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Abstract

A bihole in a bipartite graph G with partite sets A and B is an indepen-
dent set I in G with |I ∩A| = |I ∩B|. We prove lower bounds on the largest
order of biholes in balanced bipartite graphs subject to conditions involving
the vertex degrees and the average degree.
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1. Introduction

In [1, 2] Axenovich et al. study biholes defined as independent sets in bipartite
graphs containing equally many vertices from both parts of a fixed bipartition.
They present several lower bounds on the order of largest biholes subject to
degree conditions. Here we pursue some of the questions motivated by [2]. For a
detailed discussion of the motivation of biholes, we refer to [2]. First, we collect
some notation and definitions. We consider only finite, simple, and undirected
graphs. For a graph G, we denote the vertex set, the edge set, the order, and the
size by V (G), E(G), n(G), and m(G), respectively. Let G be a bipartite graph
with partite sets A and B. A bihole of order k in G is an independent set I in G

with |I ∩A| = |I ∩B| = k. Note that the definition of a bihole tacitly requires to
fix a bipartition of G, which is unique only if G is connected. Note furthermore
that the order of a bihole I is half the cardinality of the set I. Let α̃(G) be the
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largest order of a bihole in G. A bipartite graph G with partite sets A and B is
balanced if |A| = |B|. For an integer k, let [k] be the set of positive integers at
most k, and let [k]0 = {0} ∪ [k].

For positive integers n and ∆, Axenovich et al. [2] define f(n,∆) as the
largest integer k such that every bipartite graph G with partite sets A and B

satisfying

• |A| = |B| = n, and

• the degree dG(u) of every vertex u from A is at most ∆,

has a bihole of order k. Similarly, they define f∗(n,∆) as the largest integer k such
that every balanced bipartite graph G of order 2n and maximum degree at most
∆, has a bihole of order k. The definitions immediately imply f(n,∆) ≤ f∗(n,∆).

In [2] Axenovich et al. show the following results for integers n and ∆ with
n ≥ ∆ ≥ 2:

f(n, 2) =
⌈n

2

⌉

− 1,(1)

f(n,∆) ≥
⌊
n− 2

∆

⌋

,(2)

f(n,∆) = Θ

(
ln∆

∆
n

)

for large but fixed ∆ and n sufficiently large, and(3)

0.3411n < f(n, 3) ≤ f∗(n, 3) < 0.4591n for n sufficiently large.(4)

They explicitly ask for the value of f(n, 3) for sufficiently large n.
While the parameters f(n,∆) and f∗(n,∆) might appear closely related to

the independence number α(G) of a graph G, and one might be tempted to
expect a similar behavior, the requirement to contain equally many vertices from
both partite sets imposes a strict condition. In fact, balancing the intersections
with the partite sets seems to be one of the challenges in proofs about these
parameters.

The following three tight lower bounds on the independence number α(G) of

a graph G with average degree d = 2m(G)
n(G) and maximum degree at most ∆ are

well known [3, 6, 5]:

α(G) ≥
∑

u∈V (G)

1

dG(u) + 1
≥ n

d+ 1
≥ n

∆+ 1
.(5)

The inequality (2) translates the final bound in (5) from independent sets to
biholes, but (3) indicates that asymptotically stronger lower bounds hold. The
result (3) implies the following similar result involving the average degree.

Proposition 1. There exists a real d0 such that, for every real d ≥ d0, there is

some integer n0(d) such that, for every integer n ≥ n0(d), the following statement
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holds. If G is a balanced bipartite graph of order 2n that has at most dn edges,

then α̃(G) ≥ ln(d)
8d n.

Proof. Axenovich et al. [2] show the following.

There exists an integer ∆1 such that, for every integer ∆ ≥ ∆1, there

is some integer n1(∆) such that f(n,∆) ≥ ln(∆)n
2∆ for every n ≥ n1(∆).

