Discussiones Mathematicae Graph Theory 43 (2023) 1103–1121 https://doi.org/10.7151/dmgt.2420

THE ACHROMATIC NUMBER OF $K_6 \Box K_q$ EQUALS 2q + 3 IF $q \ge 41$ IS ODD

Mirko Horňák

Institute of Mathematics, P.J. Šafárik University Jesenná 5, 04001 Košice, Slovakia

e-mail: mirko.hornak@upjs.sk

Abstract

Let G be a graph and C be a finite set of colours. A vertex colouring $f: V(G) \to C$ is complete provided that for any two distinct colours $c_1, c_2 \in C$ there is $v_1v_2 \in E(G)$ such that $f(v_i) = c_i$, i = 1, 2. The achromatic number of G is the maximum number of colours in a proper complete vertex colouring of G. In the paper it is proved that if $q \ge 41$ is an odd integer, then the achromatic number of the Cartesian product of K_6 and K_q is 2q+3.

Keywords: complete vertex colouring, achromatic number, Cartesian product, complete graph.

2020 Mathematics Subject Classification: 05C15.

1. INTRODUCTION

Let G be a finite simple graph and C a finite set of colours. A vertex colouring $f: V(G) \to C$ is *complete* if for any pair of distinct colours $c_1, c_2 \in C$ one can find in G an edge $\{v_1, v_2\}$ (often shortened to v_1v_2) such that $f(v_i) = c_i$, i = 1, 2. The *achromatic number* of G, denoted by achr(G), is the maximum cardinality of the colour set in a proper complete vertex colouring of G.

The concept was introduced quite a long ago in Harary, Hedetniemi and Prins [8], where the following was proved.

Theorem 1. If G is a graph, and an integer k satisfies $\chi(G) \leq k \leq \operatorname{achr}(G)$, then there exists a proper complete vertex colouring of G using k colours.

There are still only a few graph classes \mathcal{G} such that $\operatorname{achr}(G)$ is known for all $G \in \mathcal{G}$. This is certainly related to the fact that determining the achromatic number is an NP-complete problem even for trees, see Cairnie and Edwards [2]. Two surveys are available on the topic, namely Edwards [6] and Hughes and MacGillivray [10]; more generally, Chapter 12 in the book [3] by Chartrand and Zhang deals with complete vertex colourings. A comprehensive list of publications concerning the achromatic number is maintained by Edwards [7].

Some papers are devoted to the achromatic number of graphs constructed by graph operations. So, Hell and Miller [9] considered $\operatorname{achr}(G_1 \times G_2)$, where $G_1 \times G_2$ stands for the categorical product of graphs G_1 and G_2 (we follow here the notation by Imrich and Klavžar [16]).

In this paper we are interested in the achromatic number of the Cartesian product $G_1 \square G_2$ of graphs G_1 and G_2 , the graph with $V(G_1 \square G_2) = \{(v_1, v_2) : v_i \in V(G_i), i = 1, 2\}$, in which $(v_1^1, v_2^1)(v_1^2, v_2^2) \in E(G_1 \square G_2)$ if and only if there is $i \in \{1, 2\}$ such that $v_i^1 v_i^2 \in E(G_i)$ and $v_{3-i}^1 = v_{3-i}^2$. As observed by Chiang and Fu [4], $\operatorname{achr}(G_1) = p$ and $\operatorname{achr}(G_2) = q$ implies $\operatorname{achr}(G_1 \square G_2) \geq \operatorname{achr}(K_p \square K_q)$. This inequality motivates a special interest in the achromatic number of the Cartesian product of two complete graphs. From the obvious fact that $G_2 \square G_1$ is isomorphic to $G_1 \square G_2$ it is clear that when determining $\operatorname{achr}(K_p \square K_q)$ we may suppose without loss of generality $p \leq q$.

The problem of determining $\operatorname{achr}(K_p \Box K_q)$ with $p \leq 4$ was solved in Horňák and Puntigán [15] (for $p \leq 3$ the result was rediscovered in [4]) and that for p = 5in Horňák and Pčola [13, 14]. In [5] Chiang and Fu proved that if r is an odd projective plane order, then $\operatorname{achr}(K_{(r^2+r)/2} \Box K_{(r^2+r)/2}) = (r^3 + r^2)/2$. (For r = 3the fact that $\operatorname{achr}(K_6 \Box K_6) = 18$ was known already to Bouchet [1].)

Here we show that $\operatorname{achr}(K_6 \Box K_q) = 2q + 3$ if q is an odd integer with $q \ge 41$. This is the first of three papers devoted to completely solve the problem of finding $\operatorname{achr}(K_6 \Box K_q)$. In Horňák [11] the cases, in which either $8 \le q \le 40$ or q is an even integer with $q \ge 42$, are analysed. Finally, $\operatorname{achr}(K_6 \Box K_7)$ is determined in Horňák [12].

For $k, l \in \mathbb{Z}$ we denote *integer intervals* by

$$[k,l] = \{z \in \mathbb{Z} : k \le z \le l\}, \qquad [k,\infty) = \{z \in \mathbb{Z} : k \le z\}.$$

Further, with a set A and $m \in [0, \infty)$ we use $\binom{A}{m}$ for the set of *m*-element subsets of A.

Now let $p, q \in [1, \infty)$. Under the assumption that $V(K_r) = [1, r], r = p, q$, we have $V(K_p \Box K_q) = [1, p] \times [1, q]$, while $E(K_p \Box K_q)$ consists of edges $(i, j_1)(i, j_2)$ with $i \in [1, p], j_1, j_2 \in [1, q], j_1 \neq j_2$ and $(i_1, j)(i_2, j)$ with $i_1, i_2 \in [1, p], i_1 \neq i_2, j \in [1, q]$.

A vertex colouring $f : [1, p] \times [1, q] \to C$ of the graph $K_p \Box K_q$ can be conveniently described using the $p \times q$ matrix M = M(f) whose entry in the *i*th row and the *j*th column is $(M)_{i,j} = f(i,j)$. Such a colouring is proper if any row of M consists of q distinct entries and any column of M consists of p distinct entries. Further, f is complete provided that any pair $\{\alpha, \beta\} \in {C \choose 2}$ is good

in M in the following sense: there are $(i_1, j_1), (i_2, j_2) \in [1, p] \times [1, q]$ such that $\{(M)_{i_1, j_1}, (M)_{i_2, j_2}\} = \{\alpha, \beta\}$ and either $i_1 = i_2$, which we express by saying that the pair $\{\alpha, \beta\}$ is row-based (in M), or $j_1 = j_2$, i.e., the pair $\{\alpha, \beta\}$ is column-based (in M).

Let $\mathcal{M}(p,q,C)$ denote the set of $p \times q$ matrices M with entries from C such that all rows (columns) of M have q (p, respectively) distinct entries, and each pair $\{\alpha, \beta\} \in \binom{C}{2}$ is good in M. So, if $f : [1, p] \times [1, q] \to C$ is a proper complete vertex colouring of $K_p \Box K_q$, then $M(f) \in \mathcal{M}(p, q, C)$.

Conversely, if $M \in \mathcal{M}(p,q,C)$, then the mapping $f_M : [1,p] \times [1,q] \to C$ with $f_M(i,j) = (M)_{i,j}$ is a proper complete vertex colouring of $K_p \Box K_q$. Thus, we have proved:

Proposition 2. If $p, q \in [1, \infty)$ and C is a finite set, then the following statements are equivalent.

- (1) There is a proper complete vertex colouring of $K_p \Box K_q$ using as colours elements of C.
- (2) $\mathcal{M}(p,q,C) \neq \emptyset$.

We have another evident result.

Proposition 3. If $p, q \in [1, \infty)$, C, D are finite sets, $M \in \mathcal{M}(p, q, C)$, mappings $\rho : [1, p] \to [1, p], \sigma : [1, q] \to [1, q], \pi : C \to D$ are bijections, and $M_{\rho,\sigma}$, M_{π} are $p \times q$ matrices defined by $(M_{\rho,\sigma})_{i,j} = (M)_{\rho(i),\sigma(j)}$ and $(M_{\pi})_{i,j} = \pi((M)_{i,j})$, then $M_{\rho,\sigma} \in \mathcal{M}(p, q, C)$ and $M_{\pi} \in \mathcal{M}(p, q, D)$.

