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Abstract

In this paper we study a graph which contains no induced path of five
vertices which is known as the Ps-free graph. We prove that every prime
Ps-free locally split graph has either a bounded number of vertices, or is a
subclass of a (2,1) split graph, or is a split graph. Then we show that the
Minimum Coloring problem (MC) and the maximum independent set prob-
lem (MIS) for Ps-free locally split graphs can be both solved in polynomial
time.
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1. INTRODUCTION

In this study, we consider Ps-free locally split graphs, together with two NP-hard
problems, namely, the Minimum Coloring problem (MC) and the maximum in-
dependent set problem (MIS). A graph is Ps-free if it contains no induced path of
five vertices. A locally split graph is a graph in which the open neighborhood of
each vertex induces a split graph. The class of Ps-free locally split graphs extends
that of (Ps, triangle)-free graphs. From one hand, (Ps, triangle)-free graphs have
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bounded clique with [5], and thus (MC) and (MIS) for (Ps, triangle)-free graphs
can be solved in polynomial time. From the other hand, Ps-free locally split
graphs have unbounded clique width, and the complexity of (MC) and (MIS) for
Ps-free locally split graphs is open. Modular decomposition is a technique that ap-
plies to graphs [8, 17, 21, 34]. The classical combinatorial optimization problems
are in general NP-complete, computing the modular decomposition tree when the
prime graphs appearing on the tree nodes have better properties is an important
preprocessing step when solving a large number of combinatorial optimization
problems [21]. For instance, severel researchers have studied the maximum inde-
pendent set (MIS) of a subclass of Ps-free graph [5, 6, 19]. Later, this problem
has been solved in [28]. In the same perspective, we have also chosen the Ps-free
locally split graphs, in which the (MC) and (MIS) are open. Furthermore, the
split graph is generalized by many special classes [1, 2]. These include the lo-
cally split graphs that contain interesting subclasses like the triangle-free graphs
and subcubic graphs for which certain combinatorial optimization problems are
NP-complete.

First, we studied the structure of Ps-free locally split graphs which we de-
noted by S Ps-free graph. We do this by switching between S Ps-free graphs and
their complement S house-free graphs. G is a S house-free graph if G is house-
free and the non neighbors of each vertex induce a split graph. The objective of
using this structure is to show that the (MC) problem and the (MIS) problem are
polynomials for S Ps-free graphs. We then deduce the same results for subcubic
Ps-free graphs.

The rest of the paper is organised as follows. In Section 2, we first give some
notations followed by definitions and some theorems. In Section 3, we switch
between SPs-free graphs and their complement S house-free graphs to give the
structure of prime S Ps-free graphs. Here we also provide interesting lemmas to
support our results. In Section 4, we show that the recognition, (MIS) problem
and the (MC) problems of SPs-free graphs are polynomial.

2. NOTATIONS AND DEFINITIONS

We consider every graph G = (V, E) to be finite, undirected and simple. A set
of vertices of the graph G is denoted by V(G) and the edge set by E(G). For a
graph G = (V,E), let |V| =n > 3 and |E| = m. Let Ng(v) = {u:u € V,u #
v,uv € E} denote the open neighborhood of the vertex v. For U C V| we denote
by G[U] the subgraph of G induced by U. Throughout the paper, subgraphs are
understood to be induced subgraphs. A vertex set U C V is a cliqgue in G if
the vertices in U are pairwise adjacent. Let G = (V, E) denote the complement
graph of a graph G. A vertex set U C V is a stable set in G if U is a clique in
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G. A vertex set V' C V in a graph G = (V, E) is a dominating set in G, if for
all vertices u € V' \ V/, there is a vertex v € V' such that wv € E. Let C C vV,
a vertex x € V \ C is called k-vertex of C if x is adjacent to exactly k vertices
in C. Let C} denote an induced cycle with k vertices and let Ci-free graph be a
graph that does not have a C} as an induced subgraph.

A 2K5 is a graph induced by two disjoint cliques of size 2.

A split graph is a graph whose vertices can be partitioned into a clique K
and a stable set S.

A (k,1) split graph is a graph whose vertices can be partitioned into k cliques
and [ stable sets.

A graph G is chordal if it does not contains any induced cycle Cj for k > 4.

A graph G is weakly chordal if neither the graph nor its complement contains
a chordless cycle with five or more vertices as an induced subgraph.

A module M in a graph G = (V, E) is defined as a vertex set M C V such that
every vertex outside M is either adjacent to all vertices of M or to none of them.
If a module M in G has at least two vertices and is not the entire vertex set of G,
it is called a homogeneous set in G. G is prime if it contains no homogeneous sets.
Note that a module in G is a module in G as well, and the complement of a prime
graph is also prime. A module is maximal if it can not be contained in any other
module. It is well known that in a connected graph G = (V, E) with a connected
complement G = (V, E), the maximal homogeneous sets are pairwise disjoint. In
this case, the graph G* obtained from G by contracting every maximal module
set to a single vertex is called the characteristic graph G* of G. It is easy to
see that G* is connected and prime. Subsequently, we need the following useful
lemma given in [25] to characterize the prime graphs of SPs-free graphs.

Lemma 1 [25]. If a prime graph contains an induced Cy, then it contains an
induced house, A or domino (see Figure 1).

In its complement version, lemma 2 means the following.

Lemma 2 [25]. If a prime graph contains an induced 2K, then it contains an
induced Ps, co-A or co-domino (see Figure 1).

[ ] [ ]
house A domino co-domino co-A

Figure 1. House, A, domino, co-domino and co-A.
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G is a split graph if and only if G is (2K3,C4, Cs)-free [16]. It is therefore
simple to see that a graph G is locally split if and only if G is (J1, J2, J3)-free
(see Figure 2).

