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Abstract

Let G be a graph and C be a finite set of colours. A vertex colouring
f : V (G) → C is complete provided that for any two distinct colours c1, c2 ∈
C there is v1v2 ∈ E(G) such that f(vi) = ci, i = 1, 2. The achromatic
number of G is the maximum number of colours in a proper complete vertex
colouring of G. In the paper it is proved that if q ≥ 41 is an odd integer,
then the achromatic number of the Cartesian product of K6 and Kq is 2q+3.
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1. Introduction

Let G be a finite simple graph and C a finite set of colours. A vertex colouring
f : V (G) → C is complete if for any pair of distinct colours c1, c2 ∈ C one can
find in G an edge {v1, v2} (often shortened to v1v2) such that f(vi) = ci, i = 1, 2.
The achromatic number of G, denoted by achr(G), is the maximum cardinality
of the colour set in a proper complete vertex colouring of G.

The concept was introduced quite a long ago in Harary, Hedetniemi and
Prins [8], where the following was proved.

Theorem 1. If G is a graph, and an integer k satisfies χ(G) ≤ k ≤ achr(G),
then there exists a proper complete vertex colouring of G using k colours.

There are still only a few graph classes G such that achr(G) is known for
all G ∈ G. This is certainly related to the fact that determining the achromatic
number is an NP-complete problem even for trees, see Cairnie and Edwards [2].
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Two surveys are available on the topic, namely Edwards [6] and Hughes and
MacGillivray [10]; more generally, Chapter 12 in the book [3] by Chartrand and
Zhang deals with complete vertex colourings. A comprehensive list of publications
concerning the achromatic number is maintained by Edwards [7].

Some papers are devoted to the achromatic number of graphs constructed
by graph operations. So, Hell and Miller [9] considered achr(G1 × G2), where
G1 ×G2 stands for the categorical product of graphs G1 and G2 (we follow here
the notation by Imrich and Klavžar [16]).

In this paper we are interested in the achromatic number of the Cartesian
product G1�G2 of graphs G1 and G2, the graph with V (G1�G2) = {(v1, v2) :
vi ∈ V (Gi), i = 1, 2}, in which

(

v11, v
1
2

)(

v21, v
2
2

)

∈ E(G1�G2) if and only if there
is i ∈ {1, 2} such that v1i v

2
i ∈ E(Gi) and v13−i = v23−i. As observed by Chiang and

Fu [4], achr(G1) = p and achr(G2) = q implies achr(G1�G2) ≥ achr(Kp�Kq).
This inequality motivates a special interest in the achromatic number of the
Cartesian product of two complete graphs. From the obvious fact that G2�G1

is isomorphic to G1�G2 it is clear that when determining achr(Kp�Kq) we may
suppose without loss of generality p ≤ q.

The problem of determining achr(Kp�Kq) with p ≤ 4 was solved in Horňák
and Puntigán [15] (for p ≤ 3 the result was rediscovered in [4]) and that for p = 5
in Horňák and Pčola [13, 14]. In [5] Chiang and Fu proved that if r is an odd
projective plane order, then achr(K(r2+r)/2�K(r2+r)/2) = (r3 + r2)/2. (For r = 3
the fact that achr(K6�K6) = 18 was known already to Bouchet [1].)

Here we show that achr(K6�Kq) = 2q+3 if q is an odd integer with q ≥ 41.
This is the first of three papers devoted to completely solve the problem of finding
achr(K6�Kq). In Horňák [11] the cases, in which either 8 ≤ q ≤ 40 or q is an
even integer with q ≥ 42, are analysed. Finally, achr(K6�K7) is determined in
Horňák [12].

For k, l ∈ Z we denote integer intervals by

[k, l] = {z ∈ Z : k ≤ z ≤ l}, [k,∞) = {z ∈ Z : k ≤ z}.

Further, with a set A and m ∈ [0,∞) we use
(

A
m

)

for the set of m-element subsets
of A.

Now let p, q ∈ [1,∞). Under the assumption that V (Kr) = [1, r], r = p, q, we
have V (Kp�Kq) = [1, p] × [1, q], while E(Kp�Kq) consists of edges (i, j1)(i, j2)
with i ∈ [1, p], j1, j2 ∈ [1, q], j1 6= j2 and (i1, j)(i2, j) with i1, i2 ∈ [1, p], i1 6= i2,
j ∈ [1, q].

A vertex colouring f : [1, p] × [1, q] → C of the graph Kp�Kq can be con-
veniently described using the p × q matrix M = M(f) whose entry in the ith
row and the jth column is (M)i,j = f(i, j). Such a colouring is proper if any
row of M consists of q distinct entries and any column of M consists of p dis-
tinct entries. Further, f is complete provided that any pair {α, β} ∈

(

C
2

)

is good
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in M in the following sense: there are (i1, j1), (i2, j2) ∈ [1, p] × [1, q] such that
{(M)i1,j1 , (M)i2,j2} = {α, β} and either i1 = i2, which we express by saying that
the pair {α, β} is row-based (inM), or j1 = j2, i.e., the pair {α, β} is column-based

(in M).

Let M(p, q, C) denote the set of p× q matrices M with entries from C such
that all rows (columns) of M have q (p, respectively) distinct entries, and each
pair {α, β} ∈

(

C
2

)

is good in M . So, if f : [1, p]× [1, q] → C is a proper complete
vertex colouring of Kp�Kq, then M(f) ∈ M(p, q, C).

Conversely, if M ∈ M(p, q, C), then the mapping fM : [1, p] × [1, q] → C
with fM (i, j) = (M)i,j is a proper complete vertex colouring of Kp�Kq. Thus,
we have proved:

Proposition 2. If p, q ∈ [1,∞) and C is a finite set, then the following state-

ments are equivalent.

(1) There is a proper complete vertex colouring of Kp�Kq using as colours ele-

ments of C.

(2) M(p, q, C) 6= ∅.

We have another evident result.

Proposition 3. If p, q ∈ [1,∞), C,D are finite sets, M ∈ M(p, q, C), mappings

ρ : [1, p] → [1, p], σ : [1, q] → [1, q], π : C → D are bijections, and Mρ,σ, Mπ are

p × q matrices defined by (Mρ,σ)i,j = (M)ρ(i),σ(j) and (Mπ)i,j = π((M)i,j), then
Mρ,σ ∈ M(p, q, C) and Mπ ∈ M(p, q,D).

Let M ∈ M(p, q, C). The frequency of a colour γ ∈ C is the number frq(γ) of
appearances of γ in M , and the frequency of M , denoted frq(M), is the minimum
of frequencies of colours in C. A colour of frequency l is an l-colour. Cl is the
set of l-colours, cl = |Cl|, and Cl+ is the set of colours of frequency at least l,
cl+ = |Cl+|. We denote by R(i) the set {(M)i,j : j ∈ [1, q]} of colours in the ith
row of M and by C(j) the set {(M)i,j : i ∈ [1, p]} of colours in the jth column of
M . Further, for k ∈ {l, l+} let

Rk(i) = Ck ∩ R(i), rk(i) = |Rk(i)|,

Ck(j) = Ck ∩ C(j), ck(j) = |Ck(j)|.