Let $M \in \mathcal{M}(p, q, C)$. The frequency of a colour $\gamma \in C$ is the number $\operatorname{frq}(\gamma)$ of appearances of γ in M, and the frequency of M, denoted $\operatorname{frq}(M)$, is the minimum of frequencies of colours in C. A colour of frequency l is an *l*-colour. C_l is the set of *l*-colours, $c_l = |C_l|$, and C_{l+} is the set of colours of frequency at least l, $c_{l+} = |C_{l+}|$. We denote by $\mathbb{R}(i)$ the set $\{(M)_{i,j} : j \in [1,q]\}$ of colours in the *i*th row of M and by $\mathbb{C}(j)$ the set $\{(M)_{i,j} : i \in [1,p]\}$ of colours in the *j*th column of M. Further, for $k \in \{l, l+\}$ let

$$\begin{aligned} \mathbb{R}_k(i) &= C_k \cap \mathbb{R}(i), \qquad r_k(i) = |\mathbb{R}_k(i)|, \\ \mathbb{C}_k(j) &= C_k \cap \mathbb{C}(j), \qquad c_k(j) = |\mathbb{C}_k(j)|. \end{aligned}$$

So $\mathbb{R}_l(i)$ and $\mathbb{R}_{l+}(i)$ is the set of colours in the row *i* which occur exactly and at least *l* times altogether, respectively; the meaning of $\mathbb{C}_l(j)$ and $\mathbb{C}_{l+}(j)$ is similar. If $A \subseteq [1, p], |A| \ge 2$, then

$$\mathbb{R}(A) = \bigcap_{l \in A} (C_{|A|} \cap \mathbb{R}(l)), \qquad r(A) = |\mathbb{R}(A)|.$$

 $\mathbb{R}(A)$ is the set of colours which appear precisely in the rows numbered by A. Provided that $A \in \{\{i, j\}, \{i, j, k\}, \{i, j, k, l\}\}$, instead of $\mathbb{R}(A)$ we write $\mathbb{R}(i, j)$, $\mathbb{R}(i, j, k)$, $\mathbb{R}(i, j, k, l)$, while r(A) is simplified to r(i, j), r(i, j, k), r(i, j, k, l), respectively. With $\{i, j\} \subseteq [1, p]$ and $\{m, n\} \subseteq [1, q]$ we set

$$\mathbb{R}_{3+}(i,j) = C_{3+} \cap \mathbb{R}(i) \cap \mathbb{R}(j), \qquad r_{3+}(i,j) = |\mathbb{R}_{3+}(i,j)|, \\ \mathbb{C}(m,n) = C_2 \cap \mathbb{C}(m) \cap \mathbb{C}(n), \qquad c(m,n) = |\mathbb{C}(m,n)|.$$

 $\mathbb{R}_{3+}(i, j)$ is the set of colours of frequency at least 3 occuring in both rows *i* and *j*, and $\mathbb{C}(m, n)$, an analogue of the notation $\mathbb{R}(i, j)$, stands for the set of 2-colours occuring exactly in the columns *m* and *n*. If $B \subseteq [1, p]$ and $3 \leq |B| \leq p-2$, then

$$\mathbb{R}^*(B) = \bigcup_{l=2}^{|B|} \bigcup_{A \in \binom{B}{l}} \mathbb{R}(A).$$

 $\mathbb{R}^*(B)$ is the set of colours of frequency at least 2 occuring only in the rows numbered by B. Since $\{\mathbb{R}(A) : \exists_{l \in [2,|B|]} A \in {B \choose l}\}$ is a set of pairwise disjoint sets, we have

$$r^*(B) = |\mathbb{R}^*(B)| = \sum_{l=2}^{|B|} \sum_{A \in {B \choose l}} r(A).$$

For $\gamma \in C$ let

$$\mathbb{R}(\gamma) = \{i \in [1, p] : \gamma \in \mathbb{R}(i)\}$$

be the set of (the numbers of) the rows containing the colour γ .

With $S \subseteq [1, p] \times [1, q]$ we say that a colour $\gamma \in C$ occupies a position in S if there is $(i, j) \in S$ such that $(M)_{i,j} = \gamma$. If $\emptyset \neq A \subseteq C$, the set of columns covered by A is

$$Cov(A) = \{ j \in [1, q] : \mathbb{C}(j) \cap A \neq \emptyset \},\$$

i.e., the set of columns containing an element of A. We define cov(A) = |Cov(A)|, and with $A \in \{\{\alpha\}, \{\alpha, \beta\}\}$ we use a simplified notation $Cov(\alpha)$, $Cov(\alpha, \beta)$ and $cov(\alpha)$, $cov(\alpha, \beta)$ instead of Cov(A) and cov(A).

2. Lower Bound

Proposition 4. If $q \in [7, \infty)$ and $q \equiv 1 \pmod{2}$, then $\operatorname{achr}(K_6 \Box K_q) \geq 2q + 3$.

Proof. Let $s = \frac{q-3}{2}$, and let M be the $6 \times q$ matrix below. We show that $M \in \mathcal{M}(6,q,C)$, where $C = [1,9] \cup X_s \cup Y_s \cup Z_s \cup T_s$, $U_s = \{u_i : i \in [1,s]\}$ for

 $U \in \{X, Y, Z, T\}$, and the sets [1,9], X_s, Y_s, Z_s, T_s are pairwise disjoint.

(1)	2	3	x_1	x_2	 x_{s-1}	x_s	y_1	y_2	 y_{s-1}	y_s
4	5	6	x_s	x_1	 x_{s-2}	x_{s-1}	z_1	z_2	 z_{s-1}	z_s
7	8	9	t_1	t_2	 t_{s-1}	t_s	x_1	x_2	 x_{s-1}	x_s
3	1	2	z_1	z_2	 z_{s-1}	z_s	t_1	t_2	 t_{s-1}	t_s
5	6	4	t_s	t_1	 t_{s-2}	t_{s-1}	y_s	y_1	 y_{s-2}	y_{s-1}
$\setminus 8$	9	7	y_1	y_2	 y_{s-1}	y_s	z_s	z_1	 z_{s-2}	z_{s-1}

Since $s \ge 2$, because of our assumptions on the structure of C it is clear that elements in lines (rows and columns) of M are pairwise distinct. Thus it is sufficient to show that each pair $\{\alpha, \beta\} \in \binom{C}{2}$ is good in M.

If $\alpha, \beta \in [1, 9]$, then both α and β appear twice in the columns 1, 2, 3, hence the pair $\{\alpha, \beta\}$ is column-based.

If $\alpha \in C$ and $\beta \in X_s \cup Y_s \cup Z_s \cup T_s$, realise that $\mathbb{R}(\alpha) \in \mathcal{R}_1 \cup \mathcal{R}_2$ and $\mathbb{R}(\beta) \in \mathcal{R}_2$, where $\mathcal{R}_1 = \{\{1, 4\}, \{2, 5\}, \{3, 6\}\}$ and $\mathcal{R}_2 = \{\{1, 2, 3\}, \{1, 5, 6\}, \{2, 4, 6\}, \{3, 4, 5\}\}$. As $R \cap R_2 \neq \emptyset$ for any $R \in \mathcal{R}_1 \cup \mathcal{R}_2$ and any $R_2 \in \mathcal{R}_2$, the pair $\{\alpha, \beta\}$ is row-based.

So, Proposition 2 yields $\operatorname{achr}(K_6 \Box K_q) \ge |C| = 4s + 9 = 2q + 3.$

3. AUXILIARY RESULTS

Let $M \in \mathcal{M}(p,q,C)$ and let $\gamma \in C$. For the (complete) colouring f_M from the proof of Proposition 2 denote $V_{\gamma} = f_M^{-1}(\gamma) \subseteq [1,p] \times [1,q]$, and let $N(V_{\gamma})$ be the neighbourhood of V_{γ} (the union of neighborhoods of vertices in V_{γ}). The excess of γ is defined to be the maximum number $\exp(\gamma)$ of vertices in a set $S \subseteq N(V_{\gamma})$ such that each pair $\{\gamma, \gamma'\} \in {C \choose 2}$ is good even in the "partial matrix" corresponding to the restriction of f_M created by uncolouring the vertices of S.

Lemma 5. If $p, q \in [1, \infty)$, C is a finite set, $M \in \mathcal{M}(p, q, C)$ and $\gamma \in C$, then the following hold.

- 1. $\operatorname{frq}(\gamma) \leq \min(p,q);$
- 2. frq(γ) = l implies exc(γ) = l(p + q l 1) (|C| 1) ≥ 0 ;
- 3. frq(M) = l implies $|C| \leq \left| \frac{pq}{l} \right|$.

Proof. 1. The assumption $\operatorname{frq}(\gamma) = l > \min(p, q)$ would mean, by the pigeonhole principle, that the colouring f_M is not proper.

2. Because of Proposition 3 we may suppose without loss of generality $(M)_{i,i} = \gamma$ for all $i \in [1, l]$. For simplicity we use (w) to indicate that it is just Proposition 3, which enables us to restrict our attention to matrices with a special property.

The colouring f_M is complete, hence each of |C| - 1 colours in $C \setminus \{\gamma\}$ must occupy a position in the set $N(V_{\gamma}) = \{(i, j) : (i \leq l \lor j \leq l) \land i \neq j\}$. Thus, $|N(V_{\gamma})| = ql + (p-l)l - l \geq |C| - 1$ and $\exp(\gamma) = |N(V_{\gamma})| - (|C| - 1) = l(p+q-l-1) - (|C|-1) \geq 0$.

