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Abstract

An Euler tour in a hypergraph H is a closed walk that traverses each
edge of H exactly once, and an Euler family is a family of closed walks that
jointly traverse each edge of H exactly once. An ℓ-covering k-hypergraph,
for 2 ≤ ℓ < k, is a k-uniform hypergraph in which every ℓ-subset of vertices
lie together in at least one edge.

In this paper we prove that every ℓ-covering k-hypergraph, for k ≥ 3,
admits an Euler family.
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1. Introduction

The complete characterization of graphs that admit an Euler tour is a classic
result covered by any introductory graph theory course. The concept naturally
extends to hypergraphs; that is, an Euler tour of a hypergraph is a closed walk
that traverses every edge exactly once. However, the study of eulerian hypegraphs
is a much newer and largely unexplored territory.

The first results on Euler tours in hypergraphs were obtained by Lonc and
Naroski [4]. Most notably, they showed that the problem of existence of an Euler
tour is NP-complete on the set of k-uniform hypergraphs, for any k ≥ 3, as well
as when restricted to a particular subclass of 3-uniform hypergraphs.
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Bahmanian and Šajna [2] attempted a systematic study of eulerian properties
of general hypergraphs; some of their techniques and results will be used in this
paper. In particular, they introduced the notion of an Euler family — a collection
of closed walks that jointly traverse each edge exactly once — and showed that
the problem of existence of an Euler family is polynomial on the class of all
hypergraphs.

In this paper, we define an ℓ-covering k-hypergraph, for 2 ≤ ℓ < k, to be
a non-empty k-uniform hypergraph in which every ℓ-subset of vertices appear
together in at least one edge.

In [2], the authors proved that every 2-covering 3-hypergraph with at least
two edges admits an Euler family, and the present authors gave a short proof
[6] to show that every triple system — that is, a 3-uniform hypergraph in which
every pair of vertices lie together in the same number of edges — admits an
Euler tour as long as it has at least two edges. Most recently, the present authors
proved the following result.

Theorem 1 [7]. Let k ≥ 3, and let H be a (k − 1)-covering k-hypergraph. Then
H admits an Euler tour if and only if it has at least two edges.

In this paper, we aim to extend Theorem 1 to all ℓ-covering k-hypergraphs.
Our main result is as follows.

Theorem 2. Let ℓ and k be integers, 2 ≤ ℓ < k, and let H be an ℓ-covering
k-hypergraph. Then H admits an Euler family if and only if it has at least two
edges.

As the concept of an Euler family is a relaxation of the concept of an Euler
tour, the conclusion of Theorem 2 is weaker than that of Theorem 1; however, it
holds for a much larger class of hypergraphs.

We prove Theorem 2 by induction on ℓ. The base case ℓ = 2 is stated as
Theorem 12; its proof is essentially a counting argument and requires most of the
work. The main part of the proof is presented in Section 5, while some special
cases and technical details are handled in Sections 3 and 4. In particular, in
Section 4, using the Lovász (g, f)-factor theorem, we develop a sufficient condition
for a k-uniform hypergraph without cut edges to admit an Euler family.

We remark that we believe that Theorem 1 actually holds for all ℓ-covering
k-hypergraphs. As in the proof of Theorem 2, we can see that it would suffice to
prove it for ℓ = 2 and k ≥ 4. Hence we propose the following conjecture.

Conjecture 3. Let k be an integer, k ≥ 4, and let H be a 2-covering k-hypergraph
with at least two edges. Then H admits an Euler tour.

To examine the conjecture for small values of the parameters, we randomly
(in a loose sense) generated over 105 examples of 2-covering k-hypergraphs of
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order n for each parameter pair (k, n) with 4 ≤ k ≤ 7 and 2k − 2 ≤ n ≤ 13.
(The case n < 2k − 2 is confirmed using Lemma 7.) Our computer search shows
that all of the generated hypergraphs admit Euler tours. Proving Conjecture 3,
however, is presently beyond our reach.

2. Preliminaries

We use hypergraph terminology established in [1, 2], which applies to loopless
graphs as well. Any graph theory terms not explained here can be found in [3].

