of D by X_{1}, \ldots, X_{k-1}, and X_{k}. If $\mathcal{N}(D)$ is disconnected, it contains no induced path of length 5 by Corollary 2.8 and Theorems 3.1 and 3.8.

Suppose that $\mathcal{N}(D)$ is connected. To reach a contradiction, suppose that $\mathcal{N}(D)$ contains an induced path P of length 5 . Let $P=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$. Suppose that $\left|X_{i} \cap V(P)\right| \leq 1$ for some $i \in[k]$. Without loss of generality, we may assume that $\left|X_{1} \cap V(P)\right| \leq 1$. Take a vertex $x \in X_{1}$. Then $N_{D}^{+}(x) \cup N_{D}^{-}(x)$ contains at least five vertices in $V(P)$ by Lemma 4.3. Therefore $N_{D}^{+}(x)$ or $N_{D}^{-}(x)$ contains at least three vertices in $V(P)$. Since each of $N_{D}^{+}(x)$ and $N_{D}^{-}(x)$ forms a clique in $\mathcal{N}(D)$, the subgraph of $\mathcal{N}(D)$ induced by $V(P)$ contains a triangle, which contradicts the choice of P as an induced path of $\mathcal{N}(D)$. Thus $\left|X_{i} \cap V(P)\right| \geq 2$ for each $1 \leq i \leq k$. Since $|V(P)|=6, k \geq 3$, and X_{1}, \ldots, X_{k} are mutually disjoint, we obtain $k=3$ and

$$
\begin{equation*}
\left|X_{i} \cap V(P)\right|=2 \tag{1}
\end{equation*}
$$

for each $i=1,2$, and 3 . Now let D_{1} be the subdigraph of D induced by $V(P)$. Then D_{1} is a 3-partite tournament. By Lemma 2.2, $\mathcal{N}\left(D_{1}\right)$ is a subgraph of P. Thus $\mathcal{N}\left(D_{1}\right)$ is triangle-free and so, by Lemma 2.3, $d_{D_{1}}^{+}(x) \leq 2$ and $d_{D_{1}}^{-}(x) \leq 2$ for all $x \in V\left(D_{1}\right)$. By $(1), d_{D_{1}}^{+}(x)+d_{D_{1}}^{-}(x)=4$, so

$$
\begin{equation*}
d_{D_{1}}^{+}(x)=2 \quad \text { and } \quad d_{D_{1}}^{-}(x)=2 \tag{2}
\end{equation*}
$$

for all $x \in V\left(D_{1}\right)$.
Suppose that $\mathcal{N}\left(D_{1}\right)$ is disconnected. Then x_{j} and x_{j+1} are not adjacent in $\mathcal{N}\left(D_{1}\right)$ for some $j \in\{1,2,3,4,5\}$, so

$$
\begin{equation*}
N_{D_{1}}^{+}(x) \neq\left\{x_{j}, x_{j+1}\right\} \quad \text { and } \quad N_{D_{1}}^{-}(x) \neq\left\{x_{j}, x_{j+1}\right\} \tag{3}
\end{equation*}
$$

for all $x \in V\left(D_{1}\right)$. Yet, since x_{j} and x_{j+1} are adjacent in $\mathcal{N}(D)$, they have a common in-neighbor or a common out-neighbor in D. By Lemma 2.1, we may assume that x_{j} and x_{j+1} have a common out-neighbor y in D. Obviously $y \notin$ $V\left(D_{1}\right)$. Without loss of generality, we may assume that $y \in X_{1}$. Then x_{j} and x_{j+1} do not belong to X_{1}. By (1), $\left|V(P) \backslash X_{1}\right|=4$, so $\left|\left(N_{D}^{+}(y) \cup N_{D}^{-}(y)\right) \cap V(P)\right|=4$ by Lemma 4.3. Since P is an induced path of $D,\left|N_{D}^{-}(y) \cap V(P)\right|=2$ and $\left|N_{D}^{+}(y) \cap V(P)\right|=2$. Thus $N_{D}^{-}(y) \cap V(P)=\left\{x_{j}, x_{j+1}\right\}$. Since $\left|N_{D}^{+}(y) \cap V(P)\right|=2$, $N_{D}^{+}(y) \cap V(P)$ also forms an edge in $\mathcal{N}(D)$, that is, $N_{D}^{+}(y) \cap V(P)=\left\{x_{k}, x_{k+1}\right\}$ for some $k \in\{1,2,3,4,5\} \backslash\{j-1, j, j+1\}$. Therefore $V(P) \backslash X_{1}=\left\{x_{j}, x_{j+1}, x_{k}, x_{k+1}\right\}$. Let z be one of the two vertices in $X_{1} \cap V\left(D_{1}\right)$. Then $z \neq y$. By Lemma 4.3,
$N_{D_{1}}^{+}(z) \cup N_{D_{1}}^{-}(z)=\left\{x_{j}, x_{j+1}, x_{k}, x_{k+1}\right\}$. By $(2), d_{D_{1}}^{+}(z)=d_{D_{1}}^{-}(z)=2$. Then, by (3),

$$
\left\{N_{D_{1}}^{+}(z), N_{D_{1}}^{-}(z)\right\}=\left\{\left\{x_{j}, x_{k}\right\},\left\{x_{j+1}, x_{k+1}\right\}\right\}
$$

or

$$
\left\{N_{D_{1}}^{+}(z), N_{D_{1}}^{-}(z)\right\}=\left\{\left\{x_{j}, x_{k+1}\right\},\left\{x_{j+1}, x_{k}\right\}\right\}
$$

In the former case, x_{j} and x_{k} are adjacent in $\mathcal{N}\left(D_{1}\right)$ and so in $\mathcal{N}(D)$, which is impossible as P is an induced path in $\mathcal{N}(D)$. In the latter case, x_{j} and x_{k+1} are adjacent and x_{j+1} and x_{k} are adjacent in $\mathcal{N}(D)$. However, either x_{j} and x_{k+1} or x_{j+1} and x_{k} are not consecutive on P and we reach a contradiction. Thus $\mathcal{N}\left(D_{1}\right)$ is connected. Since P is an induced path of $\mathcal{N}(D)$ and $\mathcal{N}\left(D_{1}\right)$ is a spanning subgraph of P, we may conclude that $\mathcal{N}\left(D_{1}\right)=P$.