J1 Jo J3

Figure 2. Jl, Jg and J3.

3. THE STRUCTURE OF SPs;-FREE (GRAPHS

In this section we first study two prime graphs, namely the prime Ps-free graph
and prime SCy-free graph. We then analyze the prime .S chordal graph.

3.1. Prime SPs-free graphs containing a 2K»

Our aim is to build the prime graphs of S Ps-free graphs. We first start with the
prime graphs containing a 2K5.

Theorem 3. If G is a prime graph containing an induced 2K, then G is SPs-
free if and only if G is a T'y graph (Figure 6) or is a chordal (2,1) split graph or
is a weakly chordal (2,1) split graph.

We construct the prime graphs GG containing a 2K from a co-domino or a
co-A. By Lemma 2, G contains a co-domino denoted D induced by the vertex set
{1,2,3,4,5,6} or a co-A denoted B induced by the vertex set {a,b,c,d, e, f} (see
Figure 3).

a

Figure 3. co-domino and co-A.

For any vertex = € V(G) \ D, all possible adjacency cases of a vertex = in D
are represented in Figure 4 with boldface edges indicating Ps, Ji,Jo and J3. A
vertex x is of type M; if it is represented in Figure 4 in the graph M;.



ON P5-FREE LoCALLY SPLIT GRAPHS 1067

Before we give the proof of this theorem in page 14, the following 14 lemmas
are presented and theirs proofs provided.

o7 T T T -
Ps Ps Ps Ps Ps
T T T T
My Ps Ps My Ps
‘7' €T
M3 Ps Ps Ps J1
T g i
P5 P5 M4 M5 Jl
€T L €T
J1 Jo 1

Figure 4. Adjacency of one vertex to a co-domino.

Lemma 4. Any co-domino D dominates the graph G.

Proof. Suppose the opposite (i.e., that the co-domino does not dominate the
graph G) so, there exists a vertex y € V \ D such that for any vertex v in D
(v e {1,2,...,6}) y is at distance 2 to D. Let = be a vertex of type M;, all
possible cases are induced by the subgraph M; U {y}. It is worth noting that
fixing the neighbors of the vertex x does not influence the reasoning of our proof.
This is because if the neighbors change, then it can be used instead symmetry.
We have the following.

For the subgraph M; U{y} (respectively, MaU{y} and M3U{y} ) the vertex
set {y,x,2,4,6} induced a P5. This is a contradiction as G is a SPs-free.

For the subgraph My U {y} the vertex set {y,x,2,4,5} induced a Ps. This is
also a contradiction as G is a S Ps-free.

For the subgraph M5 U {y} the vertex set {y,z,1,2,4} induced a P5. This is
also a contradiction as G is a S Ps-free.

All these cases are represented in Figure 5 where boldface edges indicating
a Ps. |

v v v v v
[ p [ ]
<%613x-5613-5613 Y 6 Lel g 6
7 i i ] SRVl

Figure 5. Co dominoes are dominating,.
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Lemma 5. Let G be a prime SPs-free graph containing a co-domino. Then the
verter set Ao = N(1)NN(3)NN(4)NN(5) NN(6) is a module of size 1.

Proof. Let G be a prime S Ps-free graph containing a co-domino. Suppose that
Ay is not a module. So for any = € Ay such that x together with the vertex set
{1,3,4,5,6} induces a co-domino denoted by D, in G, there exists a vertex z
not belonging to Ay U {1,3,4,5,6} such that zz € E and 22 € E. By lemma 4
z is adjacent to D, (respectively to Dy). Then z cannot be of type My, My, M3
or M, otherwise z will be adjacent to 2. This is a contradiction with the initial
hypothesis. If z is of type M5, then the vertex set {1,z,z,5,6} induces a Ji,
which is also a contradiction as G is a S Ps-free graph. [

By symmetry, Lemma 5 holds as well for the sets: A3 = N(1)NN(2) N N(5)
NN(4)NN(6), Ay = N6)NN((B)NN2)NN(B)NN(1), As = N(6) N N(4) N
N(3)NN(2)NN(1) are modules of size 1. Which implies that the case of adjcence
M3 is impossible.

Let G be a graph represented in Figure 4 such that V(G) = V(D)UL = K; U
KyUL where K7 = {1,2,3}, Ky = {4,5,6} and L = {v : v € Vis adjacent to K;U
Ks}. The following results will allow us to define the prime graphs induced by
the vertex set {L U K1 U Ka}.

Lemma 6. 1. If L contains a vertexr x of type Ms, then L cannot contain
vertices of type My, My or My;

2. If L contains a vertexr x of type My, then
(a) L cannot contain a vertez v of type My with zv € E;
(b) L cannot contain a vertex v of type Mo with xv € E and N(v) C N(x);
(c) L cannot contain a vertex v of type My with xv € E and N(v) € N(zx);

3. If L contains a vertex x of type Ma, then L cannot contain a vertex v of type
M, with zv € E and N(v) € N(x).

Proof. Let us consider Case 1. Suppose that L contains a vertex x of type Ms,
without loss of generality let N(z) = {1,3,5,6}. We have the following.

If there exists a vertex v of type M; with N(v) = {2, 3} (respectively of type
Ms with N(v) = {1,2,3} or My with N(v) = {1,2,3,6}) in L, then we have
two possbilities. Either zv € E and then the vertex set {v,3,2,5, 2} induces J;
(respectively the vertex set {v, 1, x,6,4} induces Ps or the vertex set {2,v,3,z,5}
induces Ji), or xv € E and then the vertex set {v,x,1,3,2} induces Jo (respec-
tively the vertex set {v, 1, z,5,6} induces J; or the vertex set {3,v,x,6,5} induces
J2).