A hypergraph H is a pair (V,E), where V is a non-empty set, and E is a
multiset of elements from 2V . The elements of V = V (H) and E = E(H) are
called the vertices and edges of H, respectively. The order of H is |V |, and the
size is |E|. A hypergraph of order 1 is called trivial, and a hypergraph with no
edges is called empty.

Distinct vertices u and v in a hypergraph H = (V,E) are called adjacent
(or neighbours) if they lie in the same edge, while a vertex v and an edge e are
said to be incident if v ∈ e. The degree of v in H, denoted degH(v), is the
number of edges of H incident with v. An edge e is said to cover the vertex pair
{u, v} if {u, v} ⊆ e. A hypergraph H is called k-uniform if every edge of H has
cardinality k.

Definition. Let ℓ and k be integers, 2 ≤ ℓ < k. An ℓ-covering k-hypergraph is a
k-uniform hypergraph in which every ℓ-subset of vertices lie together in at least
one edge.

The incidence graph of a hypergraph H = (V,E) is a bipartite simple graph
G with vertex set V ∪ E and bipartition {V,E} such that vertices v ∈ V and
e ∈ E of G are adjacent if and only if v is incident with e in H. The elements of
V and E are called v-vertices and e-vertices of G, respectively.

A hypergraph H ′ = (V ′, E′) is called a subhypergraph of the hypergraph
H = (V,E) if V ′ ⊆ V and E′ = {e ∩ V ′ : e ∈ E′′} for some submultiset E′′ of
E. For e ∈ E, the symbol H\e denotes the subhypergraph (V,E − {e}) of H,
and for v ∈ V , the symbol H − v denotes the subhypergraph (V −{v}, E′) where
E′ = {e− {v} : e ∈ E, e− {v} 6= ∅}.

A (v0, vk)-walk inH is a sequenceW = v0e1v1e2 · · · ekvk such that v0, . . . , vk ∈
V ; e1, . . . , ek ∈ E; and vi−1, vi ∈ ei with vi−1 6= vi for all i = 1, . . . , k. A walk
is said to traverse each of the vertices and edges in the sequence. The vertices
v0, v1, . . . , vk are called the anchors of W . If e1, e2, . . . , ek are pairwise distinct,
then W is called a trail (strict trail in [1, 2]); if v0 = vk and k ≥ 2, then W is
closed.

A hypergraph H is connected if every pair of vertices are connected in H;
that is, if for any pair u, v ∈ V (H), there exists a (u, v)-walk in H. A connected
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component of H is a maximal connected subhypergraph of H without empty
edges. The number of connected components of H is denoted by c(H). We call
v ∈ V (H) a cut vertex of H, and e ∈ E(H) a cut edge of H, if c(H − v) > c(H)
and c(H\e) > c(H), respectively.

An Euler family of a hypergraph H is a collection of pairwise anchor-disjoint
and edge-disjoint closed trails that jointly traverse every edge of H, and an Euler
tour is a closed trail that traverses every edge of H. A hypergraph that is either
empty or admits an Euler tour (family) is called eulerian (quasi-eulerian). Note
that an Euler tour corresponds to an Euler family of cardinality 1, so every
eulerian hypergraph is also quasi-eulerian.

The following theorem allows us to determine whether a hypergraph is eule-
rian or quasi-eulerian from its incidence graph.

Theorem 4 [2, Theorem 2.18]. Let H be a hypergraph and G its incidence graph.
Then the following hold.

(1) H is quasi-eulerian if and only if G has a spanning subgraph G′ such that
degG′(e) = 2 for all e ∈ E(H), and degG′(v) is even for all v ∈ V (H).

(2) H is eulerian if and only if G has a spanning subgraph G′ with at most one
non-trivial connected component such that degG′(e) = 2 for all e ∈ E(H),
and degG′(v) is even for all v ∈ V (H).

3. Technical Lemmas

In this section, we take care of some special cases and prove some technical results
that will aid in the proof of our base case, Theorem 12.

