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Abstract

Let G be a graph and C be a finite set of colours. A vertex colouring
f:V(G) — C is complete provided that for any two distinct colours ¢y, ca €
C' there is vive € E(G) such that f(v;) = ¢;, @« = 1,2. The achromatic
number of GG is the maximum number of colours in a proper complete vertex
colouring of G. In the paper it is proved that if ¢ > 41 is an odd integer,
then the achromatic number of the Cartesian product of K¢ and K is 2¢+3.
Keywords: complete vertex colouring, achromatic number, Cartesian prod-
uct, complete graph.
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1. INTRODUCTION

Let G be a finite simple graph and C' a finite set of colours. A vertex colouring
f:V(G) = C is complete if for any pair of distinct colours c1,co € C one can
find in G an edge {v1,v2} (often shortened to vivs) such that f(v;) =¢;, i =1,2.
The achromatic number of G, denoted by achr(G), is the maximum cardinality
of the colour set in a proper complete vertex colouring of G.

The concept was introduced quite a long ago in Harary, Hedetniemi and
Prins [8], where the following was proved.

Theorem 1. If G is a graph, and an integer k satisfies x(G) < k < achr(G),
then there exists a proper complete vertex colouring of G using k colours.

There are still only a few graph classes G such that achr(G) is known for
all G € G. This is certainly related to the fact that determining the achromatic
number is an NP-complete problem even for trees, see Cairnie and Edwards [2].
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Two surveys are available on the topic, namely Edwards [6] and Hughes and
MacGillivray [10]; more generally, Chapter 12 in the book [3] by Chartrand and
Zhang deals with complete vertex colourings. A comprehensive list of publications
concerning the achromatic number is maintained by Edwards [7].

Some papers are devoted to the achromatic number of graphs constructed
by graph operations. So, Hell and Miller [9] considered achr(G; x G2), where
G1 x G4 stands for the categorical product of graphs G; and G (we follow here
the notation by Imrich and Klavzar [16]).

In this paper we are interested in the achromatic number of the Cartesian
product G10Gy of graphs G; and Ga, the graph with V(G10G32) = {(v1,v2) :
v; € V(Gy), i = 1,2}, in which (v, v3)(v{,v3) € E(G10G>) if and only if there
is i € {1,2} such that v}v? € E(G;) and v1_, = v3_,. As observed by Chiang and
Fu [4], achr(G1) = p and achr(G2) = ¢ implies achr(G10G2) > achr(K,0K,).
This inequality motivates a special interest in the achromatic number of the
Cartesian product of two complete graphs. From the obvious fact that Go[G;
is isomorphic to G10G3 it is clear that when determining achr(K,0K,) we may
suppose without loss of generality p < q.

The problem of determining achr(K,00K,) with p < 4 was solved in Horndk
and Puntigén [15] (for p < 3 the result was rediscovered in [4]) and that for p =5
in Horndk and Pcola [13, 14]. In [5] Chiang and Fu proved that if r is an odd
projective plane order, then achr(K 2., o0K 24, /9) = (13 +1?)/2. (For r = 3
the fact that achr(KKs) = 18 was known already to Bouchet [1].)

Here we show that achr(K¢OK,) = 2¢ + 3 if ¢ is an odd integer with ¢ > 41.
This is the first of three papers devoted to completely solve the problem of finding
achr(K¢OK,). In Horndk [11] the cases, in which either 8 < ¢ < 40 or ¢ is an
even integer with ¢ > 42, are analysed. Finally, achr(KgJK7) is determined in
Horngk [12].

For k,1 € Z we denote integer intervals by

k] ={z€Z : k< z<Il}, [k,00) ={2€Z:k <z}

Further, with a set A and m € [0, 00) we use (2) for the set of m-element subsets
of A.

Now let p, g € [1,00). Under the assumption that V(K,) = [1,r], r = p, q, we
have V(K,OK,) = [1,p] x [1,q], while E(K,00K,) consists of edges (4, j1)(i, j2)
with ¢ € [1,])], J1,72 € [1,(]], j1 # jo and (’il,j)(ig,j) with 41,49 € [1,])], i1 # 1o,
j €[l

A vertex colouring f : [1,p] x [1,q] = C of the graph K,[0K, can be con-
veniently described using the p x ¢ matrix M = M (f) whose entry in the ith
row and the jth column is (M);; = f(¢,7). Such a colouring is proper if any
row of M consists of ¢ distinct entries and any column of M consists of p dis-
tinct entries. Further, f is complete provided that any pair {«, 8} € (g) is good
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in M in the following sense: there are (i1, 1), (42,72) € [1,p] % [1,¢| such that
{(M);, ji, (M), 3, } = {a, B} and either iy = i3, which we express by saying that
the pair {«, 8} is row-based (in M), or j1 = ja, i.e., the pair {«a, 5} is column-based
(in M).

Let M(p, q,C) denote the set of p x ¢ matrices M with entries from C' such
that all rows (columns) of M have ¢ (p, respectively) distinct entries, and each
pair {a, B} € (g) is good in M. So, if f: [1,p] x [1,q] — C is a proper complete
vertex colouring of K,00K,, then M(f) € M(p,q,C).

Conversely, if M € M(p,q,C), then the mapping fas : [1,p] x [1,q] = C
with fa(i,5) = (M);; is a proper complete vertex colouring of K,[0K,. Thus,
we have proved:

Proposition 2. If p,q € [1,00) and C is a finite set, then the following state-
ments are equivalent.

1 There is a proper complete vertex COlO'LLT‘iTLg of K,[OK USan as colours ele-
p q
ments of C.

(2) M(p,q,C) #0.
We have another evident result.

Proposition 3. Ifp,q € [1,00), C, D are finite sets, M € M(p,q,C), mappings
p:[lp] = [1,p], 0:[1,q] = [1,q], 7 : C = D are bijections, and M, ,, My are
p x q matrices defined by (Mpo)ij = (M)ps),0() and (Mz)ij = 7((M);), then
M, s € M(p,q,C) and M, € M(p,q,D).