3. If $\alpha \in C$ is such that $\operatorname{frq}(\alpha) = \operatorname{frq}(M) = l$ and $\beta \in C$, then $\operatorname{frq}(\beta) \geq \operatorname{frq}(\alpha) = l$. Therefore, the total number of entries of the matrix M is $pq \geq l|C|$, and the desired inequality follows.

The *excess* of a matrix $M \in \mathcal{M}(p, q, C)$, denoted by exc(M), is the minimum of excesses of colours in C.

Lemma 6. If $p, q \in [1, \infty)$, C is a finite set and $M \in \mathcal{M}(p, q, C)$, then $exc(M) = exc(\gamma)$, where $\gamma \in C$ and $frq(\gamma) = frq(M)$.

Proof. Let $m = \min(p, q)$, and let $\gamma \in C$ be such that $l = \operatorname{frq}(\gamma) = \operatorname{frq}(M)$. For any $\alpha \in C$ then $k = \operatorname{frq}(\alpha) \ge \operatorname{frq}(\gamma) = l$, and, by Lemma 5.2, $\operatorname{exc}(\alpha) = k(p+q-k-1)-|C|+1 \ge 0$. Therefore, $\operatorname{exc}(\alpha) - \operatorname{exc}(\gamma) = k(p+q-k-1)-l(p+q-l-1) \ge 0$, since h(x) = x(p+q-x-1) is increasing in the interval $\left\langle 1, \frac{p+q-1}{2} \right\rangle \supseteq \langle 1, m-1 \rangle$, and p = q = m implies h(m-1) = h(m). Consequently, $\operatorname{exc}(M) = \operatorname{exc}(\gamma)$.

Lemma 7 (see [15] and [4]). If $p, q \in [1, \infty)$ and $p \leq q$, then

$$\operatorname{achr}(K_p \Box K_q) \le \max\left(\min\left(l(p+q-l-1)+1, \lfloor pq/l \rfloor\right): l \in [1,p]\right).$$

Corollary 8. If $q \in [7, \infty)$, then $\operatorname{achr}(K_6 \Box K_q) \leq 2q + 7$.

Proof. By Lemma 7 with p = 6 we obtain $\operatorname{achr}(K_6 \Box K_q) \leq \max\left(q + 5, 2q + 7, 2q, \lfloor \frac{6q}{4} \rfloor, \lfloor \frac{6q}{5} \rfloor, q\right) = 2q + 7.$

4. Properties of Matrices in $\mathcal{M}(6, q, C)$

Suppose we know that $\operatorname{achr}(K_6 \Box K_q) \geq 2q + s - 1$ for a pair (q, s) with $q \in [7, \infty)$ and $s \in [1, \infty)$, and we want to prove that $\operatorname{achr}(K_6 \Box K_q) = 2q + s - 1$; clearly, because of Corollary 8 it is sufficient to work with $s \leq 7$. Proceeding by the way of contradiction let s satisfy $\operatorname{achr}(K_6 \Box K_q) = 2q + s$. By Theorem 1 and Proposition 2 there is a (2q + s)-element set C and a matrix $M \in \mathcal{M}(6, q, C)$. Our task will be accomplished by showing that the existence of M leads to a contradiction. For that purpose we shall need properties of M. So in all claims of the present section we suppose that the notation corresponds to a matrix $M \in \mathcal{M}(6, q, C)$ with $q \in [7, \infty)$ and $|C| = 2q + s \leq 2q + 7$. We associate with M an auxiliary graph G with V(G) = [1, 6], in which $\{i, k\} \in E(G)$ if and only if $r(i, k) \geq 1$ (so that there is a 2-colour appearing in both rows i and k).

1108

Claim 9. The following statements are true:

1.
$$c_1 = 0;$$

2. $c_l = 0 \text{ for } l \in [7, \infty);$
3. $c_2 \ge 3s;$
4. $c_{3+} \le 2q - 2s;$
5. $\sum_{i=3}^{6} ic_i \le 6q - 6s;$
6. $\operatorname{frq}(M) = 2;$
7. $\operatorname{exc}(M) = 7 - s;$
8. $c_{4+} \le c_2 - 3s;$
9. $if \{i, k\} \in {[1,6] \choose 2}, \text{ then } r(i, k) \le 8 - s.$

Proof. 1. If $c_1 > 0$, a 1-colour $\gamma \in C$ satisfies $exc(\gamma) = q + 4 - (2q + s - 1) = 5 - q - s < 0$ in contradiction to Lemma 5.2.

2. Use Lemma 5.1.

3. By Claims 9.1 and 9.2, counting the number of vertices of $K_6 \Box K_q$ we get $6q = \sum_{i=2}^{6} ic_i$. Therefore, $3(2q+s) = 3|C| = 3(c_2+c_{3+}) \le c_2 + \sum_{i=2}^{6} ic_i = c_2 + 6q$, which yields $c_2 \ge 3s$.

4. From $2(2q+s) + c_{3+} = 2|C| + c_{3+} = 2c_2 + 3c_{3+} \le \sum_{i=2}^{6} ic_i = 6q$ we obtain $c_{3+} \le 2q - 2s$.

5. The assertion of Claim 9.3 leads to $\sum_{i=3}^{6} ic_i = \sum_{i=2}^{6} ic_i - 2c_2 = 6q - 2c_2 \le 6q - 6s$.

6. A consequence of Claims 9.1, 9.3 and the assumption $s \in [1, 7]$.

7. Since frq(M) = 2 (Claim 9.6), by Lemma 6 we get exc(M) = 2q + 6 - (2q + s - 1) = 7 - s.

8. We have $3(2q+s) - c_2 + c_{4+} = 3(c_2 + c_3 + c_{4+}) - c_2 + c_{4+} \le \sum_{i=2}^6 ic_i = 6q$ and $c_{4+} \le c_2 - 3s$.

9. The inequality is trivial if r(i, k) = 0. If $\gamma \in \mathbb{R}(i, k)$, then each colour of $\mathbb{R}(i, k) \setminus \{\gamma\}$ contributes one to the excess of γ , hence, by Claims 9.6 and 9.7, $r(i, k) - 1 \leq \exp(\gamma) = \exp(M) = 7 - s$ and $r(i, k) \leq 8 - s$.

Claim 10. If $\{i, k\} \in {\binom{[1,6]}{2}}$ and $r(i, k) \ge 1$, then $r(i, k) + r_{3+}(i, k) \le 8 - s$.

Proof. With $\gamma \in \mathbb{R}(i, k)$ each colour of $(\mathbb{R}(i, k) \setminus \{\gamma\}) \cup \mathbb{R}_{3+}(i, k)$ makes a contribution of one to the excess of γ , hence $r(i, k) - 1 + r_{3+}(i, k) \leq \exp(\gamma) = \exp(M) \leq 7 - s$, and the claim follows.

Claim 11. If $\{i, k\} \in {\binom{[1,6]}{2}}$, $r(i, k) \ge 1$, $B \subseteq [1,6]$, $3 \le |B| \le 4$ and $B \cap \{i, k\} = \emptyset$, then $r^*(B) \le 2|B|$.

Proof. Consider a colour $\gamma \in \mathbb{R}(i, k)$ with $(M)_{i,j} = (M)_{k,l} = \gamma$ (where, of course, $j \neq l$). If $\beta \in \mathbb{R}^*(B)$, there is $A \subseteq B$ with $|A| \geq 2$ and $\beta \in \mathbb{R}(A)$. The colour β

appears in neither of the rows i, k, hence the pair $\{\beta, \gamma\}$ is good in M only if β occupies a position in the set $\bigcup_{m \in A} \{(m, j), (m, l)\} \subseteq \bigcup_{m \in B} \{(m, j), (m, l)\}$. As a consequence, $r^*(B) = |\mathbb{R}^*(B)| \leq |\bigcup_{m \in B} \{(m, j), (m, l)\}| = 2|B|$.

Claim 12. If $\{i, j, k, l, m, n\} = [1, 6]$ and $r(i, j, k) \ge 1$, then $r(l, m, n) \le 9$.

Proof. There is nothing to prove if $\mathbb{R}(l, m, n) = \emptyset$. Further, with $\alpha \in \mathbb{R}(i, j, k)$ and $\beta \in \mathbb{R}(l, m, n)$ the pair $\{\alpha, \beta\}$ is good in M only if the colour β occupies a position in the 9-element set $\{l, m, n\} \times \text{Cov}(\alpha)$.

Claim 13. If $\Delta(G) \ge 4$, then $q \le 40 - 5s$.