Let $D_{2}=D_{1}-x_{2}$. Then D_{2} is a 3 -partite tournament by (1) and, by Lemma 2.2, $\mathcal{N}\left(D_{2}\right)$ is a subgraph of $\mathcal{N}\left(D_{1}\right)=P$. Since $P-x_{2}$ is disconnected, $\mathcal{N}\left(D_{2}\right)$ is disconnected. Without loss of generality, we may assume that $x_{2} \in X_{1}$. Then, by (1),

$$
\begin{equation*}
\left|V\left(D_{2}\right) \cap X_{1}\right|=1 \quad \text { and } \quad\left|V\left(D_{2}\right) \cap X_{2}\right|=\left|V\left(D_{2}\right) \cap X_{3}\right|=2 \tag{4}
\end{equation*}
$$

Suppose that u and v are true twins in D_{2} for some distinct vertices u and v in $V\left(D_{2}\right)$, that is, $N_{D_{2}}^{+}(u)=N_{D_{2}}^{+}(v)$ and $N_{D_{2}}^{-}(u)=N_{D_{2}}^{-}(v)$. Then both u and v belong to the same partite set by Lemma 3.3. Thus, by (4), u and v belong to X_{2} or X_{3}. By (2), either $d_{D_{2}}^{+}(u)=d_{D_{2}}^{+}(v)=2$ and $d_{D_{2}}^{-}(u)=d_{D_{2}}^{-}(v)=1$ or $d_{D_{2}}^{+}(u)=d_{D_{2}}^{+}(v)=1$ and $d_{D_{2}}^{-}(u)=d_{D_{2}}^{-}(v)=2$. By Lemma 2.1, we may assume that $d_{D_{2}}^{+}(u)=d_{D_{2}}^{+}(v)=2$ and $d_{D_{2}}^{-}(u)=d_{D_{2}}^{-}(v)=1$. Then x_{2} is a common inneighbor of u and v in D_{1} by (2). Thus $N_{D_{1}}^{+}(u)=N_{D_{1}}^{+}(v)$ and $N_{D_{1}}^{-}(u)=N_{D_{1}}^{-}(v)$, that is, u and v are true twins in D_{1}. Since $\left|V\left(D_{1}\right)\right| \geq 3$ and $\mathcal{N}\left(D_{1}\right)$ is connected, $\mathcal{N}\left(D_{1}\right)$ contains a triangle by Lemma 4.2. Yet, $\mathcal{N}\left(D_{1}\right)=P$ and we reach a contradiction. Therefore there is no pair of vertices which are true twins in D_{2}. Thus, by Lemma 3.7, $\mathcal{N}\left(D_{2}\right)$ is connected and we reach a contradiction. Hence $\mathcal{N}(D)$ contains no induced path of length 5 and we are done.

From the above theorem, the following corollary immediately follows.
Corollary 4.5. Let D be a k-partite tournament for $k \geq 3$. Then each component of $\mathcal{N}(D)$ has diameter at most 4 .

A graph is said to be triangle extended complete bipartite if it is obtained from a complete bipartite graph by possibly attaching some P_{3} s to a common edge of the bipartite graph. A set $U \subseteq V$ dominates a set $U^{\prime} \subseteq V$ if any vertex $v \in U^{\prime}$ either lies in U or has a neighbor in U. We also say that U dominates $G\left[U^{\prime}\right]$. A subgraph H of G is a dominating subgraph of G if $V(H)$ dominates G.

Hof et al. [15] showed that a graph G is P_{6}-free if and only if each connected induced subgraph of G has a dominating (not necessarily induced) triangle extended complete bipartite graph or an induced dominating C_{6}. Thus the following result immediately follows.

Corollary 4.6. Let D be a k-partite tournament for $k \geq 3$. Then each connected induced subgraph of $\mathcal{N}(D)$ has a dominating (not necessarily induced) triangle extended complete bipartite graph or an induced dominating C_{6}.

By using Theorem 4.4, we may find all the niche-realizable pairs $\left(P_{n}, k\right)$ and all the niche-realizable pairs $\left(C_{n}, k\right)$ for positive integers $n \geq k \geq 3$.

Lemma 4.7. For positive integers $n \geq k \geq 3,\left(P_{n}, k\right)$ is niche-realizable if and only if $(n, k) \in\{(3,3),(4,3),(4,4),(5,3)\}$.
Proof. Let D_{1}, D_{2}, D_{3}, and D_{4} be the digraphs in Figure 4 which are isomorphic to some orientations of $K_{1,1,1}, K_{1,1,2}, K_{1,1,1,1}$, and $K_{1,2,2}$, respectively. It is easy to check that $\mathcal{N}\left(D_{1}\right) \cong P_{3}, \mathcal{N}\left(D_{2}\right) \cong P_{4}, \mathcal{N}\left(D_{3}\right) \cong P_{4}$, and $\mathcal{N}\left(D_{4}\right) \cong P_{5}$. Hence the "if" part is true.