Let M € M(p,q,C). The frequency of a colour v € C'is the number frq(~y) of
appearances of v in M, and the frequency of M, denoted frq(M ), is the minimum
of frequencies of colours in C'. A colour of frequency [ is an [-colour. Cj is the
set of [-colours, ¢; = |, and Cj4 is the set of colours of frequency at least I,
ci+ = |Ci4]. We denote by R() the set {(M);; : j € [1,q]} of colours in the ith
row of M and by C(j) the set {(M);; : i € [1,p]} of colours in the jth column of
M. Further, for k € {I,1+} let

Ri()) = Cp NR(@),  rx(i) = [Rg(4)],
Ce(i) = CeNCG),  arld) = ICk()I-
So R;(7) and Ry (z) is the set of colours in the row ¢ which occur exactly and at

least [ times altogether, respectively; the meaning of C;(j) and C;y(j) is similar.
If AC1,p], |A| > 2, then

R(A) = ()(Ca NRWD),  r(4) = [R(A)|.
leA
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R(A) is the set of colours which appear precisely in the rows numbered by A.
Provided that A € {{i,7},{4,J,k}, {7, 7,k,1}}, instead of R(A) we write R(4,j),
R(7,j, k), R(i,7,k,1), while r(A) is simplified to r(i,j), r(i, 4, k), r(i,J,k,1), re-
spectively. With {i,j} C [1,p] and {m,n} C [1, q] we set

Rat(i,7) = Cs+ NRE) NR(G),  ra4(i,7) = Ra4- (2, 5)],
C(m,n) = CanNC(m)NC(n), c¢(m,n) =|C(m,n)|.

Rs4(7,7) is the set of colours of frequency at least 3 occuring in both rows i and
j, and C(m, n), an analogue of the notation R(z, 7), stands for the set of 2-colours
occuring exactly in the columns m and n. If B C [1,p| and 3 < |B| < p—2, then

|B|

=U U r®

=24e(7)

R*(B) is the set of colours of frequency at least 2 occuring only in the rows
numbered by B. Since {R(A) : Jiep, B A € (?)} is a set of pairwise disjoint
sets, we have

|B|
r(B) = [R*(B Z Z
Ae(7)
For v € C' let

R(y) ={ie[l,p]: v € R(2)}

be the set of (the numbers of) the rows containing the colour ~.

With S C [1,p] x [1, q] we say that a colour v € C' occupies a position in S if
there is (4, j) € S such that (M); ; =~. If ) # A C C, the set of columns covered
by A is

Cov(A) ={j € [1,q] : C(j) N A # 0},

i.e., the set of columns containing an element of A. We define cov(A) = |Cov(A4)|,
and with A € {{a},{«a, B}} we use a simplified notation Cov(«a), Cov(e, ) and
cov(a), cov(a, ) instead of Cov(A) and cov(A).

2. LOWER BOUND
Proposition 4. If g € [7,00) and ¢ =1 (mod 2), then achr(KsOK,) > 2¢g + 3.

Proof. Let s = qT, and let M be the 6 x ¢ matrix below. We show that

M € M(6,q,C), where C = [1,9|U X, UY, U Z; UTs, Ug = {u; : i € [1,s]} for
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Ue{X,Y, Z, T}, and the sets [1,9], X, Ys, Zs, Ts are pairwise disjoint.

1 2 3 3 3 ... Xs—1 Ts Y1 Y2 .. Ys—1 Ys
4 5 6 x5 x1 ... Ts_o Ts_1 21 22 ... Zs_1 Zs
7 8 9 t1 to ... ts—l ts r1 T2 ... XTsg_1 Tg
3 1 2 21 22 ... Zs—1 Zs tl t2 e tsfl ts
5 6 4 ts tl e ts_g ts—l Ys Y1 ... Ys—2 Ys—1
8 9 7 y1 y2 .. Ys—1 Ys Zs Rl ... Rs—2 Rs—1

Since s > 2, because of our assumptions on the structure of C it is clear
that elements in lines (rows and columns) of M are pairwise distinct. Thus it is
sufficient to show that each pair {a, 8} € (g) is good in M.

If o, 8 € [1,9], then both « and /3 appear twice in the columns 1,2, 3, hence
the pair {«, 8} is column-based.

IfaeCand e X;UY;UZ;UTs, realise that R(a) € Ry UR2 and R(S) €
Ro, where Ry = {{1,4},{2,5},{3,6}} and R2 = {{1,2,3},{1,5,6},{2,4,6},
{3,4,5}}. As RN Ry # ) for any R € R1 UR2 and any Ry € Ry, the pair {«, 5}
is row-based.

So, Proposition 2 yields achr(K¢OK,) > |C| =4s+9 = 2¢ + 3. |

3. AUXILIARY RESULTS

Let M € M(p,q,C) and let v € C. For the (complete) colouring fys from the
proof of Proposition 2 denote V, = f;,'(7) C [1,p] x [1,q], and let N(V3) be
the neighbourhood of V, (the union of neighborhoods of vertices in V,). The
excess of v is defined to be the maximum number exc(y) of vertices in a set
S C N(V,) such that each pair {,~'} € (g) is good even in the “partial matrix”
corresponding to the restriction of fj; created by uncolouring the vertices of S.

Lemma 5. If p,q € [1,00), C is a finite set, M € M(p,q,C) and v € C, then
the following hold.

L. frq(y) < min(p, g);
2. frq(y) =1 implies exc(y) =l(p+q—1—-1)—(|C| = 1) > 0;
3. frq(M) =1 implies |C| < |B|.

Proof. 1. The assumption frq(y) = | > min(p, ¢) would mean, by the pigeonhole
principle, that the colouring fjs is not proper.

2. Because of Proposition 3 we may suppose without loss of generality
(M);; = ~ for all © € [1,I]. For simplicity we use (w) to indicate that it is
just Proposition 3, which enables us to restrict our attention to matrices with a
special property.
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The colouring fjs is complete, hence each of |C] — 1 colours in C'\ {7} must
occupy a position in the set N(V,) = {(i,j) : (¢ <1V j <) Ai# j}. Thus,
IN(V,)l = al+ (p— Dl — 1 > |C] — 1 and exc(y) = [N(Vy)| — (IC| — 1) =
lp+qg—1-1)—(|C|-1) >0.