Proof. Suppose (w) $\Delta(G) = \deg_G(1) \ge 4$, and, moreover, let (w) the sequence $(r(1,k))_{k=2}^6$ be nondecreasing. The least $p \in [2,6]$ with $r(1,p) \ge 1$ satisfies $p \le 3$, and we have $\mathbb{R}_{3+}(1) = \bigcup_{k=p}^6 \mathbb{R}_{3+}(1,k)$. Then, by Claim 9.1, $q = |\mathbb{R}(1)| = r_2(1) + r_{3+}(1)$. The inequality $r(1,k) \ge 1$ for $k \in [p,6]$ yields, by Claim 10, $r_{3+}(1,k) \le 8 - s - r(1,k)$; therefore,

$$q - r_2(1) = r_{3+}(1) = \left| \bigcup_{k=p}^6 \mathbb{R}_{3+}(1,k) \right| \le \sum_{k=p}^6 r_{3+}(1,k)$$
$$\le \sum_{k=p}^6 [8 - s - r(1,k)] = (7 - p)(8 - s) - \sum_{k=p}^6 r(1,k)$$

and then, since $r_2(1) = \sum_{k=p}^6 r(1,k)$, we finish with $q \le (7-p)(8-s) \le 40-5s$. **Claim 14.** If $\Delta(G) = 3$, $\{i, j, k, l, m, n\} = [1, 6]$, $r(i, l) \ge 1$, $r(j, l) \ge 1$ and $r(k, l) \ge 1$, then $r(l, m, n) \ge q + 3s - 24$.

Proof. We have $\Delta(G) = \deg_G(l)$, $\mathbb{R}(l,m) = \mathbb{R}(l,n) = \emptyset$, $\mathbb{R}(l) = \mathbb{R}_2(l) \cup \mathbb{R}_{3+}(l)$, $\mathbb{R}_2(l) = \mathbb{R}(i,l) \cup \mathbb{R}(j,l) \cup \mathbb{R}(k,l)$ and $\mathbb{R}_{3+}(l) = \mathbb{R}(l,m,n) \cup \mathbb{R}_{3+}(i,l) \cup \mathbb{R}_{3+}(j,l) \cup \mathbb{R}_{3+}(k,l)$. Proceeding similarly as in the proof of Claim 13 leads to $q - r_2(l) = r_{3+}(l) \leq r(l,m,n) + [8 - s - r(i,l)] + [8 - s - r(j,l)] + [8 - s - r(k,l)] = r(l,m,n) + 3(8 - s) - r_2(l)$, which yields the desired result.

5. Main Theorem

Theorem 15. If $q \in [41, \infty)$ and $q \equiv 1 \pmod{2}$, then $\operatorname{achr}(K_6 \Box K_q) = 2q + 3$.

Proof. We proceed by the way of contradiction. As mentioned in the beginning of Section 4, we have to show that the existence of a matrix $M \in \mathcal{M}(6, q, C)$, where C is a set of 2q + s = 2q + 4 colours, leads to a contradiction. First notice that, by Claim 9, all colours of C are of frequency $l \in [2, 6], c_2 \geq 12$,

 $c_{3+} \leq 2q-8, \sum_{i=3}^{6} ic_i \leq 6q-24, \text{ frq}(M) = 2, \text{ exc}(M) = 3, \text{ and } \{i,k\} \in {\binom{[1,6]}{2}}$ implies $r(i,k) \leq 4$.

Since $q \ge 41$, from Claim 13 we know that $\Delta(G) \le 3$ for the auxiliary graph G. Besides that, $\deg_G(i) = d_i$ for $i \in [1, 6]$ yields $r_2(i) = \sum_{\{i,k\} \in E(G)} r(i, k) \le \sum_{\{i,k\} \in E(G)} 4 = 4d_i$.

Claim 16. $\Delta(G) \leq 2$.

Proof. If $\Delta(G) = 3$, (w) $\deg_G(1) = 3$, $r(1,4) \ge 1$, $r(1,5) \ge 1$ and $r(1,6) \ge 1$. By Claim 14 we have $r(1,2,3) \ge q-12 \ge 29$, and so Claim 11 yields r(4,5) = r(4,6) = r(5,6) = 0 (if $r(i,k) \ge 1$ for $\{i,k\} \in \binom{[4,6]}{2}$), then $29 \le r(1,2,3) \le r^*([1,3]) \le 2|[1,3]| = 6$, a contradiction). Moreover, r(4,5,6) = 0, for otherwise, by Claim 12, $r(1,2,3) \le 9$, a contradiction.

There is no $i \in [4, 6]$ with $\deg_G(i) = 3$, because then, again by Claim 14, $r(4, 5, 6) \ge q - 12 \ge 29$ in contradiction to Claim 12. So, $\deg_G(i) \le 2$, i = 4, 5, 6, $2c_2 = \sum_{i=1}^{6} r_2(i) \le 3 \cdot 12 + 3 \cdot 8 = 60$ and $c_2 \le 30$. Since $r(1, i) \ge 1$, Claim 11 yields $r^*([2, 6] \setminus \{i\}) \le 2|[2, 6] \setminus \{i\}| = 8$, i = 4, 5, 6, and then $\rho^* = \sum_{i=4}^{6} r^*([2, 6] \setminus \{i\}) \le 24$.

By inspection of summands of type r(A) with $A \subseteq [2,6], 2 \leq |A| \leq 3$, that appear when counting the three summands of ρ^* , one can see that each of r(A) with $A \in \binom{[2,6]}{2} \setminus \{\{4,5\},\{4,6\},\{5,6\}\}$ appears at least twice, and each of r(A) with $A \in \binom{[2,6]}{3} \setminus \{\{4,5,6\}\}$ (which is a set belonging to $C_3 \setminus \mathbb{R}_3(1)$) appears at least once. Because of r(4,5) = r(4,6) = r(5,6) = r(4,5,6) = 0 this leads to $2\sum_{\{i,k\}\in\binom{[2,6]}{2}} r(i,k) + c_3 - r_3(1) \leq \rho^* \leq 24$, which, having in mind that $2\sum_{\{i,k\}\in\binom{[2,6]}{2}} r(i,k) = 2c_2 - 2r_2(1)$, yields $2c_2 - 2r_2(1) + c_3 - r_3(1) \leq 24$. Together with the inequality $r_2(1) + r_3(1) \leq q$ then $c_2 + c_3 \leq q + 24 + r_2(1) - c_2 \leq q + 24$, $2q + 4 = |C| = c_2 + c_3 + c_{4+} \leq q + 24 + c_{4+}$, and so $c_{4+} \geq q - 20 \geq 21$ in contradiction to $c_{4+} \leq c_2 - 3s \leq 30 - 12 = 18$, which comes from Claim 9.8 and the above inequality for c_2 .

By Claim 16 each component of G is either a path or a cycle.

Claim 17. No component of the graph G is K_2 .

Proof. Let (w) G have a component K_2 with vertex set [1,2]. Then $r(1,2) \in [1,4]$, r(i,k) = 0 for $(i,k) \in [1,2] \times [3,6]$, and so $c_2 = r(1,2) + \rho$, where, by Claim 11, $\rho = \sum_{\{i,k\} \in \binom{[3,6]}{2}} r(i,k) \leq r^*([3,6]) \leq 8$. Further, (w) $\text{Cov}(\mathbb{R}(1,2)) = [1,n]$ with $n \in [2,8]$.

If $r(1,2) \in [1,3]$, then $c_2 \le 3 + 8 = 11$, a contradiction.

If r(1,2) = 4, then $n \ge 4$, $8 \ge \rho = |C_2 \setminus \mathbb{R}(1,2)| \ge 12 - 4 = 8$, $\rho = 8$ and $c_2 = 12$. In the case $n \in [5,8]$ there is $j \in [1,n]$ such that $\mathbb{C}(j)$ contains at most $\lfloor \frac{2\cdot 8}{n} \rfloor \le 3$ colours of $C_2 \setminus \mathbb{R}(1,2)$. Then, however, for a colour $\gamma \in \mathbb{R}(1,2) \cap \mathbb{C}(j)$

the number of colours $\delta \in C_2 \setminus \mathbb{R}(1,2)$, for which the pair $\{\gamma, \delta\}$ is good in M, is at most seven, a contradiction.

Therefore n = 4, 2-colours occupy all positions in $[1, 6] \times [1, 4]$, Claim 9.8 yields $c_{4+} \leq 12 - 3 \cdot 4 = 0$, $c_{4+} = 0$, and all positions in the set $[1, 6] \times [5, q]$ are occupied by 3-colours. Among other things this means that

(1)
$$c_3 = \frac{6(q-4)}{3} = 2q-8 \ge q+(41-8) = q+33,$$

 $r_2(i) = 4$ and $r_3(i) = q - 4$ for $i \in [1, 6]$, and $r(i, k) \in [0, 4]$ for every $\{i, k\} \in {[3, 6] \choose 2}$.