Lemma 5. Let k ≥ 4, and let H be a 2-covering k-hypergraph with at least 2
edges. Then H has no cut edges.

Proof. Suppose e is a cut edge of H. Then there exist vertices u, v ∈ e that are
disconnected in H\e. Since H has at least 2 edges, it must be that k 6= |V (H)|
and e 6= V (H). Hence there exists w ∈ V (H) − e. Let e1, e2 be edges of H
containing u and w, and v and w, respectively. As e 6∈ {e1, e2}, we can see that
ue1we2v is a (u, v)-walk in H\e, a contradiction.

Lemma 6. Let k ≥ 4, and let H be a 2-covering k-hypergraph of order n > 3k
2

and size m ≥ 2. Then m ≥ 2
⌊

n+3
k

⌋

.

Proof. If n ≤ 2k − 4, then 2
⌊

n+3
k

⌋

≤ 2 ≤ m. Hence assume n ≥ 2k − 3.

Suppose first that n ≥ 3k − 3. Since there are
(

n
2

)

pairs of vertices to cover,
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and each edge covers
(

k
2

)

pairs, we know that m ≥ n(n−1)
k(k−1) . As k ≥ 4, we have

m ≥ n(n− 1)

k(k − 1)
≥ (3k − 3)(n− 1)

k(k − 1)
=

3(n− 1)

k
=

2n+ n− 3

k

≥ 2n+ 3k − 6

k
≥ 2n+ 6

k
≥ 2

⌊

n+ 3

k

⌋

.

Finally, assume 2k− 3 ≤ n ≤ 3k− 4. As 2
⌊

n+3
k

⌋

≤ 4, it suffices to show that
m ≥ 4. Suppose m ≤ 3. Since H is a 2-covering k-hypergraph with n > k and
m ≥ 2, every vertex has degree at least 2. Thus

2n ≤
∑

v∈V (H)

deg(v) = km ≤ 3k

and n ≤ 3k
2 , contradicting the assumption that n > 3k

2 .
Therefore, in all cases we have m ≥ 2

⌊

n+3
k

⌋

.

Lemma 7. Let H be a hypergraph with |E(H)| ≥ 2 satifying the following.

• For all e, f ∈ E(H), we have |e ∩ f | ≥ 2; and

• there exist distinct e, f ∈ E(H) such that |e ∩ f | ≥ 3.

Then H is eulerian.

Proof. Let E(H) = {e1, . . . , em} and assume e1 and em are distinct edges such
that |e1 ∩ em| ≥ 3. Take any v1 ∈ e1 ∩ e2. For i = 2, . . . ,m− 1, let vi be a vertex
in (ei ∩ ei+1) − {vi−1}, and let v0 ∈ (e1 ∩ em) − {v1, vm−1}. It is easy to verify
that v0e1v1 · · · vm−1emv0 is an Euler tour of H.

Corollary 8. Let H be a 2-covering k-hypergraph of order n. If n ≤ 2k − 3 or
(k, n) = (4, 6), then H is eulerian.

Proof. If n ≤ 2k − 3, then every pair of edges e, f ∈ E(H) satisfies |e ∩ f | ≥ 3,
so H is eulerian by Lemma 7.

Assume now that (k, n) = (4, 6). For all e, f ∈ E(H), we have |e ∩ f | ≥ 2. If
there exist distinct edges e, f ∈ E(H) such that |e ∩ f | ≥ 3, then H is eulerian
by Lemma 7. Hence assume |e ∩ f | = 2 for all e, f ∈ E(H), and let V (H) =
{v1, . . . , v6}. It is not difficult to see that we must have E(H) = {e1, e2, e3}
where, without loss of generality, the edges are e1 = v1v2v3v4, e2 = v1v2v5v6, and
e3 = v3v4v5v6. It follows that W = v3e1v2e2v5e3v3 is an Euler tour of H.