3. If @ € C is such that frq(a) = frq(M) = [ and g € C, then frq(5) >
frq(a) = I. Therefore, the total number of entries of the matrix M is pq > l|C],
and the desired inequality follows. [

The ezcess of a matrix M € M(p, q,C), denoted by exc(M ), is the minimum
of excesses of colours in C.

Lemma 6. Ifp,q € [1,00), C is a finite set and M € M(p,q,C), then exc(M) =
exc(y), where v € C and frq(y) = frq(M).

Proof. Let m = min(p, q), and let v € C be such that [ = frq(y) = frq(M). For
any a € C then k = frq(a) > frq(vy) =, and, by Lemma 5.2, exc(a) = k(p+ ¢ —
k—1)—|C|4+1 > 0. Therefore, exc(a) —exc(y) = k(p+q—k—1)—1(p+q—1—1) > 0,
since h(z) = z(p+q—x —1) is increasing in the interval <1, %’_1> 2 (1,m-1),

and p = ¢ = m implies h(m — 1) = h(m). Consequently, exc(M) = exc(7). |
Lemma 7 (see [15] and [4]). Ifp,q € [1,00) and p < q, then

achr(K,0K,) <max (min (I(p+¢q—1—1)+1,[pg/l]) : L € [1,p]).
Corollary 8. If g € [7,00), then achr(KsOK,) < 2q+ 7.

Proof. By Lemma 7 with p = 6 we obtain achr(K¢OK,;) < max (q + 5,2q +
7.2, %] |5 0) =20 +7 .

4. PROPERTIES OF MATRICES IN M(6,q,C)

Suppose we know that achr(KgOK,) > 2¢+s—1 for a pair (g, s) with g € [7, 00)
and s € [1,00), and we want to prove that achr(K¢OK,) = 2¢ + s — 1; clearly,
because of Corollary 8 it is sufficient to work with s < 7. Proceeding by the
way of contradiction let s satisfy achr(K¢OK,;) = 2¢ + s. By Theorem 1 and
Proposition 2 there is a (2¢ + s)-element set C' and a matrix M € M(6,q,C).
Our task will be accomplished by showing that the existence of M leads to a
contradiction. For that purpose we shall need properties of M. So in all claims
of the present section we suppose that the notation corresponds to a matrix
M € M(6,q,C) with ¢ € [7,00) and |C| = 2¢g + s < 2q + 7. We associate with
M an auxiliary graph G with V(G) = [1,6], in which {i,k} € E(G) if and only
if 7(i,k) > 1 (so that there is a 2-colour appearing in both rows i and k).
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Claim 9. The following statements are true:

1. ¢1 =0;

2. =0 forlel7,00);

3. cg > 3s;

4. c34 < 2q —2s;

5. 30 ,ic; < 6g — 6s;

6. frq(M) =2;

7. exc(M)="T7-—s;

8. ¢4y < g — 385

9. if {i,k} € ([156]), then r(i, k) < 8 — s.

Proof. 1. If ¢; > 0, a 1-colour v € C satisfies exc(y) =q¢+4—(2¢g+s—1) =
5 —q — s < 0 in contradiction to Lemma 5.2.

2. Use Lemma 5.1.

3. By Claims 9.1 and 9.2, counting the number of vertices of Kgl1K, we get
6q = 3.9, ic;. Therefore, 3(2q+s) = 3|C| = 3(ca+e31) < cat+ Y0 yici = ca+6q,
which yields ¢ > 3s.

4. From 2(2q+s) +c31 = 2|C|+ ¢34 = 2ca+3c3 < S0, ic; = 6¢ we obtain
c3+ < 2g — 2s.

5. The assertion of Claim 9.3 leads to Z?:g ic; = 2?22 ic;i —2c9 = 6g—2co <
6q — 6s.

6. A consequence of Claims 9.1, 9.3 and the assumption s € [1,7].

7. Since frq(M) = 2 (Claim 9.6), by Lemma 6 we get exc(M) = 2¢g + 6 —
(2¢+s—1)=7-s.

8. We have 3(2¢+s) —ca+car =3(ca+c3+cat) —co+ gy < Z?:Q ic; = 6q
and cq4 < cg — 3s.

9. The inequality is trivial if r(i,k) = 0. If v € R(4, k), then each colour of
R(i, k) \ {7} contributes one to the excess of 7, hence, by Claims 9.6 and 9.7,
r(i, k) — 1 <exc(y) =exc(M)=7—sand r(i, k) < 8 — s. |

Claim 10. If {i,k} € (I%) and r(i,k) > 1, then r(i, k) + r3, (i, k) <8 — s.

Proof. With v € R(i, k) each colour of (R(i, k) \ {7}) UR34 (4, k) makes a contri-
bution of one to the excess of 7, hence r(i, k) — 14134 (i, k) < exc(y) = exc(M) <
7 — s, and the claim follows. [

Claim 11. If {i,k} € (1), (4,k) > 1, B C [1,6], 3 < |B| < 4 and BN {i,k}
= (), then r*(B) < 2|B.

Proof. Consider a colour v € R(i, k) with (M); j = (M) = v (where, of course,
j#1). If p € R*(B), there is A C B with |A| > 2 and § € R(A). The colour S
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appears in neither of the rows i, k, hence the pair {3,~} is good in M only if 5

occupies a position in the set (J,,c 4{(m, ), (m,1)} € U, ,cpl(m,j),(m,1)}. As
a consequence, 1*(B) = [R*(B)| < [Upe (s 1), (m, )} = 2| B]. .

Claim 12. If {i,j,k,l,m,n} = [1,6] and r(i,j,k) > 1, then r(l,m,n) <9

Proof. There is nothing to prove if R(l,m,n) = (). Further, with « € R(, j, k)
and S € R(l,m,n) the pair {«, 8} is good in M only if the colour 8 occupies a
position in the 9-element set {l,m,n} x Cov(a). |

Claim 13. If A(G) > 4, then ¢ <40 — 5s.