Recall that, by Claim 16, $\Delta(G) \leq 2$. Further, if r(i,k) = 4 for some $\{i,k\} \in \binom{[3,6]}{2}$, then $\deg_G(m) = 1$, m = 3, 4, 5, 6, since with $\{i, j, k, l\} = [3, 6]$ we have r(j,l) = 4. In such a case G is (isomorphic to) $3K_2$. Otherwise, if r(i,k) < 4 for each $\{i,k\} \in \binom{[3,6]}{2}$, then $\deg_G(m) = 2$, m = 3, 4, 5, 6, and G is (isomorphic to) $K_2 \cup C_4$.

Let us first consider the case $G = 3K_2$, in which (w) r(i, i + 1) = 4, i = 3, 5. Clearly, a set $\mathbb{R}(i, j, k)$ with $\{i, j, k\} \in \binom{[1, 6]}{3}$ can be nonempty only if $\{i, j, k\} \cap \{l, l+1\} \neq \emptyset, l = 1, 3, 5$. As a consequence the assumption $\mathbb{R}(i, j, k) \neq \emptyset$ with i < j < k implies $(i, j, k) \in \{(1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6)\}$.

Suppose that $\{(i_m, j_m) : m \in [1, 4]\} = \{(3, 5), (3, 6), (4, 5), (4, 6)\} = \{(k_m, l_m) : m \in [1, 4]\}$ and $\{i_m, j_m, k_m, l_m\} = [3, 6]$ for $m \in [1, 4]$. Then

(2)
$$c_3 = \sum_{m=1}^{4} [r(1, i_m, j_m) + r(2, k_m, l_m)].$$

Further, for $m, n \in [1, 4]$ the sets $\{i_m, j_m\}$ and $\{k_n, l_n\}$ are disjoint if and only if m = n. Put

$$T(1) = \{ m \in [1, 4] : r(1, i_m, j_m) \ge 1 \}, \qquad t(1) = |T(1)|, T(2) = \{ m \in [1, 4] : r(2, k_m, l_m) \ge 1 \}, \qquad t(2) = |T(2)|$$

and $T = T(1) \cap T(2)$. Let

$$\sigma(P) = \sum_{p \in P} [r(1, i_p, j_p) + r(2, k_p, l_p)]$$

for $P \subseteq [1,4]$. Using Claim 12 we see that $m \in T(1)$ implies $r(2, k_m, l_m) \leq 9$, while $m \in T(2)$ means that $r(1, i_m, j_m) \leq 9$. Therefore, with $m \in T$ we have $r(1, i_m, j_m) + r(2, k_m, l_m) \leq 9 + 9 = 18$, and so $\sigma(T) \leq 18|T|$. If t(1) = 4, then $q - 4 = r_3(2) \leq \sum_{x=1}^4 r(2, k_x, l_x) \leq 4 \cdot 9 = 36$, and $q \leq 40$, a

If t(1) = 4, then $q - 4 = r_3(2) \le \sum_{x=1}^4 r(2, k_x, l_x) \le 4 \cdot 9 = 36$, and $q \le 40$, a contradiction. Similarly, with t(2) = 4 we get $q - 4 = r_3(1) \le \sum_{x=1}^4 r(1, i_x, j_x) \le 36$, and $q \le 40$ as well.

If there is $x \in [1,2]$ such that t(x) = 1 and $T(x) = \{m\}$, then $r_3(x) = r(x, i_m, j_m) = r_3(i_m) = r_3(j_m) = q - 4 \ge 37$, hence $r(3 - x, k_m, l_m) = r_3(3 - x) = r_3(k_m) = r_3(l_m) = q - 4 \ge 37$, which contradicts Claim 12.

We are left with the situation $t(1), t(2) \in [2,3]$ (and $|T| \leq \min(t(1), t(2))$). Suppose (w) $t(1) \geq t(2)$.

If |T| = 3, then T(1) = T = T(2), $[1,4] \setminus T = \{p\}$ and $r(1,i_p,j_p) = r(2,k_p,l_p) = 0$, hence $2q - 8 = c_3 = \sigma([1,4]) = \sigma(T) \le 18 \cdot 3 = 54$ and $q \le 31$, a contradiction.

If |T| = 2, then *n* out of four summands that sum up to $\sigma([1,4] \setminus T)$ are positive, $n \leq 2$. Moreover, $\sigma([1,4] \setminus T) \leq q-4$. The inequality is obvious provided that $n \leq 1$, while if $n = 2, a \in T(1) \setminus T(2)$ and $b \in T(2) \setminus T(1)$, then with $e \in \{i_a, j_a\} \cap \{k_b, l_b\}$ we have $\sigma([1,4] \setminus T) = r(1, i_a, j_a) + r(2, k_b, l_b) \leq r_3(e) = q-4$. Thus $c_3 = \sigma(T) + \sigma([1,4] \setminus T) \leq 18 \cdot 2 + (q-4) = q + 32$ in contradiction to (1).

For |T| = 1 we get t(2) = 2. With t(1) = 2 we obtain, similarly as in the case |T| = 2, $c_3 \le 18 + (q - 4) = q + 14$. So, assume that t(1) = 3, $T = \{t\}$ and $T(2) \setminus T(1) = \{p\}$ (note that $p \ne t$).

Suppose first that $\{k_p, l_p\} \neq \{i_t, j_t\}$. In such a case $|\{k_p, l_p\} \cap \{i_t, j_t\}| = 1$; moreover, since $\{k_p, l_p\} \subseteq [3, 6] = \{i_t, j_t, k_t, l_t\}$, we have $|\{k_p, l_p\} \cap \{k_t, l_t\}| = 1$, and there is $g \in \{k, l\}$ such that $\{k_p, l_p\} \cap \{k_t, l_t\} = \{g_t\}$. Then five from among eight summands in (2) are positive, namely $r(1, i_t, j_t), r(2, k_t, l_t), r(2, k_p, l_p)$ and $r(1, i_m, j_m)$ with $m \in [1, 4] \setminus \{t, p\}$. Having in mind that $g_t \notin \{i_t, j_t\}, g_t \notin$ $\{i_p, j_p\}$, and each element of [3, 6] is involved in exactly two of the ordered pairs (3, 5), (3, 6), (4, 5), (4, 6), we see that except for $r(1, i_t, j_t)$ all mentioned positive summands correspond to colours of $\mathbb{R}_3(g_t)$. That is why $c_3 \leq r(1, i_t, j_t) + r_3(g_t) \leq$ 9 + (q - 4) = q + 5, a contradiction to (1) again.

On the other hand, if $\{k_p, l_p\} = \{i_t, j_t\}$, then $|\{i_p, j_p\} \cap \{i_t, j_t\}| = |\{i_p, j_p\} \cap \{k_p, l_p\}| = 0$, hence for $m \in [1, 4] \setminus \{t, p\}$ we have $|\{i_m, j_m\} \cap \{i_t, j_t\}| = 1$, and so positive summands in (2) are $r(1, i_t, j_t)$, $r(2, k_t, l_t)$, $r(2, k_p, l_p) = r(2, i_t, j_t)$, $r(1, g_t, k_t)$ and $r(1, h_t, l_t)$, where $\{g, h\} = \{i, j\}$. Then

$$q - 4 = r_3(2) = r(2, k_t, l_t) + r(2, i_t, j_t),$$

$$q - 4 = r_3(k_t) = r(2, k_t, l_t) + r(1, g_t, k_t),$$

which yields

$$r(2, i_t, j_t) = r(1, g_t, k_t) = q - 4 - r(2, k_t, l_t) \ge (q - 4) - 9 = q - 13$$

so that

$$q - 4 = r_3(g_t) = r(1, i_t, j_t) + r(1, g_t, k_t) + r(2, i_t, j_t) \ge 1 + 2(q - 13)$$

and $q \leq 21$, a contradiction.

If |T| = 0, then t(1) = t(2) = 2, and, by symmetry, T(1) = [1,2], T(2) = [3,4]. We have $\{i_1, j_1\} \cup \{i_2, j_2\} = [3,6]$, for otherwise there is $e \in [3,6] \setminus (\{i_1, j_1\} \cup \{i_2, j_2\})$, hence $e \in \{i_3, j_3\} \cap \{i_4, j_4\}$, $e \notin \{k_3, l_3\} \cup \{k_4, l_4\}$ and $r_3(e) = 0 \neq q - 4$, a contradiction. Thus, by symmetry we may assume that $i_1 = 3 < i_2 = 4$.

Therefore, (w) $(i_1, j_1) = (3, 5)$ and $(i_2, j_2) = (4, 6)$, which means that r(m, n, p) with $\{m, n, p\} \in \binom{[1, 6]}{3}$ and m < n < p is positive if and only if $(m, n, p) \in \{(1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)\}$. We have $r_3(6) = r(1, 4, 6) + r(2, 3, 6) = q - 4 \equiv 1 \pmod{2}$, hence

(3)
$$r(1,4,6) \not\equiv r(2,3,6) \pmod{2}$$
.