Case 2. Suppose that L contains a vertex x of type My with N(z) = {1,2,
3,6}. Without loss of generality we have the following.
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1. If there exists a vertex v of type M with zv € E in L, then we have two pos-
sibilities. Either N(v) C N(z) and then the vertex set {v,2,z,6,5} induces
Ps, or N(v) € N(z) and then the vertex set {v,5,6,z,1} induces Ps.

2. If there exists a vertex v of type My with zv € F and N(v) C N(x), then
the vertex set {v,2,x,6,5} induces Ps.

3. If there exists a vertex v of type My with 2v € E and N(v) € N(x), then
the vertex set {1,2,x,v,6} induces Jj.

Case 3. Suppose that L contains a vertex x of type My and a vertex v
of type M; with zv € E and N(v) € N(z). Then the vertex set {1,z,v,4,6}
induces Ps. [

Lemma 7. L contains at most two non adjacent vertices of type Ms.

Proof. Suppose the opposite, (i.e., that L contains at least three vertices of
type Ms). Without loss of generality, let x,y and z be vertices of type M5 with
N(z)=N(y) ={1,2,4,6} and N(z) = {1,3,5,6}. There exists at least a vertex v
of type M; for i € {1,2,4} such that vx € E and vy € E, otherwise {z, y} induces
a module. But by Lemma 6, we cannot have a vertex of type M5 with a vertex
of type M; for i € {1,2,4} in L without inducing forbidden configurations, which
is a contradiction with the hypothesis. On the other hand, xz € E otherwise the
vertex set {6,5,4, z,z} induces Js. [ ]

Lemma 8. L contains at most two non adjacent vertices of type My.

Proof. Suppose the opposite, (i.e., that L contains at least three vertices of
type My). Without loss of generality, let x,y and z be vertices of type My with
N(z)=N(y) ={1,2,3,6} and N(z) = {1,4,5,6}. There exists at least a vertex
v of type M; for i € {1,2} such that vz € E and vy € E, otherwise {z, y} induces
a module.

If v is of type M, then by Lemma 6(2a) vz € E, vy € E and vz € FE which
is a contradiction with the hypothesis vy € E.

If v is of type My, then by Lemma 6(2b) vz € E, vy € E and vz € E
which is a contradiction with the hypothetis vy € E. On the other hand, zz € E
otherwise the vertex set {z,x,6,4,2} induces Js. |

By Lemmas 7 and 8, if L contains vertices of type My and Ms5, then |L| < 4.
The graph induced by the co-domino D and these vertices is called I'; and is
represented in Figure 6.

Lemma 9. If L contains at least two vertices of type My, then L cannot contain
a vertex of type My.
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Figure 6. Graph I';.

Proof. Let x1, 2 and x3 be vertices of type My. We have without loss of gener-
ality N(z1) = N(z2) = {1,2,3} and N(z4) = {4,5,6}.

There exists at least a vertex v of type My such that vz, € E and vay € E,
otherwise {x1, 22} is a module. But by Lemma 6(2b, 2c), either N(v) C N(z1),
then vxy € E and vry € E which is a contradiction with the hypothesis vy € E,
or N(v) € N(z1) and then vz; € E and vze € E, which is a contradiction with
the hypothesis vz, € E. [

Lemma 10. If L contains at least two vertices of type Ms, then the graph induced
by LU Ky U Ky is a weakly chordal (2,1) split graph.

Proof. For any {z1,...,x} vertices of type Ms with the same neighbors {1, 2, 3},

there are vertices {v1,...,vx_1} with N(v;) C N(z;) such that x; is adjacent to
v; and not adjacent to any other vertices v; for i = {2,...,k — 1}, x9 is adja-
cent to ve and not adjacent to any other vertices v; for i = {1,...,k — 1} \ {2}

and so on xp_1 is adjacent to vi_1 and not adjacent to any other vertices v; for
i ={1,...,k —2}. By Lemmas 6 and 9, each vertex v; cannot be of type My
or Ms, so v; is of type M; and for any v; and v; we have vv; € E, otherwise
the vertex set {2, v;,v;, 2,1} induces Ji. Moreover for any x; and x; we have
ziz; € E, otherwise the vertex set {3, z;, v;, x;,v;} induces J;. Finally, the vertex
set {x1,z2,..., 21, Tk, 1,2,3} induces a clique and the vertex set {vq,...,vp_1}
induces a stable set.

For any {z,...,7,} vertlces of type M2 with the same nelghbors {4,5,6},
there are vertices {vl, . Uz 1} with N( ) C N(x z) such that x} is adjacent to

v} and not adjacent to other vertices v; for i = {2,...,1— 1}, xy is adjacent to v}
and not adjacent to other vertices v; for i = {1,...,1—1}\ {2} and so on x,_, is
adjacent to vl/_l and not adjacent to other vertices v; fori={1,...,1—2}. By

Lemma 6, v;z; € E and v;z; € E.