Let d0 = max
{
1, ∆1+1

2

}
and, for every real d ≥ d0, let n0(d) = 2n1(⌊2d⌋). Now,

let d be any real at least d0, and let n be any integer at least n0(d). Let G

be a balanced bipartite graph of order 2n that has at most dn edges. Let A

and B be the partite sets of G. Let n>2d be the number of vertices u in A

with dG(u) > 2d. Since 2dn>2d ≤ dn, we have n>2d ≤ n
2 , which implies that

A′ = {u ∈ A : dG(u) ≤ ⌊2d⌋} contains at least n
2 vertices. Let G′ arise from G

by removing all vertices in A \ A′ from A as well as any |A \ A′| vertices from
B. Clearly, the graph G′ is a balanced bipartite graph of order 2n′ with n′ ≥ n

2
such that dG′(u) ≤ ⌊2d⌋ for every vertex in A′. Since d ≥ 1, ⌊2d⌋ ≥ ∆1, and

n′ ≥ n0(d)
2 = n1(⌊2d⌋), the result from [2] mentioned at the beginning of this

proof implies

α̃(G) ≥ α̃(G′) ≥ f(n′, ⌊2d⌋) ≥ ln(⌊2d⌋)n′

2⌊2d⌋ ≥ ln(d)n

8d
.

Inspired by the second bound in (5), we prove the following, which, in view
of Proposition 1, is interesting for small values of d or n.

Theorem 2. If G is a balanced bipartite graph of order 2n that has at most dn

edges for some non-negative real d, then

α̃(G) ≥ n

d+ 1
− 2.(6)

Furthermore, we contribute a small improvement of the lower bound on
f(n, 3) from [2]. Therefore, we need the following refined version of f(n,∆). For
non-negative integers d1 < d2 < · · · < dℓ and n1, n2, . . . , nℓ, let α̃(d

n1
1 , dn2

2 , . . . , d
nℓ
ℓ )

be the largest k such that every bipartite graph G with partite sets A and B such
that

• |A| = |B| = n1 + n2 + · · ·+ nℓ, and

• ni = |{u ∈ A : dG(u) = di}| for every i ∈ [ℓ],

has a bihole of order k.
For the considered graphs, the sequence d1 · · · d1

︸ ︷︷ ︸

n1

· · · dℓ · · · dℓ
︸ ︷︷ ︸

nℓ

is the degree

sequence of the vertices in A. Note that

f(n,∆) = min
{

α̃(0n0 , . . . ,∆n∆) : n0, . . . , n∆ ∈ N0 with n = n0 + · · ·+ n∆

}

.

Our next result can be considered to be a refinement of (1).
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Theorem 3. α̃(0n0 , 1n1 , 2n2) ≥ 3
4n0 +

1
2(n1 + n2)− 7

4 .

Finally, combining Theorem 3 with the approach of Axenovich et al. [2],
allows to slightly improve their lower bound on f(n, 3) as follows.

Theorem 4. For every ǫ ≥ 0, there is some n0 such that f(n, 3) ≥ (0.34917−ǫ)n
for every n ≥ n0.

The proofs of the stated results as well as of further auxiliary statements are
given in the following section.

2. Proofs

We begin with a restricted analogue of Theorem 3.

Lemma 5. α̃(0n0 , 1n1) ≥ n0 +
n1
2 − 1

2 .

Proof. Let G be a bipartite graph with partite sets A and B such that

• |A| = |B| = n0 + n1, and

• ni = |{u ∈ A : dG(u) = i}| for i ∈ {0, 1}.
Let G1, . . . , Gk be the components of G that are of order more than 2. Each Gi

is a star with n1,i ≥ 2 endvertices from A and a center vertex from B. It follows

that G contains ℓ = n1 −
∑k

i=1 n1,i components that are K2’s, and B contains

n0 +
∑k

i=1(n1,i − 1) isolated vertices. Now, there is a bihole I in G containing

• all n0 isolated vertices from A,

• at least ℓ−1
2 vertices of degree 1 from A as well as at least ℓ−1

2 vertices of
degree 1 from B; all coming from K2 components,

• ∑k
i=1(n1,i − 1) vertices of degree 1 from A; coming from the Gi’s, and

• all n0 +
∑k

i=1(n1,i − 1) isolated vertices from B.