Similarly, from $r_3(1) = q - 4 = r_3(3)$ it follows that $r(1,3,5) \not\equiv r(1,4,6) \pmod{2}$ and $r(1,3,5) \not\equiv r(2,3,6) \pmod{2}$ so that $r(1,4,6) \equiv r(2,3,6) \pmod{2}$, which contradicts (3).

It remains to analyse the case $G = K_2 \cup C_4$, in which (w) $\{\{3, 4\}, \{4, 5\}, \{5, 6\}, \{6, 3\}\} \subseteq E(G)$. The completeness of f_M implies $C_3 \subseteq \mathbb{R}(1, 3, 5) \cup \mathbb{R}(1, 4, 6) \cup \mathbb{R}(2, 3, 5) \cup \mathbb{R}(2, 4, 6)$. So,

$$c_3 = [r(1,3,5) + r(2,4,6)] + [r(1,4,6) + r(2,3,5)].$$

Let $\overline{\mathcal{T}} = \{(1,3,5), (1,4,6), (2,3,5), (2,4,6)\},\$

$$\mathcal{T} = \{(i, j, k) \in \overline{\mathcal{T}} : r(i, j, k) \ge 1\}$$

and $t = |\mathcal{T}|$. From $r_3(i) = q - 4 > 0$ for $i \in [1, 6]$ it follows that $t \ge 2$. If $(i, j, k), (l, m, n) \in \mathcal{T}, (i, j, k) \neq (l, m, n)$, then either $r(i, j, k) + r(l, m, n) \le 9 + 9 = 18$ (by Claim 12, if $\{i, j, k\} \cap \{l, m, n\} = \emptyset$) or $r(i, j, k) + r(l, m, n) \le r_3(p) = q - 4$ (if $p \in \{i, j, k\} \cap \{l, m, n\}$). As a consequence then $c_3 \le \max(b_2, b_3, b_4)$, where $b_2 = q - 4, b_3 = 18 + (q - 4) = q + 14$ and $b_4 = 18 + 18 = 36$. Thus $c_3 \le q + 14$, which contradicts (1).

Claim 18. No component of the graph G is K_3 .

Proof. Let (w) G have the component K_3 with the vertex set [1,3].

If $G = K_3 \cup 3K_1$, then r(1,2) = r(1,3) = r(2,3) = 4, $c_2 = 12$ and $c_{4+} = 0$. From Claim 10 it follows that $r_{3+}(1,3) = 0 = r_{3+}(2,3)$, hence $r(3,i,k) \ge 1$ with $\{i,k\} \in \binom{[1,6]\setminus\{3\}}{2}$ implies $\{i,k\} \in \{\{4,5\},\{4,6\},\{5,6\}\}$. By Claim 11 then $r_3(3) = r(3,4,5) + r(3,4,6) + r(3,5,6) \le r^*([3,6]) \le 8$, hence $q = r_2(3) + r_3(3) \le (4+4) + 8 = 16$, a contradiction.

If G has besides the above K_3 another nontrivial component (of order at least 2) and $r(i,k) \ge 1$ with $\{i,k\} \in \binom{[4,6]}{2}$, then, by Claim 11, $r(1,2)+r(1,3)+r(2,3)+r(1,2,3) = r^*([1,3]) \le 6$ and $r(4,5) + r(4,6) + r(5,6) + r(4,5,6) = r^*([4,6]) \le 6$, hence $12 \le c_2 \le 6+6$, $c_2 = 12$, r(1,2)+r(1,3)+r(2,3) = r(4,5)+r(4,6)+r(5,6) = r(4,5)+r(4,5)+r(4,6)+r(5,6) = r(4,5)+r(4

6, r(1, 2, 3) = r(4, 5, 6) = 0, $c_{4+} = 0$, and $c_3 = 2q-8 > 0$. So, among other things, with $C_2^1 = \mathbb{R}(1, 2) \cup \mathbb{R}(1, 3) \cup \mathbb{R}(2, 3)$ and $C_2^2 = \mathbb{R}(4, 5) \cup \mathbb{R}(4, 6) \cup \mathbb{R}(5, 6)$ we have $|C_2^1| = |C_2^2| = 6$. If $\alpha \in C_2^1$ and $\beta \in C_2^2$, then the pair $\{\alpha, \beta\}$ is column-based, hence all six positions in $\operatorname{Cov}(\alpha) \times [4, 6]$ are occupied by colours of C_2^2 , and for any $j \in \operatorname{Cov}(C_2^1)$ all three positions in $\{j\} \times [4, 6]$ are occupied by colours of C_2^2 , and for consequently, $\operatorname{cov}(C_2^1) = \frac{2|C_2^2|}{3} = 4$, and (w) all positions in $[1, 6] \times [1, 4]$ are occupied by colours of $C_2 = C_2^1 \cup C_2^2$. If $\{i, k\} \in \binom{J}{2}$, where $J \in \{[1, 3], [4, 6]\}$, then r(i, k) > 0, since otherwise with $\{i, j, k\} = J$ we get $r_2(j) = r(i, j) + r(j, k) = 6$, which contradicts Claim 9.9. For a colour $\gamma \in C_3$ there are $I, J \in \{[1, 3], [4, 6]\}$, $I \neq J$, such that $|\mathbb{R}(\gamma) \cap I| = 2$ and $|\mathbb{R}(\gamma) \cap J| = 1$. Then $\mathbb{R}(\gamma) \cap J = \{j\}$, and with $\{i, j, k\} = J$ there exists a colour $\alpha \in \mathbb{R}(i, k)$; in such a case, however, the pair $\{\alpha, \gamma\}$ is not good, a contradiction.

Claim 19. No component of the graph G is a path of order at least 3.

Proof. Suppose that G has a path component P of order at least 3.

If G has besides P another nontrivial component (of order at least 2), then $G = P \cup P'$, where, by Claims 17 and 18, both P and P' are paths of order 3, (w) V(P) = [1,3], V(P') = [4,6] and $r(i,i+1) \ge 1$ for i = 1, 2, 4, 5. Similarly as in the proof of Claim 18 it is easy to see that r(1,2)+r(2,3) = r(4,5)+r(5,6) = 6. Since $r_2(2) = 6$, there are colours $\alpha, \beta \in \mathbb{R}(1,2) \cup \mathbb{R}(2,3)$ such that $\operatorname{Cov}(\alpha) \cap \operatorname{Cov}(\beta) = \emptyset$. Then each colour of $\mathbb{R}(4,5) \cup \mathbb{R}(5,6)$ occupies a position in $[4,6] \times \operatorname{Cov}(\alpha)$ and a position in $[4,6] \times \operatorname{Cov}(\beta)$ as well so that $\operatorname{Cov}(\mathbb{R}(4,5) \cup \mathbb{R}(5,6)) \subseteq \operatorname{Cov}(\alpha,\beta)$; this leads to a contradiction since $\operatorname{cov}(\mathbb{R}(4,5) \cup \mathbb{R}(5,6)) \ge r_2(5) = 6$ and $\operatorname{cov}(\alpha, \beta) = 4$.

So, P is the unique nontrivial component of G, (w) V(P) = [1, p] and $E(P) = \{\{i, i+1\} : i \in [1, p-1]\}$. Since $12 \le c_2 = \sum_{i=1}^{p-1} r(i, i+1) \le 4(p-1)$, we have $p \in [4, 6]$.

If p = 4, then r(i, i + 1) = 4, i = 1, 2, 3, $c_2 = 12$, $c_{4+} = 0$ and

(4)
$$i \in [1, 6] \Rightarrow r_3(i) = q - r_2(i) \ge q - 8 \ge 33.$$

If $\alpha \in \mathbb{R}(1,2)$ and $\beta \in \mathbb{R}(3,4)$, then the pair $\{\alpha,\beta\}$ is column-based, hence all four positions in $\operatorname{Cov}(\alpha) \times [3,4]$ are occupied by colours of $\mathbb{R}(3,4)$, and with $j \in \operatorname{Cov}(\mathbb{R}(1,2)) \times [3,4]$, both positions in $\{j\} \times [3,4]$ are occupied by colours of $\mathbb{R}(3,4)$. Therefore, $\operatorname{cov}(\mathbb{R}(1,2)) = \frac{2|\mathbb{R}(3,4)|}{2} = 4$, and (w) all positions in $[1,4] \times [1,4]$ are occupied by colours of $\mathbb{R}(1,2) \cup \mathbb{R}(3,4)$. Thus, (w) $\operatorname{Cov}(\mathbb{R}(2,3)) = [5,n]$, where $n \in [8,12]$.

By Claim 10 we know that r(i, j, k) = 0 if there is $l \in [1, 3]$ such that $\{l, l+1\} \subseteq \{i, j, k\}$.