The same reasoning can be done to find that {m/l, I‘IQ, . 71'2—17 l’;, 4,5,6} in-
duces a clique. This is because we have xzx; € E (otherwise the vertex set
{6,2';,x;,3,v;} induces Ps) and viv; € E (otherwise the vertex set {1, z;,v;, U;.,

;17;} induces Ps). Then the vertex set {v1,...,vx_1, vll, . ,v;_l} induces a stable
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set.
Now suppose that the subgraph H = G'[L U K U K3] is not weakly chordal
(i.e., H or H contains a chordless cycle of length > 5).

o If there exits at least a cycle C of length > 5 in H, then the only possible case
is C = {azi,xj, x;,x;,v;}, but we have shown previously that a:za:; € F which is
a contradiction.

e Consider now the subgraph H = G[LUK; U K] = G[K, UsS U Sg] where
K =1= {vl,...,vk_l,vll,...,v;_l} induces a clique, S1 = K1 = {x1,29,...,
Th_1,Tk,1,2,3} and So = Ky = {acll,x;, e ,x;_l,x2,4,5,6} induces two stable
sets in H. By definition of H, the vertices {z;,1} belonging to S (respectively,
{x;, 6} belonging to So) are adjacent to all vertices of Sy (respectively, are adjacent
to all vertices of S7) and the vertices (3,2) (respectively, the vertices (4,5)) are
adjacent respectively to S2\ {5} and S2\ {4} (respectively to S2\{2} and S2\{3}).
Let C = {y1,...,yp} be a chordless cycle in H, by hypothesis p > 5. We have
two scenarios.

If for any i € {1,...,p}, y; € S1 U Sy, then the longest chain in S; U Sy is of
type {vi,3,4,2,5}, but as y € {mi,x;, 1,6}, the vertex set {y;,3,4,2,5} contains
a chord.

If there exists at least a vertex y; € K (y; € {Ui,’U; ), v; (respectively, v;) is
adjacent to all vertices of the vertex set S U Sa \ {z;,2,3} (respectively of the
vertex set S1 U Sy \ {z,4,5}), then without loss of generality the longest chain in
H is either of type {v;,5,2,4} but v;4 € E, or of type {v;,vi,5,2} but fu;2 € FE.
Then the length of the chordless cycle in H is at most 4, which is a contradiction
with the hypothesis.

Hence, H = G [L U K; U K>] is weakly chordal. |

For any vertex x € V(G) \ B, all possible adjacency cases of the vertex x in
B are represented in Figure 7 with boldface edges indicating Ps, J1, J2 and Js.
The vertex x is of type MZI if it is represented in Figure 7 in the graph MZ/ .

Lemma 11. B dominates G for M{, Mé, Mé and M:l adjacency types.

Proof. Suppose the opposite (i.e., that the co-A does not dominate the graph
G for Mll, Mé, Mé and M:; adjacency types). So, there exists a vertex y € V' \ B
such that for any vertex v in B (v € {a,b,c,d,e, f}), y is at a distance 2 to B.
Let x be a vertex of type MZ/ and all possible cases are induced by the subgraph
M; U {y}. We have then the following.

For the subgraph M; U {y} (respectively for the subgraph M, U {y}), the
vertex set {y,z,c,d, f} induced Ps. This is a contradiction as G is a S Ps-free.

For the subgraph Mé U {y}, the vertex set {y,z,c, e, f} induced a P, this is
also a contradiction as GG is a S Ps-free.



1072 H. Issaapi, H. Air HADDADENE AND H. KHEDDOUCI

Lo £ xr £z U £
Ps M, Ps Ps iz
L X X X
P; T P; M, M,
~ = <P <= <F -
5 5 1 1 2
L X L
P; T P; M, Ps
X X X
Ps Ps Jo .@§> .@ﬁ>
X
-@§> = = =

Figure 7. Adjacency of one vertex to a co-A.

For the subgraph M:L U {y}, the vertex set {y,z, f,d, c} induced Ps, this is
also a contradiction as G is a S Ps-free.
All these cases are represented in Figure 8 with boldface edges indicating

a Ps. |
b pY d b pY d b pY d b pY d
T S e g
c Pse c Pse c Pse c Pse

Figure 8. Co-A are dominating for Mi, Mé and Mé

Lemma 12. B does not dominate G for Mg adjacency type, but each vertex not
adjacent to B is of distance 2 from B.

Proof. Suppose there exists a vertex y € V'\ B such that y is of distance 3 to B
and z of type Mé Then the vertex set {y, z,z,e, f} induces Ps. [

Lemma 13. Let G be a prime SPs-free graph containing a co-A. Then the vertex
set A, = N(Mb)NN(c)NN(d) N N(e) N N(f) is a module of size 1.

Proof. Let G be a prime SPs-free graph containing a co-A. Suppose that A,
is not a module. So for any x € A, such that x together with the vertex set
{b,c,d,e, f} induces a co-A denoted by B, in G, there exists a vertex z not
belonging to A, U {b,c,d, e, f} such that zx € F and za € E. By Lemma 11, for
M, My, My and M) we have z adjacent to B, (respectively to B,). Also z cannot
be of type M, :1 or Mé, otherwise z will be adjacent to a, which is a contradiction
with the hypothesis. If z is of type M{ or Mé, then the vertex set {c,e,d,x, z}
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induces Jy. If z is of type Mé, the vertex set {c,x, z,b,d} induces Jo, then A, is
a module of size 1. n

By symmetry, Lemma 13 holds as well for the set Ay = N(d) N N(e) N N(c)
NN (b) N N(a) which is a module of size 1.

Then by this claim, the adjacency type Mé is impossible.

Let G be a graph represented in Figure 7 such that V(G) = V(B)UL = K; U
KsUL where K1 = {a,b,c}, Ko = {d,e, f} and L = {v : v € Vis adjacent to KU
Ky}. The following results will allow us to define the prime graph induced by the
set {L UK U KQ}

In the following lemma, we study the types of adjacencies MZI , M J/ with ¢ # j
which induce forbidden configurations in prime SP5-free graphs starting from a
co-A. We fix the neighborhood of a vertex of type Ml/ without loss of gener-
ality, because if the neighborhood changes the reasoning remains the same by
symmetry.