D_{4}

Figure 4. The digraphs D_{1}, D_{2}, D_{3}, and D_{4} which are isomorphic to some orientations of $K_{1,1,1}, K_{1,1,2}, K_{1,1,1,1}$, and $K_{1,2,2}$, respectively, and their niche graphs.

Now suppose that $\left(P_{n}, k\right)$ is niche-realizable. By Theorem 4.4, $n \leq 5$. Thus we only need to show that (n, k) is neither $(5,4)$ nor $(5,5)$. Let D be a k partite tournament such that $\mathcal{N}(D) \cong P_{5}$. We denote P_{5} by $x_{1} x_{2} x_{3} x_{4} x_{5}$. Since
$\mathcal{N}(D) \cong P_{5}, \mathcal{N}(D)$ is triangle-free and so, by Lemma 2.3, every vertex of D has indegree at most two and outdegree at most two in D. Suppose that $\left\{x_{2}\right\}$ is one of the partite sets of D. Then $N_{D}^{+}\left(x_{2}\right) \cup N_{D}^{-}\left(x_{2}\right)=V(D) \backslash\left\{x_{2}\right\}$ by Lemma 4.3, so $d_{D}^{+}\left(x_{2}\right)=2$ and $d_{D}^{-}\left(x_{2}\right)=2$. By Lemma 2.1 , we may assume that x_{1} is a out-neighbor of x_{2} in D. Since $N_{D}^{+}\left(x_{2}\right)$ forms an edge in $\mathcal{N}(D), x_{1}$ is adjacent to a vertex in P_{5} other than x_{2} and we reach a contradiction. Therefore $\left\{x_{2}\right\}$ is properly contained in a partite set of D. Thus $k \neq 5$. By symmetry, $\left\{x_{4}\right\}$ is properly contained in a partite set of D. Now suppose that $k=4$. Then $\left\{x_{1}\right\}$, $\left\{x_{3}\right\},\left\{x_{5}\right\}$, and $\left\{x_{2}, x_{4}\right\}$ are the partite sets of D. Therefore $d_{D}^{+}\left(x_{2}\right)+d_{D}^{-}\left(x_{2}\right)=3$ by Lemma 4.3 and so $d_{D}^{+}\left(x_{2}\right)=2$ or $d_{D}^{-}\left(x_{2}\right)=2$. By Lemma 2.1, we may assume that $d_{D}^{+}\left(x_{2}\right)=2$. Then the out-neighbors of x_{2} in D are adjacent in $\mathcal{N}(D)$. However, the possible out-neighbors of x_{2} in D are x_{1}, x_{3}, x_{5} no two of which are consecutive on P_{5}. Hence we have reached a contradiction and so $k=3$. This completes the proof.

Lemma 4.8. For a k-partite tournament D with n vertices for some integers $n \geq$ $k \geq 3$, suppose that $\mathcal{N}(D)$ is a connected triangle-free graph. Then $k \in\{3,4,5\}$ and

$$
\begin{cases}3 \leq n \leq 6 & \text { if } k=3 \tag{5}\\ 4 \leq n \leq 5 & \text { if } k=4 \\ n=5 & \text { if } k=5\end{cases}
$$

Proof. If $k \geq 6$, then $5 \leq d_{D}^{+}(v)+d_{D}^{-}(v)$ for each vertex v in D by Lemma 4.3, which contradicts Lemma 2.3. Thus $k \leq 5$. Let X_{i} be a partite set of D for each $1 \leq i \leq k$. Without loss of generality, we may assume that X_{1} is a partite set with the smallest size among the partite sets. Then $\left|X_{1}\right| \leq\left\lfloor\frac{n}{k}\right\rfloor$. Take a vertex u in X_{1}. By Lemma 4.3, $n-\left|X_{1}\right|=d_{D}^{+}(u)+d_{D}^{-}(u)$. Since $d_{D}^{+}(u)+d_{D}^{-}(u) \leq 4$ by Lemma 2.3, $n-\left|X_{1}\right| \leq 4$ and so

$$
n-\left\lfloor\frac{n}{k}\right\rfloor \leq 4
$$

It is easy to check that (5) is an immediate consequence of this inequality.
Lemma 4.9. For positive integers $n \geq k \geq 3,\left(C_{n}, k\right)$ is niche-realizable if and only if $(n, k) \in\{(5,3),(5,4),(5,5),(6,3)\}$.

Proof. Let D_{1}, D_{2}, and D_{3} be the digraphs given in Figure 5. Clearly, D_{1}, D_{2}, and D_{3} are orientations of $K_{1,1,3}, K_{1,1,1,2}$, and $K_{1,1,1,1,1}$, respectively. In addition, $\mathcal{N}\left(D_{i}\right) \cong C_{5}$ for each $i=1,2$, and 3 . Thus $\left(C_{5}, 3\right),\left(C_{5}, 4\right)$, and $\left(C_{5}, 5\right)$ are niche-realizable. Now let D_{4} be a digraph with the vertex set $V\left(D_{4}\right)=$ $\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and the arc set

$$
A\left(D_{4}\right)=\left\{\left(v_{i-2}, v_{i}\right),\left(v_{i-1}, v_{i}\right),\left(v_{i}, v_{i+1}\right),\left(v_{i}, v_{i+2}\right) \mid i \in\{0,1,2,3,4,5\}\right\}
$$

where all the subscripts are reduced to modulo 6 (see Figure 5 for an illustration). Since each vertex v_{i} takes v_{i+1} and v_{i+2} as its out-neighbors and v_{i-1} and v_{i-2} as its in-neighbors, D_{4} is an orientation of $K_{2,2,2}$ with partite sets $\left\{v_{0}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}$, and $\left\{v_{2}, v_{5}\right\}$. Furthermore, it is easy to see that $\mathcal{N}\left(D_{4}\right) \cong C_{6}$. Hence the "if" part is true.