So Rl(i) and Rl+(i) is the set of colours in the row i which occur exactly and at
least l times altogether, respectively; the meaning of Cl(j) and Cl+(j) is similar.
If A ⊆ [1, p], |A| ≥ 2, then

R(A) =
⋂

l∈A

(C|A| ∩ R(l)), r(A) = |R(A)|.
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R(A) is the set of colours which appear precisely in the rows numbered by A.
Provided that A ∈ {{i, j}, {i, j, k}, {i, j, k, l}}, instead of R(A) we write R(i, j),
R(i, j, k), R(i, j, k, l), while r(A) is simplified to r(i, j), r(i, j, k), r(i, j, k, l), re-
spectively. With {i, j} ⊆ [1, p] and {m,n} ⊆ [1, q] we set

R3+(i, j) = C3+ ∩ R(i) ∩ R(j), r3+(i, j) = |R3+(i, j)|,

C(m,n) = C2 ∩ C(m) ∩ C(n), c(m,n) = |C(m,n)|.

R3+(i, j) is the set of colours of frequency at least 3 occuring in both rows i and
j, and C(m,n), an analogue of the notation R(i, j), stands for the set of 2-colours
occuring exactly in the columns m and n. If B ⊆ [1, p] and 3 ≤ |B| ≤ p− 2, then

R∗(B) =

|B|
⋃

l=2

⋃

A∈(Bl )

R(A).

R∗(B) is the set of colours of frequency at least 2 occuring only in the rows
numbered by B. Since

{

R(A) : ∃ l∈[2,|B|]A ∈
(

B
l

)}

is a set of pairwise disjoint
sets, we have

r∗(B) = |R∗(B)| =

|B|
∑

l=2

∑

A∈(Bl )

r(A).

For γ ∈ C let

R(γ) = {i ∈ [1, p] : γ ∈ R(i)}

be the set of (the numbers of) the rows containing the colour γ.

With S ⊆ [1, p]× [1, q] we say that a colour γ ∈ C occupies a position in S if
there is (i, j) ∈ S such that (M)i,j = γ. If ∅ 6= A ⊆ C, the set of columns covered

by A is

Cov(A) = {j ∈ [1, q] : C(j) ∩A 6= ∅},

i.e., the set of columns containing an element of A. We define cov(A) = |Cov(A)|,
and with A ∈ {{α}, {α, β}} we use a simplified notation Cov(α), Cov(α, β) and
cov(α), cov(α, β) instead of Cov(A) and cov(A).

2. Lower Bound

Proposition 4. If q ∈ [7,∞) and q ≡ 1 (mod 2), then achr(K6�Kq) ≥ 2q + 3.

Proof. Let s = q−3
2 , and let M be the 6 × q matrix below. We show that

M ∈ M(6, q, C), where C = [1, 9] ∪Xs ∪ Ys ∪ Zs ∪ Ts, Us = {ui : i ∈ [1, s]} for
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U ∈ {X,Y, Z, T}, and the sets [1, 9], Xs, Ys, Zs, Ts are pairwise disjoint.

















1 2 3 x1 x2 . . . xs−1 xs y1 y2 . . . ys−1 ys
4 5 6 xs x1 . . . xs−2 xs−1 z1 z2 . . . zs−1 zs
7 8 9 t1 t2 . . . ts−1 ts x1 x2 . . . xs−1 xs
3 1 2 z1 z2 . . . zs−1 zs t1 t2 . . . ts−1 ts
5 6 4 ts t1 . . . ts−2 ts−1 ys y1 . . . ys−2 ys−1

8 9 7 y1 y2 . . . ys−1 ys zs z1 . . . zs−2 zs−1

















Since s ≥ 2, because of our assumptions on the structure of C it is clear
that elements in lines (rows and columns) of M are pairwise distinct. Thus it is
sufficient to show that each pair {α, β} ∈

(

C
2

)

is good in M .

If α, β ∈ [1, 9], then both α and β appear twice in the columns 1, 2, 3, hence
the pair {α, β} is column-based.

If α ∈ C and β ∈ Xs ∪ Ys ∪Zs ∪ Ts, realise that R(α) ∈ R1 ∪R2 and R(β) ∈
R2, where R1 = {{1, 4}, {2, 5}, {3, 6}} and R2 = {{1, 2, 3}, {1, 5, 6}, {2, 4, 6},
{3, 4, 5}}. As R∩R2 6= ∅ for any R ∈ R1 ∪R2 and any R2 ∈ R2, the pair {α, β}
is row-based.

So, Proposition 2 yields achr(K6�Kq) ≥ |C| = 4s+ 9 = 2q + 3.

3. Auxiliary Results

Let M ∈ M(p, q, C) and let γ ∈ C. For the (complete) colouring fM from the
proof of Proposition 2 denote Vγ = f−1

M (γ) ⊆ [1, p] × [1, q], and let N(Vγ) be
the neighbourhood of Vγ (the union of neighborhoods of vertices in Vγ). The
excess of γ is defined to be the maximum number exc(γ) of vertices in a set
S ⊆ N(Vγ) such that each pair {γ, γ′} ∈

(

C
2

)

is good even in the “partial matrix”
corresponding to the restriction of fM created by uncolouring the vertices of S.

Lemma 5. If p, q ∈ [1,∞), C is a finite set, M ∈ M(p, q, C) and γ ∈ C, then

the following hold.

1. frq(γ) ≤ min(p, q);

2. frq(γ) = l implies exc(γ) = l(p+ q − l − 1)− (|C| − 1) ≥ 0;

3. frq(M) = l implies |C| ≤
⌊pq

l

⌋

.

Proof. 1. The assumption frq(γ) = l > min(p, q) would mean, by the pigeonhole
principle, that the colouring fM is not proper.

2. Because of Proposition 3 we may suppose without loss of generality
(M)i,i = γ for all i ∈ [1, l]. For simplicity we use (w) to indicate that it is
just Proposition 3, which enables us to restrict our attention to matrices with a
special property.
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The colouring fM is complete, hence each of |C| − 1 colours in C \ {γ} must
occupy a position in the set N(Vγ) = {(i, j) : (i ≤ l ∨ j ≤ l) ∧ i 6= j}. Thus,
|N(Vγ)| = ql + (p − l)l − l ≥ |C| − 1 and exc(γ) = |N(Vγ)| − (|C| − 1) =
l(p+ q − l − 1)− (|C| − 1) ≥ 0.

3. If α ∈ C is such that frq(α) = frq(M) = l and β ∈ C, then frq(β) ≥
frq(α) = l. Therefore, the total number of entries of the matrix M is pq ≥ l|C|,
and the desired inequality follows.

The excess of a matrix M ∈ M(p, q, C), denoted by exc(M), is the minimum
of excesses of colours in C.