Lemma 14. 1. If L contains a vertex x of type Mg such that N(z) = {a,b,c,
d,e}, then
(a) L cannot contain a vertex v of type Mg with xv € E;
(b) L cannot contain a vertex v of type My with N(x) = {a, f, e};
(¢) L cannot contain a vertex of type M, with N(z) = {a,b, f} and zv € E.
2. If L contains a vertex x of type M, such as N(z) = {a,b, f}, then
(a) L cannot contain a vertex v of type Mé;
(b) L cannot contain a vertex v of type M, with N(v) = {d};
(¢) L cannot contain a vertez v of type M, with N(v) = {c}.

3. If L contains a vertex x of type Mé, then L cannot contain a vertex v of type
M{ with xv € E.

Proof. Case 1. Suppose that L contains a vertex x of type Mg such that N(x)
={a,b,c,d,e}. Then we have three scenarios.

(a) If there exists a vertex v of type ME/) in L, then either N(v) = {b,c,d,e, f}
and then zv € E, otherwise the vertex set {b,z,e,v,d} induces Jy, or N(v) =
{a,b,c,d, e}, then zv € E, otherwise the vertex set {a,x,e, v, c} induces Jo.

(b) If there exists a vertex v of type M, in L with N(v) = {a, f,e}, then
either xv € E so the vertex set {z,c,e, f,v} induces Ji, or zv € E so the vertex
set {a,b,d,e,v,x} induces Js.

(c) If there exists a vertex v of type M, in L with N(v) = {a,b, f}, then
xv € E, otherwise the vertex set {a,v,,d, e} induces J;.

Case 2. Suppose that L contains a vertex z of type M, such that N(z) =
{a,b, f}. Then we have also three scenarios.
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(a) If there exists a vertex v of type My in L with N(v) = {c,d}, then either
zv € E so the vertex set {a,z, f,d,v} induces Ps, or zv € F so the vertex set
{a,z,v,d, e} induces Ps.

(b) If there exists a vertex v of type M, in L with N(v) = {d}, then either
xzv € E so the vertex set {v,d, f,z,a} induces P5, or zv € F so the vertex set
{v,z,a,c,e} induces Ps;

(c) If there exists a vertex v of type M, in L with N(v) = {c}, then either
xv € E so the vertex set {z, f,d,c,v} induces a Ps, or zv € E so the vertex set
{v,2,b,d, e} induces Ps.

Case 3. Suppose that L contains a vertex z of type My with N(z) = {c, d}.
Then if there exists a vertex v of type M{ in L, we have zv € E, otherwise the
vertex set {v,x,d,b,a} induces Ps. [

Lemma 15. If L contains at least two vertices of type Mé, then the graph induced
by LU K1 UKy is a chordal (2,1) split graph.

Proof. For any vertices {x1,...,z} of type Mg with the same neighbors {a, b, ¢,
d,e}, there are vertices {vy,...,vx_1} such that z; is adjacent to v; and not
adjacent to other vertices v; for i = {2,...,k — 1}, x2 is adjacent to ve and not
adjacent to other vertices v; for i = {1,...,k—1}\ {2} and so on zj_; is adjacent
to vi—1 and not adjacent to other vertices v; for i = {1,...,k — 2}. By Lemma
14, we have z;x; € E and each vertex v; are of type My, M3 or M;. We therefore
cannot have two types of M; for i € {1, 3,4} adjacencies at the same time leading
to the following cases.

1. Suppose that v; is of type My. By Lemma 14(2b, 2¢), N(v;) = {a,b, f} with
rv; € E for i = {2,...,k}. But by hypothesis x; is adjacent to v; which is a
contradiction, therefore v; cannot be of type Mjy.

2. Suppose that v; is of type M3z, for any v; and v; we have N(v;) = N(v;) =
{e,d} and vjv; € E, otherwise the vertex set {v;,vj,d,e, f} induces J;. Then
{z1,29,...,25_1,0a,b,c} induces a clique and the vertex set {vi,...,vg_1, 2}
induces a stable set.

3. Suppose that v; for i = {2,...,k — 1} is of type M;. Then vv; € E for
i # j, otherwise either N(v;) = {c} and N(v;) = {d} with v;v; € E so the vertex
set {vj,vj,d,b,a} induces Ps, or without loss of generality N(v;) = N(v;) = {c}
so the vertex set {c,v;,vj,a,b} induces Ji. Finally {z1,22,..., 251,21, a,b,c}
induces a clique and the vertex set {v1,...,v,_1} induces a stable set.

For any vertices {ZL‘ll, A x}} of type Mg with the same neighbors {b, ¢, d, e, f},
there are vertices {v;,...,v, ,} such that o is adjacent to v| and not adjacent to
any other vertices v; fori={2,...,1—1}, x; is adjacent to U; and not adjacent
to any other vertices v; for i = {1,...,1 — 1} \ {2} and so on z;_, is adjacent to
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v,_; and not adjacent to any other vertices v; for i = {1,...,l —2}. The same
reasoning can be done to find that {xll, x;, ... ,x}_l, xy,d, e, f} induces a clique, as
we have shown previously viv; € E, then the vertex set {v1, ..., vx_1, vll, e vl’_l}

induces a stable set.

On the other hand by Lemma 12, B does not dominate G for Mé So, for any
{yl, e Yk yll, : ,yl/} of distance 2 to B such that x;y; € E and a:/y; € E, either
arzyz € EF and then yzyZ € E, otherwise the vertex set {x,, Yi, yz, a, b} induces Jp or
xlyl € E and then ylyZ € E, otherwise the vertex set {yl, Yi, Ti, C, } induces Ps.

