THE ACHROMATIC NUMBER OF $K_{6} \square K_{q}$ EQUALS $2 q+3$ IF $q \geq 41$ IS ODD

Mirko Horñák
Institute of Mathematics, P.J. Šafárik University
Jesenná 5, 04001 Košice, Slovakia
e-mail: mirko.hornak@upjs.sk

Abstract

Let G be a graph and C be a finite set of colours. A vertex colouring $f: V(G) \rightarrow C$ is complete provided that for any two distinct colours $c_{1}, c_{2} \in$ C there is $v_{1} v_{2} \in E(G)$ such that $f\left(v_{i}\right)=c_{i}, i=1,2$. The achromatic number of G is the maximum number of colours in a proper complete vertex colouring of G. In the paper it is proved that if $q \geq 41$ is an odd integer, then the achromatic number of the Cartesian product of K_{6} and K_{q} is $2 q+3$. Keywords: complete vertex colouring, achromatic number, Cartesian product, complete graph.

2020 Mathematics Subject Classification: 05C15.

1. Introduction

Let G be a finite simple graph and C a finite set of colours. A vertex colouring $f: V(G) \rightarrow C$ is complete if for any pair of distinct colours $c_{1}, c_{2} \in C$ one can find in G an edge $\left\{v_{1}, v_{2}\right\}$ (often shortened to $v_{1} v_{2}$) such that $f\left(v_{i}\right)=c_{i}, i=1,2$. The achromatic number of G, denoted by $\operatorname{ach}(G)$, is the maximum cardinality of the colour set in a proper complete vertex colouring of G.

The concept was introduced quite a long ago in Harary, Hedetniemi and Prins [8], where the following was proved.

Theorem 1. If G is a graph, and an integer k satisfies $\chi(G) \leq k \leq \operatorname{achr}(G)$, then there exists a proper complete vertex colouring of G using k colours.

There are still only a few graph classes \mathcal{G} such that $\operatorname{achr}(G)$ is known for all $G \in \mathcal{G}$. This is certainly related to the fact that determining the achromatic number is an NP-complete problem even for trees, see Cairnie and Edwards [2].

Two surveys are available on the topic, namely Edwards [6] and Hughes and MacGillivray [10]; more generally, Chapter 12 in the book [3] by Chartrand and Zhang deals with complete vertex colourings. A comprehensive list of publications concerning the achromatic number is maintained by Edwards [7].

Some papers are devoted to the achromatic number of graphs constructed by graph operations. So, Hell and Miller [9] considered $\operatorname{achr}\left(G_{1} \times G_{2}\right)$, where $G_{1} \times G_{2}$ stands for the categorical product of graphs G_{1} and G_{2} (we follow here the notation by Imrich and Klavžar [16]).

In this paper we are interested in the achromatic number of the Cartesian product $G_{1} \square G_{2}$ of graphs G_{1} and G_{2}, the graph with $V\left(G_{1} \square G_{2}\right)=\left\{\left(v_{1}, v_{2}\right)\right.$: $\left.v_{i} \in V\left(G_{i}\right), i=1,2\right\}$, in which $\left(v_{1}^{1}, v_{2}^{1}\right)\left(v_{1}^{2}, v_{2}^{2}\right) \in E\left(G_{1} \square G_{2}\right)$ if and only if there is $i \in\{1,2\}$ such that $v_{i}^{1} v_{i}^{2} \in E\left(G_{i}\right)$ and $v_{3-i}^{1}=v_{3-i}^{2}$. As observed by Chiang and Fu [4], $\operatorname{achr}\left(G_{1}\right)=p$ and $\operatorname{achr}\left(G_{2}\right)=q$ implies $\operatorname{achr}\left(G_{1} \square G_{2}\right) \geq \operatorname{achr}\left(K_{p} \square K_{q}\right)$. This inequality motivates a special interest in the achromatic number of the Cartesian product of two complete graphs. From the obvious fact that $G_{2} \square G_{1}$ is isomorphic to $G_{1} \square G_{2}$ it is clear that when determining $\operatorname{achr}\left(K_{p} \square K_{q}\right)$ we may suppose without loss of generality $p \leq q$.

The problem of determining $\operatorname{achr}\left(K_{p} \square K_{q}\right)$ with $p \leq 4$ was solved in Horňák and Puntigán [15] (for $p \leq 3$ the result was rediscovered in [4]) and that for $p=5$ in Horñák and Pčola [13, 14]. In [5] Chiang and Fu proved that if r is an odd projective plane order, then $\operatorname{achr}\left(K_{\left(r^{2}+r\right) / 2} \square K_{\left(r^{2}+r\right) / 2}\right)=\left(r^{3}+r^{2}\right) / 2$. (For $r=3$ the fact that $\operatorname{achr}\left(K_{6} \square K_{6}\right)=18$ was known already to Bouchet [1].)

Here we show that $\operatorname{achr}\left(K_{6} \square K_{q}\right)=2 q+3$ if q is an odd integer with $q \geq 41$. This is the first of three papers devoted to completely solve the problem of finding $\operatorname{achr}\left(K_{6} \square K_{q}\right)$. In Horňák [11] the cases, in which either $8 \leq q \leq 40$ or q is an even integer with $q \geq 42$, are analysed. Finally, $\operatorname{achr}\left(K_{6} \square K_{7}\right)$ is determined in Horňák [12].

For $k, l \in \mathbb{Z}$ we denote integer intervals by

$$
[k, l]=\{z \in \mathbb{Z}: k \leq z \leq l\}, \quad[k, \infty)=\{z \in \mathbb{Z}: k \leq z\}
$$

Further, with a set A and $m \in[0, \infty)$ we use $\binom{A}{m}$ for the set of m-element subsets of A.

Now let $p, q \in[1, \infty)$. Under the assumption that $V\left(K_{r}\right)=[1, r], r=p, q$, we have $V\left(K_{p} \square K_{q}\right)=[1, p] \times[1, q]$, while $E\left(K_{p} \square K_{q}\right)$ consists of edges $\left(i, j_{1}\right)\left(i, j_{2}\right)$ with $i \in[1, p], j_{1}, j_{2} \in[1, q], j_{1} \neq j_{2}$ and $\left(i_{1}, j\right)\left(i_{2}, j\right)$ with $i_{1}, i_{2} \in[1, p], i_{1} \neq i_{2}$, $j \in[1, q]$.

A vertex colouring $f:[1, p] \times[1, q] \rightarrow C$ of the graph $K_{p} \square K_{q}$ can be conveniently described using the $p \times q$ matrix $M=M(f)$ whose entry in the i th row and the j th column is $(M)_{i, j}=f(i, j)$. Such a colouring is proper if any row of M consists of q distinct entries and any column of M consists of p distinct entries. Further, f is complete provided that any pair $\{\alpha, \beta\} \in\binom{C}{2}$ is good
in M in the following sense: there are $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in[1, p] \times[1, q]$ such that $\left\{(M)_{i_{1}, j_{1}},(M)_{i_{2}, j_{2}}\right\}=\{\alpha, \beta\}$ and either $i_{1}=i_{2}$, which we express by saying that the pair $\{\alpha, \beta\}$ is row-based (in M), or $j_{1}=j_{2}$, i.e., the pair $\{\alpha, \beta\}$ is column-based (in M).

Let $\mathcal{M}(p, q, C)$ denote the set of $p \times q$ matrices M with entries from C such that all rows (columns) of M have q (p, respectively) distinct entries, and each pair $\{\alpha, \beta\} \in\binom{C}{2}$ is good in M. So, if $f:[1, p] \times[1, q] \rightarrow C$ is a proper complete vertex colouring of $K_{p} \square K_{q}$, then $M(f) \in \mathcal{M}(p, q, C)$.

Conversely, if $M \in \mathcal{M}(p, q, C)$, then the mapping $f_{M}:[1, p] \times[1, q] \rightarrow C$ with $f_{M}(i, j)=(M)_{i, j}$ is a proper complete vertex colouring of $K_{p} \square K_{q}$. Thus, we have proved:

Proposition 2. If $p, q \in[1, \infty)$ and C is a finite set, then the following statements are equivalent.
(1) There is a proper complete vertex colouring of $K_{p} \square K_{q}$ using as colours elements of C.
(2) $\mathcal{M}(p, q, C) \neq \emptyset$.

We have another evident result.
Proposition 3. If $p, q \in[1, \infty), C, D$ are finite sets, $M \in \mathcal{M}(p, q, C)$, mappings $\rho:[1, p] \rightarrow[1, p], \sigma:[1, q] \rightarrow[1, q], \pi: C \rightarrow D$ are bijections, and $M_{\rho, \sigma}, M_{\pi}$ are $p \times q$ matrices defined by $\left(M_{\rho, \sigma}\right)_{i, j}=(M)_{\rho(i), \sigma(j)}$ and $\left(M_{\pi}\right)_{i, j}=\pi\left((M)_{i, j}\right)$, then $M_{\rho, \sigma} \in \mathcal{M}(p, q, C)$ and $M_{\pi} \in \mathcal{M}(p, q, D)$.