Figure 5. The digraphs D_{1}, D_{2}, D_{3}, and D_{4} which are isomorphic to some orientations of $K_{1,1,3}, K_{1,1,1,2}, K_{1,1,1,1,1}$, and $K_{2,2,2}$, respectively, and their niche graphs.

Suppose that $\left(C_{n}, k\right)$ is niche-realizable. By Theorem $4.4, n \leq 6$. Thus we need to show that $(n, k) \notin\{(3,3),(4,3),(4,4),(6,4),(6,5),(6,6)\}$. By Lemma 2.4, $(n, k) \neq(3,3)$. In addition, by Lemma $4.8,(n, k) \notin\{(6,4),(6,5),(6,6)\}$.

Suppose that $(n, k) \in\{(4,3),(4,4)\}$. Then there is a k-partite tournament
D_{5} such that $\mathcal{N}\left(D_{5}\right) \cong C_{4}$ and so $\mathcal{N}\left(D_{5}\right)$ is triangle-free. Therefore

$$
\begin{equation*}
d_{D_{5}}^{+}(x) \leq 2 \quad \text { and } \quad d_{D_{5}}^{-}(x) \leq 2 \tag{6}
\end{equation*}
$$

for all $x \in V\left(D_{5}\right)$. Let X_{1}, \ldots, X_{k} be the partite sets of D_{5}. We take $x_{i} \in X_{i}$ for each $i=1,2$, and 3 . Let x_{4} be the vertex of D_{5} that does not belong to $\left\{x_{1}, x_{2}, x_{3}\right\}$. Suppose that the subdigraph of D_{5} induced by $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a directed cycle. Then, by Lemma 2.1, (6), and the symmetry of the directed cycle, we may assume that

$$
A\left(D_{5}\right) \subset\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{1}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{4}\right),\left(x_{4}, x_{3}\right)\right\} .
$$

Then, by Lemma 2.2, $\mathcal{N}\left(D_{5}\right)$ is a subgraph of P_{4} and we reach a contradiction. Thus the subdigraph of D_{5} induced by $\left\{x_{1}, x_{2}, x_{3}\right\}$ is not a directed cycle. Then, without loss of generality, we may assume that $\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{2}, x_{3}\right) \in A\left(D_{5}\right)$. By (6), $\left(x_{1}, x_{4}\right) \notin A\left(D_{5}\right)$ and $\left(x_{4}, x_{3}\right) \notin A\left(D_{5}\right)$. Thus

$$
A\left(D_{5}\right) \subset\left\{\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{2}, x_{3}\right),\left(x_{4}, x_{1}\right),\left(x_{3}, x_{4}\right),\left(x_{2}, x_{4}\right)\right\}
$$

or

$$
A\left(D_{5}\right) \subset\left\{\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{2}, x_{3}\right),\left(x_{4}, x_{1}\right),\left(x_{3}, x_{4}\right),\left(x_{4}, x_{2}\right)\right\} .
$$

In both cases, $\mathcal{N}\left(D_{5}\right)$ is a subgraph of P_{4} by Lemma 2.2 and we reach a contradiction. Thus $(n, k) \notin\{(4,3),(4,4)\}$. This completes the proof.

Lemma 4.10. Let G be a connected triangle-free graph with $3 \leq|V(G)| \leq 5$, stability number at most 3, and diameter at most 4 . Then the following are true.
(1) Each vertex in G has degree at most 3;
(2) G is isomorphic to a path P_{i} for some $i \in\{3,4,5\}$ or cycle C_{j} for some $j \in\{4,5\}$ or the graph G_{k} for some $k \in\{1,2,3,4\}$ given in Figure 6.

Proof. To show the statement (1) by contradiction, suppose that there exists a vertex x in G of degree at least 4. Then there exist four distinct vertices x_{1}, x_{2}, x_{3}, and x_{4} which are adjacent to x in G. Since G is triangle-free, x_{i} and x_{j} are not adjacent if $i \neq j$. Therefore $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a stable set, which contradicts the hypothesis that G has stability number at most 3 . Thus the statement (1) is true.

To show the statement (2), we first consider the case where G is a tree. If G is isomorphic to a path, then $G \cong P_{i}$ for some $i \in\{3,4,5\}$ by the hypothesis. Suppose that G is not a path graph. Let t be the diameter of G. Then $t \leq 4$ by the hypothesis and there exists an induced path $P:=x_{1} \cdots x_{t+1}$ of length t in G. Since G is not a path graph, there exist a vertex of degree at least 3 on P. Let x_{i} be a vertex of degree at least 3 . Then x_{i} has degree 3 by the statement (1). By the choice of $P, i \neq 1$ and $i \neq t+1$. If $t=1$, then G is a complete, which
is contradiction. Therefore $t \geq 2$. If $t=2$, then $i=2$ and so G is isomorphic to G_{1} given in Figure 6. Suppose $t=3$. Then $i=2$ or $i=3$. By symmetry, we may assume $i=2$. Then there exists a vertex x_{5} not on P which is adjacent to x_{2}. Since $|V(G)| \leq 5$ by the hypothesis, $V(G)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Then, since G is a tree, x_{2} is the only vertex adjacent to x_{5} in G. Thus G isomorphic to G_{2} given in Figure 6. If $t=4$, then $G=P$, which is a contradiction.