In swmmary a (2, 1) split graph induces Ky = {x1,x9,...,2k_1, Tk, a,b,c}, Ko =
{xl,xQ,.. xl 1,ml,d e, f} and a stable set {vy,...,vp_ 1,1/1,...,1);71,y1,...,yk,
yl,...,yl}.

Now suppose that L U Ky U Ky is not chordal. So there is at least a cycle of
length at least 4, then LU K7 U Ky contains a Cy or a Cs. If LU K7 U K5 contains
a Cy, then Cy = {xl,mpxz, ]} Cy = {xl,x],xl, Z} or C5 = {SU“:E],.TZ, ],vj},
but previously we have shown that xzxj € E for any (i,7) € {1,...,k}? which is
a contradiction with the hypothesis. [

Lemma 16. L contains at most two vertices of type Mé.

Proof. Suppose the opposite (i.e., that L contains at least three vertices of type
M :1) Without loss of generality, let =,y and z be vertices of type M, 41 with N(z) =
N(y) = {a,b, f} and N(z) = {a,e, f}. There exists at least a vertex v of type
M; such that vx € E and vy € E, otherwise {z,y} induces a module, by Lemma
14 the vertex v is of type Mg Without loss of generality let N(v) = {a,b,c,d, e}
(otherwise reason by symmetry) by Lemma 14 as N(xz) = N(y) = {a, b, f}, then
v € E and yv € E which is a contradiction with the hypothesis.

In summary, L U K1 U K5 has a bounded number of vertices. [ ]

Lemma 17. If L contains at least two vertices of type Mé, then the graph induced
by LUK UKy is a chordal (2,1) split graph.

Proof. Suppose that L contains two vertices x, y of type Mé with N(z) = N(y) =
{c,d}, There exists at least a vertex v of type M; such that vz € E and vy € E,
otherwise {z,y} induces a module. By Lemma 14, i € {1,5}, and we have two
cases.

If v is of type Mj, then by Lemma 14(3), zv € E and yv € E, which is a
contradiction with the hypothesis.

If v is of type Ms, then by Lemma 14, L U K; U K3 is a chordal (2, 1) split
graph. [

Proof of Theorem 3. Let GG be a prime graph containing an induced 2K5.
< It is clear that if G is a I'y graph represented in Figure 6, then G is a
prime S Ps-free graph containing a 2K5. Otherwise G is chordal (2, 1) split graph
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(respectively weakly chordal (2,1) split graph) of which any vertex z in G, as
constructed in Lemma 15 (respectively, by Lemma 10), is split. Moreover G is
chordal (respectively weakly chordal), then G is Ps-free.

= Let G be a prime SPs-free graph containing an induced 2K5. We build
the prime graphs of G from a co-domino or a co-A. By Lemmas 4 to 11, we find
a I'; graph or chordal (2,1) split graph or weakly chordal (2,1) split graph if we
start from a co-domino. By Lemmas 12 to 17, we find a chordal (2, 1) split graph
if we start from a co-A. ]

In what follows, we consider the prime S Ps-free graph without a 2K5 as an
induced subgraph which is an S2Ks-free graph. We then study the complement
SCy-free graph, which is a Cy-free graph where the non neighbors of each vertex
induce a split graph.

Note that if a graph is the S, then it is (Ji, J2, J3)-free (see Figure 10). Thus
S graph is Cj-free for k > 8.

J1 J2 J3

Figure 9. A Jy, J and Js.

3.2. Prime SCy-free graph containing a C7, a Cg or a Cs

Let a cycle Cp be induced by the vertex set {1,2,...,p} for p € {5,6,7} and edges
{i,i+1} for i € {1,...,p—1}, and let V}, be a vertex set of k-vertices of Cp. We
will say that a vertex x has consecutive neighbors if N(z) = {i,i+ 1,i +2,...}
fori € {1,...,p— 1}. Note that G is S, then it is Jo-free, so C, dominates G.

Theorem 18. Let G be a prime SCy-free graph containing C7, Cg or Cs. Then
G has a bounded number of vertices or is [(2,2) split, (C4,Cs,C7)-free] graph, or
s [(2,1) split, (Cy,Cg,Cr, Ps)-free] graph.

To prove this result we need to prove the following lemmas.

Lemma 19. Let G be a prime SCy-free graph containing C7. Then G contains
at most 18 vertices.

Proof. Let G be a prime SC,-free graph containing a C7. The straightforward
case analysis shows that there are only three admissible cases for a vertex being
adjacent to C7: k-vertices with consecutive neighbors for k € {4,5,7}. Otherwise
for k € {1,2,3,6}, let u € V7 with N(u) = {2} (respectively, u € Vo with N(u) =
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{2,3} or u € V3 with N(u) = {1,2,3} or u € Vg with N(u) = {1,2,3,4,5,6}).
Then the vertex set {u,1,7,3,4} (respectively, the vertex set {u,1,7,4,5} or
the vertex set {u,2,4,6,7} or the vertex set {u, 1,6,7}) induces Jo (respectively,
induces J3 or Cy). So V}, is empty for k € {1,2,3,6}. We start by calculating the
number of vertices having different neighbors in C'7 in each vertex set Vi, then we
are interested in the vertices having the same neighbors in C7 which risk inducing
module.