Let $M \in \mathcal{M}(p, q, C)$. The frequency of a colour $\gamma \in C$ is the number $\operatorname{frq}(\gamma)$ of appearances of γ in M, and the frequency of M, denoted $\operatorname{frq}(M)$, is the minimum of frequencies of colours in C. A colour of frequency l is an l-colour. C_{l} is the set of l-colours, $c_{l}=\left|C_{l}\right|$, and C_{l+} is the set of colours of frequency at least l, $c_{l+}=\left|C_{l+}\right|$. We denote by $\mathbb{R}(i)$ the set $\left\{(M)_{i, j}: j \in[1, q]\right\}$ of colours in the i th row of M and by $\mathbb{C}(j)$ the set $\left\{(M)_{i, j}: i \in[1, p]\right\}$ of colours in the j th column of M. Further, for $k \in\{l, l+\}$ let

$$
\begin{array}{ll}
\mathbb{R}_{k}(i)=C_{k} \cap \mathbb{R}(i), & r_{k}(i)=\left|\mathbb{R}_{k}(i)\right|, \\
\mathbb{C}_{k}(j)=C_{k} \cap \mathbb{C}(j), & c_{k}(j)=\left|\mathbb{C}_{k}(j)\right|
\end{array}
$$

So $\mathbb{R}_{l}(i)$ and $\mathbb{R}_{l+}(i)$ is the set of colours in the row i which occur exactly and at least l times altogether, respectively; the meaning of $\mathbb{C}_{l}(j)$ and $\mathbb{C}_{l+}(j)$ is similar. If $A \subseteq[1, p],|A| \geq 2$, then

$$
\mathbb{R}(A)=\bigcap_{l \in A}\left(C_{|A|} \cap \mathbb{R}(l)\right), \quad r(A)=|\mathbb{R}(A)|
$$

$\mathbb{R}(A)$ is the set of colours which appear precisely in the rows numbered by A. Provided that $A \in\{\{i, j\},\{i, j, k\},\{i, j, k, l\}\}$, instead of $\mathbb{R}(A)$ we write $\mathbb{R}(i, j)$, $\mathbb{R}(i, j, k), \mathbb{R}(i, j, k, l)$, while $r(A)$ is simplified to $r(i, j), r(i, j, k), r(i, j, k, l)$, respectively. With $\{i, j\} \subseteq[1, p]$ and $\{m, n\} \subseteq[1, q]$ we set

$$
\begin{aligned}
\mathbb{R}_{3+}(i, j) & =C_{3+} \cap \mathbb{R}(i) \cap \mathbb{R}(j), & r_{3+}(i, j) & =\left|\mathbb{R}_{3+}(i, j)\right|, \\
\mathbb{C}(m, n) & =C_{2} \cap \mathbb{C}(m) \cap \mathbb{C}(n), & c(m, n) & =|\mathbb{C}(m, n)| .
\end{aligned}
$$

$\mathbb{R}_{3+}(i, j)$ is the set of colours of frequency at least 3 occuring in both rows i and j, and $\mathbb{C}(m, n)$, an analogue of the notation $\mathbb{R}(i, j)$, stands for the set of 2 -colours occuring exactly in the columns m and n. If $B \subseteq[1, p]$ and $3 \leq|B| \leq p-2$, then

$$
\mathbb{R}^{*}(B)=\bigcup_{l=2}^{|B|} \bigcup_{A \in\binom{B}{l}} \mathbb{R}(A) .
$$

$\mathbb{R}^{*}(B)$ is the set of colours of frequency at least 2 occuring only in the rows numbered by B. Since $\left\{\mathbb{R}(A): \exists_{l \in[2,|B|]} A \in\binom{B}{l}\right\}$ is a set of pairwise disjoint sets, we have

$$
r^{*}(B)=\left|\mathbb{R}^{*}(B)\right|=\sum_{l=2}^{|B|} \sum_{A \in\binom{B}{l}} r(A) .
$$

For $\gamma \in C$ let

$$
\mathbb{R}(\gamma)=\{i \in[1, p]: \gamma \in \mathbb{R}(i)\}
$$

be the set of (the numbers of) the rows containing the colour γ.
With $S \subseteq[1, p] \times[1, q]$ we say that a colour $\gamma \in C$ occupies a position in S if there is $(i, j) \in S$ such that $(M)_{i, j}=\gamma$. If $\emptyset \neq A \subseteq C$, the set of columns covered by A is

$$
\operatorname{Cov}(A)=\{j \in[1, q]: \mathbb{C}(j) \cap A \neq \emptyset\}
$$

i.e., the set of columns containing an element of A. We define $\operatorname{cov}(A)=|\operatorname{Cov}(A)|$, and with $A \in\{\{\alpha\},\{\alpha, \beta\}\}$ we use a simplified notation $\operatorname{Cov}(\alpha), \operatorname{Cov}(\alpha, \beta)$ and $\operatorname{cov}(\alpha), \operatorname{cov}(\alpha, \beta)$ instead of $\operatorname{Cov}(A)$ and $\operatorname{cov}(A)$.

2. Lower Bound

Proposition 4. If $q \in[7, \infty)$ and $q \equiv 1(\bmod 2)$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+3$.
Proof. Let $s=\frac{q-3}{2}$, and let M be the $6 \times q$ matrix below. We show that $M \in \mathcal{M}(6, q, C)$, where $C=[1,9] \cup X_{s} \cup Y_{s} \cup Z_{s} \cup T_{s}, U_{s}=\left\{u_{i}: i \in[1, s]\right\}$ for
$U \in\{X, Y, Z, T\}$, and the sets $[1,9], X_{s}, Y_{s}, Z_{s}, T_{s}$ are pairwise disjoint.

$$
\left(\begin{array}{ccccccccccccc}
1 & 2 & 3 & x_{1} & x_{2} & \ldots & x_{s-1} & x_{s} & y_{1} & y_{2} & \ldots & y_{s-1} & y_{s} \\
4 & 5 & 6 & x_{s} & x_{1} & \ldots & x_{s-2} & x_{s-1} & z_{1} & z_{2} & \ldots & z_{s-1} & z_{s} \\
7 & 8 & 9 & t_{1} & t_{2} & \ldots & t_{s-1} & t_{s} & x_{1} & x_{2} & \ldots & x_{s-1} & x_{s} \\
3 & 1 & 2 & z_{1} & z_{2} & \ldots & z_{s-1} & z_{s} & t_{1} & t_{2} & \ldots & t_{s-1} & t_{s} \\
5 & 6 & 4 & t_{s} & t_{1} & \ldots & t_{s-2} & t_{s-1} & y_{s} & y_{1} & \ldots & y_{s-2} & y_{s-1} \\
8 & 9 & 7 & y_{1} & y_{2} & \ldots & y_{s-1} & y_{s} & z_{s} & z_{1} & \ldots & z_{s-2} & z_{s-1}
\end{array}\right)
$$

Since $s \geq 2$, because of our assumptions on the structure of C it is clear that elements in lines (rows and columns) of M are pairwise distinct. Thus it is sufficient to show that each pair $\{\alpha, \beta\} \in\binom{C}{2}$ is good in M.

If $\alpha, \beta \in[1,9]$, then both α and β appear twice in the columns $1,2,3$, hence the pair $\{\alpha, \beta\}$ is column-based.

If $\alpha \in C$ and $\beta \in X_{s} \cup Y_{s} \cup Z_{s} \cup T_{s}$, realise that $\mathbb{R}(\alpha) \in \mathcal{R}_{1} \cup \mathcal{R}_{2}$ and $\mathbb{R}(\beta) \in$ \mathcal{R}_{2}, where $\mathcal{R}_{1}=\{\{1,4\},\{2,5\},\{3,6\}\}$ and $\mathcal{R}_{2}=\{\{1,2,3\},\{1,5,6\},\{2,4,6\}$, $\{3,4,5\}\}$. As $R \cap R_{2} \neq \emptyset$ for any $R \in \mathcal{R}_{1} \cup \mathcal{R}_{2}$ and any $R_{2} \in \mathcal{R}_{2}$, the pair $\{\alpha, \beta\}$ is row-based.

So, Proposition 2 yields $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq|C|=4 s+9=2 q+3$.

3. Auxiliary Results

Let $M \in \mathcal{M}(p, q, C)$ and let $\gamma \in C$. For the (complete) colouring f_{M} from the proof of Proposition 2 denote $V_{\gamma}=f_{M}^{-1}(\gamma) \subseteq[1, p] \times[1, q]$, and let $N\left(V_{\gamma}\right)$ be the neighbourhood of V_{γ} (the union of neighborhoods of vertices in V_{γ}). The excess of γ is defined to be the maximum number $\operatorname{exc}(\gamma)$ of vertices in a set $S \subseteq N\left(V_{\gamma}\right)$ such that each pair $\left\{\gamma, \gamma^{\prime}\right\} \in\binom{C}{2}$ is good even in the "partial matrix" corresponding to the restriction of f_{M} created by uncolouring the vertices of S.

Lemma 5. If $p, q \in[1, \infty), C$ is a finite set, $M \in \mathcal{M}(p, q, C)$ and $\gamma \in C$, then the following hold.

1. $\operatorname{frq}(\gamma) \leq \min (p, q)$;
2. $\operatorname{frq}(\gamma)=l$ implies $\operatorname{exc}(\gamma)=l(p+q-l-1)-(|C|-1) \geq 0$;
3. $\operatorname{frq}(M)=l$ implies $|C| \leq\left\lfloor\frac{p q}{l}\right\rfloor$.

Proof. 1. The assumption $\operatorname{frq}(\gamma)=l>\min (p, q)$ would mean, by the pigeonhole principle, that the colouring f_{M} is not proper.
2. Because of Proposition 3 we may suppose without loss of generality $(M)_{i, i}=\gamma$ for all $i \in[1, l]$. For simplicity we use (w) to indicate that it is just Proposition 3, which enables us to restrict our attention to matrices with a special property.