Lemma 6. If p, q ∈ [1,∞), C is a finite set and M ∈ M(p, q, C), then exc(M) =
exc(γ), where γ ∈ C and frq(γ) = frq(M).

Proof. Let m = min(p, q), and let γ ∈ C be such that l = frq(γ) = frq(M). For
any α ∈ C then k = frq(α) ≥ frq(γ) = l, and, by Lemma 5.2, exc(α) = k(p+ q −
k−1)−|C|+1 ≥ 0. Therefore, exc(α)−exc(γ) = k(p+q−k−1)−l(p+q−l−1) ≥ 0,

since h(x) = x(p+ q−x−1) is increasing in the interval
〈

1, p+q−1
2

〉

% 〈1,m−1〉,

and p = q = m implies h(m− 1) = h(m). Consequently, exc(M) = exc(γ).

Lemma 7 (see [15] and [4]). If p, q ∈ [1,∞) and p ≤ q, then

achr(Kp�Kq) ≤ max
(

min
(

l(p+ q − l − 1) + 1, ⌊pq/l⌋
)

: l ∈ [1, p]
)

.

Corollary 8. If q ∈ [7,∞), then achr(K6�Kq) ≤ 2q + 7.

Proof. By Lemma 7 with p = 6 we obtain achr(K6�Kq) ≤ max
(

q + 5, 2q +

7, 2q,
⌊6q

4

⌋

,
⌊6q

5

⌋

, q
)

= 2q + 7.

4. Properties of Matrices in M(6, q, C)

Suppose we know that achr(K6�Kq) ≥ 2q+ s− 1 for a pair (q, s) with q ∈ [7,∞)
and s ∈ [1,∞), and we want to prove that achr(K6�Kq) = 2q + s − 1; clearly,
because of Corollary 8 it is sufficient to work with s ≤ 7. Proceeding by the
way of contradiction let s satisfy achr(K6�Kq) = 2q + s. By Theorem 1 and
Proposition 2 there is a (2q + s)-element set C and a matrix M ∈ M(6, q, C).
Our task will be accomplished by showing that the existence of M leads to a
contradiction. For that purpose we shall need properties of M . So in all claims
of the present section we suppose that the notation corresponds to a matrix
M ∈ M(6, q, C) with q ∈ [7,∞) and |C| = 2q + s ≤ 2q + 7. We associate with
M an auxiliary graph G with V (G) = [1, 6], in which {i, k} ∈ E(G) if and only
if r(i, k) ≥ 1 (so that there is a 2-colour appearing in both rows i and k).
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Claim 9. The following statements are true:

1. c1 = 0;

2. cl = 0 for l ∈ [7,∞);

3. c2 ≥ 3s;

4. c3+ ≤ 2q − 2s;

5.
∑6

i=3 ici ≤ 6q − 6s;

6. frq(M) = 2;

7. exc(M) = 7− s;

8. c4+ ≤ c2 − 3s;

9. if {i, k} ∈
(

[1,6]
2

)

, then r(i, k) ≤ 8− s.

Proof. 1. If c1 > 0, a 1-colour γ ∈ C satisfies exc(γ) = q + 4 − (2q + s − 1) =
5− q − s < 0 in contradiction to Lemma 5.2.

2. Use Lemma 5.1.

3. By Claims 9.1 and 9.2, counting the number of vertices of K6�Kq we get
6q =

∑6
i=2 ici. Therefore, 3(2q+s) = 3|C| = 3(c2+c3+) ≤ c2+

∑6
i=2 ici = c2+6q,

which yields c2 ≥ 3s.

4. From 2(2q+s)+ c3+ = 2|C|+ c3+ = 2c2+3c3+ ≤
∑6

i=2 ici = 6q we obtain
c3+ ≤ 2q − 2s.

5. The assertion of Claim 9.3 leads to
∑6

i=3 ici =
∑6

i=2 ici−2c2 = 6q−2c2 ≤
6q − 6s.

6. A consequence of Claims 9.1, 9.3 and the assumption s ∈ [1, 7].

7. Since frq(M) = 2 (Claim 9.6), by Lemma 6 we get exc(M) = 2q + 6 −
(2q + s− 1) = 7− s.

8. We have 3(2q+ s)− c2+ c4+ = 3(c2+ c3+ c4+)− c2+ c4+ ≤
∑6

i=2 ici = 6q
and c4+ ≤ c2 − 3s.

9. The inequality is trivial if r(i, k) = 0. If γ ∈ R(i, k), then each colour of
R(i, k) \ {γ} contributes one to the excess of γ, hence, by Claims 9.6 and 9.7,
r(i, k)− 1 ≤ exc(γ) = exc(M) = 7− s and r(i, k) ≤ 8− s.

Claim 10. If {i, k} ∈
(

[1,6]
2

)

and r(i, k) ≥ 1, then r(i, k) + r3+(i, k) ≤ 8− s.

Proof. With γ ∈ R(i, k) each colour of (R(i, k)\{γ})∪R3+(i, k) makes a contri-
bution of one to the excess of γ, hence r(i, k)−1+r3+(i, k) ≤ exc(γ) = exc(M) ≤
7− s, and the claim follows.

Claim 11. If {i, k} ∈
(

[1,6]
2

)

, r(i, k) ≥ 1, B ⊆ [1, 6], 3 ≤ |B| ≤ 4 and B ∩ {i, k}
= ∅, then r∗(B) ≤ 2|B|.

Proof. Consider a colour γ ∈ R(i, k) with (M)i,j = (M)k,l = γ (where, of course,
j 6= l). If β ∈ R∗(B), there is A ⊆ B with |A| ≥ 2 and β ∈ R(A). The colour β
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appears in neither of the rows i, k, hence the pair {β, γ} is good in M only if β
occupies a position in the set

⋃

m∈A{(m, j), (m, l)} ⊆
⋃

m∈B{(m, j), (m, l)}. As
a consequence, r∗(B) = |R∗(B)| ≤

∣

∣

⋃

m∈B{(m, j), (m, l)}
∣

∣ = 2|B|.

Claim 12. If {i, j, k, l,m, n} = [1, 6] and r(i, j, k) ≥ 1, then r(l,m, n) ≤ 9.

Proof. There is nothing to prove if R(l,m, n) = ∅. Further, with α ∈ R(i, j, k)
and β ∈ R(l,m, n) the pair {α, β} is good in M only if the colour β occupies a
position in the 9-element set {l,m, n} × Cov(α).

Claim 13. If ∆(G) ≥ 4, then q ≤ 40− 5s.