Lemma 9. Let n, k, q ∈ Z
+ be such that n ≥ qk. Let

S =
{

(x1, . . . , xq) ∈ (Z+)q : x1 + · · ·+ xq = n, xi ≥ k for all i
}

,

and define f : S → Z
+ by f(x1, . . . , xq) =

(

x1

2

)

+ · · · +
(

xq

2

)

. Then f attains its
maximum on S at the point

(

k, . . . , k, n− k(q − 1)
)

.



1096 M. Šajna and A. Wagner

Proof. Since the domain S is finite, function f indeed attains a maximum on S.
Let x = (x1, . . . , xq) ∈ S be such that f(x) is maximum. By symmetry of f ,

we may assume that x1 ≤ x2 ≤ · · · ≤ xq. As x1 ≥ k and xq = n−(x1+· · ·+xq−1),
we observe that xq ≤ n− k(q − 1).

Suppose that xq < n − k(q − 1). Then there exists i ∈ {1, . . . , q − 1} such
that xi > k. Let i be the smallest index with this property, and let

y =
(

x1, . . . , xi−1, xi − 1, xi+1, . . . , xq−1, xq + 1
)

.

Then y ∈ S and

f(y) =

q−1
∑

j=1
j 6=i

(

xj

2

)

+

(

xi − 1

2

)

+

(

xq + 1

2

)

=

q−1
∑

j=1
j 6=i

(

xj

2

)

+
xi(xi − 1)

2
− 2(xi − 1)

2
+

xq(xq − 1)

2
+

2xq
2

=

q
∑

j=1

(

xj

2

)

+ (xq − xi + 1) > f(x),

contradicting the choice of x.
Hence xq = n − k(q − 1), and consequently x1 = · · · = xq−1 = k. Thus f

attains its maximum on S at the point x =
(

k, . . . , k, n − k(q − 1)
)

as claimed.

4. A Sufficient Condition

In this section, we state and prove Proposition 11, which gives a sufficient con-
dition for a k-uniform hypergraph to admit an Euler family. This sufficient con-
dition will be our main tool in the proof of Theorem 12. It is based on the
(g, f)-factor theorem by Lovász [5], stated below as Theorem 10.

For a graph G and functions f, g : V (G) → N, a (g, f)-factor of G is a
spanning subgraph F of G such that g(x) ≤ degF (x) ≤ f(x) for all x ∈ V (G).
An f -factor is simply an (f, f)-factor. For any sets U,W ⊆ V (G), let εG(U,W )
denote the number of edges of G with one endpoint in U and the other in W .

Theorem 10 [5]. Let G = (V,E) be a graph and f, g : V → N be functions
such that g(x) ≤ f(x) and g(x) ≡ f(x) (mod 2) for all x ∈ V . Then G has a
(g, f)-factor F such that degF (x) ≡ f(x) (mod 2) for all x ∈ V if and only if,
for all disjoint S, T ⊆ V , we have

(1)
∑

x∈S

f(x) +
∑

x∈T

(degG(x)− g(x))− εG(S, T )− q(S, T ) ≥ 0,
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where q(S, T ) is the number of connected components C of G− (S ∪T ) such that
∑

x∈V (C)

f(x) + εG(V (C), T ) ≡ 1 (mod 2).

Proposition 11. Let k ≥ 3, and let H = (V,E) be a k-uniform hypergraph of
order n and size m. Let G be the incidence graph of H, and G∗ the graph obtained
from G by appending 2(m+ n)2 loops to every v-vertex.

Assume that H has no cut edges and that for all X ⊆ E with |X| ≥ 2, we

have that |X| ≥ 2
⌊

c(G∗−X)+3
k

⌋

. Then H is quasi-eulerian.

Proof. Let r = 2(m+ n)2, and define f : V (G∗) → Z by

f(x) =

{

r if x ∈ V,

2 if x ∈ E.

We shall use Theorem 10 to show that G∗ has an (f, f)-factor, so let S, T ⊆ V (G∗)
be disjoint sets, and denote

γ(S, T ) =
∑

x∈S

f(x) +
∑

x∈T

(degG∗(x)− f(x))− εG∗(S, T )− q(S, T ),

where q(S, T ) is the number of connected components C of G∗−(S∪T ) such that
εG∗(V (C), T ) is odd. Observe that Condition (1) for G∗ with g = f is equivalent
to γ(S, T ) ≥ 0.