The colouring f_{M} is complete, hence each of $|C|-1$ colours in $C \backslash\{\gamma\}$ must occupy a position in the set $N\left(V_{\gamma}\right)=\{(i, j):(i \leq l \vee j \leq l) \wedge i \neq j\}$. Thus, $\left|N\left(V_{\gamma}\right)\right|=q l+(p-l) l-l \geq|C|-1$ and $\operatorname{exc}(\gamma)=\left|N\left(V_{\gamma}\right)\right|-(|C|-1)=$ $l(p+q-l-1)-(|C|-1) \geq 0$.
3. If $\alpha \in C$ is such that $\operatorname{frq}(\alpha)=\operatorname{frq}(M)=l$ and $\beta \in C$, then $\operatorname{frq}(\beta) \geq$ $\operatorname{frq}(\alpha)=l$. Therefore, the total number of entries of the matrix M is $p q \geq l|C|$, and the desired inequality follows.

The excess of a matrix $M \in \mathcal{M}(p, q, C)$, denoted by $\operatorname{exc}(M)$, is the minimum of excesses of colours in C.

Lemma 6. If $p, q \in[1, \infty)$, C is a finite set and $M \in \mathcal{M}(p, q, C)$, then $\operatorname{exc}(M)=$ $\operatorname{exc}(\gamma)$, where $\gamma \in C$ and $\operatorname{frq}(\gamma)=\operatorname{frq}(M)$.

Proof. Let $m=\min (p, q)$, and let $\gamma \in C$ be such that $l=\operatorname{frq}(\gamma)=\operatorname{frq}(M)$. For any $\alpha \in C$ then $k=\operatorname{frq}(\alpha) \geq \operatorname{frq}(\gamma)=l$, and, by Lemma 5.2, $\operatorname{exc}(\alpha)=k(p+q-$ $k-1)-|C|+1 \geq 0$. Therefore, $\operatorname{exc}(\alpha)-\operatorname{exc}(\gamma)=k(p+q-k-1)-l(p+q-l-1) \geq 0$, since $h(x)=x(p+q-x-1)$ is increasing in the interval $\left\langle 1, \frac{p+q-1}{2}\right\rangle \supsetneqq\langle 1, m-1\rangle$, and $p=q=m$ implies $h(m-1)=h(m)$. Consequently, $\operatorname{exc}(M)=\operatorname{exc}(\gamma)$.

Lemma 7 (see [15] and [4]). If $p, q \in[1, \infty)$ and $p \leq q$, then

$$
\operatorname{achr}\left(K_{p} \square K_{q}\right) \leq \max (\min (l(p+q-l-1)+1,\lfloor p q / l\rfloor): l \in[1, p]) .
$$

Corollary 8. If $q \in[7, \infty)$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right) \leq 2 q+7$.
Proof. By Lemma 7 with $p=6$ we obtain $\operatorname{achr}\left(K_{6} \square K_{q}\right) \leq \max (q+5,2 q+$ $\left.7,2 q,\left\lfloor\frac{6 q}{4}\right\rfloor,\left\lfloor\frac{6 q}{5}\right\rfloor, q\right)=2 q+7$.

4. Properties of Matrices in $\mathcal{M}(6, q, C)$

Suppose we know that $\operatorname{achr}\left(K_{6} \square K_{q}\right) \geq 2 q+s-1$ for a pair (q, s) with $q \in[7, \infty)$ and $s \in[1, \infty)$, and we want to prove that $\operatorname{achr}\left(K_{6} \square K_{q}\right)=2 q+s-1$; clearly, because of Corollary 8 it is sufficient to work with $s \leq 7$. Proceeding by the way of contradiction let s satisfy $\operatorname{achr}\left(K_{6} \square K_{q}\right)=2 q+s$. By Theorem 1 and Proposition 2 there is a $(2 q+s)$-element set C and a matrix $M \in \mathcal{M}(6, q, C)$. Our task will be accomplished by showing that the existence of M leads to a contradiction. For that purpose we shall need properties of M. So in all claims of the present section we suppose that the notation corresponds to a matrix $M \in \mathcal{M}(6, q, C)$ with $q \in[7, \infty)$ and $|C|=2 q+s \leq 2 q+7$. We associate with M an auxiliary graph G with $V(G)=[1,6]$, in which $\{i, k\} \in E(G)$ if and only if $r(i, k) \geq 1$ (so that there is a 2-colour appearing in both rows i and k).

Claim 9. The following statements are true:

1. $c_{1}=0$;
2. $c_{l}=0$ for $l \in[7, \infty)$;
3. $c_{2} \geq 3 s$;
4. $c_{3+} \leq 2 q-2 s$;
5. $\sum_{i=3}^{6} i c_{i} \leq 6 q-6 s$;
6. $\operatorname{frq}(M)=2$;
7. $\operatorname{exc}(M)=7-s ;$
8. $c_{4+} \leq c_{2}-3 s$;
9. if $\{i, k\} \in\binom{[1,6]}{2}$, then $r(i, k) \leq 8-s$.

Proof. 1. If $c_{1}>0$, a 1-colour $\gamma \in C$ satisfies $\operatorname{exc}(\gamma)=q+4-(2 q+s-1)=$ $5-q-s<0$ in contradiction to Lemma 5.2.
2. Use Lemma 5.1.
3. By Claims 9.1 and 9.2 , counting the number of vertices of $K_{6} \square K_{q}$ we get $6 q=\sum_{i=2}^{6} i c_{i}$. Therefore, $3(2 q+s)=3|C|=3\left(c_{2}+c_{3+}\right) \leq c_{2}+\sum_{i=2}^{6} i c_{i}=c_{2}+6 q$, which yields $c_{2} \geq 3 \mathrm{~s}$.
4. From $2(2 q+s)+c_{3+}=2|C|+c_{3+}=2 c_{2}+3 c_{3+} \leq \sum_{i=2}^{6} i c_{i}=6 q$ we obtain $c_{3+} \leq 2 q-2 s$.
$\overline{5}$. The assertion of Claim 9.3 leads to $\sum_{i=3}^{6} i c_{i}=\sum_{i=2}^{6} i c_{i}-2 c_{2}=6 q-2 c_{2} \leq$ $6 q-6 s$.
6. A consequence of Claims 9.1, 9.3 and the assumption $s \in[1,7]$.
7. Since $\operatorname{frq}(M)=2$ (Claim 9.6), by Lemma 6 we get $\operatorname{exc}(M)=2 q+6-$ $(2 q+s-1)=7-s$.
8. We have $3(2 q+s)-c_{2}+c_{4+}=3\left(c_{2}+c_{3}+c_{4+}\right)-c_{2}+c_{4+} \leq \sum_{i=2}^{6} i c_{i}=6 q$ and $c_{4+} \leq c_{2}-3 s$.
9. The inequality is trivial if $r(i, k)=0$. If $\gamma \in \mathbb{R}(i, k)$, then each colour of $\mathbb{R}(i, k) \backslash\{\gamma\}$ contributes one to the excess of γ, hence, by Claims 9.6 and 9.7, $r(i, k)-1 \leq \operatorname{exc}(\gamma)=\operatorname{exc}(M)=7-s$ and $r(i, k) \leq 8-s$.
Claim 10. If $\{i, k\} \in\binom{[1,6]}{2}$ and $r(i, k) \geq 1$, then $r(i, k)+r_{3+}(i, k) \leq 8-s$.
Proof. With $\gamma \in \mathbb{R}(i, k)$ each colour of $(\mathbb{R}(i, k) \backslash\{\gamma\}) \cup \mathbb{R}_{3+}(i, k)$ makes a contribution of one to the excess of γ, hence $r(i, k)-1+r_{3+}(i, k) \leq \operatorname{exc}(\gamma)=\operatorname{exc}(M) \leq$ $7-s$, and the claim follows.

Claim 11. If $\{i, k\} \in\binom{[1,6]}{2}, r(i, k) \geq 1, B \subseteq[1,6], 3 \leq|B| \leq 4$ and $B \cap\{i, k\}$ $=\emptyset$, then $r^{*}(B) \leq 2|B|$.

Proof. Consider a colour $\gamma \in \mathbb{R}(i, k)$ with $(M)_{i, j}=(M)_{k, l}=\gamma$ (where, of course, $j \neq l)$. If $\beta \in \mathbb{R}^{*}(B)$, there is $A \subseteq B$ with $|A| \geq 2$ and $\beta \in \mathbb{R}(A)$. The colour β
appears in neither of the rows i, k, hence the pair $\{\beta, \gamma\}$ is good in M only if β occupies a position in the set $\bigcup_{m \in A}\{(m, j),(m, l)\} \subseteq \bigcup_{m \in B}\{(m, j),(m, l)\}$. As a consequence, $r^{*}(B)=\left|\mathbb{R}^{*}(B)\right| \leq\left|\bigcup_{m \in B}\{(m, j),(m, l)\}\right|=2|B|$.

Claim 12. If $\{i, j, k, l, m, n\}=[1,6]$ and $r(i, j, k) \geq 1$, then $r(l, m, n) \leq 9$.
Proof. There is nothing to prove if $\mathbb{R}(l, m, n)=\emptyset$. Further, with $\alpha \in \mathbb{R}(i, j, k)$ and $\beta \in \mathbb{R}(l, m, n)$ the pair $\{\alpha, \beta\}$ is good in M only if the colour β occupies a position in the 9 -element set $\{l, m, n\} \times \operatorname{Cov}(\alpha)$.