Suppose that $\gamma \in \mathbb{R}(1, 5, 6)$. Since all pairs $\{\gamma, \delta\}$ with $\delta \in \mathbb{R}(3, 4)$ are good in M, two positions in $[5, 6] \times [1, 4]$ must be occupied by γ . Then, however, the number of pairs $\{\gamma, \varepsilon\}$ with $\varepsilon \in \mathbb{R}(2, 3)$ that are good in M is at most two, a contradiction. So, r(1,5,6) = 0, and an analogous reasoning shows that r(4,5,6) = 0.

Claim 11 yields $r(1,4,5) + r(1,4,6) \leq r^*(\{1,4,5,6\}) \leq 8$. A colour $\gamma \in \mathbb{R}(2,5,6)$ as well as a colour $\delta \in \mathbb{R}(3,5,6)$ occupies two positions in $[5,6] \times [1,4]$ (each pair $\{\gamma,\varepsilon\}$ with $\varepsilon \in \mathbb{R}(3,4)$ and each pair $\{\delta,\zeta\}$ with $\zeta \in \mathbb{R}(1,2)$ is good in M). Thus $r(2,5,6) + r(3,5,6) \leq 4$ and

(5)
$$r(1,4,5) + r(1,4,6) + r(2,5,6) + r(3,5,6) \le 12.$$

The set of remaining triples $(i, j, k) \in [1, 6]^3$ with i < j < k such that r(i, j, k) can be positive is $\mathcal{T} = \{(1, 3, 5), (1, 3, 6), (2, 4, 5), (2, 4, 6)\}$. Suppose that $r(i, j, k) \geq 1$ with $(i, j, k) \in \mathcal{T}$ if and only if $(i, j, k) \in \{(i_l, j_l, k_l) : l \in [1, t]\}$. We show that there is $m \in [1, 6]$ with $r_3(m) \leq 30$ in contradiction to (4).

If t = 4, then, by Claim 12, $r(i_l, j_l, k_l) \leq 9$, l = 1, 2, 3, 4, and so, using (5), $r_3(m) \leq 12 + 2 \cdot 9 = 30$ for (any) $m \in [1, 6]$. If t = 3 and r(i, j, k) = 0 for $(i, j, k) \in \mathcal{T}$, then $r_3(m) \leq 12 + 9 = 21$ for $m \in \{i, j, k\}$. The same upper bound applies for $m \in [1, 6]$ if t = 2 and $\{i_1, j_1, k_1\} \cap \{i_2, j_2, k_2\} = \emptyset$.

If t = 2 and $\{i_1, j_1, k_1\} \cap \{i_2, j_2, k_2\} \neq \emptyset$, for $m \in [1, 6] \setminus (\{i_1, j_1, k_1\} \cup \{i_2, j_2, k_2\})$ we obtain $r_3(m) \leq 12$. The same inequality is available for $m \in [1, 6] \setminus \{i_1, j_1, k_1\}$ if t = 1 and for $m \in [1, 6]$ if t = 0.

If p = 5, then, by Claim 11, from $r(4,5) \ge 1$ it follows that $r(1,2) + r(2,3) \le r^*([1,3]) \le 6$; similarly, $r(1,2) \ge 1$ yields $r(3,4) + r(4,5) \le r^*([3,5]) \le 6$. Then $12 \le c_2 = \sum_{i=1}^4 r(i,i+1) \le 6+6$, $c_2 = 12$ and r(1,2) + r(2,3) = 6 = r(3,4) + r(4,5). If $(M)_{1,j} = \gamma \in \mathbb{R}(1,2)$, then all positions in $[3,5] \times \operatorname{Cov}(\gamma)$ are occupied by six distinct colours of $\mathbb{R}(3,4) \cup \mathbb{R}(4,5)$, hence $(M)_{3,j} \in \mathbb{R}(3,4)$ and $\delta = (M)_{5,j} \in \mathbb{R}(4,5)$. Analogously, all positions in $[1,3] \times \operatorname{Cov}(\delta)$ are occupied by six distinct colours of $\mathbb{R}(1,2) \cup \mathbb{R}(2,3)$, which implies $(M)_{3,j} \in \mathbb{R}(2,3)$, a contradiction.

If p = 6, then, by Claim 11, $r^*([1, 6] \setminus [l, l+1]) \le 8$ for $l \in [1, 5]$, hence

(6)
$$\rho^* = \sum_{l=1}^{5} r^*([1,6] \setminus [l,l+1]) \le 40.$$

It is easy to see that in the sum ρ^* each of the summands r(i, i + 1) with $i \in [1, 5]$ appears in the expression of $r^*([1, 6] \setminus [l, l + 1])$ for at least two *l*'s, while each of the summands r(i, j, k) satisfying $\{i, j, k\} \in {\binom{[1, 6]}{3}} \setminus \{\{1, 3, 5\}, \{2, 3, 5\}, \{2, 4, 5\}, \{2, 4, 6\}\}$ and i < j < k appears for at least one *l*. Since $c_2 = \sum_{l=1}^{5} r(l, l + 1)$, with

$$\rho = r(1,3,5) + r(2,3,5) + r(2,4,5) + r(2,4,6)$$

the inequality (6) leads to

(7)
$$2c_2 + c_3 - \rho \le \rho^* \le 40.$$

Achromatic Number of $K_6 \Box K_q$

Moreover, $r_2(l) + r_3(l) \le q$ implies

$$r_3(l) \le q - r_2(l) = q - [r(l-1,l) + r(l,l+1)] \le q - 2, \ l = 2, 5,$$

and so, having in mind that, by Claim 12, $\min(r(1,3,5), r(2,4,6)) \le 9$,

(8)
$$\rho \leq \min(r_3(2) + r(1,3,5), r_3(5) + r(2,4,6)) \\ \leq q - 2 + \min(r(1,3,5), r(2,4,6)) \leq q + 7.$$

Since, by Claim 9.8, $c_{4+} - c_2 \leq -12$, using (7) and (8) we obtain

$$2q + 4 = c_2 + c_3 + c_{4+} \le 40 + \rho + c_{4+} - c_2 \le 40 + (q+7) - 12 = q + 35,$$

and, finally, $q \leq 31$, a contradiction.

With $l \in \mathbb{Z}$ and $m \in [2, \infty)$ we use $(l)_m$ to denote the unique $n \in [1, m]$ satisfying $n \equiv l \pmod{m}$.

Claim 20. No component of the graph G is a 4-cycle.

Proof. If G has a 4-cycle component, (w) $r(i, (i+1)_4) \ge 1$ for $i \in [1, 4]$. Note that, by Claim 17, $r(5, 6) = 0 = r_2(5) = r_2(6)$. Let $i \in [1, 4]$ and

$$P_i = \{((i+2)_4, 5), ((i+2)_4, 6), (5, 6)\}.$$

If $\gamma \in \mathbb{R}_{3+}(i)$, there is $A \subseteq [1, 6]$ such that $|A| \ge 3$, $\{i\} \subseteq A$ and $\gamma \in \mathbb{R}(A)$. Provided that $A \cap \{(i-1)_4, (i+1)_4\} \neq \emptyset$, we get $\gamma \in \bigcup_{j \in \{(i-1)_4, i\}} \mathbb{R}_{3+}(j, (j+1)_4)$. On the other hand, $A \cap \{(i-1)_4, (i+1)_4\} = \emptyset$ implies either |A| = 3 and $\gamma \in \bigcup_{(j,k) \in P_i} \mathbb{R}(i, j, k)$ or |A| = 4 and $\gamma \in \mathbb{R}(i, (i+2)_4, 5, 6)$. As a consequence,

$$\mathbb{R}_{3+}(i) \subseteq \mathbb{R}(i, (i+2)_4, 5, 6) \cup \bigcup_{j \in \{(i-1)_4, i\}} \mathbb{R}_{3+}(j, (j+1)_4) \cup \bigcup_{(j,k) \in P_i} \mathbb{R}(i, j, k),$$

and by Claim 10 we have

$$\begin{aligned} r_{3+}(i) &\leq r(i,(i+2)_4,5,6) + \sum_{j \in \{(i-1)_4,i\}} r_{3+}(j,(j+1)_4) + \sum_{(j,k) \in P_i} r(i,j,k) \\ &\leq r(i,(i+2)_4,5,6) + \sum_{j \in \{(i-1)_4,i\}} [4 - r(j,(j+1)_4)] + \sum_{(j,k) \in P_i} r(i,j,k). \end{aligned}$$

Therefore, realising that

$$\sum_{i=1}^{4} \sum_{j \in \{(i-1)_4, i\}} r(j, (j+1)_4) = \sum_{i=1}^{4} r_2(i),$$

we obtain

(9)
$$\sum_{i=1}^{4} r_{3+}(i) \le 32 + \sum_{i=1}^{4} \left[r(i, (i+2)_4, 5, 6) + \sum_{(j,k) \in P_i} r(i, j, k) \right] - \sum_{i=1}^{4} r_2(i) + \sum_{i=1}^{4$$

On the right-hand side of the inequality (9) there are among others (partial) summands r(A) with $A \in \binom{[1,6]}{3} \cup \binom{[1,6]}{4}$, each such summand appears there with the frequency 0, 1 or 2, and the frequency is 2 if and only if $A \in \{\{1,3,5\},\{1,3,6\},\{2,4,5\},\{2,4,6\},\{1,3,5,6\},\{2,4,5,6\}\}$. Thus, with

$$\rho_3 = r(1,3,5) + r(1,3,6) + r(2,4,5) + r(2,4,6),$$

$$\rho_4 = r(1,3,5,6) + r(2,4,5,6)$$

the inequality (9) leads to

(10)
$$4q = \sum_{i=1}^{4} [r_2(i) + r_{3+}(i)] \le 32 + \rho_3 + \rho_4 + c_3 + c_4.$$

Let us show that

(11)
$$\rho_3 \le q + 10.$$

To see it let a be the number of sets A belonging to

$$\mathcal{A} = \{\{1,3,5\},\{1,3,6\},\{2,4,5\},\{2,4,6\}\}$$

with $r(A) \ge 1$.