Proof. Suppose (w) A(G) = deg(1) > 4, and, moreover, let (w) the sequence
(r(1,k))$_, be nondecreasing. The least p € [2,6] with r(1,p) > 1 satisfies
p < 3, and we have Ry, (1) = j_, Rs4(1, k). Then, by Claim 9.1, ¢ = [R(1)| =
ro(1) + 734(1). The inequality r(1,k) > 1 for k € [p,6] yields, by Claim 10,
rs+(1,k) <8 —s —r(1, k); therefore,

q—r2(1) =134 (1) =

6
U R34 (1, k)
k=p

6
< Z T3+(1a k)
k=p

6 6
<S8 s—r(LR)] = (T p)E—5) ~ D r(Lh),

k=p k=p
and then, since 79(1) = Zzzpr(l, k), we finish with ¢ < (7—p)(8—s) < 40—5s. m

Claim 14. If A(G) = 3, {i,j,k,l,m,n} = [1,6], r(s,1) > 1, r(j,1) > 1 and
r(k,l) > 1, then r(l,m,n) > q+ 3s — 24.

Proof. We have A(G) = degg (1), R(I,m) = R(l,n) = 0, R(l) = Ra(l) URs4(1),
Ro(l) = R(3,1) UR(j, 1) UR(k, 1) and Ray (1) = R(I,m,n) URsy (4,1) URs(j,1) U
R34 (k,1). Proceeding similarly as in the proof of Claim 13 leads to ¢ — r2(l) =
rar(l) <r(l,m,n)+[8—s—7r(i, )]+ [8—s—r(j,)]+[8—s—r(k, )] =r(,m,n)+
3(8 — s) — ra(l), which yields the desired result. |

5. MAIN THEOREM
Theorem 15. If g € [41,00) and ¢ =1 (mod 2), then achr(KsOK,) = 2q + 3.

Proof. We proceed by the way of contradiction. As mentioned in the beginning
of Section 4, we have to show that the existence of a matrix M € M(6,q,C),
where C is a set of 2g + s = 2q + 4 colours, leads to a contradiction. First
notice that, by Claim 9, all colours of C are of frequency | € [2,6], co > 12,
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c3p < 2¢—8, Y0 sic; < 6g — 24, frq(M) = 2, exc(M) = 3, and {i,k} € (I})
implies r(i, k) < 4.

Since ¢ > 41, from Claim 13 we know that A(G) < 3 for the auxiliary graph
G. Besides that, degg(i) = d; for @ € [1,6] yields ra2(i) = > pyepe 76, k) <
Z{i,k}eE(G) 4 = 4d;.

Claim 16. A(G) < 2.

Proof. If A(G) = 3, (w) degg(1) = 3, r(1,4) > 1, (1,5) > 1 and (1,6) > 1.
By Claim 14 we have r(1,2,3) > ¢ — 12 > 29, and so Claim 11 yields r(4,5) =
r(4,6) = 7(5,6) = 0 (if (i, k) > 1 for {i,k} € (), then 29 < 7(1,2,3) <
r*([1,3]) < 2|[1,3]| = 6, a contradiction). Moreover, r(4,5,6) = 0, for otherwise,
by Claim 12, r(1,2,3) < 9, a contradiction.

There is no i € [4,6] with deg,(i) = 3, because then, again by Claim 14,
r(4,5,6) > ¢ — 12 > 29 in contradiction to Claim 12. So, deg(i) < 2, i =4,5,6,
2co = Z?:l ro(i) < 3-1243-8 = 60 and ¢y < 30. Since r(1,7) > 1, Claim 11 yields
r*([2,6]\ {i}) < 2I[2,6]\ {i}| =8, i = 4,5,6, and then p* = 320, r*([2,6] \ {i})
< 24.

By inspection of summands of type r(A4) with A C [2,6], 2 < |A| < 3,
that appear when counting the three summands of p*, one can see that each
of r(A) with A € ([256}) \ {{4,5},{4,6},{5,6}} appears at least twice, and each
of r(A) with A € ([2:’36]) \ {{4,5,6}} (which is a set belonging to C3 \ R3(1))
appears at least once. Because of r(4,5) = r(4,6) = r(5,6) = r(4,5,6) = 0 this
leads to 2 Z{M}E([zés]) r(i,k) + c3 — r3(1) < p* < 24, which, having in mind that
2 Z{i,k}e(pﬁ) (i, k) = 2ca—2r2(1), yields 2co —2ra(1) +c3—r3(1) < 24. Together
with the inequality r9(1) + 73(1) < g then co +c3 < g+24+1r3(1) —co < g+ 24,
2+4=1|C| =co+ec3g+cgr < q+24+cyy, and s0 ¢4y > ¢ —20 > 21 in
contradiction to ¢4t < cg — 3s < 30 — 12 = 18, which comes from Claim 9.8 and
the above inequality for cs. 0

By Claim 16 each component of G is either a path or a cycle.

Claim 17. No component of the graph G is Ks.

Proof. Let (w) G have a component K» with vertex set [1,2]. Then r(1,2) €
[1,4], r(i,k) = 0 for (i,k) € [1,2] x [3,6], and so c2 = 7(1,2) + p, where, by
Claim 11, p = Z{i,k}e([g’f]) r(i, k) < r*([3,6]) < 8. Further, (w) Cov(R(1,2)) =
[1,n] with n € [2,8].

If r(1,2) € [1,3], then co < 3+ 8 =11, a contradiction.

If (1,2) = 4, then n > 4,8 > p = [C2 \ R(1,2)| > 12 -4 =8, p = 8 and
co = 12. In the case n € [5, 8] there is j € [1,n| such that C(j) contains at most
| 28] < 3 colours of Cy \ R(1,2). Then, however, for a colour v € R(1,2) N C(j)
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the number of colours § € Cy \ R(1,2), for which the pair {v,d} is good in M, is
at most seven, a contradiction.