1. Let us calculate |Vi| for k € {4,5,7} for vertices having different neighbors
in Cr.

e Let us show that |V7| < 1. Suppose the opposite (i.e., |Vz| > 2). Let (u,v) € V7
such that N(u) = N(v) = {1,2,3,4,5,6,7} with wv € E, otherwise {v,3,u, 7}
induces C4. But {u,v} induce a module which is a contradiction with the hy-
pothesis.

e Let us show that |V5| < 3. Suppose the opposite (i.e., |[V5| > 4). For any
(u,v) € Vs, (u,v) have three or four neighbors in common in C7;. We have
different cases.

If (u,v) have three consecutive neighbors in common (i.e., without loss of
generality let N(u) = {7,1,2,3,4} and N(v) = {2,3,4,5,6}), then the vertex set
{7,6,v,u} induces Cy for uv € E and the vertex set {v,2,u,4} induces Cy for
wv € E, then this case is impossible.

If (u,v) have three non consecutive neighbors in common (i.e., without loss
of generality let N(u) = {1,2,3,4,5} and N(v) = {1,3,4,5,6}), then uv € E,
otherwise the vertex set {1,u,4,v} induces Cj.

If (u,v) have four consecutive neighbors in common (i.e., without loss of
generality let N(u) = {,1,2,3,4,5} and N(v) = {7,1,2,3,4}), then wv € E,
otherwise the vertex set {u,1,v,3} induces Cj.

Let the vertices (u,v,w) € Vi. The straightforward cases shows that either
(u, v) have four consecutive neighbors in common in C7 and then (u, w) and (v, w)
have three non consecutive neighbors in common, or there exists a vertex y € Vs
such that y has three consecutive neighbors in common with u, v or w. By what
precedes this is impossible so, |V5| < 3.

e Let show that |Vy| < 7. Suppose the opposite (i.e., V4| > 8). For any (u,v) €
Vi, (u,v) have one, two or three neighbors in common in Cr7. If |V4| > 8, then
two vertices (u,v) in V4 have the same neighbors in C7, which is a contradiction
with the hypothesis.

2. Let (u,v) € Vi for k € {4,5,7} with N(u) = N(v). There exists a vertex
z€V;, for j # kand j € {4,5,7} such that uz € F and vz € E, otherwise {u, v}
induces a module. We have different scenarios.

e Let (u,v) € V7 with N(u) = N(v) = {1,2,3,4,5,6,7} and uwv € E, otherwise
{u,1,v,3} induces Cy. Let z € Vj for k € {4,5}, without loss of generality
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let N(z) = {1,2,3,4} or N(z) = {1,2,3,4,5}. Then the vertex set {1,z,3,v}
induces Cy, which is a contradiction as G is SCy-free graph.

e Let (u,v) € Vs with N(u) = N(v) = {1,2,3,4,5} and wv € E, otherwise
{u,1,v,3} induces Cy. Let z € V}, for k € {4}, without loss of generality let
N(z) ={1,2,3,4}. Then the vertex set {1, z,3, v} induces Cy, which is a contra-
diction as G is SCy-free graph.

o Let (u,v) € Vy with N(u) = N(v) = {1,2,3,4}. It is clear from the above that
if there exists a vertex z € V7 (respectively, z € V) such that vz € E, then we
induce Cy.

So, the vertex set adjacent to the cycle C7 is of order at most 11 vertices. ®

Lemma 20. Let G be a prime S(Cy, Cr)-free graph containing Cs. Then

1. either |Vg| = 0 (respectively, |Va| = 0) and then G contains at most 21 vertices
(respectively, 16 vertices);

2. or G is [(2,2) split, (C4,C5,C7)-free] graph.

Proof. The straightforward case analysis shows that there are only four admissi-
ble cases for a vertex being adjacent to Cg: k-vertices with consecutive neighbors
for k € {2,3,4,6}. Otherwise for k € {1,5}, let u € V; (u € V5) with N(u) = {2}
(respectively, without loss of generality with N(u) = {1,2,3,4,5}), the vertex
set {u,1,6,3,4} induces J, (respectively the vertex set {u,1,5,6} induces a Cy).
So Vi is empty for k € {1,5}. We start by calculating the number of vertices
having different neighbors in Cg in each vertex set Vi, then we are interested in
the vertices having the same neighbors in Cg which risk inducing module.

1. Let us calculate the size |Vi| of Vi whose vertices have different neighbors in
Ce for k € {2,3,4,6}.

e Let us show that V5| < 1. Suppose the opposite (i.e., V5| > 2). Let (u,v) € Vi
such that N(u) = N(v) = {1,2,3,4,5,6} with uwv € E, otherwise {u,1,3,v}
induces a C4. But {u,v} induce a module which is a contradiction with the
hypothesis.

e Let us build the set V4 to show that |V4| < 3. First, for any u € Vj the
neighbors of u are consecutive, otherwise let N(u) = {2,3,4,6} (respectively,
N(u) = {1,3,4,5}). Then the vertex set {1,2,u,6} (respectively, {3,4,5,u})
induces Cjy.

Let (u,v) € Vi with N(u) = {1,2,3,4}. Then we have two possibili-
ties. If (u,v) have two consecutive (respectively non consecutive) neighbors in
common in Cg, without loss of generality, let N(v) = {3,4,5,6} (respectively,
N(v) = {4,5,6,1}), then uv € E (respectively, uv € E) otherwise the vertex set
{u,v,1,6} (respectively, {1, u,4,v}) induces Cy. On the other hand, if (u,v) have
three consecutive neighbors in common in Cg (otherwise without loss of general-
ity, let N(v) = {1,3,4,5}, then the vertex set {1,v,5,6} induces a Cy), without
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loss of generality, let N(v) = {2,3,4,5}, then uv € E, otherwise the vertex set
{u,4,v,2} induces a Cjy.