G_{1}

G_{2}

G_{3}

G_{4}

G_{5}

Figure 6. Connected triangle-free graphs mentioned in Lemmas 4.10 and 4.11.
Now we consider the case where G is not a tree. Then G has a cycle C of length at least 4 since G is triangle-free and connected. Then $4 \leq|V(G)|$. If $|V(G)|=4$, then $G=C$, so G is isomorphic to a cycle C_{4} by the hypothesis that G is triangle-free. Suppose that $|V(G)|=5$. If G is a cycle, then G is isomorphic to a cycle C_{5} by the hypothesis. Now we suppose that G is not a cycle. If $|V(C)|=5$, then C is a spanning subgraph of G and so C has a chord, which contradicts the hypothesis that G is triangle-free. Therefore $|V(C)|=4$. Let y be the vertex in $V(G) \backslash V(C)$. Then there exists a vertex y^{\prime} on C which is adjacent to y by the hypothesis that G is connected. Therefore y^{\prime} has degree 3 by the statement (1). If y has degree 3 , then it is easy to check that G contains a triangle, which is a contradiction. Therefore y has degree 1 or 2 . If y has degree 1, then G is isomorphic to a graph G_{3} given in Figure 6. If y has degree 2, then G is isomorphic to a graph G_{4} given in Figure 6. Therefore we have shown that the statement (2) is true.

Lemma 4.11. Let G be a connected triangle-free graph with six vertices. Then (G, k) is niche-realizable for some integer $k \geq 3$ if and only if $k=3$ and G is isomorphic to the cycle C_{6} or the graph G_{5} given in Figure 6.
Proof. Suppose that (G, k) is niche-realizable for some integer $k \geq 3$. Then there exists a k-partite tournament D such that $\mathcal{N}(D) \cong G$. Since $|V(G)|=6$,
$k=3$ by Lemma 4.8. We denote the partite sets of D by $\left(X_{1}, X_{2}, X_{3}\right)$. If $\left|X_{l}\right|=1$ for some $l \in\{1,2,3\}$, then $d_{D}^{+}(x)+d_{D}^{-}(x)=5$ for the vertex x in X_{l} by Lemma 4.3, which contradicts Lemma 2.3. Therefore each partite set in D has at least size 2. Since $|V(G)|=6$ and $k=3$, each partite set in D has size 2 . Therefore $d_{D}^{+}(v)+d_{D}^{-}(v)=4$ by Lemma 4.3 and so, by Lemma 2.3,

$$
\begin{equation*}
d_{D}^{+}(v)=d_{D}^{-}(v)=2 \tag{7}
\end{equation*}
$$

for all $v \in V(D)$. Now let $X_{1}=\left\{v_{1}, v_{2}\right\}, X_{2}=\left\{v_{3}, v_{4}\right\}$, and $X_{3}=\left\{v_{5}, v_{6}\right\}$.
Case 1. The two vertices in X_{i} are not adjacent in G for each $i=1,2$, and 3. Then the out-neighbors (respectively, in-neighbors) of each vertex belong to distinct partite sets. Now, without loss of generality, we may assume $N_{D}^{+}\left(v_{1}\right)=$ $\left\{v_{3}, v_{5}\right\}$ and $N_{D}^{-}\left(v_{1}\right)=\left\{v_{4}, v_{6}\right\}$. By symmetry, we may assume that $\left(v_{3}, v_{5}\right) \in$ $A(D)$. Then $N_{D}^{-}\left(v_{5}\right)=\left\{v_{1}, v_{3}\right\}$, so $N_{D}^{+}\left(v_{5}\right)=\left\{v_{2}, v_{4}\right\}$. By the case assumption, $\left(v_{3}, v_{6}\right) \notin A(D)$, so $\left(v_{6}, v_{3}\right) \in A(D)$. Then $N_{D}^{-}\left(v_{3}\right)=\left\{v_{1}, v_{6}\right\}$, so $N_{D}^{+}\left(v_{3}\right)=$ $\left\{v_{2}, v_{5}\right\}$. Therefore $N_{D}^{-}\left(v_{2}\right)=\left\{v_{3}, v_{5}\right\}$ and $N_{D}^{+}\left(v_{2}\right)=\left\{v_{4}, v_{6}\right\}$. Thus $N_{D}^{-}\left(v_{4}\right)=$ $\left\{v_{2}, v_{5}\right\}$ and $N_{D}^{+}\left(v_{4}\right)=\left\{v_{1}, v_{6}\right\}$. Hence $N_{D}^{-}\left(v_{6}\right)=\left\{v_{2}, v_{4}\right\}$ and $N_{D}^{+}\left(v_{6}\right)=\left\{v_{1}, v_{3}\right\}$. Now D is uniquely determined and isomorphic to D_{4} given in Figure 5 whose niche graph is a cycle of length 6 .

Case 2. The two vertices in X_{j} are adjacent in G for some $j \in\{1,2,3\}$. Without loss of generality, we may assume that $j=2$. By symmetry and Lemma 2.1 , we may assume $\left\{v_{3}, v_{4}\right\} \subset N_{D}^{+}\left(v_{1}\right)$. Then

$$
\begin{equation*}
N_{D}^{+}\left(v_{1}\right)=\left\{v_{3}, v_{4}\right\} \tag{8}
\end{equation*}
$$

and $N_{D}^{-}\left(v_{1}\right)=\left\{v_{5}, v_{6}\right\}$ by (7). If $N_{D}^{+}\left(v_{2}\right)=\left\{v_{3}, v_{4}\right\}$, then v_{1} and v_{2} are true twins and so, by Lemma $4.2, G$ contains a triangle, which contradicts the hypothesis that G is triangle-free. Therefore $N_{D}^{+}\left(v_{2}\right) \neq\left\{v_{3}, v_{4}\right\}$ and so $N_{D}^{-}\left(v_{2}\right) \cap\left\{v_{3}, v_{4}\right\} \neq \emptyset$. Then, there are two subcases to consider: $N_{D}^{-}\left(v_{2}\right) \cap\left\{v_{3}, v_{4}\right\}=\left\{v_{3}, v_{4}\right\} ; \mid N_{D}^{-}\left(v_{2}\right) \cap$ $\left\{v_{3}, v_{4}\right\} \mid=1$.