Claim 13. If $\Delta(G) \geq 4$, then $q \leq 40-5 s$.
Proof. Suppose (w) $\Delta(G)=\operatorname{deg}_{G}(1) \geq 4$, and, moreover, let (w) the sequence $(r(1, k))_{k=2}^{6}$ be nondecreasing. The least $p \in[2,6]$ with $r(1, p) \geq 1$ satisfies $p \leq 3$, and we have $\mathbb{R}_{3+}(1)=\bigcup_{k=p}^{6} \mathbb{R}_{3+}(1, k)$. Then, by Claim 9.1, $q=|\mathbb{R}(1)|=$ $r_{2}(1)+r_{3+}(1)$. The inequality $r(1, k) \geq 1$ for $k \in[p, 6]$ yields, by Claim 10 , $r_{3+}(1, k) \leq 8-s-r(1, k)$; therefore,

$$
\begin{aligned}
q-r_{2}(1) & =r_{3+}(1)=\left|\bigcup_{k=p}^{6} \mathbb{R}_{3+}(1, k)\right| \leq \sum_{k=p}^{6} r_{3+}(1, k) \\
& \leq \sum_{k=p}^{6}[8-s-r(1, k)]=(7-p)(8-s)-\sum_{k=p}^{6} r(1, k),
\end{aligned}
$$

and then, since $r_{2}(1)=\sum_{k=p}^{6} r(1, k)$, we finish with $q \leq(7-p)(8-s) \leq 40-5 s$.
Claim 14. If $\Delta(G)=3,\{i, j, k, l, m, n\}=[1,6], r(i, l) \geq 1, r(j, l) \geq 1$ and $r(k, l) \geq 1$, then $r(l, m, n) \geq q+3 s-24$.

Proof. We have $\Delta(G)=\operatorname{deg}_{G}(l), \mathbb{R}(l, m)=\mathbb{R}(l, n)=\emptyset, \mathbb{R}(l)=\mathbb{R}_{2}(l) \cup \mathbb{R}_{3+}(l)$, $\mathbb{R}_{2}(l)=\mathbb{R}(i, l) \cup \mathbb{R}(j, l) \cup \mathbb{R}(k, l)$ and $\mathbb{R}_{3+}(l)=\mathbb{R}(l, m, n) \cup \mathbb{R}_{3+}(i, l) \cup \mathbb{R}_{3+}(j, l) \cup$ $\mathbb{R}_{3+}(k, l)$. Proceeding similarly as in the proof of Claim 13 leads to $q-r_{2}(l)=$ $r_{3+}(l) \leq r(l, m, n)+[8-s-r(i, l)]+[8-s-r(j, l)]+[8-s-r(k, l)]=r(l, m, n)+$ $3(8-s)-r_{2}(l)$, which yields the desired result.

5. Main Theorem

Theorem 15. If $q \in[41, \infty)$ and $q \equiv 1(\bmod 2)$, then $\operatorname{achr}\left(K_{6} \square K_{q}\right)=2 q+3$.
Proof. We proceed by the way of contradiction. As mentioned in the beginning of Section 4, we have to show that the existence of a matrix $M \in \mathcal{M}(6, q, C)$, where C is a set of $2 q+s=2 q+4$ colours, leads to a contradiction. First notice that, by Claim 9 , all colours of C are of frequency $l \in[2,6], c_{2} \geq 12$,
$c_{3+} \leq 2 q-8, \sum_{i=3}^{6} i c_{i} \leq 6 q-24, \operatorname{frq}(M)=2, \operatorname{exc}(M)=3$, and $\{i, k\} \in\binom{[1,6]}{2}$ implies $r(i, k) \leq 4$.

Since $q \geq 41$, from Claim 13 we know that $\Delta(G) \leq 3$ for the auxiliary graph G. Besides that, $\operatorname{deg}_{G}(i)=d_{i}$ for $i \in[1,6]$ yields $r_{2}(i)=\sum_{\{i, k\} \in E(G)} r(i, k) \leq$ $\sum_{\{i, k\} \in E(G)} 4=4 d_{i}$.
Claim 16. $\Delta(G) \leq 2$.
Proof. If $\Delta(G)=3,(\mathrm{w}) \operatorname{deg}_{G}(1)=3, r(1,4) \geq 1, r(1,5) \geq 1$ and $r(1,6) \geq 1$. By Claim 14 we have $r(1,2,3) \geq q-12 \geq 29$, and so Claim 11 yields $r(4,5)=$ $r(4,6)=r(5,6)=0$ (if $r(i, k) \geq 1$ for $\{i, k\} \in\binom{[4,6]}{2}$, then $29 \leq r(1,2,3) \leq$ $r^{*}([1,3]) \leq 2|[1,3]|=6$, a contradiction). Moreover, $r(4,5,6)=0$, for otherwise, by Claim $12, r(1,2,3) \leq 9$, a contradiction.

There is no $i \in[4,6]$ with $\operatorname{deg}_{G}(i)=3$, because then, again by Claim 14, $r(4,5,6) \geq q-12 \geq 29$ in contradiction to Claim 12. So, $\operatorname{deg}_{G}(i) \leq 2, i=4,5,6$, $2 c_{2}=\sum_{i=1}^{6} r_{2}(i) \leq 3 \cdot 12+3 \cdot 8=60$ and $c_{2} \leq 30$. Since $r(1, i) \geq 1$, Claim 11 yields $r^{*}([2,6] \backslash\{i\}) \leq 2|[2,6] \backslash\{i\}|=8, i=4,5,6$, and then $\rho^{*}=\sum_{i=4}^{6} r^{*}([2,6] \backslash\{i\})$ ≤ 24.

By inspection of summands of type $r(A)$ with $A \subseteq[2,6], 2 \leq|A| \leq 3$, that appear when counting the three summands of ρ^{*}, one can see that each of $r(A)$ with $A \in\binom{[2,6]}{2} \backslash\{\{4,5\},\{4,6\},\{5,6\}\}$ appears at least twice, and each of $r(A)$ with $A \in\binom{[2,6]}{3} \backslash\{\{4,5,6\}\}$ (which is a set belonging to $C_{3} \backslash \mathbb{R}_{3}(1)$) appears at least once. Because of $r(4,5)=r(4,6)=r(5,6)=r(4,5,6)=0$ this leads to $2 \sum_{\{i, k\} \in\binom{[2,6]}{2}} r(i, k)+c_{3}-r_{3}(1) \leq \rho^{*} \leq 24$, which, having in mind that $2 \sum_{\{i, k\} \in\binom{[2,6]}{2}} r(i, k)=2 c_{2}-2 r_{2}(1)$, yields $2 c_{2}-2 r_{2}(1)+c_{3}-r_{3}(1) \leq 24$. Together with the inequality $r_{2}(1)+r_{3}(1) \leq q$ then $c_{2}+c_{3} \leq q+24+r_{2}(1)-c_{2} \leq q+24$, $2 q+4=|C|=c_{2}+c_{3}+c_{4+} \leq q+24+c_{4+}$, and so $c_{4+} \geq q-20 \geq 21$ in contradiction to $c_{4+} \leq c_{2}-3 s \leq 30-12=18$, which comes from Claim 9.8 and the above inequality for c_{2}.

By Claim 16 each component of G is either a path or a cycle.
Claim 17. No component of the graph G is K_{2}.
Proof. Let (w) G have a component K_{2} with vertex set $[1,2]$. Then $r(1,2) \in$ $[1,4], r(i, k)=0$ for $(i, k) \in[1,2] \times[3,6]$, and so $c_{2}=r(1,2)+\rho$, where, by Claim 11, $\rho=\sum_{\{i, k\} \in\binom{[3,6]}{2}} r(i, k) \leq r^{*}([3,6]) \leq 8$. Further, $(w) \operatorname{Cov}(\mathbb{R}(1,2))=$ $[1, n]$ with $n \in[2,8]$.

If $r(1,2) \in[1,3]$, then $c_{2} \leq 3+8=11$, a contradiction.
If $r(1,2)=4$, then $n \geq 4,8 \geq \rho=\left|C_{2} \backslash \mathbb{R}(1,2)\right| \geq 12-4=8, \rho=8$ and $c_{2}=12$. In the case $n \in[5,8]$ there is $j \in[1, n]$ such that $\mathbb{C}(j)$ contains at most $\left\lfloor\frac{2 \cdot 8}{n}\right\rfloor \leq 3$ colours of $C_{2} \backslash \mathbb{R}(1,2)$. Then, however, for a colour $\gamma \in \mathbb{R}(1,2) \cap \mathbb{C}(j)$
the number of colours $\delta \in C_{2} \backslash \mathbb{R}(1,2)$, for which the pair $\{\gamma, \delta\}$ is good in M, is at most seven, a contradiction.

Therefore $n=4,2$-colours occupy all positions in $[1,6] \times[1,4]$, Claim 9.8 yields $c_{4+} \leq 12-3 \cdot 4=0, c_{4+}=0$, and all positions in the set $[1,6] \times[5, q]$ are occupied by 3 -colours. Among other things this means that

$$
\begin{equation*}
c_{3}=\frac{6(q-4)}{3}=2 q-8 \geq q+(41-8)=q+33 \tag{1}
\end{equation*}
$$

$r_{2}(i)=4$ and $r_{3}(i)=q-4$ for $i \in[1,6]$, and $r(i, k) \in[0,4]$ for every $\{i, k\} \in\binom{[3,6]}{2}$.
Recall that, by Claim $16, \Delta(G) \leq 2$. Further, if $r(i, k)=4$ for some $\{i, k\} \in$ $\binom{[3,6]}{2}$, then $\operatorname{deg}_{G}(m)=1, m=3,4,5,6$, since with $\{i, j, k, l\}=[3,6]$ we have $r(j, l)=4$. In such a case G is (isomorphic to) $3 K_{2}$. Otherwise, if $r(i, k)<4$ for each $\{i, k\} \in\binom{[3,6]}{2}$, then $\operatorname{deg}_{G}(m)=2, m=3,4,5,6$, and G is (isomorphic to) $K_{2} \cup C_{4}$.