Since G is a subgraph of Kn,m, we have εG∗(S, T ) ≤ mn and q(S, T ) ≤
m + n, and therefore εG∗(S, T ) + q(S, T ) ≤ (m + n)2 = r

2 . In addition, we have
degG∗(x)− f(x) ≥ r for all x ∈ V , and degG∗(x)− f(x) ≥ k − 2 for all x ∈ E.

Case 1. (S∪T )∩V 6= ∅. If S∩V 6= ∅, then∑x∈S f(x) ≥ r, and if T ∩V 6= ∅,
then

∑

x∈T (degG∗(x)− f(x)) ≥ r. Thus, in both cases

γ(S, T ) =

(

∑

x∈S

f(x) +
∑

x∈T

(

degG∗(x)− f(x)
)

)

−
(

εG∗(S, T ) + q(S, T )
)

≥ r − r

2
≥ 0.

Case 2. (S∪T )∩V = ∅. Then εG∗(S, T ) = 0 since S∪T ⊆ E. First, suppose
T = ∅. Then εG∗(V (C), T ) = 0 for all connected components C of G∗ − (S ∪ T ),
so q(S, T ) = 0. Hence γ(S, T ) =

∑

x∈S f(x) ≥ 0.
Next, suppose S = ∅ and |T | = 1. Then S ∪ T = {e} for some e ∈ E.

By assumption, edge e is not a cut edge of H and hence by [1, Theorem 3.23],
e-vertex e is not a cut vertex of G∗, and G∗ − (S ∪ T ) is connected. It follows
that q(S, T ) ≤ 1 and

γ(S, T ) =
(

degG∗(e)− f(e)
)

− q(S, T ) ≥ (k − 2)− 1 ≥ 0.
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We may now assume that T 6= ∅ and |S ∪ T | ≥ 2. Since each connected
component C of G∗− (S ∪T ) with εG∗(V (C), T ) odd corresponds to at least one
edge incident with a vertex in T , the number of such components is at most k|T |.
Hence q(S, T ) ≤ min{c(G∗ − (S ∪ T )), k|T |}, and

γ(S, T ) = 2|S|+ (k − 2)|T | − q(S, T )

≥ 2|S ∪ T |+ (k − 4)|T | −min{c(G∗ − (S ∪ T )), k|T |}.(2)

Define t =
⌊

c(G∗−(S∪T ))+3
k

⌋

, so that

kt− 3 ≤ c(G∗ − (S ∪ T )) ≤ kt+ k − 4.

If |T | ≥ t+ 1, then min{c(G∗ − (S ∪ T )), k|T |} = c(G∗ − (S ∪ T )) ≤ kt+ k − 4,
so Inequality (2) yields

γ(S, T ) ≥ 2|S ∪ T |+ (k − 4)(t+ 1)− (kt+ k − 4) = 2|S ∪ T | − 4t.

The same bound is obtained if |T | ≤ t: in this case, we have min{c(G∗− (S∪T )),
k|T |} ≤ k|T |, so that (2) yields

γ(S, T ) ≥ 2|S ∪ T |+ (k − 4)|T | − k|T | = 2|S ∪ T | − 4|T | ≥ 2|S ∪ T | − 4t.

In both cases, as S ∪ T ⊆ E and |S ∪ T | ≥ 2, the assumption of the proposition

implies |S ∪ T | ≥ 2
⌊

c(G∗−(S∪T ))+3
k

⌋

= 2t, so that γ(S, T ) ≥ 0.

Therefore, γ(S, T ) ≥ 0 for all disjoint S, T ⊆ V (G∗), and by Theorem 10,
we conclude that G∗ has an (f, f)-factor F . Deleting the loops of F , we obtain
a spanning subgraph F ′ of G in which all v-vertices have even degree and all
e-vertices have degree 2. Thus H admits an Euler family by Theorem 4.