Subcase 1. $N_{D}^{-}\left(v_{2}\right) \cap\left\{v_{3}, v_{4}\right\}=\left\{v_{3}, v_{4}\right\}$. Then $N_{D}^{-}\left(v_{2}\right)=\left\{v_{3}, v_{4}\right\}$ and $N_{D}^{+}\left(v_{2}\right)=\left\{v_{5}, v_{6}\right\}$ by (7), so

$$
\begin{equation*}
v_{5} v_{6} \in E(G) \tag{9}
\end{equation*}
$$

Moreover, $\left|N_{D}^{-}\left(v_{3}\right) \cap\left\{v_{5}, v_{6}\right\}\right|=\left|N_{D}^{-}\left(v_{4}\right) \cap\left\{v_{5}, v_{6}\right\}\right|=1$ by (7). If $N_{D}^{-}\left(v_{3}\right) \cap$ $N_{D}^{-}\left(v_{4}\right) \cap\left\{v_{5}, v_{6}\right\} \neq \emptyset$, then v_{3} and v_{4} are true twins, which is a contradiction. Therefore $N_{D}^{-}\left(v_{3}\right) \cap N_{D}^{-}\left(v_{4}\right) \cap\left\{v_{5}, v_{6}\right\}=\emptyset$. By symmetry, we may assume that $N_{D}^{-}\left(v_{3}\right) \cap\left\{v_{5}, v_{6}\right\}=\left\{v_{5}\right\}$. Then $N_{D}^{-}\left(v_{4}\right) \cap\left\{v_{5}, v_{6}\right\}=\left\{v_{6}\right\}$. Therefore $\left\{v_{1} v_{5}, v_{1} v_{6}\right\} \subset E(G)$ and so, by $(9), v_{1} v_{5} v_{6} v_{1}$ is a triangle in G, which contradicts the hypothesis.

Subcase 2. $\left|N_{D}^{-}\left(v_{2}\right) \cap\left\{v_{3}, v_{4}\right\}\right|=1$. By symmetry, we may assume $N_{D}^{-}\left(v_{2}\right) \cap$ $\left\{v_{3}, v_{4}\right\}=\left\{v_{4}\right\}$. Then $\left(v_{2}, v_{3}\right) \in A(D)$. Therefore $N_{D}^{-}\left(v_{3}\right)=\left\{v_{1}, v_{2}\right\}$ by (8) and so, by (7), $N_{D}^{+}\left(v_{3}\right)=\left\{v_{5}, v_{6}\right\}$. Moreover, $\left|N_{D}^{+}\left(v_{2}\right) \cap\left\{v_{5}, v_{6}\right\}\right|=1$. By symmetry, we may assume $\left(v_{2}, v_{5}\right) \in A(D)$. Then $N_{D}^{+}\left(v_{2}\right)=\left\{v_{3}, v_{5}\right\}$. Therefore $N_{D}^{-}\left(v_{2}\right)=$ $\left\{v_{4}, v_{6}\right\}$ and $N_{D}^{-}\left(v_{5}\right)=\left\{v_{2}, v_{3}\right\}$. Thus $N_{D}^{+}\left(v_{5}\right)=\left\{v_{1}, v_{4}\right\}$. Hence $N_{D}^{-}\left(v_{4}\right)=$ $\left\{v_{1}, v_{5}\right\}$ and $N_{D}^{+}\left(v_{4}\right)=\left\{v_{2}, v_{6}\right\}$. Then $N_{D}^{-}\left(v_{6}\right)=\left\{v_{3}, v_{4}\right\}$ and $N_{D}^{+}\left(v_{6}\right)=\left\{v_{1}, v_{2}\right\}$. Now D is uniquely determined. It is easy to check that $\mathcal{N}(D)$ is isomorphic to the graph G_{5} given in Figure 6. Therefore the "only if" part is true.

By the way, 3 -partite tournaments whose niche graphs are isomorphic to the cycle C_{6} and the graph G_{5} were constructed in Cases 1 and 2, respectively. Thus the "if" part is true and this completes the proof.

Now we are ready to characterize connected triangle-free niche-realizable graphs.

Theorem 4.12. Let G be a connected triangle-free graph with at least three vertices. Then (G, k) is niche-realizable for some integer $k \geq 3$ if and only if $k \in\{3,4,5\}$ and G is isomorphic to a graph belonging to the following set

$$
\begin{cases}\left\{P_{3}, P_{4}, P_{5}, C_{5}, C_{6}, G_{4}, G_{5}\right\} & \text { if } k=3 ; \\ \left\{P_{4}, C_{5}\right\} & \text { if } k=4 ; \\ \left\{C_{5}\right\} & \text { if } k=5 ;\end{cases}
$$

where G_{4} and G_{5} are the graphs given in Figure 6.
Proof. Let n denote the number of vertices in G. To show the "only if" part, suppose that (G, k) is niche-realizable for some integer $k \geq 3$. Then there exists a k-partite tournament D such that $\mathcal{N}(D) \cong G$. By Lemma $4.8, k \leq 5$ and $n \leq 6$. If $n=6$, then $k=3$ and G is isomorphic to a cycle C_{6} or the graph G_{5} given in Figure 6 by Lemma 4.11. Now we suppose that $n \leq 5$. If G is a path or a cycle, then, by Lemmas 4.7 and $4.9, G$ is isomorphic to P_{3}, P_{4}, P_{5}, or C_{5} when $k=3$; G is isomorphic to P_{4} or C_{5} when $k=4 ; G$ is isomorphic to C_{5} when $k=5$.