Let us first consider the case $G=3 K_{2}$, in which (w) $r(i, i+1)=4$, $i=3,5$. Clearly, a set $\mathbb{R}(i, j, k)$ with $\{i, j, k\} \in\binom{[1,6]}{3}$ can be nonempty only if $\{i, j, k\} \cap\{l, l+1\} \neq \emptyset, l=1,3,5$. As a consequence the assumption $\mathbb{R}(i, j, k) \neq \emptyset$ with $i<j<k$ implies $(i, j, k) \in\{(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,3,5)$, $(2,3,6),(2,4,5),(2,4,6)\}$.

Suppose that $\left\{\left(i_{m}, j_{m}\right): m \in[1,4]\right\}=\{(3,5),(3,6),(4,5),(4,6)\}=\left\{\left(k_{m}, l_{m}\right)\right.$: $m \in[1,4]\}$ and $\left\{i_{m}, j_{m}, k_{m}, l_{m}\right\}=[3,6]$ for $m \in[1,4]$. Then

$$
\begin{equation*}
c_{3}=\sum_{m=1}^{4}\left[r\left(1, i_{m}, j_{m}\right)+r\left(2, k_{m}, l_{m}\right)\right] \tag{2}
\end{equation*}
$$

Further, for $m, n \in[1,4]$ the sets $\left\{i_{m}, j_{m}\right\}$ and $\left\{k_{n}, l_{n}\right\}$ are disjoint if and only if $m=n$. Put

$$
\begin{array}{ll}
T(1)=\left\{m \in[1,4]: r\left(1, i_{m}, j_{m}\right) \geq 1\right\}, & t(1)=|T(1)| \\
T(2)=\left\{m \in[1,4]: r\left(2, k_{m}, l_{m}\right) \geq 1\right\}, & t(2)=|T(2)|
\end{array}
$$

and $T=T(1) \cap T(2)$. Let

$$
\sigma(P)=\sum_{p \in P}\left[r\left(1, i_{p}, j_{p}\right)+r\left(2, k_{p}, l_{p}\right)\right]
$$

for $P \subseteq[1,4]$. Using Claim 12 we see that $m \in T(1)$ implies $r\left(2, k_{m}, l_{m}\right) \leq 9$, while $m \in T(2)$ means that $r\left(1, i_{m}, j_{m}\right) \leq 9$. Therefore, with $m \in T$ we have $r\left(1, i_{m}, j_{m}\right)+r\left(2, k_{m}, l_{m}\right) \leq 9+9=18$, and so $\sigma(T) \leq 18|T|$.

If $t(1)=4$, then $q-4=r_{3}(2) \leq \sum_{x=1}^{4} r\left(2, k_{x}, l_{x}\right) \leq 4 \cdot 9=36$, and $q \leq 40$, a contradiction. Similarly, with $t(2)=4$ we get $q-4=r_{3}(1) \leq \sum_{x=1}^{4} r\left(1, i_{x}, j_{x}\right) \leq$ 36 , and $q \leq 40$ as well.

If there is $x \in[1,2]$ such that $t(x)=1$ and $T(x)=\{m\}$, then $r_{3}(x)=$ $r\left(x, i_{m}, j_{m}\right)=r_{3}\left(i_{m}\right)=r_{3}\left(j_{m}\right)=q-4 \geq 37$, hence $r\left(3-x, k_{m}, l_{m}\right)=r_{3}(3-x)=$ $r_{3}\left(k_{m}\right)=r_{3}\left(l_{m}\right)=q-4 \geq 37$, which contradicts Claim 12.

We are left with the situation $t(1), t(2) \in[2,3]$ (and $|T| \leq \min (t(1), t(2))$). Suppose (w) $t(1) \geq t(2)$.

If $|T|=3$, then $T(1)=T=T(2),[1,4] \backslash T=\{p\}$ and $r\left(1, i_{p}, j_{p}\right)=$ $r\left(2, k_{p}, l_{p}\right)=0$, hence $2 q-8=c_{3}=\sigma([1,4])=\sigma(T) \leq 18 \cdot 3=54$ and $q \leq 31$, a contradiction.

If $|T|=2$, then n out of four summands that sum up to $\sigma([1,4] \backslash T)$ are positive, $n \leq 2$. Moreover, $\sigma([1,4] \backslash T) \leq q-4$. The inequality is obvious provided that $n \leq 1$, while if $n=2, a \in T(1) \backslash T(2)$ and $b \in T(2) \backslash T(1)$, then with $e \in\left\{i_{a}, j_{a}\right\} \cap\left\{k_{b}, l_{b}\right\}$ we have $\sigma([1,4] \backslash T)=r\left(1, i_{a}, j_{a}\right)+r\left(2, k_{b}, l_{b}\right) \leq r_{3}(e)=q-4$. Thus $c_{3}=\sigma(T)+\sigma([1,4] \backslash T) \leq 18 \cdot 2+(q-4)=q+32$ in contradiction to (1).

For $|T|=1$ we get $t(2)=2$. With $t(1)=2$ we obtain, similarly as in the case $|T|=2, c_{3} \leq 18+(q-4)=q+14$. So, assume that $t(1)=3, T=\{t\}$ and $T(2) \backslash T(1)=\{p\}$ (note that $p \neq t$).

Suppose first that $\left\{k_{p}, l_{p}\right\} \neq\left\{i_{t}, j_{t}\right\}$. In such a case $\left|\left\{k_{p}, l_{p}\right\} \cap\left\{i_{t}, j_{t}\right\}\right|=1$; moreover, since $\left\{k_{p}, l_{p}\right\} \subseteq[3,6]=\left\{i_{t}, j_{t}, k_{t}, l_{t}\right\}$, we have $\left|\left\{k_{p}, l_{p}\right\} \cap\left\{k_{t}, l_{t}\right\}\right|=1$, and there is $g \in\{k, l\}$ such that $\left\{k_{p}, l_{p}\right\} \cap\left\{k_{t}, l_{t}\right\}=\left\{g_{t}\right\}$. Then five from among eight summands in (2) are positive, namely $r\left(1, i_{t}, j_{t}\right), r\left(2, k_{t}, l_{t}\right), r\left(2, k_{p}, l_{p}\right)$ and $r\left(1, i_{m}, j_{m}\right)$ with $m \in[1,4] \backslash\{t, p\}$. Having in mind that $g_{t} \notin\left\{i_{t}, j_{t}\right\}, g_{t} \notin$ $\left\{i_{p}, j_{p}\right\}$, and each element of $[3,6]$ is involved in exactly two of the ordered pairs $(3,5),(3,6),(4,5),(4,6)$, we see that except for $r\left(1, i_{t}, j_{t}\right)$ all mentioned positive summands correspond to colours of $\mathbb{R}_{3}\left(g_{t}\right)$. That is why $c_{3} \leq r\left(1, i_{t}, j_{t}\right)+r_{3}\left(g_{t}\right) \leq$ $9+(q-4)=q+5$, a contradiction to (1) again.

On the other hand, if $\left\{k_{p}, l_{p}\right\}=\left\{i_{t}, j_{t}\right\}$, then $\left|\left\{i_{p}, j_{p}\right\} \cap\left\{i_{t}, j_{t}\right\}\right|=\mid\left\{i_{p}, j_{p}\right\} \cap$ $\left\{k_{p}, l_{p}\right\} \mid=0$, hence for $m \in[1,4] \backslash\{t, p\}$ we have $\left|\left\{i_{m}, j_{m}\right\} \cap\left\{i_{t}, j_{t}\right\}\right|=1$, and so positive summands in (2) are $r\left(1, i_{t}, j_{t}\right), r\left(2, k_{t}, l_{t}\right), r\left(2, k_{p}, l_{p}\right)=r\left(2, i_{t}, j_{t}\right)$, $r\left(1, g_{t}, k_{t}\right)$ and $r\left(1, h_{t}, l_{t}\right)$, where $\{g, h\}=\{i, j\}$. Then

$$
\begin{aligned}
& q-4=r_{3}(2)=r\left(2, k_{t}, l_{t}\right)+r\left(2, i_{t}, j_{t}\right), \\
& q-4=r_{3}\left(k_{t}\right)=r\left(2, k_{t}, l_{t}\right)+r\left(1, g_{t}, k_{t}\right),
\end{aligned}
$$

which yields

$$
r\left(2, i_{t}, j_{t}\right)=r\left(1, g_{t}, k_{t}\right)=q-4-r\left(2, k_{t}, l_{t}\right) \geq(q-4)-9=q-13
$$

so that

$$
q-4=r_{3}\left(g_{t}\right)=r\left(1, i_{t}, j_{t}\right)+r\left(1, g_{t}, k_{t}\right)+r\left(2, i_{t}, j_{t}\right) \geq 1+2(q-13)
$$

and $q \leq 21$, a contradiction.

If $|T|=0$, then $t(1)=t(2)=2$, and, by symmetry, $T(1)=[1,2], T(2)=$ $[3,4]$. We have $\left\{i_{1}, j_{1}\right\} \cup\left\{i_{2}, j_{2}\right\}=[3,6]$, for otherwise there is $e \in[3,6] \backslash\left(\left\{i_{1}, j_{1}\right\} \cup\right.$ $\left\{i_{2}, j_{2}\right\}$), hence $e \in\left\{i_{3}, j_{3}\right\} \cap\left\{i_{4}, j_{4}\right\}, e \notin\left\{k_{3}, l_{3}\right\} \cup\left\{k_{4}, l_{4}\right\}$ and $r_{3}(e)=0 \neq q-4$, a contradiction. Thus, by symmetry we may assume that $i_{1}=3<i_{2}=4$.