Proof. Suppose (w) ∆(G) = degG(1) ≥ 4, and, moreover, let (w) the sequence
(r(1, k))6k=2 be nondecreasing. The least p ∈ [2, 6] with r(1, p) ≥ 1 satisfies
p ≤ 3, and we have R3+(1) =

⋃6
k=pR3+(1, k). Then, by Claim 9.1, q = |R(1)| =

r2(1) + r3+(1). The inequality r(1, k) ≥ 1 for k ∈ [p, 6] yields, by Claim 10,
r3+(1, k) ≤ 8− s− r(1, k); therefore,

q − r2(1) = r3+(1) =

∣

∣

∣

∣

∣

6
⋃

k=p

R3+(1, k)

∣

∣

∣

∣

∣

≤
6

∑

k=p

r3+(1, k)

≤
6

∑

k=p

[8− s− r(1, k)] = (7− p)(8− s)−
6

∑

k=p

r(1, k),

and then, since r2(1) =
∑6

k=p r(1, k), we finish with q ≤ (7−p)(8−s) ≤ 40−5s.

Claim 14. If ∆(G) = 3, {i, j, k, l,m, n} = [1, 6], r(i, l) ≥ 1, r(j, l) ≥ 1 and

r(k, l) ≥ 1, then r(l,m, n) ≥ q + 3s− 24.

Proof. We have ∆(G) = degG(l), R(l,m) = R(l, n) = ∅, R(l) = R2(l) ∪ R3+(l),
R2(l) = R(i, l) ∪ R(j, l) ∪ R(k, l) and R3+(l) = R(l,m, n) ∪ R3+(i, l) ∪ R3+(j, l) ∪
R3+(k, l). Proceeding similarly as in the proof of Claim 13 leads to q − r2(l) =
r3+(l) ≤ r(l,m, n)+[8−s−r(i, l)]+[8−s−r(j, l)]+[8−s−r(k, l)] = r(l,m, n)+
3(8− s)− r2(l), which yields the desired result.

5. Main Theorem

Theorem 15. If q ∈ [41,∞) and q ≡ 1 (mod 2), then achr(K6�Kq) = 2q + 3.

Proof. We proceed by the way of contradiction. As mentioned in the beginning
of Section 4, we have to show that the existence of a matrix M ∈ M(6, q, C),
where C is a set of 2q + s = 2q + 4 colours, leads to a contradiction. First
notice that, by Claim 9, all colours of C are of frequency l ∈ [2, 6], c2 ≥ 12,
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c3+ ≤ 2q − 8,
∑6

i=3 ici ≤ 6q − 24, frq(M) = 2, exc(M) = 3, and {i, k} ∈
(

[1,6]
2

)

implies r(i, k) ≤ 4.

Since q ≥ 41, from Claim 13 we know that ∆(G) ≤ 3 for the auxiliary graph
G. Besides that, degG(i) = di for i ∈ [1, 6] yields r2(i) =

∑

{i,k}∈E(G) r(i, k) ≤
∑

{i,k}∈E(G) 4 = 4di.

Claim 16. ∆(G) ≤ 2.

Proof. If ∆(G) = 3, (w) degG(1) = 3, r(1, 4) ≥ 1, r(1, 5) ≥ 1 and r(1, 6) ≥ 1.
By Claim 14 we have r(1, 2, 3) ≥ q − 12 ≥ 29, and so Claim 11 yields r(4, 5) =
r(4, 6) = r(5, 6) = 0 (if r(i, k) ≥ 1 for {i, k} ∈

(

[4,6]
2

)

, then 29 ≤ r(1, 2, 3) ≤
r∗([1, 3]) ≤ 2|[1, 3]| = 6, a contradiction). Moreover, r(4, 5, 6) = 0, for otherwise,
by Claim 12, r(1, 2, 3) ≤ 9, a contradiction.

There is no i ∈ [4, 6] with degG(i) = 3, because then, again by Claim 14,
r(4, 5, 6) ≥ q− 12 ≥ 29 in contradiction to Claim 12. So, degG(i) ≤ 2, i = 4, 5, 6,
2c2 =

∑6
i=1 r2(i) ≤ 3·12+3·8 = 60 and c2 ≤ 30. Since r(1, i) ≥ 1, Claim 11 yields

r∗([2, 6] \ {i}) ≤ 2|[2, 6] \ {i}| = 8, i = 4, 5, 6, and then ρ∗ =
∑6

i=4 r
∗([2, 6] \ {i})

≤ 24.

By inspection of summands of type r(A) with A ⊆ [2, 6], 2 ≤ |A| ≤ 3,
that appear when counting the three summands of ρ∗, one can see that each
of r(A) with A ∈

(

[2,6]
2

)

\ {{4, 5}, {4, 6}, {5, 6}} appears at least twice, and each

of r(A) with A ∈
(

[2,6]
3

)

\ {{4, 5, 6}} (which is a set belonging to C3 \ R3(1))
appears at least once. Because of r(4, 5) = r(4, 6) = r(5, 6) = r(4, 5, 6) = 0 this
leads to 2

∑

{i,k}∈([2,6]2 ) r(i, k) + c3 − r3(1) ≤ ρ∗ ≤ 24, which, having in mind that

2
∑

{i,k}∈([2,6]2 ) r(i, k) = 2c2−2r2(1), yields 2c2−2r2(1)+c3−r3(1) ≤ 24. Together

with the inequality r2(1) + r3(1) ≤ q then c2 + c3 ≤ q + 24+ r2(1)− c2 ≤ q + 24,
2q + 4 = |C| = c2 + c3 + c4+ ≤ q + 24 + c4+, and so c4+ ≥ q − 20 ≥ 21 in
contradiction to c4+ ≤ c2 − 3s ≤ 30− 12 = 18, which comes from Claim 9.8 and
the above inequality for c2.

By Claim 16 each component of G is either a path or a cycle.

Claim 17. No component of the graph G is K2.

Proof. Let (w) G have a component K2 with vertex set [1, 2]. Then r(1, 2) ∈
[1, 4], r(i, k) = 0 for (i, k) ∈ [1, 2] × [3, 6], and so c2 = r(1, 2) + ρ, where, by
Claim 11, ρ =

∑

{i,k}∈([3,6]2 ) r(i, k) ≤ r∗([3, 6]) ≤ 8. Further, (w) Cov(R(1, 2)) =

[1, n] with n ∈ [2, 8].

If r(1, 2) ∈ [1, 3], then c2 ≤ 3 + 8 = 11, a contradiction.

If r(1, 2) = 4, then n ≥ 4, 8 ≥ ρ = |C2 \ R(1, 2)| ≥ 12 − 4 = 8, ρ = 8 and
c2 = 12. In the case n ∈ [5, 8] there is j ∈ [1, n] such that C(j) contains at most
⌊

2·8
n

⌋

≤ 3 colours of C2 \ R(1, 2). Then, however, for a colour γ ∈ R(1, 2) ∩ C(j)
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the number of colours δ ∈ C2 \R(1, 2), for which the pair {γ, δ} is good in M , is
at most seven, a contradiction.