If a = 4, by Claim 12 we have $\rho_3 \le 4 \cdot 9 = 36 \le q + 10$.

In the case a = 3 there is $i \in [1, 4]$ such that $\rho_3 \leq 2 \cdot 9 + r_3(i)$. Evidently, $r_3(i) \leq q - r_2(i) = q - [r((i-1)_4, i) + r(i, (i+1)_4)] \leq q - (4+4) = q - 8$, hence $\rho_3 \leq q + 10$.

If a = 2, let the positive summands of ρ_3 be r(i, j, k) and r(l, m, n), $\{i, j, k\} \neq \{l, m, n\}$. If $\{i, j, k\} \cap \{l, m, n\} = \emptyset$, then $\rho_3 \leq 2 \cdot 9 \leq q + 10$, and otherwise, with $p \in \{i, j, k\} \cap \{l, m, n\}$, we have $\rho_3 \leq r_3(p) \leq q$.

If $a \in [0,1]$, then $\rho_3 \leq q-2$, since $r(i,j,k) \geq 1$ with $\{i,j,k\} \in \mathcal{A}$ and i < j < k implies $i \in [1,2]$, while $r_2(i) \geq 1+1$.

Now realise that, by Claim 9.8, $\rho_4 + c_3 + c_4 \le c_3 + 2c_{4+} = |C| + (c_{4+} - c_2) \le (2q+4) - 12 = 2q - 8$, and so, using (10) and (11), $4q \le 32 + (q+10) + (2q-8) = 3q + 34$ and $q \le 34$, a contradiction.

Claim 21. No component of the graph G is a 5-cycle.

Proof. If G has a 5-cycle component, (w) $r(i, (i+1)_5) \ge 1$ for $i \in [1, 5]$. Similarly as in the proof of Claim 20 for $i \in [1, 5]$ we get

$$r_{3+}(i) \le r((i-2)_5, i, (i+2)_5, 6) + \sum_{j \in \{(i-1)_5, i\}} r_{3+}(j, (j+1)_5) + \sum_{(j,k) \in P_i} r(i, j, k),$$

this time with

$$P_i = \{((i-2)_5, 6), ((i+2)_5, 6), ((i-2)_5, (i+2)_5)\},\$$

which yields

(12)
$$5q = \sum_{i=1}^{5} [r_2(i) + r_{3+}(i)] \le 40 + \rho_3 + c_3 + c_4,$$

where

(13)
$$\rho_3 = r(1,3,6) + r(1,4,6) + r(2,4,6) + r(2,5,6) + r(3,5,6) \le r_3(6) \le q.$$

Moreover, $c_3 + c_4 \le 2q + 4 - c_2 \le 2q - 8$, and so, using (12) and (13), $5q \le 40 + q + (2q - 8) = 3q + 32$ and $q \le 16$, a contradiction.

Claim 22. The graph G is not a 6-cycle.

Proof. If G is a 6-cycle, (w) $r(i, (i+1)_6) \ge 1$ for $i \in [1, 6]$. In this case $r_{3+}(i)$ is upper bounded by

$$r((i-2)_6, i, (i+2)_6, (i+3)_6) + \sum_{j \in \{(i-1)_6, i\}} [4 - r(j, (j+1)_6)] + \sum_{(j,k) \in P_i} r(i, j, k)$$

with

$$P_i = \{((i-2)_6, (i+2)_6), ((i-2)_6, (i+3)_6), ((i+2)_6, (i+3)_6)\}, ((i+2)_6, (i+3)_6)\}, ((i+2)_6, (i+3)_6)\}, ((i+2)_6, (i+3)_6)\}, ((i+3)_6, (i+3)_6)\}$$

and one can see that

(14)
$$6q \le 48 + \rho_3 + c_3 + c_4,$$

where $\rho_3 = 2r(1,3,5) + 2r(2,4,6)$. We can bound ρ_3 from above by 2q-4. Indeed, if both r(1,3,5) and r(2,4,6) are positive, then Claim 12 yields $\rho_3 \leq 18 + 18 = 36 \leq 2q-4$. On the other hand, if r(i,j,k) = 0 with $(i,j,k) \in \{(1,3,5), (2,4,6)\}$, then $\rho_3 \leq 2r_3(i+1) \leq 2[q-r_2(i+1)] = 2q-2[r_2(i,i+1) + r_2(i+1,i+2)] \leq 2q-4$. Therefore, similarly as in the proof of Claim 21, from (14) we obtain $6q \leq 48 + (2q-4) + (2q-8) = 4q + 36$ and $q \leq 18$, a contradiction.

Thus, by Claims 16–22, we conclude that $G = 6K_1$ and $c_2 = 0$, which contradicts Claim 9.3. Therefore, Theorem 15 is proved.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract APVV-19-0153. The author is indebted to an anonymous referee whose comments helped to improve the presentation of results in the paper.

References

- A. Bouchet, Indice achromatique des graphes multiparti complets et réguliers, Cahiers du Centre d'Études de Recherche Opérationelle 20 (1978) 331–340.
- N. Cairnie and K.J. Edwards, The achromatic number of bounded degree trees, Discrete Math. 188 (1998) 87–97. https://doi.org/10.1016/S0012-365X(97)00278-1
- G. Chartrand and P. Zhang, Chromatic Graph Theory, 2nd Ed. (Chapman and Hall/CRC, Boca Raton, 2009). https://doi.org/10.1201/9780429438868
- [4] N.-P. Chiang and H.-L. Fu, On the achromatic number of the Cartesian product $G_1 \times G_2$, Australas. J. Combin. **6** (1992) 111–117.
- N.-P. Chiang and H.-L. Fu, The achromatic indices of the regular complete multipartite graphs, Discrete Math. 141 (1995) 61–66. https://doi.org/10.1016/0012-365X(93)E0207-K
- [6] K.J. Edwards, The harmonious chromatic number and the achromatic number, in: Surveys in Combinatorics (Invited papers for 16th British Combinatorial Conference, R.A. Bailey (Ed(s)), (Cambridge University Press, Cambridge, 1997) 13–47.
- K.J. Edwards, A bibliography of harmonious colourings and achromatic number. http://staff.computing.dundee.ac.uk/kedwards/biblio.html
- [8] F. Harary, S. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math. 26 (1967) 454–462.
- [9] P. Hell and D.J. Miller, Achromatic numbers and graph operations, Discrete Math. 108 (1992) 297–305. https://doi.org/10.1016/0012-365X(92)90683-7
- [10] F. Hughes and G. MacGillivray, The achromatic number of graphs: a survey and some new results, Bull. Inst. Combin. Appl. 19 (1997) 27–56.
- [11] M. Horňák, The achromatic number of the Cartesian product of K₆ and K_q. arXiv:2009.07521v1 [math.CO]
- [12] M. Horňák, The achromatic number of K₆□K₇ is 18, Opuscula Math. 41 (2021) 163–185.
 https://doi.org/10.7494/OpMath.2021.41.2.163

1120

- [13] M. Horňák and Š. Pčola, Achromatic number of K₅×K_n for large n, Discrete Math.
 234 (2001) 159–169. https://doi.org/10.1016/S0012-365X(00)00399-X
- [14] M. Horňák and Š. Pčola, Achromatic number of K₅ × K_n for small n, Czechoslovak Math. J. **53** (2003) 963–988.
 https://doi.org/10.1023/B:CMAJ.0000024534.51299.08
- [15] M. Horňák and J. Puntigán, On the achromatic number of $K_m \times K_n$, in: Graphs and Other Combinatorial Topics, M. Fiedler (Ed(s)), (Teubner, Leipzig, 1983) 118–123.
- [16] W. Imrich and S. Klavžar, Product Graphs (Wiley-Interscience, New York, 2000).

Received 8 November 2020 Revised 29 June 2021 Accepted 29 June 2021 Available online 16 July 2021

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/