5. Proof of the Main Result

We shall now prove our main result, Theorem 2. We use induction on ℓ, and most
of the work is required to prove the basis of induction, which we state below as
Theorem 12.

Theorem 12. Let k ≥ 4, and let H be a 2-covering k-hypergraph with at least
two edges. Then H is quasi-eulerian.

Proof. Let H = (V,E) with n = |V | and m = |E|. If n ≤ 2k − 3, then H is
eulerian by Corollary 8, so we may assume that n ≥ 2k − 2.

If n ≤ 3k
2 , it then follows that (k, n) = (4, 6). Again, H is eulerian by

Corollary 8. Hence n > 3k
2 , and Lemma 6 implies that m ≥ 2

⌊

n+3
k

⌋

.
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In the rest of the proof we show that H satisfies the conditions of Proposi-
tion 11.

Let G∗ be the graph obtained from the incidence graph of H by adjoining
2(m+ n)2 loops to every v-vertex.

Fix any X ⊆ E with |X| ≥ 2, and denote q = c(G∗ −X).

Suppose that |X| < 2
⌊

q+3
k

⌋

. If q ≤ 2k − 4, then this supposition implies

that |X| < 2, a contradiction. Hence we may assume that q ≥ 2k − 3, and hence
q ≥ 5. Moreover, our supposition implies

(3) |X| ≤ 2
q + 3

k
− 1.

Let ℓ denote the number of v-vertices that are isolated in G∗ −X.

Case 1. ℓ ≥ 1. If ℓ = n, then X = E, q = n, and |X| = |E| ≥ 2
⌊

n+3
k

⌋

=

2
⌊

q+3
2

⌋

, contradicting our assumption on X. Thus we may assume ℓ < n, and

hence ℓ < q.
Since G∗ −X has q− ℓ non-trivial connected components, each with at least

k v-vertices, we have

(4) n ≥ ℓ+ k(q − ℓ).

Since q > ℓ, this inequality also implies

(5) n ≥ ℓ+ k.

Let S be the set of pairs {u, v} of v-vertices such that u is isolated in G∗−X,
and v is not. Then |S| = ℓ(n− ℓ). Observe that every edge of H covers at most
k2

4 pairs from S, which implies that |X| ≥ ℓ(n−ℓ)
k2

4

. Combining this inequality with

(3), we obtain

(6)
4ℓ(n− ℓ)

k2
≤ 2q + 6− k

k
.

Substituting q ≤ ℓ+ n−ℓ
k

from Inequality (4) and rearranging yields

n(4ℓ− 2) ≤ 4ℓ2 − k2 + 2ℓk − 2ℓ+ 6k.

Further substituting n ≥ ℓ + k from (5) and isolating ℓ, we obtain ℓ ≤ 4 − k
2 ,

which implies ℓ ∈ {1, 2} as k ≥ 4.
However, if on the left-hand side of Inequality (6) we apply n−ℓ

k
≥ q − ℓ

from (4) and simplify, then we obtain

(4ℓ− 2)q − 4ℓ2 ≤ 6− k ≤ 2.
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Now substituting either ℓ = 1 or ℓ = 2 yields q ≤ 3, a contradiction.

Case 2. ℓ = 0. Let C1, C2, . . . , Cq be the connected components of G∗ −X,
and let ni denote the number of v-vertices of Ci. Note that ni ≥ k for all i.

The number of pairs of v-vertices that lie in distinct connected components
of G∗ − X is

(

n
2

)

−∑q
i=1

(

ni

2

)

, and these pairs must all be covered by the edges
of X. As n ≥ qk, n1 + · · · + nq = n, and ni ≥ k, for all i, we know that
∑q

i=1

(

ni

2

)

≤ (q − 1)
(

k
2

)

+
(

n−k(q−1)
2

)

by Lemma 9. Therefore,

(

n

2

)

−
q
∑

i=1

(

ni

2

)

≥
(

n

2

)

− (q − 1)

(

k

2

)

−
(

n− k(q − 1)

2

)

.