Therefore n = 4, 2-colours occupy all positions in [1, 6] × [1, 4], Claim 9.8
yields c4+ ≤ 12− 3 · 4 = 0, c4+ = 0, and all positions in the set [1, 6]× [5, q] are
occupied by 3-colours. Among other things this means that

(1) c3 =
6(q − 4)

3
= 2q − 8 ≥ q + (41− 8) = q + 33,

r2(i) = 4 and r3(i) = q−4 for i ∈ [1, 6], and r(i, k) ∈ [0, 4] for every {i, k} ∈
(

[3,6]
2

)

.
Recall that, by Claim 16, ∆(G) ≤ 2. Further, if r(i, k) = 4 for some {i, k} ∈

(

[3,6]
2

)

, then degG(m) = 1, m = 3, 4, 5, 6, since with {i, j, k, l} = [3, 6] we have
r(j, l) = 4. In such a case G is (isomorphic to) 3K2. Otherwise, if r(i, k) < 4 for
each {i, k} ∈

(

[3,6]
2

)

, then degG(m) = 2, m = 3, 4, 5, 6, and G is (isomorphic to)
K2 ∪ C4.

Let us first consider the case G = 3K2, in which (w) r(i, i + 1) = 4,
i = 3, 5. Clearly, a set R(i, j, k) with {i, j, k} ∈

(

[1,6]
3

)

can be nonempty only if
{i, j, k}∩{l, l+1} 6= ∅, l = 1, 3, 5. As a consequence the assumption R(i, j, k) 6= ∅
with i < j < k implies (i, j, k) ∈ {(1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (2, 3, 5),
(2, 3, 6), (2, 4, 5), (2, 4, 6)}.

Suppose that {(im, jm) : m ∈ [1, 4]}={(3, 5), (3, 6), (4, 5), (4, 6)}={(km, lm) :
m ∈ [1, 4]} and {im, jm, km, lm} = [3, 6] for m ∈ [1, 4]. Then

(2) c3 =
4

∑

m=1

[r(1, im, jm) + r(2, km, lm)].

Further, for m,n ∈ [1, 4] the sets {im, jm} and {kn, ln} are disjoint if and only if
m = n. Put

T (1) = {m ∈ [1, 4] : r(1, im, jm) ≥ 1}, t(1) = |T (1)|,

T (2) = {m ∈ [1, 4] : r(2, km, lm) ≥ 1}, t(2) = |T (2)|

and T = T (1) ∩ T (2). Let

σ(P ) =
∑

p∈P

[r(1, ip, jp) + r(2, kp, lp)]

for P ⊆ [1, 4]. Using Claim 12 we see that m ∈ T (1) implies r(2, km, lm) ≤ 9,
while m ∈ T (2) means that r(1, im, jm) ≤ 9. Therefore, with m ∈ T we have
r(1, im, jm) + r(2, km, lm) ≤ 9 + 9 = 18, and so σ(T ) ≤ 18|T |.

If t(1) = 4, then q − 4 = r3(2) ≤
∑4

x=1 r(2, kx, lx) ≤ 4 · 9 = 36, and q ≤ 40, a
contradiction. Similarly, with t(2) = 4 we get q− 4 = r3(1) ≤

∑4
x=1 r(1, ix, jx) ≤

36, and q ≤ 40 as well.
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If there is x ∈ [1, 2] such that t(x) = 1 and T (x) = {m}, then r3(x) =
r(x, im, jm) = r3(im) = r3(jm) = q− 4 ≥ 37, hence r(3−x, km, lm) = r3(3−x) =
r3(km) = r3(lm) = q − 4 ≥ 37, which contradicts Claim 12.

We are left with the situation t(1), t(2) ∈ [2, 3] (and |T | ≤ min(t(1), t(2))).
Suppose (w) t(1) ≥ t(2).

If |T | = 3, then T (1) = T = T (2), [1, 4] \ T = {p} and r(1, ip, jp) =
r(2, kp, lp) = 0, hence 2q − 8 = c3 = σ([1, 4]) = σ(T ) ≤ 18 · 3 = 54 and q ≤ 31, a
contradiction.

If |T | = 2, then n out of four summands that sum up to σ([1, 4] \ T ) are
positive, n ≤ 2. Moreover, σ([1, 4] \ T ) ≤ q − 4. The inequality is obvious
provided that n ≤ 1, while if n = 2, a ∈ T (1)\T (2) and b ∈ T (2)\T (1), then with
e ∈ {ia, ja}∩{kb, lb} we have σ([1, 4]\T ) = r(1, ia, ja)+r(2, kb, lb) ≤ r3(e) = q−4.
Thus c3 = σ(T ) + σ([1, 4] \ T ) ≤ 18 · 2 + (q − 4) = q + 32 in contradiction to (1).

For |T | = 1 we get t(2) = 2. With t(1) = 2 we obtain, similarly as in the
case |T | = 2, c3 ≤ 18 + (q − 4) = q + 14. So, assume that t(1) = 3, T = {t} and
T (2) \ T (1) = {p} (note that p 6= t).

Suppose first that {kp, lp} 6= {it, jt}. In such a case |{kp, lp} ∩ {it, jt}| = 1;
moreover, since {kp, lp} ⊆ [3, 6] = {it, jt, kt, lt}, we have |{kp, lp} ∩ {kt, lt}| = 1,
and there is g ∈ {k, l} such that {kp, lp} ∩ {kt, lt} = {gt}. Then five from among
eight summands in (2) are positive, namely r(1, it, jt), r(2, kt, lt), r(2, kp, lp) and
r(1, im, jm) with m ∈ [1, 4] \ {t, p}. Having in mind that gt /∈ {it, jt}, gt /∈
{ip, jp}, and each element of [3, 6] is involved in exactly two of the ordered pairs
(3, 5), (3, 6), (4, 5), (4, 6), we see that except for r(1, it, jt) all mentioned positive
summands correspond to colours of R3(gt). That is why c3 ≤ r(1, it, jt)+r3(gt) ≤
9 + (q − 4) = q + 5, a contradiction to (1) again.

On the other hand, if {kp, lp} = {it, jt}, then |{ip, jp} ∩ {it, jt}| = |{ip, jp} ∩
{kp, lp}| = 0, hence for m ∈ [1, 4] \ {t, p} we have |{im, jm} ∩ {it, jt}| = 1, and
so positive summands in (2) are r(1, it, jt), r(2, kt, lt), r(2, kp, lp) = r(2, it, jt),
r(1, gt, kt) and r(1, ht, lt), where {g, h} = {i, j}. Then

q − 4 = r3(2) = r(2, kt, lt) + r(2, it, jt),

q − 4 = r3(kt) = r(2, kt, lt) + r(1, gt, kt),

which yields

r(2, it, jt) = r(1, gt, kt) = q − 4− r(2, kt, lt) ≥ (q − 4)− 9 = q − 13

so that

q − 4 = r3(gt) = r(1, it, jt) + r(1, gt, kt) + r(2, it, jt) ≥ 1 + 2(q − 13)

and q ≤ 21, a contradiction.
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If |T | = 0, then t(1) = t(2) = 2, and, by symmetry, T (1) = [1, 2], T (2) =
[3, 4]. We have {i1, j1}∪{i2, j2} = [3, 6], for otherwise there is e ∈ [3, 6]\({i1, j1}∪
{i2, j2}), hence e ∈ {i3, j3}∩ {i4, j4}, e /∈ {k3, l3}∪ {k4, l4} and r3(e) = 0 6= q− 4,
a contradiction. Thus, by symmetry we may assume that i1 = 3 < i2 = 4.