Since k ≤ n1−ℓ
2 , we obtain that I has order at least

n0 +
ℓ− 1

2
+

k∑

i=1

(n1,i − 1) = n0 +
ℓ− 1

2
+ (n1 − ℓ− k)

≥ n0 + n1 −
ℓ

2
− n1 − ℓ

2
− 1

2
= n0 +

n1

2
− 1

2
,

which completes the proof.

Now, we proceed to the proof of Theorem 2.
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Proof of Theorem 2. Suppose, for a contradiction, that G is a counterexample
of minimum order 2n. Let ∆A be the maximum degree of the vertices in A. First,
we assume that ∆A < 2. Let A contain ni vertices of degree i for i ∈ {0, 1}. Since
G has n1 edges, we have d ≥ n1

n0+n1
. Now, since n0 +

n1
2 ≥ n0+n1

n1
n0+n1

+1
, Lemma 5

implies

α̃(G) ≥ n0 +
n1

2
− 1

2
≥ n0 + n1

n1
n0+n1

+ 1
− 1

2
=

n

d+ 1
− 1

2
,

and (6) follows. Next, we assume that 2 ≤ ∆A < d+1. In this case, the inequality
(2) implies

α̃(G) ≥
⌊
n− 2

∆A

⌋

>
n

∆A
− 2 >

n

d+ 1
− 2.

Finally, we may assume that ∆A ≥ d+1. By symmetry, we may also assume that
the maximum degree ∆B of the vertices in B satisfies ∆B ≥ d+1. Let u ∈ A and
v ∈ B be vertices of degree at least d+1. The graph G′ = G−{u, v} is balanced
with partite sets of order n−1, and at most nd−dG(u)−dG(v)+1 ≤ nd−2d−1
edges. By the choice of G, the graph G′ is no counterexample, and we obtain

α̃(G) ≥ α̃(G′) ≥ n− 1
nd−2d−1

n−1 + 1
− 2 =

(n− 1)2

(d+ 1)(n− 2)
− 2 ≥ n

d+ 1
− 2,

where we use (n− 1)2 ≥ n(n− 2). This completes the proof.

The following result illustrates a different approach for d = 2, and gives a
better additive constant.

Proposition 6. If G is a balanced bipartite graph of order 2n ≥ 4 that has at

most 2n edges, then α̃(G) ≥ n−2
3 .

Proof. We prove the statement by induction on n. Let A and B be the partite
sets of G. For n = 2, the statement is trivial. Now, let n ≥ 3. Let δA =
min{dG(u) : u ∈ A}, ∆A = max{dG(u) : u ∈ A}, and define δB as well as ∆B

analogously. By the result (1) of Axenovich et al. [2], and, since n
2 − 1 ≥ n−2

3 ,
we may assume that ∆A,∆B ≥ 3. Since G has at most 2n edges, this implies
δA, δB ≤ 1.

First, suppose that δA = 0. Let u be an isolated vertex from A. Let v be a
vertex of degree δB from B. Let u′ be a vertex from A \ {u} of largest possible
degree such that NG(v) ⊆ {u′}. Let v′ be a vertex on degree ∆B from B. Let
G′ = G− {u, v, u′, v′}. Note that m(G′) ≤ 2(n− 2). By induction, the graph G′

has a bihole I ′ of order at least n−2−2
3 . Since adding u and v to I ′ yields a bihole

in G, the desired statement follows. Hence, by symmetry, we may assume that
δA = δB = 1.
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Next, suppose that there are non-adjacent vertices u from A and v from B

that are both of degree 1. Let v′ be the neighbor of u, and let u′ be the neighbor of
v. If dG(u

′) ≥ 3, then, by induction, the graph G′ = G−{u, v, u′, v′} has a bihole
I ′ of order at least n−2−2

3 . Adding u and v to I ′ yields a bihole of G of the desired
order. Hence, by symmetry, we may assume that dG(u

′), dG(v
′) ≤ 2. Let u′′ be a

vertex of degree ∆A from A, and let v′′ be a vertex of degree ∆B from B. Let G′′

be the graph G−{u, v, u′, v′, u′′, v′′}. It is easy to see that m(G′′) ≤ 2(n− 3). By
induction, the graph G′′ has a bihole I ′′ of order at least n−3−2