Therefore, $(\mathrm{w})\left(i_{1}, j_{1}\right)=(3,5)$ and $\left(i_{2}, j_{2}\right)=(4,6)$, which means that $r(m$, $n, p)$ with $\{m, n, p\} \in\binom{[1,6]}{3}$ and $m<n<p$ is positive if and only if $(m, n, p) \in$ $\{(1,3,5),(1,4,6),(2,3,6),(2,4,5)\}$. We have $r_{3}(6)=r(1,4,6)+r(2,3,6)=q-$ $4 \equiv 1(\bmod 2)$, hence

$$
\begin{equation*}
r(1,4,6) \not \equiv r(2,3,6) \quad(\bmod 2) \tag{3}
\end{equation*}
$$

Similarly, from $r_{3}(1)=q-4=r_{3}(3)$ it follows that $r(1,3,5) \not \equiv r(1,4,6)(\bmod 2)$ and $r(1,3,5) \not \equiv r(2,3,6)(\bmod 2)$ so that $r(1,4,6) \equiv r(2,3,6)(\bmod 2)$, which contradicts (3).

It remains to analyse the case $G=K_{2} \cup C_{4}$, in which (w) $\{\{3,4\},\{4,5\},\{5,6\}$, $\{6,3\}\} \subseteq E(G)$. The completeness of f_{M} implies $C_{3} \subseteq \mathbb{R}(1,3,5) \cup \mathbb{R}(1,4,6) \cup$ $\mathbb{R}(2,3,5) \cup \mathbb{R}(2,4,6)$. So,

$$
c_{3}=[r(1,3,5)+r(2,4,6)]+[r(1,4,6)+r(2,3,5)] .
$$

Let $\overline{\mathcal{T}}=\{(1,3,5),(1,4,6),(2,3,5),(2,4,6)\}$,

$$
\mathcal{T}=\{(i, j, k) \in \overline{\mathcal{T}}: r(i, j, k) \geq 1\}
$$

and $t=|\mathcal{T}|$. From $r_{3}(i)=q-4>0$ for $i \in[1,6]$ it follows that $t \geq 2$. If $(i, j, k),(l, m, n) \in \mathcal{T},(i, j, k) \neq(l, m, n)$, then either $r(i, j, k)+r(l, m, n) \leq 9+9=$ 18 (by Claim 12, if $\{i, j, k\} \cap\{l, m, n\}=\emptyset$) or $r(i, j, k)+r(l, m, n) \leq r_{3}(p)=q-4$ (if $p \in\{i, j, k\} \cap\{l, m, n\}$). As a consequence then $c_{3} \leq \max \left(b_{2}, b_{3}, b_{4}\right)$, where $b_{2}=q-4, b_{3}=18+(q-4)=q+14$ and $b_{4}=18+18=36$. Thus $c_{3} \leq q+14$, which contradicts (1).

Claim 18. No component of the graph G is K_{3}.
Proof. Let (w) G have the component K_{3} with the vertex set $[1,3]$.
If $G=K_{3} \cup 3 K_{1}$, then $r(1,2)=r(1,3)=r(2,3)=4, c_{2}=12$ and $c_{4+}=0$. From Claim 10 it follows that $r_{3+}(1,3)=0=r_{3+}(2,3)$, hence $r(3, i, k) \geq 1$ with $\{i, k\} \in\binom{[1,6] \backslash\{3\}}{2}$ implies $\{i, k\} \in\{\{4,5\},\{4,6\},\{5,6\}\}$. By Claim 11 then $r_{3}(3)=r(3,4,5)+r(3,4,6)+r(3,5,6) \leq r^{*}([3,6]) \leq 8$, hence $q=r_{2}(3)+r_{3}(3) \leq$ $(4+4)+8=16$, a contradiction.

If G has besides the above K_{3} another nontrivial component (of order at least 2) and $r(i, k) \geq 1$ with $\{i, k\} \in\binom{[4,6]}{2}$, then, by Claim 11, $r(1,2)+r(1,3)+r(2,3)+$ $r(1,2,3)=r^{*}([1,3]) \leq 6$ and $r(4,5)+r(4,6)+r(5,6)+r(4,5,6)=r^{*}([4,6]) \leq 6$, hence $12 \leq c_{2} \leq 6+6, c_{2}=12, r(1,2)+r(1,3)+r(2,3)=r(4,5)+r(4,6)+r(5,6)=$
$6, r(1,2,3)=r(4,5,6)=0, c_{4+}=0$, and $c_{3}=2 q-8>0$. So, among other things, with $C_{2}^{1}=\mathbb{R}(1,2) \cup \mathbb{R}(1,3) \cup \mathbb{R}(2,3)$ and $C_{2}^{2}=\mathbb{R}(4,5) \cup \mathbb{R}(4,6) \cup \mathbb{R}(5,6)$ we have $\left|C_{2}^{1}\right|=\left|C_{2}^{2}\right|=6$. If $\alpha \in C_{2}^{1}$ and $\beta \in C_{2}^{2}$, then the pair $\{\alpha, \beta\}$ is column-based, hence all six positions in $\operatorname{Cov}(\alpha) \times[4,6]$ are occupied by colours of C_{2}^{2}, and for any $j \in \operatorname{Cov}\left(C_{2}^{1}\right)$ all three positions in $\{j\} \times[4,6]$ are occupied by colours of C_{2}^{2}. Consequently, $\operatorname{cov}\left(C_{2}^{1}\right)=\frac{2\left|C_{2}^{2}\right|}{3}=4$, and (w) all positions in $[1,6] \times[1,4]$ are occupied by colours of $C_{2}=C_{2}^{1} \cup C_{2}^{2}$. If $\{i, k\} \in\binom{J}{2}$, where $J \in\{[1,3],[4,6]\}$, then $r(i, k)>0$, since otherwise with $\{i, j, k\}=J$ we get $r_{2}(j)=r(i, j)+r(j, k)=6$, which contradicts Claim 9.9. For a colour $\gamma \in C_{3}$ there are $I, J \in\{[1,3],[4,6]\}$, $I \neq J$, such that $|\mathbb{R}(\gamma) \cap I|=2$ and $|\mathbb{R}(\gamma) \cap J|=1$. Then $\mathbb{R}(\gamma) \cap J=\{j\}$, and with $\{i, j, k\}=J$ there exists a colour $\alpha \in \mathbb{R}(i, k)$; in such a case, however, the pair $\{\alpha, \gamma\}$ is not good, a contradiction.

Claim 19. No component of the graph G is a path of order at least 3 .
Proof. Suppose that G has a path component P of order at least 3 .
If G has besides P another nontrivial component (of order at least 2), then $G=P \cup P^{\prime}$, where, by Claims 17 and 18 , both P and P^{\prime} are paths of order 3, (w) $V(P)=[1,3], V\left(P^{\prime}\right)=[4,6]$ and $r(i, i+1) \geq 1$ for $i=1,2,4,5$. Similarly as in the proof of Claim 18 it is easy to see that $r(1,2)+r(2,3)=r(4,5)+r(5,6)=6$. Since $r_{2}(2)=6$, there are colours $\alpha, \beta \in \mathbb{R}(1,2) \cup \mathbb{R}(2,3)$ such that $\operatorname{Cov}(\alpha) \cap \operatorname{Cov}(\beta)=\emptyset$. Then each colour of $\mathbb{R}(4,5) \cup \mathbb{R}(5,6)$ occupies a position in $[4,6] \times \operatorname{Cov}(\alpha)$ and a position in $[4,6] \times \operatorname{Cov}(\beta)$ as well so that $\operatorname{Cov}(\mathbb{R}(4,5) \cup \mathbb{R}(5,6)) \subseteq \operatorname{Cov}(\alpha, \beta)$; this leads to a contradiction since $\operatorname{cov}(\mathbb{R}(4,5) \cup \mathbb{R}(5,6)) \geq r_{2}(5)=6$ and $\operatorname{cov}(\alpha, \beta)=4$.

So, P is the unique nontrivial component of G, (w) $V(P)=[1, p]$ and $E(P)=$ $\{\{i, i+1\}: i \in[1, p-1]\}$. Since $12 \leq c_{2}=\sum_{i=1}^{p-1} r(i, i+1) \leq 4(p-1)$, we have $p \in[4,6]$.

If $p=4$, then $r(i, i+1)=4, i=1,2,3, c_{2}=12, c_{4+}=0$ and

$$
\begin{equation*}
i \in[1,6] \Rightarrow r_{3}(i)=q-r_{2}(i) \geq q-8 \geq 33 . \tag{4}
\end{equation*}
$$

If $\alpha \in \mathbb{R}(1,2)$ and $\beta \in \mathbb{R}(3,4)$, then the pair $\{\alpha, \beta\}$ is column-based, hence all four positions in $\operatorname{Cov}(\alpha) \times[3,4]$ are occupied by colours of $\mathbb{R}(3,4)$, and with $j \in$ $\operatorname{Cov}(\mathbb{R}(1,2)) \times[3,4]$, both positions in $\{j\} \times[3,4]$ are occupied by colours of $\mathbb{R}(3,4)$. Therefore, $\operatorname{cov}(\mathbb{R}(1,2))=\frac{2|\mathbb{R}(3,4)|}{2}=4$, and (w) all positions in $[1,4] \times[1,4]$ are occupied by colours of $\mathbb{R}(1,2) \cup \mathbb{R}(3,4)$. Thus, (w) $\operatorname{Cov}(\mathbb{R}(2,3))=[5, n]$, where $n \in[8,12]$.

By Claim 10 we know that $r(i, j, k)=0$ if there is $l \in[1,3]$ such that $\{l, l+1\} \subseteq\{i, j, k\}$.

