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Abstract

In 2008, it was conjectured that, for any positive integer k, a connected n-
vertex graph G must contain a spanning tree with at most k branch vertices
if σk+3(G) ≥ n−k. In this paper, we resolve this conjecture in the affirmative
for the graphs K1,4-free.
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1. Introduction and Main Result

In this paper, we are interested in finite simple graphs. Let G be a graph with
vertex set V (G) and edge set E(G). For any vertex v ∈ V (G), we use NG(v) and
degG(v) to denote the set of neighbors of v and the degree of v in G, respectively.
We defineG−uv to be the graph obtained fromG by deleting the edge uv ∈ E(G),
and G+ uv to be the graph obtained from G by adding an edge uv between two
non-adjacent vertices u and v of G. For any X ⊆ V (G), we denote by |X| the
cardinality of X. We use G−X to denote the graph obtained from G by deleting
the vertices in X together with their incident edges. The subgraph of G induced
by X is denoted by G[X].

A subset X ⊆ V (G) is called an independent set of G if no two vertices of X
are adjacent in G. For each positive integer k, we define

σk(G) = min

{

k
∑

i=1
degG(vi) | {v1, . . . , vk} is an independent set in G

}

.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at
least three is a branch vertex of T . We recall to [5] for terminology and notation
not defined here.
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Definition [5]. Denote by L(T ) and B(T ) the set of leaves and the set of branch
vertices of a tree T, respectively. Let Bn(T ) denote the set of branch vertices of T
with degree exactly n, and let B≤n(T ), (B≥n(T )) denote the set branch vertices
of T with degree at most (at least) n. Any two vertices of T , say u and v, are
joined by a unique path, denoted uTv. Now if e ∈ E(T ), then eTv denotes the
unique shortest path containing v and one of the vertices incident to e, but not
edge e. We also denote {uv} = V (uTv) ∩ NT (u) and ev as the vertex incident
to e in the direction toward v. We call the set ST =

⋃

u,v∈B(T ) uTv the internal

subtree of T .

Definition [5]. Let T be a spanning tree of a graph G and let v ∈ V (G) and
e ∈ E(T ). Denote g(e, v) as the vertex incident to e farthest away from v in T .
We say v is an oblique neighbor of e with respect to T if vg(e, v) ∈ E(G).

Definition [5]. Let T be a spanning tree of a graph G. Two vertices are pseu-

doadjacent with respect to T if there is some e ∈ E(T ) which has them both as
oblique neighbors. Similarly, a vertex set is pseudoindependent with respect to T
if no two vertices in the set are pseudoadjacent with respect to T .

For positive integer r, a graph is said to be K1,r-free if it does not contain
K1,r as an induced subgraph. A K1,3-free graph is also called a claw-free graph.
We use Kn to denote the complete graph on n vertices. There are several well-
known conditions (such as the independence number conditions and the degree
sum conditions) ensuring that a graph G contains a spanning tree with a bounded
number of leaves or branch vertices.

Theorem 1 [3, Gargano et al.]. Let k be a non-negative integer and let G be a

connected claw-free graph of order n. If σk+3 ≥ n− k− 2, then G has a spanning

tree with at most k branch vertices.

Theorem 2 [7, Kano et al.]. Let k be a non-negative integer and let G be a

connected claw-free graph of order n. If σk+3 ≥ n− k− 2, then G has a spanning

tree with at most k + 2 leaves.

For connected K1,4-free graphs, Kyaw [8, 9] obtained the following two sharp
results.

Theorem 3 [8, Kyaw]. Let G be a connected K1,4-free graph with n vertices. If

σ4(G) ≥ n− 1, then G contains a spanning tree with at most 3 leaves.

Theorem 4 [9, Kyaw]. Let G be a connected K1,4-free graph with n vertices.

(i) If σ3(G) ≥ n, then G has a Hamiltonian path.

(ii) If σm+1(G) ≥ n − m
2 for some integer m ≥ 3, then G has a spanning tree

with at most m leaves.
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For the graph K1,5-free, some results were obtained in 2019.