Therefore n = 4, 2-colours occupy all positions in [1,6] x [1,4], Claim 9.8
yields ¢4y <12 —-3-4 =0, ¢4y = 0, and all positions in the set [1,6] x [5,q] are
occupied by 3-colours. Among other things this means that

6(q —4)

(1) 3=

=20 —8>q+ (41 —8) =q+ 33,

r2(i) =4 and r3(i) = g—4 fori € [1,6], and (i, k) € [0, 4] for every {i, k} € ([3é6]).

Recall that, by Claim 16, A(G) < 2. Further, if (i, k) = 4 for some {3, k} €
([356]), then deg,(m) = 1, m = 3,4,5,6, since with {i,7,k,l} = [3,6] we have
r(7,1) = 4. In such a case G is (isomorphic to) 3Ks. Otherwise, if r(i, k) < 4 for
each {i,k} € ([3;5]), then degn(m) = 2, m = 3,4,5,6, and G is (isomorphic to)
Ko UCy.

Let us first consider the case G = 3Kj, in which (w) r(i,i + 1) = 4,
i = 3,5. Clearly, a set R(i,7, k) with {i,7,k} € (uéﬁ]) can be nonempty only i
{t,7,k}n{l,1+1} #0,1=1,3,5. As a consequence the assumption R(, j, k) # 0
with i < j < k implies (i,5,k) € {(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,3,5),
(2,3,6),(2,4,5), (2,4,6)}.

Suppose that {(ims jm) : 1 € [1, 4]} ={(3,5), (3,6), (4,5), (4,6)} = { (o ) -
m € [1,4]} and {im, Jm, km, lm } = [3,6] for m € [1,4]. Then

4
(2) €3 = Z [T(laimajm) + T(27 Em, lm)]

m=1
Further, for m,n € [1,4] the sets {im, jm} and {k,,l,} are disjoint if and only if
m =n. Put

m e [1,4] : T(laimajm) = 1}7 t(l) =

{ |
T(2) = {m € [L,4]: (2 ks b)) > 1}, 4(2) = [T(2)]
)

and T'=T(1)NT(2). Let
o(P) = [r(1,ip, jp) + (2, kp, Ip)]
peP

for P C [1,4]. Using Claim 12 we see that m € T'(1) implies 7(2, kp, l;m) < 9,
while m € T'(2) means that (1,4, jm) < 9. Therefore, with m € T' we have
(1, 0y Jm) + 7(2y ks b)) <949 =18, and so o(T') < 18|T|.

If t(1) = 4, then ¢ — 4 = r3(2) < S22 7(2, Ky, lp) <4-9 =36, and ¢ < 40, a
contradiction. Similarly, with #(2) =4 we get ¢ —4 = r3(1) < Zi:l r(1,iz,jz) <
36, and g < 40 as well.
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If there is € [1,2] such that ¢(z) = 1 and T'(z) = {m}, then r3(z) =
(2, iy Jm) = 13(im) = r3(Jm) = ¢ —4 > 37, hence r(3 — z, kp, l;y) = 13(3 — ) =
r3(km) = 13(lm) = ¢ —4 > 37, which contradicts Claim 12.

We are left with the situation ¢(1),¢(2) € [2,3] (and |T| < min(¢(1),%(2))).
Suppose (w) t(1) > t(2).

If |T| = 3, then T(1) = T = T(2), 1,4\ T = {p} and r(1,ip,jp) =
(2, kp,lp) = 0, hence 2¢ — 8 = ¢3 = 0([1,4]) o(T)<18-3=54and ¢ <31, a
contradiction.

If |T| = 2, then n out of four summands that sum up to o([1,4] \ T') are
positive, n < 2. Moreover, o([1,4] \ T) < ¢ — 4. The inequality is obvious
provided that n < 1, whileif n =2, a € T(1)\T(2) and b € T'(2)\T(1), then with
e € {ig, ja} N{kp, lp} we have o([1,4]\T') = r(1,iq, ja) +7(2, kp, lp) < 13(€) = q—4.
Thus c3 = o(T) +o([1,4]\T) < 18-2+ (¢ —4) = g + 32 in contradiction to (1).

For |T| = 1 we get t(2) = 2. With #(1) = 2 we obtain, similarly as in the
case |T'| =2, c3 <18+ (¢ —4) = g + 14. So, assume that ¢(1) =3, T' = {t} and
T(2)\T(1) = {p} (note that p # t).

Suppose first that {kp,l,} # {it,j:}. In such a case [{kp,l,} N {ir, ¢} = 1;
moreover, since {ky,l,} C [3,6] = {it, ji, ke, I}, we have [{kp,l,} N {k, l:}] = 1,
and there is g € {k,l} such that {kp,l,} N {k,;} = {g+}. Then five from among
eight summands in (2) are positive, namely (1,4, ji), (2, k¢, i), (2, kp, 1) and
(1, 4m, jm) with m € [1,4] \ {t,p}. Having in mind that g ¢ {it,jt}, g+ ¢
{ip, jp}, and each element of [3, 6] is involved in exactly two of the ordered pairs
(3,5),(3,6),(4,5), (4,6), we see that except for (1,4, j;) all mentioned positive
summands correspond to colours of R3(g¢). That is why ¢35 < r(1, 4, j¢) +73(g1) <
9+ (¢ —4) = q+ 5, a contradiction to (1) again.

On the other hand, if {kp,{,} = {it, ji}, then [{ip, jp} N {ir, 5} = [{ip, dp} N
{kp,1p}| = 0, hence for m € [1,4]\ {t,p} we have [{iy, jm} N {it,jt}| = 1, and
so positive summands in (2) are (1,4, 7¢), 7(2, ke, 1), 7(2, kp, lp) = (2,4, 5¢),
r(1, g, k¢) and r(1, he,l;), where {g,h} = {i,j}. Then

q— 4 = ’["3(2) = T(2, kt, lt) —'I_ T(Q) it’jt)’
qg—4= TS(kt) = T‘(2, kt,lt) + T(l,gt, kt)»

which yields

r(2,ie, 1) = (1, g6, k) = q—4 =712,k 1) 2 (¢ —4) —9=¢q—13
so that

q—4=r3(g) = r(L,ie,jt) + r(1, g, ke) +7(2,¢,5¢) > 1+ 2(q — 13)

and g < 21, a contradiction.
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If |T) = 0, then t(1) = ¢(2) = 2, and, by symmetry, 7'(1) = [1,2], T'(2) =
[3,4]. We have {i1, j1 }U{iz, jo} = [3, 6], for otherwise there is e € [3, 6]\ ({i1, j1}U
{ig,jg}), hence e € {ig,jg} N {i4,j4}, eé¢ {kg, lg} U {k4, l4} and r3(e) =0 # g — 4,
a contradiction. Thus, by symmetry we may assume that i1 = 3 < iy = 4.