Now we suppose that G is neither a path nor a cycle. By Theorem 2.7 and Corollary 4.5, G has stability number at most 3 and diameter at most 4 . Therefore, by Lemma 4.10, G is isomorphic to the graph G_{j} given in Figure 6 for some $j \in\{1,2,3,4\}$. Thus it remains to show that $k=3$ and $G \cong G_{4}$. Since G is neither a path nor a cycle, there exists a vertex v_{1} of degree at least 3 in G. If v_{1} has degree at least 4 , then $G \neq G_{i}$ for each $1 \leq i \leq 4$. Therefore v_{1} has degree 3. Since each of v_{1} and its neighbors has indegree at most 2 and outdegree at most 2 by Lemma 2.3, v_{1} is adjacent to at most two vertices if $d_{D}^{+}\left(v_{1}\right)=0$ or $d_{D}^{-}\left(v_{1}\right)=0$, which is a contradiction. Therefore $d_{D}^{+}\left(v_{1}\right) \geq 1$ and $d_{D}^{-}\left(v_{1}\right) \geq 1$. If $d_{D}^{+}\left(v_{1}\right)=1$ and $d_{D}^{-}\left(v_{1}\right)=1$, then v_{1} has degree at most 2 for the same reason as the previous one, which is a contradiction. Therefore $d_{D}^{+}\left(v_{1}\right) \geq 2$ or $d_{D}^{-}\left(v_{1}\right) \geq 2$
and so $3 \leq d_{D}^{+}\left(v_{1}\right)+d_{D}^{-}\left(v_{1}\right)$. By Lemma 2.1 , we may assume $d_{D}^{+}\left(v_{1}\right) \geq 2$ and then, by Lemma 2.3, $d_{D}^{+}\left(v_{1}\right)=2$. Now we let

$$
\begin{equation*}
N_{D}^{+}\left(v_{1}\right)=\left\{v_{3}, v_{4}\right\} \tag{10}
\end{equation*}
$$

and v_{5} be an in-neighbor of v_{1} in D. Suppose $n \leq 4$. Then $n=4$ since degree of v_{1} is 3 . Therefore G is isomorphic to the graph G_{1}. However, two neighbors v_{3} and v_{4} of v_{1} are adjacent in G by (10), which is a contradiction. Thus $n=5$ and so

$$
G \cong G_{2}, G \cong G_{3}, \text { or } G \cong G_{4} .
$$

Let v_{2} to be a vertex of G other than v_{1}, v_{3}, v_{4}, and v_{5}. Let X_{i} be the partite sets of D for each $1 \leq i \leq k$. We may assume that $v_{1} \in X_{1}$. Since $k \geq 3$ and $n=5,\left|X_{1}\right|=1,\left|X_{1}\right|=2$, or $\left|X_{1}\right|=3$. Since $d_{D}^{-}\left(v_{1}\right) \geq 1$ and $d_{D}^{+}\left(v_{1}\right) \geq 2$, $\left|X_{1}\right|=1$ or $\left|X_{1}\right|=2$. Suppose, to the contrary, that $\left|X_{1}\right|=1$. Then $X_{1}=\left\{v_{1}\right\}$, so $N_{D}^{-}\left(v_{1}\right)=\left\{v_{2}, v_{5}\right\}$ and then $v_{2} v_{5} \in E(G)$. Вy (10), $v_{3} v_{4} \in E(G)$, so $G-v_{1}$ has at least two edges $v_{3} v_{4}$ and $v_{2} v_{5}$ not sharing end points in G, which cannot happen in any of G_{2}, G_{3} and G_{4}. Thus $\left|X_{1}\right|=2$ and

$$
X_{1}=\left\{v_{1}, v_{2}\right\}
$$

Then, since v_{1} has three neighbors which form a stable set, each of v_{3}, v_{4}, and v_{5} should be a common out-neighbor or in-neighbor of v_{1} and a vertex adjacent to v_{1}. By the way, v_{3} and v_{4} are common out-neighbors and v_{5} is a common in-neighbor by (10). Therefore $N_{D}^{-}\left(v_{3}\right), N_{D}^{-}\left(v_{4}\right)$, and $N_{D}^{+}\left(v_{5}\right)$ are 2-element sets which differ from each other. Furthermore, since $v_{3} v_{4} \in E(G)$, one of v_{3} and v_{4} is not adjacent to v_{1}. Without loss of generality, we may assume that v_{3} is the vertex not adjacent to v_{1}.