Theorem 5 [1, Chen, Ha and Hanh]. Let G be a connected K1,5-free graph with

n vertices. If σ5(G) ≥ n − 1, then G contains a spanning tree with at most 4
leaves.

Theorem 6 [6, Hu and Sun]. Let G be a connected K1,5-free graph with n vertices.

If σ6(G) ≥ n− 1, then G contains a spanning tree with at most 5 leaves.

In [10], Matsuda et al. gave a conjecture of conditions on connected claw-
free graph which ensures the existence of a spanning tree with at most k branch
vertices. As they mentioned, it is best possible.

Conjecture 7 [10, Matsuda et al.]. Let k be a non-negative interger and let G
be a connected claw-free graph of order n. If σ2k+3(G) ≥ n − 2, then G has a

spanning tree with at most k branch vertices.

This conjecture was proved for k = 1 in [10], k = 0 in [11] and k = 2 in
[4]. Very recently, the authors in [5] have completely solved Conjecture 7 for
k ≥ 0. The technique used in [5] is to control the total order condition of each
independent set by counting the oblique neighbors of the edges in a spanning
tree T . Regarding the existence of a spanning tree with a number of branched
vertices bounded in a connected graph, Flandrin et al. [2] proposed the following
conjecture.

Conjecture 8 [2, Flandrin et al.]. Let k be a positive interger and let G be a

connected graph of order n. If σk+3(G) ≥ n− k, then G has a spanning tree with

at most k branch vertices.

In this paper, we will prove the conjecture for the case of the graph is K1,4-
free.

Theorem 9. Let k be a positive interger and let G be a connected K1,4-free graph

of order n. If σk+3(G) ≥ n−k, then G has a spanning tree with at most k branch

vertices.

We end this section by constructing an example to show that the conditions
of Theorem 9 is sharp. Let k,m be positive integers. Let P = x1x2 · · ·xk+1

be a path. Let D0, D1, . . . , Dk+1, Dk+2 be copies of the graph Km. For each
i ∈ {1, 2, . . . , k + 1}, join xi to all vertices of the graph Di, join x1 to all vertices
of the graph D0 and join xk+1 to all vertices of the graph Dk+2. Then the
resulting graph G is a K1,4−free graph. On the other hand, we have |G| = n =
k + 1 + (k + 3)m and σk+3(G) = n− k − 1, but G has no spanning tree with at
most k branch vertices.
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2. Proof of Theorem 9

Suppose that G has no spanning tree with at most k branch vertices. Choose
some spanning T of G such that the following conditions are satisfied.

(T1) |B(T )| is as small as possible.
(T2) |L(T )| is as small as possible, subject to (T1).
(T3) |ST | is as small as possible, subject to (T1), (T2).

Note that T must have at least k + 1 branch vertices.

We have the following claims.

Claim 10. L(T ) is independent.

Proof. Suppose two leaves s and t are adjacent in G. Then s has some nearest
branch vertex b. Let T ′ = T − {bbs} + {st}. Then T ′ is a spanning in G. If
degT (b) = 3, then |B(T ′)| < |B(T )| (by vertex b), which contradicts the condition
(T1). If degT (b) ≥ 4, then |B(T ′)| = |B(T )| and |L(T ′)| < |L(T )| (since two
leaves s and t are lost while bs is gained), which contradicts the condition (T2).
So the claim holds. �

Claim 11. L(T ) is pseudoindependent with respect to T .

Proof. Suppose two leaves s and t are pseudoadjacent with respect to T . Then
there is some edge e ∈ E(T ) such that sg(e, s), tg(e, t) ∈ E(G). Let b and u be
the nearest branch vertices of s and t, respectively. Consider two cases.

Case 1. Suppose g(e, s) 6= g(e, t). Then es = g(e, t) and et = g(e, s), so
set, tes ∈ E(G). If e ∈ E(PT [u, t]), we consider the tree

T ′ = T + {tes, set} − {e, bbs}.