Therefore, (w) (i1, j1) = (3, 5) and (i2, j2) = (4, 6), which means that r(m,
n, p) with {m,n, p} ∈

(

[1,6]
3

)

and m < n < p is positive if and only if (m,n, p) ∈
{(1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)}. We have r3(6) = r(1, 4, 6) + r(2, 3, 6) = q −
4 ≡ 1 (mod 2), hence

(3) r(1, 4, 6) 6≡ r(2, 3, 6) (mod 2).

Similarly, from r3(1) = q− 4 = r3(3) it follows that r(1, 3, 5) 6≡ r(1, 4, 6) (mod 2)
and r(1, 3, 5) 6≡ r(2, 3, 6) (mod 2) so that r(1, 4, 6) ≡ r(2, 3, 6) (mod 2), which
contradicts (3).

It remains to analyse the case G = K2∪C4, in which (w) {{3, 4}, {4, 5}, {5, 6},
{6, 3}} ⊆ E(G). The completeness of fM implies C3 ⊆ R(1, 3, 5) ∪ R(1, 4, 6) ∪
R(2, 3, 5) ∪ R(2, 4, 6). So,

c3 = [r(1, 3, 5) + r(2, 4, 6)] + [r(1, 4, 6) + r(2, 3, 5)].

Let T̄ = {(1, 3, 5), (1, 4, 6), (2, 3, 5), (2, 4, 6)},

T = {(i, j, k) ∈ T̄ : r(i, j, k) ≥ 1}

and t = |T |. From r3(i) = q − 4 > 0 for i ∈ [1, 6] it follows that t ≥ 2. If
(i, j, k), (l,m, n) ∈ T , (i, j, k) 6= (l,m, n), then either r(i, j, k)+r(l,m, n) ≤ 9+9 =
18 (by Claim 12, if {i, j, k}∩{l,m, n} = ∅) or r(i, j, k)+r(l,m, n) ≤ r3(p) = q−4
(if p ∈ {i, j, k} ∩ {l,m, n}). As a consequence then c3 ≤ max(b2, b3, b4), where
b2 = q − 4, b3 = 18 + (q − 4) = q + 14 and b4 = 18 + 18 = 36. Thus c3 ≤ q + 14,
which contradicts (1).

Claim 18. No component of the graph G is K3.

Proof. Let (w) G have the component K3 with the vertex set [1, 3].

If G = K3 ∪ 3K1, then r(1, 2) = r(1, 3) = r(2, 3) = 4, c2 = 12 and c4+ = 0.
From Claim 10 it follows that r3+(1, 3) = 0 = r3+(2, 3), hence r(3, i, k) ≥ 1
with {i, k} ∈

(

[1,6]\{3}
2

)

implies {i, k} ∈ {{4, 5}, {4, 6}, {5, 6}}. By Claim 11 then
r3(3) = r(3, 4, 5)+ r(3, 4, 6)+ r(3, 5, 6) ≤ r∗([3, 6]) ≤ 8, hence q = r2(3)+ r3(3) ≤
(4 + 4) + 8 = 16, a contradiction.

If G has besides the above K3 another nontrivial component (of order at least
2) and r(i, k) ≥ 1 with {i, k} ∈

(

[4,6]
2

)

, then, by Claim 11, r(1, 2)+r(1, 3)+r(2, 3)+
r(1, 2, 3) = r∗([1, 3]) ≤ 6 and r(4, 5) + r(4, 6) + r(5, 6) + r(4, 5, 6) = r∗([4, 6]) ≤ 6,
hence 12 ≤ c2 ≤ 6+6, c2 = 12, r(1, 2)+r(1, 3)+r(2, 3) = r(4, 5)+r(4, 6)+r(5, 6) =
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6, r(1, 2, 3) = r(4, 5, 6) = 0, c4+ = 0, and c3 = 2q−8 > 0. So, among other things,
with C1

2 = R(1, 2)∪R(1, 3)∪R(2, 3) and C2
2 = R(4, 5)∪R(4, 6)∪R(5, 6) we have

|C1
2 | = |C2

2 | = 6. If α ∈ C1
2 and β ∈ C2

2 , then the pair {α, β} is column-based,
hence all six positions in Cov(α) × [4, 6] are occupied by colours of C2

2 , and for
any j ∈ Cov(C1

2 ) all three positions in {j} × [4, 6] are occupied by colours of

C2
2 . Consequently, cov(C

1
2 ) =

2|C2
2 |

3 = 4, and (w) all positions in [1, 6]× [1, 4] are

occupied by colours of C2 = C1
2∪C

2
2 . If {i, k} ∈

(

J
2

)

, where J ∈ {[1, 3], [4, 6]}, then
r(i, k) > 0, since otherwise with {i, j, k} = J we get r2(j) = r(i, j) + r(j, k) = 6,
which contradicts Claim 9.9. For a colour γ ∈ C3 there are I, J ∈ {[1, 3], [4, 6]},
I 6= J , such that |R(γ) ∩ I| = 2 and |R(γ) ∩ J | = 1. Then R(γ) ∩ J = {j}, and
with {i, j, k} = J there exists a colour α ∈ R(i, k); in such a case, however, the
pair {α, γ} is not good, a contradiction.

Claim 19. No component of the graph G is a path of order at least 3.

Proof. Suppose that G has a path component P of order at least 3.

If G has besides P another nontrivial component (of order at least 2), then
G = P ∪P ′, where, by Claims 17 and 18, both P and P ′ are paths of order 3, (w)
V (P ) = [1, 3], V (P ′) = [4, 6] and r(i, i+1) ≥ 1 for i = 1, 2, 4, 5. Similarly as in the
proof of Claim 18 it is easy to see that r(1, 2)+r(2, 3) = r(4, 5)+r(5, 6) = 6. Since
r2(2) = 6, there are colours α, β ∈ R(1, 2)∪R(2, 3) such that Cov(α)∩Cov(β) = ∅.
Then each colour of R(4, 5) ∪R(5, 6) occupies a position in [4, 6]×Cov(α) and a
position in [4, 6]×Cov(β) as well so that Cov(R(4, 5)∪R(5, 6)) ⊆ Cov(α, β); this
leads to a contradiction since cov(R(4, 5)∪R(5, 6)) ≥ r2(5) = 6 and cov(α, β) = 4.

So, P is the unique nontrivial component of G, (w) V (P ) = [1, p] and E(P ) =
{{i, i + 1} : i ∈ [1, p − 1]}. Since 12 ≤ c2 =

∑p−1
i=1 r(i, i + 1) ≤ 4(p − 1), we have

p ∈ [4, 6].

If p = 4, then r(i, i+ 1) = 4, i = 1, 2, 3, c2 = 12, c4+ = 0 and

(4) i ∈ [1, 6] ⇒ r3(i) = q − r2(i) ≥ q − 8 ≥ 33.