Suppose, to the contrary, that v_{3} and v_{4} are in different partite sets. Since v_{1} and v_{3} are not adjacent in $G,\left(v_{4}, v_{3}\right) \in A(D)$ by (10). Then $N_{D}^{-}\left(v_{3}\right)=\left\{v_{1}, v_{4}\right\}$ by Lemma 2.3. Since v_{5} is adjacent to v_{1}, v_{1} and v_{5} have common in-neighbor or out-neighbor. Since $N_{D}^{-}\left(v_{1}\right)=\left\{v_{5}\right\}, v_{1}$ and v_{5} cannot have any common inneighbor and so have a common out-neighbor. Since $N_{D}^{+}\left(v_{1}\right)=\left\{v_{3}, v_{4}\right\}$, v_{3} and v_{4} are possible common out-neighbors of v_{1} and v_{5}. However, v_{3} already has two in-neighbors distinct from v_{5}. Therefore v_{4} must be a common out-neighbor of v_{1} and v_{5}. Thus $\left(v_{5}, v_{4}\right) \in A(D)$ and so, by Lemma $2.3, N_{D}^{+}\left(v_{5}\right)=\left\{v_{1}, v_{4}\right\}$. Therefore $N_{D}^{-}\left(v_{3}\right)=N_{D}^{+}\left(v_{5}\right)$, which is a contradiction. Thus v_{3} and v_{4} belong to the same partite set and $k=3$. Let $X_{2}=\left\{v_{3}, v_{4}\right\}$ and $X_{3}=\left\{v_{5}\right\}$. Then, since v_{1} and v_{3} are not adjacent in $G,\left(v_{3}, v_{5}\right) \in A(D)$. Since $d_{D}^{-}\left(v_{3}\right)=2,\left(v_{2}, v_{3}\right) \in A(D)$ and so $N_{D}^{-}\left(v_{3}\right)=\left\{v_{1}, v_{2}\right\}$. Since $N_{D}^{-}\left(v_{3}\right) \neq N_{D}^{-}\left(v_{4}\right)$ and $d_{D}^{-}\left(v_{4}\right)=2,\left(v_{5}, v_{4}\right) \in$ $A(D)$. Therefore $N_{D}^{-}\left(v_{4}\right)=\left\{v_{1}, v_{5}\right\}$ and so $N_{D}^{+}\left(v_{4}\right)=\left\{v_{2}\right\}$. Moreover, since $N_{D}^{+}\left(v_{5}\right)=\left\{v_{1}, v_{4}\right\},\left(v_{2}, v_{5}\right) \in A(D)$. Now D is uniquely determined. Then, it is easy to check that $\mathcal{N}(D) \cong G_{4}$. Therefore the "only if" part is true.

The pairs $\left(P_{3}, 3\right),\left(P_{4}, 3\right),\left(P_{5}, 3\right)$ and $\left(P_{4}, 4\right)$ are niche-realizable by Lemma 4.7. The pairs $\left(C_{5}, 3\right),\left(C_{5}, 4\right),\left(C_{5}, 5\right)$, and $\left(C_{6}, 3\right)$ are niche-realizable by Lemma 4.9. The pair $\left(G_{5}, 3\right)$ is niche-realizable by Lemma 4.11. The pair $\left(G_{4}, 3\right)$ is nicherealizable as we have constructed a 3 -partite tournament D whose niche graph is isomorphic to G_{4} while showing the "only if" part of the statement. Hence the "if" part is true.

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (NRF-2017R1E1A1A03070489 and 2016R1A5A1008055).

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Ed. (Springer-Verlag, London, 2009). https://doi.org/10.1007/978-1-84800-998-1
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, NewYork-Amsterdam-Oxford, 1982).
[3] S. Bowser and C. Cable, Some recent results on niche graphs, Discrete Appl. Math. 30 (1991) 101-108. https://doi.org/10.1016/0166-218X(91)90036-V
[4] S. Bowser, C. Cable and R. Lundgren, Niche graphs and mixed pair graphs of tournaments, J. Graph Theory 31 (1999) 319-332.
https://doi.org/10.1002/(SICI)1097-0118(199908)31:4;319::AID-JGT7;3.0.CO;2-S
[5] C. Cable, K.F. Jones, R. Lundgren and S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231-241.
https://doi.org/10.1016/0166-218X(89)90015-2
[6] H.H. Cho, S-R. Kim and Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math. 105 (2000) 115-127. https://doi.org/10.1016/S0166-218X(00)00214-6
[7] J.E. Cohen, Interval graphs and food webs: a finding and a problem (RAND Corporation Document $17696-\mathrm{PR}$, Santa Monica, CA, 1968).
[8] S. Eoh, J. Choi, S-R. Kim and M. Oh, The niche graphs of bipartite tournaments, Discrete Appl. Math. 282 (2020) 86-95. https://doi.org/10.1016/j.dam.2019.11.001
[9] K.A. Factor and S.K. Merz, The (1,2)-step competition graph of a tournament, Discrete Appl. Math. 159 (2011) 100-103. https://doi.org/10.1016/j.dam.2010.10.008
[10] P.C. Fishburn and W.V. Gehrlein, Niche numbers, J. Graph Theory 16 (1992) 131-139.
https://doi.org/10.1002/jgt.3190160204
[11] S.-R. Kim, T.A. McKee, F.R. McMorris and F.S. Roberts, p-competition graphs, Linear Algebra Appl. 217 (1995) 167-178. https://doi.org/10.1016/0024-3795(94)00060-Q
[12] F.S. Roberts and L. Sheng, Phylogeny graphs of arbitrary digraphs, in: Mathematical Hierarchies and Biology, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 37 (1997) 233-238.
https://doi.org/10.1090/dimacs/037/15
[13] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269-280.
https://doi.org/10.1016/0166-218X(87)90030-8
[14] S. Seager, Cyclic niche graphs and grids, Ars Combin. 49 (1998) 21-32.
[15] P. van't Hof and D. Paulusma, A new characterization of P_{6}-free graphs, Discrete Appl. Math. 158 (2010) 731-740.
https://doi.org/10.1016/j.dam.2008.08.025
[16] L. Volkmann, Multipartite tournaments: A survey, Discrete Appl. Math. 307 (2007) 3097-3129.
https://doi.org/10.1016/j.disc.2007.03.053
[17] A. Yeo, Semicomplete multipartite digraphs, in: Classes of Directed Graphs, J. BangJensen and G. Gutin (Ed(s)), (Springer Monogr. Math., 2018) 297-340. https://doi.org/10.1007/978-3-319-71840-8_7

Received 23 November 2020
Revised 29 June 2021
Accepted 1 July 2021
Available online 21 July 2021

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