Since each edge of X covers up to
(

k
2

)

pairs of v-vertices in distinct connected
components, we deduce that

|X| ≥
(

n
2

)

− (q − 1)
(

k
2

)

−
(

n−k(q−1)
2

)

(

k
2

) .

On the other hand, by (3), we have |X| ≤ 2q+6−k
k

, so

(7)

(

n
2

)

− (q − 1)
(

k
2

)

−
(

n−k(q−1)
2

)

(

k
2

) ≤ 2q + 6− k

k
.

We now substitute x = q − 1, noting that x ≥ 4 as q ≥ 5. Rearranging
Inequality (7), we then obtain

2kxn ≤ k2x2 + (k2 + 2k − 2)x− (k − 8)(k − 1).

Applying n ≥ qk = (x+ 1)k further yields

k2x2 + (k2 − 2k + 2)x+ (k − 8)(k − 1) ≤ 0.

Denote the left-hand side by f(x) = ax2 + bx+ c, where a = k2, b = k2 − 2k+2,
and c = (k − 8)(k − 1), and observe that a, b > 0 as k ≥ 4. If b2 − 4ac < 0, then
f(x) > 0 for all x, a contradiction. Hence assume b2 − 4ac ≥ 0. Let x2 be the
larger of the two roots of f(x) = 0. If x2 < 4, then f(x) > 0 for all x ≥ 4, a
contradiction. Hence we must have

4 ≤ −b+
√
b2 − 4ac

2a
.

Since a, b > 0, it is straightforward to show that 16a+4b+c ≤ 0 follows. However,

16a+ 4b+ c = k(21k − 17) + 16 > 0,

a contradiction.
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Since each case leads to a contradiction, we conclude that |X| ≥
⌊

c(G∗−X)+3
k

⌋

.

By Lemma 5, hypergraph H has no cut edges, so we may apply Proposition 11
to conclude that H is quasi-eulerian.

We are now ready to prove our main result, restated below.

Theorem 2. Let ℓ and k be integers, 2 ≤ ℓ < k, and let H be an ℓ-covering
k-hypergraph. Then H is quasi-eulerian if and only if it has at least two edges.

Proof. Since H is non-empty, and since a hypergraph with a single edge does
not admit a closed trail, necessity is easy to see.

To prove sufficiency, for s ≥ 1 and ℓ ≥ 2, define the proposition Ps(ℓ) as
“Every ℓ-covering (ℓ + s)-hypergraph with at least two edges is quasi-eulerian”.
Theorem 1 implies that P1(ℓ) holds for all ℓ ≥ 2. Hence fix any s ≥ 2.

We prove Ps(ℓ) by induction on ℓ. As ℓ + s ≥ 4, the basis of induction,
Ps(2), follows from Theorem 12. Suppose that, for some ℓ ≥ 2, the proposition
Ps(ℓ) holds; that is, every ℓ-covering (ℓ + s)-hypergraph with at least two edges
is quasi-eulerian.

Let H = (V,E) be an (ℓ+1)-covering
(

(ℓ+1
)

+ s)-hypergraph with |E| ≥ 2.
Fix any v ∈ V and let V ∗ = V − {v}. Define a mapping ϕ : E → 2V

∗

by

ϕ(e) = e− {v} if v ∈ e,

and otherwise,
ϕ(e) = e− {u} for any u ∈ e.

Then let E∗ = {ϕ(e) : e ∈ E} and H∗ = (V ∗, E∗), so that ϕ is a bijection from E

to E∗. It is straightforward to verify that H∗ is an ℓ-covering (ℓ+ s)-hypergraph.
As |E∗| = |E| ≥ 2, by induction hypothesis, hypergraph H∗ admits an Euler
family F∗. In each closed trail in F∗, replace each e ∈ E∗ with ϕ−1(e) to obtain
a set F of closed trails of H. It is not difficult to verify that F is an Euler family
of H, so Ps(ℓ+ 1) follows.

By induction, we conclude that Ps(ℓ) holds for all ℓ ≥ 2, and any s ≥ 1.
Therefore, every ℓ-covering k-hypergraph with at least two edges is quasi-eulerian.
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