If α ∈ R(1, 2) and β ∈ R(3, 4), then the pair {α, β} is column-based, hence all
four positions in Cov(α)× [3, 4] are occupied by colours of R(3, 4), and with j ∈
Cov(R(1, 2))×[3, 4], both positions in {j}×[3, 4] are occupied by colours of R(3, 4).
Therefore, cov(R(1, 2)) = 2|R(3,4)|

2 = 4, and (w) all positions in [1, 4] × [1, 4] are
occupied by colours of R(1, 2) ∪ R(3, 4). Thus, (w) Cov(R(2, 3)) = [5, n], where
n ∈ [8, 12].

By Claim 10 we know that r(i, j, k) = 0 if there is l ∈ [1, 3] such that
{l, l + 1} ⊆ {i, j, k}.

Suppose that γ ∈ R(1, 5, 6). Since all pairs {γ, δ} with δ ∈ R(3, 4) are good
in M , two positions in [5, 6] × [1, 4] must be occupied by γ. Then, however,
the number of pairs {γ, ε} with ε ∈ R(2, 3) that are good in M is at most
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two, a contradiction. So, r(1, 5, 6) = 0, and an analogous reasoning shows that
r(4, 5, 6) = 0.

Claim 11 yields r(1, 4, 5) + r(1, 4, 6) ≤ r∗({1, 4, 5, 6}) ≤ 8. A colour γ ∈
R(2, 5, 6) as well as a colour δ ∈ R(3, 5, 6) occupies two positions in [5, 6]× [1, 4]
(each pair {γ, ε} with ε ∈ R(3, 4) and each pair {δ, ζ} with ζ ∈ R(1, 2) is good in
M). Thus r(2, 5, 6) + r(3, 5, 6) ≤ 4 and

(5) r(1, 4, 5) + r(1, 4, 6) + r(2, 5, 6) + r(3, 5, 6) ≤ 12.

The set of remaining triples (i, j, k) ∈ [1, 6]3 with i < j < k such that
r(i, j, k) can be positive is T = {(1, 3, 5), (1, 3, 6), (2, 4, 5), (2, 4, 6)}. Suppose that
r(i, j, k) ≥ 1 with (i, j, k) ∈ T if and only if (i, j, k) ∈ {(il, jl, kl) : l ∈ [1, t]}. We
show that there is m ∈ [1, 6] with r3(m) ≤ 30 in contradiction to (4).

If t = 4, then, by Claim 12, r(il, jl, kl) ≤ 9, l = 1, 2, 3, 4, and so, using (5),
r3(m) ≤ 12 + 2 · 9 = 30 for (any) m ∈ [1, 6]. If t = 3 and r(i, j, k) = 0 for
(i, j, k) ∈ T , then r3(m) ≤ 12 + 9 = 21 for m ∈ {i, j, k}. The same upper bound
applies for m ∈ [1, 6] if t = 2 and {i1, j1, k1} ∩ {i2, j2, k2} = ∅.

If t = 2 and {i1, j1, k1} ∩ {i2, j2, k2} 6= ∅, for m ∈ [1, 6] \ ({i1, j1, k1} ∪
{i2, j2, k2}) we obtain r3(m) ≤ 12. The same inequality is available for m ∈
[1, 6] \ {i1, j1, k1} if t = 1 and for m ∈ [1, 6] if t = 0.

If p = 5, then, by Claim 11, from r(4, 5) ≥ 1 it follows that r(1, 2)+ r(2, 3) ≤
r∗([1, 3]) ≤ 6; similarly, r(1, 2) ≥ 1 yields r(3, 4) + r(4, 5) ≤ r∗([3, 5]) ≤ 6.
Then 12 ≤ c2 =

∑4
i=1 r(i, i + 1) ≤ 6 + 6, c2 = 12 and r(1, 2) + r(2, 3) = 6 =

r(3, 4) + r(4, 5). If (M)1,j = γ ∈ R(1, 2), then all positions in [3, 5]× Cov(γ) are
occupied by six distinct colours of R(3, 4) ∪ R(4, 5), hence (M)3,j ∈ R(3, 4) and
δ = (M)5,j ∈ R(4, 5). Analogously, all positions in [1, 3] × Cov(δ) are occupied
by six distinct colours of R(1, 2) ∪ R(2, 3), which implies (M)3,j ∈ R(2, 3), a
contradiction.

If p = 6, then, by Claim 11, r∗([1, 6] \ [l, l + 1]) ≤ 8 for l ∈ [1, 5], hence

(6) ρ∗ =
5

∑

l=1

r∗([1, 6] \ [l, l + 1]) ≤ 40.

It is easy to see that in the sum ρ∗ each of the summands r(i, i + 1) with i ∈
[1, 5] appears in the expression of r∗([1, 6] \ [l, l + 1]) for at least two l’s, while
each of the summands r(i, j, k) satisfying {i, j, k} ∈

(

[1,6]
3

)

\ {{1, 3, 5}, {2, 3, 5},

{2, 4, 5}, {2, 4, 6}} and i < j < k appears for at least one l. Since c2 =
∑5

l=1 r(l, l+
1), with

ρ = r(1, 3, 5) + r(2, 3, 5) + r(2, 4, 5) + r(2, 4, 6)

the inequality (6) leads to

(7) 2c2 + c3 − ρ ≤ ρ∗ ≤ 40.
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Moreover, r2(l) + r3(l) ≤ q implies

r3(l) ≤ q − r2(l) = q − [r(l − 1, l) + r(l, l + 1)] ≤ q − 2, l = 2, 5,

and so, having in mind that, by Claim 12, min(r(1, 3, 5), r(2, 4, 6)) ≤ 9,

ρ ≤ min(r3(2) + r(1, 3, 5), r3(5) + r(2, 4, 6))

≤ q − 2 + min(r(1, 3, 5), r(2, 4, 6)) ≤ q + 7.(8)

Since, by Claim 9.8, c4+ − c2 ≤ −12, using (7) and (8) we obtain

2q + 4 = c2 + c3 + c4+ ≤ 40 + ρ+ c4+ − c2 ≤ 40 + (q + 7)− 12 = q + 35,

and, finally, q ≤ 31, a contradiction.

With l ∈ Z and m ∈ [2,∞) we use (l)m to denote the unique n ∈ [1,m]
satisfying n ≡ l (mod m).

Claim 20. No component of the graph G is a 4-cycle.

Proof. If G has a 4-cycle component, (w) r(i, (i + 1)4) ≥ 1 for i ∈ [1, 4]. Note
that, by Claim 17, r(5, 6) = 0 = r2(5) = r2(6). Let i ∈ [1, 4] and

Pi = {((i+ 2)4, 5), ((i+ 2)4, 6), (5, 6)}.