Suppose that $\gamma \in \mathbb{R}(1,5,6)$. Since all pairs $\{\gamma, \delta\}$ with $\delta \in \mathbb{R}(3,4)$ are good in M, two positions in $[5,6] \times[1,4]$ must be occupied by γ. Then, however, the number of pairs $\{\gamma, \varepsilon\}$ with $\varepsilon \in \mathbb{R}(2,3)$ that are good in M is at most
two, a contradiction. So, $r(1,5,6)=0$, and an analogous reasoning shows that $r(4,5,6)=0$.

Claim 11 yields $r(1,4,5)+r(1,4,6) \leq r^{*}(\{1,4,5,6\}) \leq 8$. A colour $\gamma \in$ $\mathbb{R}(2,5,6)$ as well as a colour $\delta \in \mathbb{R}(3,5,6)$ occupies two positions in $[5,6] \times[1,4]$ (each pair $\{\gamma, \varepsilon\}$ with $\varepsilon \in \mathbb{R}(3,4)$ and each pair $\{\delta, \zeta\}$ with $\zeta \in \mathbb{R}(1,2)$ is good in $M)$. Thus $r(2,5,6)+r(3,5,6) \leq 4$ and

$$
\begin{equation*}
r(1,4,5)+r(1,4,6)+r(2,5,6)+r(3,5,6) \leq 12 \tag{5}
\end{equation*}
$$

The set of remaining triples $(i, j, k) \in[1,6]^{3}$ with $i<j<k$ such that $r(i, j, k)$ can be positive is $\mathcal{T}=\{(1,3,5),(1,3,6),(2,4,5),(2,4,6)\}$. Suppose that $r(i, j, k) \geq 1$ with $(i, j, k) \in \mathcal{T}$ if and only if $(i, j, k) \in\left\{\left(i_{l}, j_{l}, k_{l}\right): l \in[1, t]\right\}$. We show that there is $m \in[1,6]$ with $r_{3}(m) \leq 30$ in contradiction to (4).

If $t=4$, then, by Claim 12, $r\left(i_{l}, j_{l}, k_{l}\right) \leq 9, l=1,2,3,4$, and so, using (5), $r_{3}(m) \leq 12+2 \cdot 9=30$ for (any) $m \in[1,6]$. If $t=3$ and $r(i, j, k)=0$ for $(i, j, k) \in \mathcal{T}$, then $r_{3}(m) \leq 12+9=21$ for $m \in\{i, j, k\}$. The same upper bound applies for $m \in[1,6]$ if $t=2$ and $\left\{i_{1}, j_{1}, k_{1}\right\} \cap\left\{i_{2}, j_{2}, k_{2}\right\}=\emptyset$.

If $t=2$ and $\left\{i_{1}, j_{1}, k_{1}\right\} \cap\left\{i_{2}, j_{2}, k_{2}\right\} \neq \emptyset$, for $m \in[1,6] \backslash\left(\left\{i_{1}, j_{1}, k_{1}\right\} \cup\right.$ $\left\{i_{2}, j_{2}, k_{2}\right\}$) we obtain $r_{3}(m) \leq 12$. The same inequality is available for $m \in$ $[1,6] \backslash\left\{i_{1}, j_{1}, k_{1}\right\}$ if $t=1$ and for $m \in[1,6]$ if $t=0$.

If $p=5$, then, by Claim 11, from $r(4,5) \geq 1$ it follows that $r(1,2)+r(2,3) \leq$ $r^{*}([1,3]) \leq 6 ;$ similarly, $r(1,2) \geq 1$ yields $r(3,4)+r(4,5) \leq r^{*}([3,5]) \leq 6$. Then $12 \leq c_{2}=\sum_{i=1}^{4} r(i, i+1) \leq 6+6, c_{2}=12$ and $r(1,2)+r(2,3)=6=$ $r(3,4)+r(4,5)$. If $(M)_{1, j}=\gamma \in \mathbb{R}(1,2)$, then all positions in $[3,5] \times \operatorname{Cov}(\gamma)$ are occupied by six distinct colours of $\mathbb{R}(3,4) \cup \mathbb{R}(4,5)$, hence $(M)_{3, j} \in \mathbb{R}(3,4)$ and $\delta=(M)_{5, j} \in \mathbb{R}(4,5)$. Analogously, all positions in $[1,3] \times \operatorname{Cov}(\delta)$ are occupied by six distinct colours of $\mathbb{R}(1,2) \cup \mathbb{R}(2,3)$, which implies $(M)_{3, j} \in \mathbb{R}(2,3)$, a contradiction.

If $p=6$, then, by Claim $11, r^{*}([1,6] \backslash[l, l+1]) \leq 8$ for $l \in[1,5]$, hence

$$
\begin{equation*}
\rho^{*}=\sum_{l=1}^{5} r^{*}([1,6] \backslash[l, l+1]) \leq 40 \tag{6}
\end{equation*}
$$

It is easy to see that in the sum ρ^{*} each of the summands $r(i, i+1)$ with $i \in$ $[1,5]$ appears in the expression of $r^{*}([1,6] \backslash[l, l+1])$ for at least two l 's, while each of the summands $r(i, j, k)$ satisfying $\{i, j, k\} \in\binom{[1,6]}{3} \backslash\{\{1,3,5\},\{2,3,5\}$, $\{2,4,5\},\{2,4,6\}\}$ and $i<j<k$ appears for at least one l. Since $c_{2}=\sum_{l=1}^{5} r(l, l+$ 1), with

$$
\rho=r(1,3,5)+r(2,3,5)+r(2,4,5)+r(2,4,6)
$$

the inequality (6) leads to

$$
\begin{equation*}
2 c_{2}+c_{3}-\rho \leq \rho^{*} \leq 40 \tag{7}
\end{equation*}
$$

Moreover, $r_{2}(l)+r_{3}(l) \leq q$ implies

$$
r_{3}(l) \leq q-r_{2}(l)=q-[r(l-1, l)+r(l, l+1)] \leq q-2, l=2,5,
$$

and so, having in mind that, by Claim $12, \min (r(1,3,5), r(2,4,6)) \leq 9$,

$$
\begin{align*}
\rho & \leq \min \left(r_{3}(2)+r(1,3,5), r_{3}(5)+r(2,4,6)\right) \\
& \leq q-2+\min (r(1,3,5), r(2,4,6)) \leq q+7 . \tag{8}
\end{align*}
$$

Since, by Claim 9.8, $c_{4+}-c_{2} \leq-12$, using (7) and (8) we obtain

$$
2 q+4=c_{2}+c_{3}+c_{4+} \leq 40+\rho+c_{4+}-c_{2} \leq 40+(q+7)-12=q+35,
$$

and, finally, $q \leq 31$, a contradiction.
With $l \in \mathbb{Z}$ and $m \in[2, \infty)$ we use $(l)_{m}$ to denote the unique $n \in[1, m]$ satisfying $n \equiv l(\bmod m)$.
Claim 20. No component of the graph G is a 4-cycle.
Proof. If G has a 4 -cycle component, (w) $r\left(i,(i+1)_{4}\right) \geq 1$ for $i \in[1,4]$. Note that, by Claim 17, $r(5,6)=0=r_{2}(5)=r_{2}(6)$. Let $i \in[1,4]$ and

$$
P_{i}=\left\{\left((i+2)_{4}, 5\right),\left((i+2)_{4}, 6\right),(5,6)\right\} .
$$

If $\gamma \in \mathbb{R}_{3+}(i)$, there is $A \subseteq[1,6]$ such that $|A| \geq 3,\{i\} \subseteq A$ and $\gamma \in \mathbb{R}(A)$. Provided that $A \cap\left\{(i-1)_{4},(i+1)_{4}\right\} \neq \emptyset$, we get $\gamma \in \bigcup_{j \in\left\{(i-1)_{4}, i\right\}} \mathbb{R}_{3+}\left(j,(j+1)_{4}\right)$. On the other hand, $A \cap\left\{(i-1)_{4},(i+1)_{4}\right\}=\emptyset$ implies either $|A|=3$ and $\gamma \in \bigcup_{(j, k) \in P_{i}} \mathbb{R}(i, j, k)$ or $|A|=4$ and $\gamma \in \mathbb{R}\left(i,(i+2)_{4}, 5,6\right)$. As a consequence,

$$
\mathbb{R}_{3+}(i) \subseteq \mathbb{R}\left(i,(i+2)_{4}, 5,6\right) \cup \bigcup_{j \in\left\{(i-1)_{4}, i\right\}} \mathbb{R}_{3+}\left(j,(j+1)_{4}\right) \cup \bigcup_{(j, k) \in P_{i}} \mathbb{R}(i, j, k),
$$

and by Claim 10 we have

$$
\begin{aligned}
r_{3+}(i) & \leq r\left(i,(i+2)_{4}, 5,6\right)+\sum_{j \in\left\{(i-1)_{4}, i\right\}} r_{3+}\left(j,(j+1)_{4}\right)+\sum_{(j, k) \in P_{i}} r(i, j, k) \\
& \leq r\left(i,(i+2)_{4}, 5,6\right)+\sum_{j \in\left\{(i-1)_{4}, i\right\}}\left[4-r\left(j,(j+1)_{4}\right)\right]+\sum_{(j, k) \in P_{i}} r(i, j, k) .
\end{aligned}
$$

Therefore, realising that

$$
\sum_{i=1}^{4} \sum_{j \in\left\{(i-1)_{4}, i\right\}} r\left(j,(j+1)_{4}\right)=\sum_{i=1}^{4} r_{2}(i),
$$

we obtain
(9) $\quad \sum_{i=1}^{4} r_{3+}(i) \leq 32+\sum_{i=1}^{4}\left[r\left(i,(i+2)_{4}, 5,6\right)+\sum_{(j, k) \in P_{i}} r(i, j, k)\right]-\sum_{i=1}^{4} r_{2}(i)$.