If degT (b) = 3, then B(T ′) = B(T ) \ {b}, so |B(T ′)| < |B(T )|. Thus T ′ violates
(T1). If degT (b) ≥ 4, then B(T ′) = B(T ), L(T ′) = (L(T ) ∪ {bs}) \ {s, t}, so
|B(T ′)| = |B(T )| and |L(T ′)| < |L(T )|. Thus T ′ violates (T2). So e /∈ E(PT [u, t]).
Now, we consider the tree

T ′ = T − {e, uut}+ {set, tes}.

If degT (u) = 3, then B(T ′) = B(T ) \ {u}, so |B(T ′)| < |B(T )|. Thus T ′ violates
(T1). If degT (u) ≥ 4, then B(T ′) = B(T ), L(T ′) = (L(T ) ∪ {ut}) \ {s, t}, so
|B(T ′)| = |B(T )| and |L(T ′)| < |L(T )|. Thus T ′ violates (T2). So Case 1 does
not happen.

Case 2. Suppose g(e, s) = g(e, t). Define a := g(e, s) = g(e, t). Then es = et
and denoted by vertex z. We have as, at ∈ E(G). By s, t ∈ L(T ) and L(T ) is
independent, so we have a /∈ L(T ).
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If sz ∈ E(T ), then T ′ = T − {bbs, e}+ {sz, ta} violates (T1) if degT (b) = 3,
and violates (T2) if degT (b) ≥ 4 (since two leaves s and t are lost while bs is
gained). So sz /∈ E(G). The same argument gives tz /∈ E(G).

If degT (a) = 2, then we call c = NT (a) \ {z}. Since G[a, z, c, s, t] is not
K1,4-free and st, zs, zt /∈ E(G), we have zc ∈ E(G) or sc ∈ E(G) or tc ∈ E(G).
If sc ∈ E(G), then the tree T ′ = T − {ac, uut} + {sc, ta} violates either (T1) or
(T2) depending on degT (u) = 3 or degT (u) ≥ 4. So sc /∈ E(G). By the same
argument, tc /∈ E(G). So zc ∈ E(G). Then the tree T ′ = T − {e, ac} + {sa, zc}
violates (T3) (due to a). So we must have degT (a) ≥ 3.

Let c be any vertex in NT (a) \ {z}. If sc ∈ E(G), then T ′ = T −{ac}+ {sc}
violates either (T1) or (T2) depending on degT (a) = 3 or degT (a) ≥ 4. So
sc /∈ E(G). The same argument yields tc /∈ E(G). Since G[a, z, c, s, t] is not
K1,4-free, we have zc ∈ E(G) for all c ∈ NT (a) \ {z}. Then the tree

T ′ = T − {e} − {ac | c ∈ NT (a) \ {z}}+ {sa}+ {zc | c ∈ NT (a) \ {z}},

violates (T3) (due to a). So Case 2 does not happen. The Claim 11 has been
proven. �

A leaf x ∈ L(T ) is called associated with branch vertex b if b is the nearest
branch vertex of x in T .

Claim 12. For each branch vertex b ∈ B≥4(T ), there are at most degT (b) − 3
leaves associated with vertex b such that they are adjacent to some vertex of B3(T ).

Proof. Put q = degT (b)−2. Suppose that s1, s2, . . . , sj , where j ≥ q, are j leaves
associate with b such that they are adjacent to some vertex in B3(T ). Then there
exists wi ∈ B3(T ) such that siwi ∈ E(G) with i = 1, 2, . . . , q (wi may overlap).
Therefore the tree

T ′ = T − {bbsi}i=1,...,q + {siwi}i=1,...,q

violates (T1) due to b. The Claim 12 has been proven. �

Let e ∈ E(T ) and X ⊆ V (G). The edge e has an oblique neighbor in the set

X if there exists a vertex of X which is an oblique neighbor of e with respect
to T .