Therefore, (w) (i1,71) = (3,5) and (i2,72) = (4,6), which means that r(m,
n,p) with {m,n,p} € ([136}) and m < n < p is positive if and only if (m,n,p) €
{(1,3,5),(1,4,6),(2,3,6),(2,4,5)}. We have r3(6) = r(1,4,6) + r(2,3,6) = ¢ —
4 =1 (mod 2), hence

(3) r(1,4,6) #r(2,3,6) (mod 2).

Similarly, from r3(1) = ¢ — 4 = r3(3) it follows that r(1,3,5) # r(1,4,6) (mod 2)
and 7(1,3,5) # r(2,3,6) (mod 2) so that r(1,4,6) = r(2,3,6) (mod 2), which
contradicts (3).

It remains to analyse the case G = KoUCY, in which (w) {{3,4},{4,5},{5,6},
{6,3}} € E(G). The completeness of fy; implies C3 C R(1,3,5) UR(1,4,6) U
R(2,3,5) UR(2,4,6). So,

3 = [r(1,3,5) +7(2,4,6)] + [r(1,4,6) +r(2,3,5)].
Let T = {(1,3,5),(1,4,6),(2,3,5), (2,4,6)},
T ={(,j,k) €T :r(i,jk)>1}

and ¢t = |T|. From r3(i) = ¢ —4 > 0 for ¢ € [1,6] it follows that ¢ > 2. If
(iaja k)a (l7 m, TL) €T, (ia.jv k) 7& (l7 m, n)v then either T<i7j7 k)—i—T(Z, m, n) <9+9=
18 (by Claim 12, if {7, 5, k} N {l,m,n} = 0) or r(i, j, k) +r(l,m,n) < r3(p) =qg—4
(if p € {i,7,k} N {l,m,n}). As a consequence then c3 < max(bs,bs,bs), where
bo=q—4, by =18+ (¢ —4) = g+ 14 and by = 18 + 18 = 36. Thus c3 < ¢ + 14,
which contradicts (1). O

Claim 18. No component of the graph G is Ks.

Proof. Let (w) G have the component K3 with the vertex set [1, 3].

If G = K3 U3Kj, then r(1,2) = r(1,3) = r(2,3) =4, ca = 12 and ¢c44 = 0.
From Claim 10 it follows that 734(1,3) = 0 = r34(2,3), hence r(3,i,k) > 1
with {3, k} € (M08 implies {4, k} € {{4,5},{4,6},{5,6}}. By Claim 11 then
r3(3) =r(3,4,5)+r(3,4,6)+7(3,5,6) <r*([3,6]) <8, hence ¢ =r2(3)+13(3) <
(4+4) + 8 = 16, a contradiction.

If G has besides the above K3 another nontrivial component (of order at least
2) and (i, k) > 1 with {i, £} € (4%, then, by Claim 11, r(1,2)+7(1,3)+(2,3)+
r(1,2,3) = r*([1,3]) <6 and r(4,5) +r(4,6) +r(5,6) +r(4,5,6) = r*([4,6]) <6,
hence 12 < ¢g < 646, co = 12, r(1,2)+r(1,3)+7(2,3) = r(4,5)+r(4,6)+r(5,6) =
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6,7(1,2,3) =7(4,5,6) =0, ¢4+ = 0, and c3 = 2¢—8 > 0. So, among other things,
with C3 = R(1,2) UR(1,3) UR(2,3) and C3 = R(4,5) UR(4,6) UR(5, 6) we have
|C3] = |C3| =6. If a € C3 and 8 € C3, then the pair {a, 8} is column-based,
hence all six positions in Cov(a) x [4, 6] are occupied by colours of C2, and for
any j € Cov(C3) all three positions in {j} x [4,6] are occupied by colours of
C?2. Consequently, cov(Ci) = 2'%22‘ =4, and (w) all positions in [1, 6] x [1,4] are
occupied by colours of Cy = C2UC3. If {i, k} € (‘2]), where J € {[1, 3], [4, 6]}, then
r(i, k) > 0, since otherwise with {7, j,k} = J we get ra(j) = r(i,j) + r(j, k) = 6,
which contradicts Claim 9.9. For a colour v € C3 there are I,J € {[1, 3], [4, 6]},
I # J, such that |[R(y) N I| =2 and |R(y) N J| = 1. Then R(y) N J = {5}, and
with {i,j,k} = J there exists a colour a € R(i, k); in such a case, however, the
pair {«,~} is not good, a contradiction. 0

Claim 19. No component of the graph G is a path of order at least 3.

Proof. Suppose that G has a path component P of order at least 3.

If G has besides P another nontrivial component (of order at least 2), then
G = PUP', where, by Claims 17 and 18, both P and P’ are paths of order 3, (w)
V(P)=11,3],V(P') = [4,6] and r(i,i+1) > 1 fori = 1,2,4,5. Similarly as in the
proof of Claim 18 it is easy to see that r(1,2)+r(2,3) = r(4,5)+r(5,6) = 6. Since
r9(2) = 6, there are colours «, 8 € R(1,2)UR(2, 3) such that Cov(a)NCov(8) = 0.
Then each colour of R(4,5) UR(5,6) occupies a position in [4,6] x Cov(«) and a
position in [4, 6] x Cov(3) as well so that Cov(R(4,5) UR(5,6)) C Cov(a, 3); this
leads to a contradiction since cov(R(4, 5)UR(5,6)) > r2(5) = 6 and cov(a, 8) = 4.