3 . Adding u and v

to I ′′ yields a bihole of G of the desired order. Hence, we may assume that A and
B both contain unique vertices of degree 1, say u and v, respectively, and that u
and v are adjacent. Since n ≥ 3, m(G) ≤ 2n, and ∆A ≥ 3, there is a vertex u′

of degree 2 in A. Let v′ and v′′ be the two neighbors of u′. Let u′′ be a vertex
of degree ∆A from A. Let G′′ be the graph G− {u, v, u′, v′, u′′, v′′}. It is easy to
see that m(G′′) ≤ 2(n− 3). By induction, the graph G′′ has a bihole I ′′ of order
at least n−3−2

3 . Adding v and u′ to I ′′ yields a bihole of G of the desired order,
which completes the proof.

Our next goal is the proof of Theorem 3, which refines (1), and allows to
slightly improve the lower bound on f(n, 3).

Lemma 7. If G is a connected bipartite graph with partite sets A and B such

that |A| < |B| and every vertex in A has degree at most 2, then G is a tree,

|B| = |A|+1, and every vertex in A has degree exactly 2. Furthermore, for every

i in [|A|]0, there is an independent set I in G with |I∩A| = i and |I∩B| = |A|−i.

Proof. Since every vertex in A has degree at most 2, the graph G has at most
2|A| edges. Since G is connected, it has at least |A| + |B| − 1 ≥ 2|A| edges. It
follows that G has exactly 2|A| edges, every vertex in A has degree exactly 2,
|B| = |A|+ 1, and G is a tree.

We prove the existence of the desired independent sets by induction on |A|.
For |A| = 1, the statement is trivial. Now, let |A| ≥ 2. Clearly, choosing I as A
yields |I ∩ A| = |A| and |I ∩ B| = |A| − |A| = 0, that is, the statement is trivial
for i = |A|. Now, let i ∈ [|A| − 1]0. Let u be a vertex of degree 1, and let v be its
unique neighbor. By induction applied to G′ = G− {u, v}, the graph G′ has an
independent set I ′ with |I ′ ∩A| = i and |I ′ ∩B| = (|A| − 1)− i, and adding u to
I ′ yields the desired independent set.

Proof of Theorem 3. By induction on n0, we show that every bipartite graph
G with partite sets A and B such that

• |A| = |B| = n0 + n1 + n2, and

• ni = |{u ∈ A : dG(u) = i}| for every i ∈ [2]0,
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has a bihole of order at least 3
4n0+

1
2(n1+n2)− 7

4 . If n0 ≤ 3, then G has a bihole
of order at least

α̃(0n0 , 1n1 , 2n2) ≥ α̃(00, 10, 2n0+n1+n2)
(1)

≥ n0 + n1 + n2

2
− 1

≥ 3

4
n0 +

1

2
(n1 + n2)−

7

4
.

Now, let n0 ≥ 4. Let u1, . . . , u4 be four isolated vertices from A. Let G1, . . . , Gr

be the components of G with |V (Gi) ∩ A| < |V (Gi) ∩ B|. Since |A| = |B| and
n0 ≥ 4, there is at least one such component, that is, we have r ≥ 1. By Lemma
7, each Gi is a tree with |V (Gi)∩B| = |V (Gi)∩A|+1, which implies r ≥ n0 ≥ 4.
Let Ai = V (Gi) ∩ A, Bi = V (Gi) ∩ B, and ai = |Ai|, for i in [4]. Clearly, we
may assume that a1 ≤ a2 ≤ a3 ≤ a4. If B contains an isolated vertex v, then,
applying induction to G′ = G− {u1, v}, we obtain that G′ has a bihole of order
at least 3

4(n0 − 1) + 1
2(n1 + n2)− 7

4 , and adding u1 and v yields a bihole of more
than the desired order. Hence, we may assume that no vertex in B is isolated, in
particular, we have a1 ≥ 1.

First, we assume that a1 and a2 have different parities modulo 2. By Lemma
7, there is an independent set I2 of G2 with

|I2 ∩A| = a2 + a1 − 1

2
and |I2 ∩B| = a2 − a1 + 1

2
.