On the right-hand side of the inequality (9) there are among others (partial) summands $r(A)$ with $A \in\binom{[1,6]}{3} \cup\binom{[1,6]}{4}$, each such summand appears there with the frequency 0,1 or 2 , and the frequency is 2 if and only if $A \in$ $\{\{1,3,5\},\{1,3,6\},\{2,4,5\},\{2,4,6\},\{1,3,5,6\},\{2,4,5,6\}\}$. Thus, with

$$
\begin{aligned}
& \rho_{3}=r(1,3,5)+r(1,3,6)+r(2,4,5)+r(2,4,6) \\
& \rho_{4}=r(1,3,5,6)+r(2,4,5,6)
\end{aligned}
$$

the inequality (9) leads to

$$
\begin{equation*}
4 q=\sum_{i=1}^{4}\left[r_{2}(i)+r_{3+}(i)\right] \leq 32+\rho_{3}+\rho_{4}+c_{3}+c_{4} \tag{10}
\end{equation*}
$$

Let us show that

$$
\begin{equation*}
\rho_{3} \leq q+10 \tag{11}
\end{equation*}
$$

To see it let a be the number of sets A belonging to

$$
\mathcal{A}=\{\{1,3,5\},\{1,3,6\},\{2,4,5\},\{2,4,6\}\}
$$

with $r(A) \geq 1$.
If $a=4$, by Claim 12 we have $\rho_{3} \leq 4 \cdot 9=36 \leq q+10$.
In the case $a=3$ there is $i \in[1,4]$ such that $\rho_{3} \leq 2 \cdot 9+r_{3}(i)$. Evidently, $r_{3}(i) \leq q-r_{2}(i)=q-\left[r\left((i-1)_{4}, i\right)+r\left(i,(i+1)_{4}\right)\right] \leq q-(4+4)=q-8$, hence $\rho_{3} \leq q+10$.

If $a=2$, let the positive summands of ρ_{3} be $r(i, j, k)$ and $r(l, m, n),\{i, j, k\} \neq$ $\{l, m, n\}$. If $\{i, j, k\} \cap\{l, m, n\}=\emptyset$, then $\rho_{3} \leq 2 \cdot 9 \leq q+10$, and otherwise, with $p \in\{i, j, k\} \cap\{l, m, n\}$, we have $\rho_{3} \leq r_{3}(p) \leq q$.

If $a \in[0,1]$, then $\rho_{3} \leq q-2$, since $r(i, j, k) \geq 1$ with $\{i, j, k\} \in \mathcal{A}$ and $i<j<k$ implies $i \in[1,2]$, while $r_{2}(i) \geq 1+1$.

Now realise that, by Claim 9.8, $\rho_{4}+c_{3}+c_{4} \leq c_{3}+2 c_{4+}=|C|+\left(c_{4+}-c_{2}\right) \leq$ $(2 q+4)-12=2 q-8$, and so, using (10) and $(11), 4 q \leq 32+(q+10)+(2 q-8)=$ $3 q+34$ and $q \leq 34$, a contradiction.

Claim 21. No component of the graph G is a 5-cycle.

Proof. If G has a 5 -cycle component, (w) $r\left(i,(i+1)_{5}\right) \geq 1$ for $i \in[1,5]$. Similarly as in the proof of Claim 20 for $i \in[1,5]$ we get

$$
r_{3+}(i) \leq r\left((i-2)_{5}, i,(i+2)_{5}, 6\right)+\sum_{j \in\left\{(i-1)_{5}, i\right\}} r_{3+}\left(j,(j+1)_{5}\right)+\sum_{(j, k) \in P_{i}} r(i, j, k),
$$

this time with

$$
P_{i}=\left\{\left((i-2)_{5}, 6\right),\left((i+2)_{5}, 6\right),\left((i-2)_{5},(i+2)_{5}\right)\right\},
$$

which yields

$$
\begin{equation*}
5 q=\sum_{i=1}^{5}\left[r_{2}(i)+r_{3+}(i)\right] \leq 40+\rho_{3}+c_{3}+c_{4}, \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{3}=r(1,3,6)+r(1,4,6)+r(2,4,6)+r(2,5,6)+r(3,5,6) \leq r_{3}(6) \leq q . \tag{13}
\end{equation*}
$$

Moreover, $c_{3}+c_{4} \leq 2 q+4-c_{2} \leq 2 q-8$, and so, using (12) and (13), $5 q \leq$ $40+q+(2 q-8)=3 q+32$ and $q \leq 16$, a contradiction.

Claim 22. The graph G is not a 6-cycle.
Proof. If G is a 6 -cycle, $(\mathrm{w}) r\left(i,(i+1)_{6}\right) \geq 1$ for $i \in[1,6]$. In this case $r_{3+}(i)$ is upper bounded by

$$
r\left((i-2)_{6}, i,(i+2)_{6},(i+3)_{6}\right)+\sum_{j \in\left\{(i-1)_{6}, i\right\}}\left[4-r\left(j,(j+1)_{6}\right)\right]+\sum_{(j, k) \in P_{i}} r(i, j, k)
$$

with

$$
P_{i}=\left\{\left((i-2)_{6},(i+2)_{6}\right),\left((i-2)_{6},(i+3)_{6}\right),\left((i+2)_{6},(i+3)_{6}\right)\right\},
$$

and one can see that

$$
\begin{equation*}
6 q \leq 48+\rho_{3}+c_{3}+c_{4}, \tag{14}
\end{equation*}
$$

where $\rho_{3}=2 r(1,3,5)+2 r(2,4,6)$. We can bound ρ_{3} from above by $2 q-4$. Indeed, if both $r(1,3,5)$ and $r(2,4,6)$ are positive, then Claim 12 yields $\rho_{3} \leq 18+18=$ $36 \leq 2 q-4$. On the other hand, if $r(i, j, k)=0$ with $(i, j, k) \in\{(1,3,5),(2,4,6)\}$, then $\rho_{3} \leq 2 r_{3}(i+1) \leq 2\left[q-r_{2}(i+1)\right]=2 q-2\left[r_{2}(i, i+1)+r_{2}(i+1, i+2)\right] \leq$ $2 q-4$. Therefore, similarly as in the proof of Claim 21, from (14) we obtain $6 q \leq 48+(2 q-4)+(2 q-8)=4 q+36$ and $q \leq 18$, a contradiction.

Thus, by Claims 16-22, we conclude that $G=6 K_{1}$ and $c_{2}=0$, which contradicts Claim 9.3. Therefore, Theorem 15 is proved.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract APVV-19-0153. The author is indebted to an anonymous referee whose comments helped to improve the presentation of results in the paper.

References

[1] A. Bouchet, Indice achromatique des graphes multiparti complets et réguliers, Cahiers du Centre d'Études de Recherche Opérationelle 20 (1978) 331-340.
[2] N. Cairnie and K.J. Edwards, The achromatic number of bounded degree trees, Discrete Math. 188 (1998) 87-97. https://doi.org/10.1016/S0012-365X(97)00278-1
[3] G. Chartrand and P. Zhang, Chromatic Graph Theory, 2nd Ed. (Chapman and Hall/CRC, Boca Raton, 2009). https://doi.org/10.1201/9780429438868
[4] N.-P. Chiang and H.-L. Fu, On the achromatic number of the Cartesian product $G_{1} \times G_{2}$, Australas. J. Combin. 6 (1992) 111-117.
[5] N.-P. Chiang and H.-L. Fu, The achromatic indices of the regular complete multipartite graphs, Discrete Math. 141 (1995) 61-66. https://doi.org/10.1016/0012-365X(93)E0207-K
[6] K.J. Edwards, The harmonious chromatic number and the achromatic number, in: Surveys in Combinatorics (Invited papers for 16th British Combinatorial Conference, R.A. Bailey ($\operatorname{Ed}(\mathrm{s})$), (Cambridge University Press, Cambridge, 1997) 13-47.
[7] K.J. Edwards, A bibliography of harmonious colourings and achromatic number. http://staff.computing.dundee.ac.uk/kedwards/biblio.html
[8] F. Harary, S. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math. 26 (1967) 454-462.
[9] P. Hell and D.J. Miller, Achromatic numbers and graph operations, Discrete Math. 108 (1992) 297-305. https://doi.org/10.1016/0012-365X(92)90683-7
[10] F. Hughes and G. MacGillivray, The achromatic number of graphs: a survey and some new results, Bull. Inst. Combin. Appl. 19 (1997) 27-56.
[11] M. Horňák, The achromatic number of the Cartesian product of K_{6} and K_{q}. arXiv:2009.07521v1 [math.CO]
[12] M. Horñák, The achromatic number of $K_{6} \square K_{7}$ is 18, Opuscula Math. 41 (2021) 163-185. https://doi.org/10.7494/OpMath.2021.41.2.163
[13] M. Horňák and Š. Pčola, Achromatic number of $K_{5} \times K_{n}$ for large n, Discrete Math. 234 (2001) 159-169.
https://doi.org/10.1016/S0012-365X(00)00399-X
[14] M. Horňák and Š. Pčola, Achromatic number of $K_{5} \times K_{n}$ for small n, Czechoslovak Math. J. 53 (2003) 963-988.
https://doi.org/10.1023/B:CMAJ.0000024534.51299.08
[15] M. Horňák and J. Puntigán, On the achromatic number of $K_{m} \times K_{n}$, in: Graphs and Other Combinatorial Topics, M. Fiedler (Ed(s)), (Teubner, Leipzig, 1983) 118-123.
[16] W. Imrich and S. Klavžar, Product Graphs (Wiley-Interscience, New York, 2000).
Received 8 November 2020
Revised 29 June 2021
Accepted 29 June 2021
Available online 16 July 2021

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