So, P is the unique nontrivial component of G, (w) V(P) = [1,p| and E(P) =
{{i,i+1}:i € [1,p—1]}. Since 12 < ¢p = Zf;ll r(i,i+ 1) < 4(p — 1), we have
p € [4,6].

If p=4,then r(i,i+1)=4,i=1,2,3, co = 12, ¢4y =0 and

(4) i€[1,6] = r3(i) =q—ra(i) > q— 8> 33.

If « € R(1,2) and 5 € R(3,4), then the pair {a, 8} is column-based, hence all
four positions in Cov(a) X [3,4] are occupied by colours of R(3,4), and with j €
Cov(R(1,2))x[3, 4], both positions in {j} x[3, 4] are occupied by colours of R(3,4).
Therefore, cov(R(1,2)) = M =4, and (w) all positions in [1,4] x [1,4] are
occupied by colours of R(1,2) UR(3,4). Thus, (w) Cov(R(2,3)) = [5,n], where
n € [8,12].

By Claim 10 we know that r(i,j,k) = 0 if there is [ € [1,3] such that
{L,I+1} C{i,j,k}.

Suppose that v € R(1,5,6). Since all pairs {7,d} with § € R(3,4) are good
in M, two positions in [5,6] x [1,4] must be occupied by . Then, however,
the number of pairs {v,e} with ¢ € R(2,3) that are good in M is at most
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two, a contradiction. So, 7(1,5,6) = 0, and an analogous reasoning shows that
r(4,5,6) = 0.

Claim 11 yields 7(1,4,5) + r(1,4,6) < r*({1,4,5,6}) < 8. A colour v €
R(2,5,6) as well as a colour § € R(3,5,6) occupies two positions in [5,6] x [1,4]
(each pair {v,e} with e € R(3,4) and each pair {4, (} with ¢ € R(1,2) is good in
M). Thus r(2,5,6) +17(3,5,6) <4 and

(5) r(1,4,5) +r(1,4,6) + r(2,5,6) + r(3,5,6) < 12.

The set of remaining triples (4,7,k) € [1,6]* with i < j < k such that
r(i,j, k) can be positive is T = {(1, 3,5), (1, 3,6),(2,4,5),(2,4,6)}. Suppose that
r(i,7,k) > 1 with (i,7,k) € T if and only if (¢,7,k) € {(i1, 71, ki) : L € [1,t]}. We
show that there is m € [1, 6] with r3(m) < 30 in contradiction to (4).

If t = 4, then, by Claim 12, r(i, 5, ki) < 9,1 = 1,2,3,4, and so, using (5),
rg(m) < 12+4+2-9 = 30 for (any) m € [1,6]. If ¢ = 3 and r(4,j,k) = O for
(i,5,k) € T, then r3(m) < 1249 = 21 for m € {i,j, k}. The same upper bound
applies for m € [1,6] if t = 2 and {i1, j1, k1} N {ia, j2, k2} = 0.

If t = 2 and {i1,j1,k1} N {ig, jo,ko} # 0, for m € [1,6] \ ({i1,751,k1} U
{i2, j2,k2}) we obtain r3(m) < 12. The same inequality is available for m €
[1,6]\ {i1,51,k1} if t =1 and for m € [1,6] if t = 0.

If p = 5, then, by Claim 11, from r(4,5) > 1 it follows that r(1,2)+7(2, 3)
r*([1,3]) < 6; similarly, r(1,2) > 1 yields 7(3,4) + r(4,5) < 7*([3,5]) <
Then 12 < ¢y = Z?:l r(i,i+1) < 6+6, co =12 and r(1,2) +7(2,3) = 6
r(3,4) +r(4,5). If (M)1; =~ € R(1,2), then all positions in [3, 5] x Cov(y) are
occupied by six distinct colours of R(3,4) UR(4,5), hence (M)3; € R(3,4) and
d = (M)s; € R(4,5). Analogously, all positions in [1,3] x Cov(d) are occupied
by six distinct colours of R(1,2) UR(2,3), which implies (M)3; € R(2,3), a
contradiction.

If p = 6, then, by Claim 11, »*([1,6] \ [/, + 1]) < 8 for [ € [1, 5], hence

<
6

(6) pr = r*([1,6]\ [I,1+1]) < 4o.
=1

It is easy to see that in the sum p* each of the summands r(i,7 + 1) with ¢ €
[1,5] appears in the expression of 7*([1,6] \ [I,! + 1]) for at least two {’s, while
each of the summands (i, j, k) satisfying {i,j,k} € ([1:’,)6]) \ {{1,3,5},{2,3,5},
{2,4,5},{2,4,6}} and i < j < k appears for at least one [ Since ca = 35, (I, I+
1), with

p=r(1,3,5)+7(2,3,5) +r(2,4,5) + r(2,4,6)

the inequality (6) leads to

(7) 2¢9 + ¢35 — p < p* < 40.
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Moreover, ro(l) + r3(1) < g implies
rs(l) <q—ro(l) =q—[r(l =L D) +r(l,I+1)] <q—2, 1=2,5,
and so, having in mind that, by Claim 12, min(r(1,3,5),7(2,4,6)) <9,

p < min(r3(2) +r(1,3,5),73(5) + r(2,4,6))
(8) < q—2+min(r(1,3,5),7(2,4,6)) < ¢+ 7.

Since, by Claim 9.8, ¢4 — c2 < —12, using (7) and (8) we obtain
2q+4=cot+c3+cgy <404+ p+cytr — 2 §40+(q+7)—12:q+35,
and, finally, ¢ < 31, a contradiction. 0O

With [ € Z and m € [2,00) we use (I),, to denote the unique n € [1,m)]
satisfying n = (mod m).

Claim 20. No component of the graph G is a 4-cycle.

Proof. 1f G has a 4-cycle component, (w) (i, (i + 1)4)
that, by Claim 17, 7(5,6) = 0 = ro(5) = r2(6). Let i € [1

> 1 for i € [1,4]. Note
,4] and
P ={((i +2)4,5), ((i + 2)4,6), (5,6)}.