By induction, the graph G′ = G− ({u1, u2} ∪ V (G1) ∪ V (G2)) has a bihole I ′ of
order at least 3

4(n0−2)+ 1
2(n1+n2−a1−a2)− 7

4 . Now, the set ({u1, u2}∪B1∪I2)∪I ′
is a bihole in G of order at least

1

2
(2 + (a1 + 1) + a2) +

(
3

4
(n0 − 2) +

1

2
(n1 + n2 − a1 − a2)−

7

4

)

=
3

4
n0 +

1

2
(n1 + n2)−

7

4
.

Hence, we may assume that a1 and a2 have the same parity modulo 2, and,
by symmetry, that also a3 and a4 have the same parity modulo 2. Note that
a4+a3−2

2 ∈ [|A|]0. By Lemma 7, there is an independent set I2 of G2 with

|I2 ∩A| = a2 + a1

2
and |I2 ∩B| = a2 − a1

2
,

as well as an independent set I4 of G4 with

|I4 ∩A| = a4 + a3 − 2

2
and |I4 ∩B| = a4 − a3 + 2

2
.

By induction, the graph G′′ = G − ({u1, u2, u3, u4} ∪ V (G1) ∪ V (G2) ∪ V (G3) ∪
V (G4)) has a bihole I

′′ of order at least 3
4(n0−4)+ 1

2(n1+n2−a1−a2−a3−a4)− 7
4 .
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Now, the set ({u1, u2, u3, u4} ∪B1 ∪ I2 ∪B3 ∪ I4)∪ I ′′ is a bihole in G of order at
least

1

2

(
4+ (a1 + 1)+ a2+ (a3 + 1) + a4

)
+

(
3

4
(n0− 4) +

1

2
(n1+ n2 − a1 − a2 − a3 − a4)−

7

4

)

=
3

4
n0 +

1

2
(n1 + n2)−

7

4
,

which completes the proof.

The following example shows that the coefficient 3
4 for n0 in Theorem 3 is

best possible. For an even integer i, let the bipartite graph G have partite sets
A and B and exactly 2i components such that there are i isolated vertices that
all belong to A, and i paths P1, . . . , Pi, each of order 4i+ 1, whose endpoints all
belong to B. Note that |A| = |B| = i + 2i2, n0 = i, and n2 = 2i2. Let I be a
largest bihole in G. From every path Pi, at most 2i+ 1 vertices can belong to I,
and, if 2i+ 1 vertices belong to I, then V (Pi) ∩ I ⊆ B. If in more than i

2 of the
paths Pi, at least 2i+ 1 vertices belong to I, then

|I ∩A| ≤
(
i

2
− 1

)

2i+ i = i2 − i < i2 +
5

2
i+ 1 =

(
i

2
+ 1

)

(2i+ 1) ≤ |I ∩B|,

which is a contradiction. Hence, in at most i
2 of the paths Pi, at least 2i + 1

vertices belong to I, which implies

|I| ≤ 1

2

(

i+ (2i+ 1)
i

2
+ 2i

i

2

)

= i2 +
3

4
i =

3

4
n0 +

1

2
n2.

It seems a challenging problem to determine the value α̃(0n0 , 1n1 , 2n2) exactly for
all choices of n0, n1, and n2. In fact, depending on the relative values of the ni,
they should contribute to this value with different coefficients. If, for instance,
n2 = 0, then, by Lemma 5, the coefficient of n0 is 1 rather than

3
4 as in Theorem 3.

For the next proof, we need the following Simple Concentration Bound [4].

Let X be a random variable determined by n independent trials T1, . . . , Tn such

that changing the outcome of any one trial can affect X by at most c, then

P

[

|X − E[X]| > t
]

≤ 2e−
t2

2c2n for every t > 0.(7)

Proof of Theorem 4. Let G be a bipartite graph with partite sets A and B

such that |A| = |B| = n and every vertex in A has degree at most 3. We need to
show that G has a bihole of order at least (0.34917− o(n))n. Therefore, let ǫ be
such that 0 < ǫ < 1

2 ln(8) < 0.25. Let Blarge be the set of vertices in B of degree

more than ǫ3/2
√
n, and let Bsmall = B \Blarge. Since G has at most 3n edges, we
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have |Blarge| ≤ 3
√
n