Claim 13. In the graph G there exists an independent set X with k+3 elements

and in the set E(T ) there exist at least k edges such that each of which has no

oblique neighbor in the set X.

Proof. Consider the case B3(T ) = ∅. Then we have |B(T )| = |B≥4(T )| ≥ k + 1.
So

|L(T )| = 2 +
∑

v∈B(T )

(degT (v)− 2) ≥ 2 + 2(k + 1) = 2k + 4.
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Let X be a subset of L(T ) including k+3 elements. Set Y = L(T ) \X. We have

|Y | = |L(T )| − |X| ≥ 2k + 4− (k + 3) = k + 1.

Because L(T ) is an independent set in G, every edge of T which is adjacent
to a vertex in the set Y has no oblique neighbor in the set X. Therefore, the
number of edges of T without oblique neighbor in the set X is greater than or
equal to |Y | ≥ k + 1.

Consider the case |B3(T )| = m ≥ 1. Let Z be the set of leaves associated
with a branched vertex of B≥4(T ) with neighbors in B3(T ). According to Claim
12 we have

|Z| ≤
∑

b∈B≥4(T )

(degT (b)− 3) .

Put X∗ = L(T ) \ Z. We have

|X∗| = |L(T )| − |Z| = 2 +m+
∑

b∈B≥4(T )

(degT (b)− 2)− |Z|

≥ 2 +m+
∑

b∈B≥4(T )

(degT (b)− 2)−
∑

b∈B≥4(T )

(degT (b)− 3)

= 2 +m+ |B≥4(T )| = 2 + |B(T )| ≥ k + 3.

Next take e ∈ E(ST ) as an adjacent edge with a vertex of B3(T ), we will
show that e without oblique neighbor in X∗.

Indeed, suppose there exists s ∈ X∗ and s is a oblique neighbor of e with
respect to T . Then sg(e, s) ∈ E(G). Let b be the nearest branch vertex of s.
Consider the case g(e, s) ∈ B3(T ). According to the definition of the set X∗, we
have b ∈ B3(T ). Then T ′ = T +{sg(e, s)}−{bbs} violates (T1) due to the vertex
b. So g(e, s) /∈ B3(T ). By the definition of the edge e, we infer es ∈ B3(T ). Then
the tree T ′ = T −{e}+ {sg(e, s)} violates (T1) due to the vertex es. So e has no
oblique neighbor in the set X∗.

Let X be a subset of X∗ with k + 3 elements. Because |B3(T )| = m, there
must exist at least m − 1 edges of ST attached to vertices in B3(T ) without
oblique neighbor in X.

Put H = L(T ) \X. We have

|H| = |L(T )| − |X| = 2 +m+
∑

b∈B≥4(T )

(degT (b)− 2)− |X|

= 2 +m+
∑

b∈B≥4(T )

(degT (b)− 2)− (k + 3)

≥ 2 +m+ 2(k + 1−m)− k − 3 = k −m+ 1.
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Since the set L(T ) is independent in G, every adjacent edge with a vertex of
H has no oblique neighbor inX. So there are at least k−m+1 edges of T adjacent
to the set H without oblique neighbor in X. Note that the edges adjacent to the
set H do not belong to E(ST ). Hence, there are at least (k−m+1)+(m−1) = k
edges of T which are not oblique neighbor in X.

So in both cases B3(T ) = ∅ and B3(T ) 6= ∅, we always find an independent
set X with k+3 elements and in the set E(T ), there are at least k edges without
oblique neighbor in X. Claim 13 is proved. �

For any v, x ∈ E(G), we have vx ∈ E(G) if and only if v is an oblique neighbor
of xxv. Therefore, the number of edges of T with v as an oblique neighbor equals
the degree of v in G. Combining with Claims 11 and 13, we obtain that

σk+3(G) ≤ |E(T )| − k = |V (T )| − 1− k = n− 1− k,

which contradicts the assumption of Theorem 9. The proof of Theorem 9 is
completed.
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