If v € R3 (i), there is A C [1,6] such that |A| > 3, {i} C A and v € R(A).
Provided that AN{(i —1)a, (i+1)a} # 0, we get v € Ujeqi—1),,11 Ra+(, (G +1)a).
On the other hand, A N {(i — 1)4,(i + 1)1} = 0 implies either |A| = 3 and
v E U(j,k:)ePi R(7,j,k) or |A] =4 and v € R(4, (i + 2)4,5,6). As a consequence,

R3+(i) - R(Z7 (7’ + 2)47 57 6) U U R3+(j7 (] + 1)4) U U ]R(Zvjv k)v
Je{(i—1)asi} (4,k)EP;

and by Claim 10 we have

rap (D) < (i, (1 +2a,5,6)+ Y msp (L G+ D)+ Y r(i5k)

JE{(i—-1)4,i} (4,k)EP;
<r(i,(i4+2)4,5,6)+ Y [A—r(G+D)I+ Y, r(i,5k)
JE{(i—1)asi} (4,k)EP;

Therefore, realising that

4

4
Z Z T(ja (j+1)4) :Zrz(i),
i=1

je{(i—1)4,i} i=1
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we obtain
4 4
9) > ra(i) <32+Z (i42)4,5.6)+ > r(iyg k)| = rali).
=1 (j.k)EP; i=1

On the right-hand side of the inequality 39) there are among others (par-
tial) summands r(A) with A € ([1:’,)6]) U ([1;16), each such summand appears
there with the frequency 0, 1 or 2, and the frequency is 2 if and only if A €
{{1,3,5},{1,3,6},{2,4,5},{2,4,6},{1,3,5,6},{2,4,5,6}}. Thus, with

ps =1(1,3,5) +7(1,3,6) +7(2,4,5) + r(2,4,6),
ps =1(1,3,5,6) +r(2,4,5,6)

the inequality (9) leads to

4

(10) 4g = [ra(i) + 734 ()] < 32+ p3 + pa + c3 + cu.
=1

Let us show that
(11) p3 < q+ 10.
To see it let a be the number of sets A belonging to
A={{1,3,5},{1,3,6},{2,4,5},{2,4,6}}

with r(A) > 1.

If a = 4, by Claim 12 we have p3 <4-9 =36 < ¢+ 10.

In the case a = 3 there is ¢ € [1,4] such that p3s < 2-9 + r3(:). Evidently,
r3(i) < q—r2(i) = q— [r((i = 1)a,8) +7(i, (i + 1)4)] < g — (4 +4) = ¢ — 8, hence
p3 < q+10.

If a = 2, let the positive summands of p3 be (i, j, k) and r(I,m,n), {i,j,k} #
{l,m,n}. It {i,j,k} N {l,m,n} =0, then p3 < 2-9 < g+ 10, and otherwise, with
p € {i,j,k} N{l,m,n}, we have p3 < rs(p) <q.

If a € [0,1], then ps < q — 2, since r(i,4,k) > 1 with {i,j,k} € A and
i < j < k implies ¢ € [1,2], while r2(7) > 1+ 1.

Now realise that, by Claim 9.8, py + c3 + ¢4 < c3 4 2¢44 = |C| + (cay — 2) <
(2¢+4)—12 = 2¢g—8, and so, using (10) and (11), 4¢ < 32+ (¢+10)+(2¢—38) =
3q + 34 and ¢ < 34, a contradiction.

O

Claim 21. No component of the graph G is a 5-cycle.
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Proof. 1f G has a 5-cycle component, (w) (7, (i+1)5) > 1 for ¢ € [1,5]. Similarly
as in the proof of Claim 20 for i € [1,5] we get

T‘d+()<’r((l—2)5, ,(Z+2)5,6)+ Z 7’3+(], j—|—1 + Z fL ]7
Je{(i—1)s5,i} (j,k)eP;

this time with

Py ={((i = 2)5,6), ((¢ +2)5,6), ((i —2)5, (i +2)5)},
which yields

5
(12) 5g =Y [ra(i) + ra+(i)] <40+ p3 + 3+ cu,

=1
where
(13) p3 = T(la 3, 6) + 7’(1, 4, 6) + T'<27 4, 6) + T’(Q, 5, 6) + T(37 5, 6) < 7’3(6) <gq.

Moreover, c3 + ¢4 < 2q+ 4 — co < 2q — 8, and so, using (12) and (13), 5g <
40+ ¢+ (2¢ — 8) = 3¢ + 32 and ¢ < 16, a contradiction. 0

Claim 22. The graph G is not a 6-cycle.

Proof. 1f G is a 6-cycle, (w) r(i, (i + 1)g) > 1 for 7 € [1,6]. In this case r3, (i) is
upper bounded by

r((i—2)6,i, (i +2)6, (i +3)) + >, HA—r(.G+De)l+ > 7(i,jk)
je{i—1)6,i} (k)EP;

with

Py ={((i = 2)¢, (i +2)6), ((i = 2)6, (i +3)6), ((1 +2)6, (i + 3)6)},

and one can see that
(14) 6 <48 + p3 + c3 + ¢4,

where p3 = 2r(1,3,5)+2r(2,4,6). We can bound p3 from above by 2g—4. Indeed,
if both r(1,3,5) and r(2,4,6) are positive, then Claim 12 yields p3 < 18 + 18 =
36 < 2¢—4. On the other hand, if (7, j, k) = 0 with (¢, 5, k) € {(1,3,5),(2,4,6)},
then pg < 2r3(i+1) <2[q —r2(i +1)] =2 —2[r2(¢, i+ 1) +r2(i + 1,0 + 2)] <
2q — 4. Therefore, similarly as in the proof of Claim 21, from (14) we obtain
6g <48+ (29 —4) + (29 — 8) = 4¢ + 36 and ¢ < 18, a contradiction. 0
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Thus, by Claims 16-22, we conclude that G = 6K; and c; = 0, which
contradicts Claim 9.3. Therefore, Theorem 15 is proved. |
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