ǫ3/2
. Let G(1) arise from G by removing Blarge as well as any set

of |Blarge| vertices from A. Let

n
(1)
i =

∣
∣
∣

{

u ∈ V (G(1)) ∩A : dG(1)(u) = i
}∣
∣
∣

for i ∈ [3]0, and let n(1) =
∣
∣V (G(1)) ∩A

∣
∣, that is,

n(1) = n
(1)
0 + n

(1)
1 + n

(1)
2 + n

(1)
3 = n− |Blarge| ≥

(

1− 3

ǫ3/2
√
n

)

n.

Let p be the real solution of the equation p = (1− p)3, that is, p ≈ 0.31767. Let
B(1) be a random subset of Bsmall that arises by adding each of the n(1) vertices
in Bsmall to the set B(1) independently at random with probability p. Let G(2)

arise from G(1) by removing B(1), let b(1) = |B(1)|, and let

n
(2)
i =

∣
∣
∣

{

u ∈ V (G(2)) ∩A : dG(2)(u) = i
}∣
∣
∣

for i ∈ [3]0.

For the random variables b(1), n
(2)
0 , and n

(2)
3 , we obtain

E

[

b(1)
]

= pn(1),

E

[

n
(2)
0

]

= n
(1)
0 + pn

(1)
1 + p2n

(1)
2 + p3n

(1)
3 ≥ p3n(1),

E

[

n
(2)
3

]

= (1− p)3n
(1)
3 ≤ (1− p)3n(1).

Applying (7) with c = ǫ3/2
√
n in each case, and using ǫ < 1

2 ln(8) , we obtain

P

[ ∣
∣
∣b

(1) − E

[

b(1)
]∣
∣
∣ > ǫn(1)

]

≤ 2e
−
(ǫn(1))

2

2ǫ3nn(1) ≤ 2e−

(

1− 3

ǫ3/2
√
n

)

2ǫ <
1

3
,

P

[ ∣
∣
∣n

(2)
0 − E

[

n
(2)
0

]∣
∣
∣ > ǫn(1)

]

<
1

3
, and

P

[ ∣
∣
∣n

(2)
3 − E

[

n
(2)
3

]∣
∣
∣ > ǫn(1)

]

<
1

3
,

for n sufficiently large.
For n sufficiently large, the union bound implies the existence of a choice of

B(1) such that

b(1) ≤ (p+ ǫ)n(1),

n
(2)
0 ≥ (p3 − ǫ)n(1), and

n
(2)
3 ≤ ((1− p)3 + ǫ)n(1) = (p+ ǫ)n(1).

Let G(3) arise from G(2) by removing
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• a set containing max
{

b(1), n
(2)
3

}

vertices from V (G(2)) ∩ A including all ver-

tices from V (G(2))∩A that are of degree 3 in G(2) and as few isolated vertices
of G(2) as possible, and

• a set containing max
{

b(1), n
(2)
3

}

vertices from V (G(2)) ∩B.

By construction all vertices in V (G(3)) ∩A have degree at most 2 in G(3). Since

(p3 − ǫ)n(1) +max
{

b(1), n
(2)
3

}

≤ (p3 − ǫ)n(1) + (p+ ǫ)n(1) ≤ 0.34974n(1) ≤ n(1),

the number n
(3)
0 of vertices in V (G(2)) ∩ A that are isolated in G(3) is at least

(p3− ǫ)n(1). By Theorem 3, the graph G(3), and, hence, also G, contains a bihole
of order at least

3

4
n
(3)
0 +

1

2

(

n(1) − n
(3)
0 −max

{

b(1), n
(2)
3

})

− C

≥ 3

4
(p3 − ǫ)n(1) +

1

2

(

n(1) − (p3 − ǫ)n(1) − (p+ ǫ)n(1)
)

− C

≥
(
3

4
(p3 − ǫ) +

1

2

(

1− p3 − p
))(

1− 3

ǫ3/2
√
n

)

n− C

≥
(

0.34917− 3

4
ǫ

)(

1− 3

ǫ3/2
√
n

)

n− C,

which completes the proof.
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