If γ ∈ R3+(i), there is A ⊆ [1, 6] such that |A| ≥ 3, {i} ⊆ A and γ ∈ R(A).
Provided that A∩{(i−1)4, (i+1)4} 6= ∅, we get γ ∈

⋃

j∈{(i−1)4,i}
R3+(j, (j+1)4).

On the other hand, A ∩ {(i − 1)4, (i + 1)4} = ∅ implies either |A| = 3 and
γ ∈

⋃

(j,k)∈Pi
R(i, j, k) or |A| = 4 and γ ∈ R(i, (i+ 2)4, 5, 6). As a consequence,

R3+(i) ⊆ R(i, (i+ 2)4, 5, 6) ∪
⋃

j∈{(i−1)4,i}

R3+(j, (j + 1)4) ∪
⋃

(j,k)∈Pi

R(i, j, k),

and by Claim 10 we have

r3+(i) ≤ r(i, (i+ 2)4, 5, 6) +
∑

j∈{(i−1)4,i}

r3+(j, (j + 1)4) +
∑

(j,k)∈Pi

r(i, j, k)

≤ r(i, (i+ 2)4, 5, 6) +
∑

j∈{(i−1)4,i}

[4− r(j, (j + 1)4)] +
∑

(j,k)∈Pi

r(i, j, k).

Therefore, realising that

4
∑

i=1

∑

j∈{(i−1)4,i}

r(j, (j + 1)4) =
4

∑

i=1

r2(i),
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we obtain

(9)

4
∑

i=1

r3+(i) ≤ 32 +

4
∑

i=1

[

r(i, (i+ 2)4, 5, 6) +
∑

(j,k)∈Pi

r(i, j, k)

]

−
4

∑

i=1

r2(i).

On the right-hand side of the inequality (9) there are among others (par-
tial) summands r(A) with A ∈

(

[1,6]
3

)

∪
(

[1,6]
4

)

, each such summand appears
there with the frequency 0, 1 or 2, and the frequency is 2 if and only if A ∈
{{1, 3, 5}, {1, 3, 6}, {2, 4, 5}, {2, 4, 6}, {1, 3, 5, 6}, {2, 4, 5, 6}}. Thus, with

ρ3 = r(1, 3, 5) + r(1, 3, 6) + r(2, 4, 5) + r(2, 4, 6),

ρ4 = r(1, 3, 5, 6) + r(2, 4, 5, 6)

the inequality (9) leads to

(10) 4q =
4

∑

i=1

[r2(i) + r3+(i)] ≤ 32 + ρ3 + ρ4 + c3 + c4.

Let us show that

(11) ρ3 ≤ q + 10.

To see it let a be the number of sets A belonging to

A = {{1, 3, 5}, {1, 3, 6}, {2, 4, 5}, {2, 4, 6}}

with r(A) ≥ 1.

If a = 4, by Claim 12 we have ρ3 ≤ 4 · 9 = 36 ≤ q + 10.

In the case a = 3 there is i ∈ [1, 4] such that ρ3 ≤ 2 · 9 + r3(i). Evidently,
r3(i) ≤ q − r2(i) = q − [r((i− 1)4, i) + r(i, (i+ 1)4)] ≤ q − (4 + 4) = q − 8, hence
ρ3 ≤ q + 10.

If a = 2, let the positive summands of ρ3 be r(i, j, k) and r(l,m, n), {i, j, k} 6=
{l,m, n}. If {i, j, k} ∩ {l,m, n} = ∅, then ρ3 ≤ 2 · 9 ≤ q+10, and otherwise, with
p ∈ {i, j, k} ∩ {l,m, n}, we have ρ3 ≤ r3(p) ≤ q.

If a ∈ [0, 1], then ρ3 ≤ q − 2, since r(i, j, k) ≥ 1 with {i, j, k} ∈ A and
i < j < k implies i ∈ [1, 2], while r2(i) ≥ 1 + 1.

Now realise that, by Claim 9.8, ρ4 + c3 + c4 ≤ c3 +2c4+ = |C|+ (c4+ − c2) ≤
(2q+4)−12 = 2q−8, and so, using (10) and (11), 4q ≤ 32+(q+10)+(2q−8) =
3q + 34 and q ≤ 34, a contradiction.

Claim 21. No component of the graph G is a 5-cycle.



Achromatic Number of K6�Kq 1119

Proof. If G has a 5-cycle component, (w) r(i, (i+1)5) ≥ 1 for i ∈ [1, 5]. Similarly
as in the proof of Claim 20 for i ∈ [1, 5] we get

r3+(i) ≤ r((i− 2)5, i, (i+ 2)5, 6) +
∑

j∈{(i−1)5,i}

r3+(j, (j + 1)5) +
∑

(j,k)∈Pi

r(i, j, k),

this time with

Pi = {((i− 2)5, 6), ((i+ 2)5, 6), ((i− 2)5, (i+ 2)5)},

which yields

(12) 5q =
5

∑

i=1

[r2(i) + r3+(i)] ≤ 40 + ρ3 + c3 + c4,

where

(13) ρ3 = r(1, 3, 6) + r(1, 4, 6) + r(2, 4, 6) + r(2, 5, 6) + r(3, 5, 6) ≤ r3(6) ≤ q.

Moreover, c3 + c4 ≤ 2q + 4 − c2 ≤ 2q − 8, and so, using (12) and (13), 5q ≤
40 + q + (2q − 8) = 3q + 32 and q ≤ 16, a contradiction.

Claim 22. The graph G is not a 6-cycle.

Proof. If G is a 6-cycle, (w) r(i, (i+ 1)6) ≥ 1 for i ∈ [1, 6]. In this case r3+(i) is
upper bounded by

r((i− 2)6, i, (i+ 2)6, (i+ 3)6) +
∑

j∈{(i−1)6,i}

[4− r(j, (j + 1)6)] +
∑

(j,k)∈Pi

r(i, j, k)

with

Pi = {((i− 2)6, (i+ 2)6), ((i− 2)6, (i+ 3)6), ((i+ 2)6, (i+ 3)6)},

and one can see that

(14) 6q ≤ 48 + ρ3 + c3 + c4,

where ρ3 = 2r(1, 3, 5)+2r(2, 4, 6). We can bound ρ3 from above by 2q−4. Indeed,
if both r(1, 3, 5) and r(2, 4, 6) are positive, then Claim 12 yields ρ3 ≤ 18 + 18 =
36 ≤ 2q−4. On the other hand, if r(i, j, k) = 0 with (i, j, k) ∈ {(1, 3, 5), (2, 4, 6)},
then ρ3 ≤ 2r3(i + 1) ≤ 2[q − r2(i + 1)] = 2q − 2[r2(i, i + 1) + r2(i + 1, i + 2)] ≤
2q − 4. Therefore, similarly as in the proof of Claim 21, from (14) we obtain
6q ≤ 48 + (2q − 4) + (2q − 8) = 4q + 36 and q ≤ 18, a contradiction.
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Thus, by Claims 16–22, we conclude that G = 6K1 and c2 = 0, which
contradicts Claim 9.3. Therefore, Theorem 15 is proved.
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