We have 6 vertices in V; adjacent to Cg with three neighbor in common (the
maximum possible so as not to induce a module). But from the above, any pair
of vertices (v;,v;),1 < (i,j) <6, vjv; € Eforj=i+1orj=i+3andvjv; € E
for j =i+ 2. Then the vertex set {v;, vit1, Vit2,vi+s} induces a Cy. So, we have
at most three vertices in Vj.

e Let us build the set V3 to show that |V3| < 6. First, for any u € V3 the neighbors
of u are consecutive or without loss of generality N(u) = {1,2,5}, otherwise let
N(u) ={1,2,4}. Then the vertex set {u,2,3,4} induce Cj.

Let (u,v) € V3, (u,v) have no neighbors in common in Cg. Then uv € E,
otherwise let N(u) = {1,2,3} and N(v) = {4,5,6}, and then the vertex set
{u,3,v,4} induces Cy. We have 6 vertices in V3 adjacent to Cs with two neighbor
in common (the maximum possible so as not to induce a module), then we have
at most six vertices in V3.

e Let us build the set V5 to show that V| < 6. First, for any u € V3 the neighbors
of u are consecutive, otherwise without loss of generality either N (u) = {1, 3}, and
then the vertex set {1,u,3,2} induces Cy or N(u) = {1,4}, and then the vertex
set {2,3,5,6,u} induces Jy, or N(u) = {2,5}. Then the vertex set {1,6,4,3,u}
induces J;.

Let (u,v) € Vi, (u,v) have one neighbor (respectively no neighbor) in com-
mon in Cg. Then uv € E. Otherwise, without loss of generality, let N(u) = {1,2}
and N(v) = {2, 3} (respectively, N(v) = {3,4}). Then the vertex set {u,1,v,3,5}
induces .J5. We have 6 vertices in V5 adjacent to Cg with one neighbor in common
(the maximum possible so as not to induce a module), then we have at most six
vertices in V5.

2. Let (u,v) € Vi, for k € {2,3,4,6} with N(u) = N(v). There exists a vertex
z € Vj, for j # k and j € {2,3,4,6} such that uz € E and vz € E, otherwise
{u,v} induces a module. We have different scenarios.

o Let (u,v) € Vg with N(u) = N(v) = {1,2,3,4,5,6} and uv € E. Let z € V},
for k € {2,3,4}. If kK = 4 (respectively, k = 3), without loss of generality let
N(z) =1{1,2,3,4} (respectively, N(z) = {1,2,3}), then the vertex set {1, z,3,v}
induces Cy. If k = 2, let (x1,...,x) € Vg with the same neighbors {1,2,3,4,5,6}
and let {v1,...,vx_1} such that z; is adjacent to v; and not adjacent to any other
vertices v; for i = {2,...,k — 1}, x9 is adjacent to ve and not adjacent to any
other vertices v; for ¢ = {1,...,k — 1} \ {2} and so on z}_1 is adjacent to vg_;
and not adjacent to any other vertices v; for i = {1,...,k—2} with z;2; € E and
vivj € E for any (i,7). Then the sets of vertices {x1,x2,...,2%,3,4}, {v1,1,2}
induce cliques K1, K3 and the sets of vertices {v,...,vr_1,3}, {6} induce stable
sets S1,.52. Suppose now that the graph G induce by K; U Ko U S7 U S contains
Cs. Then it is induced either by the vertex set {z;,z;,vi,1,v;} but z;1 € E
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and z;1 € E, or {z;,v1,1,6,v;} but z;1 € E and 16 € E, or {1,2,z;,v;,6} but
z;l € E and v;1 € E. So, G is [(2,2) split, (C4, Cs, C7)-free] graph.

o Let (u,v) € V4 with N(u) = N(v) = {1,2,3,4} and wv € E. Let z € Vj
for k € {2,3}. If k = 3, without loss of generality let N(z) = {1,2,3} (respec-
tively, N(z) = {1,2,6} or N(z) = {1,5,6}), then zv € E, otherwise the vertex
set {1, z,3,v} induces Cy (respectively, then zv € E, otherwise the vertex set
{1, 2,v,3,5} induces J or zv € E, otherwise the vertex set {z,v,6,5} induces
CY4), which is a contradiction with the hypothesis. If £ = 2, without loss of gen-
erality let N(z) = {1,2} (respectively, N(z) = {2,5}), then zv € E, otherwise
the vertex set {v,3,2,1,5} induces Jo (respectively, then zv € E, otherwise the
vertex set {z,v,6,5} induces Cy). So this case is impossible, then |V4| < 3.

e Let (u,v) € V3 with N(u) = N(v) = {1,2,3}. Let z € V,, without loss of
generality let N(z) = {1,2} (respectively, N(z) = {2,5}). Then zv € E, other-
wise the vertex set {v,3,5,6,z} induces Jo (respectively, zv € E, otherwise the
vertex set {v,1,3,4, 2} induces .J5). So, this case is impossible, then |V3] < 6. m

Lemma 21. Let G be a prime S(Cy, Cs, C7)-free graph containing Cs. Then G
is [(2,1) split, (Cy, Cg, C7, Fs)-free] graph.

Proof. The straightforward case analysis shows that there are only four admissi-
ble cases for a vertex being adjacent to Cs: k-vertices with consecutive neighbors
for k € {1,2,3,5}. Otherwise for k € {4}, let u € Vj, without loss of generality
with N(u) = {1,2,3,4}, the vertex set {u,1,4,5} induces Cy. So Vj is empty
for k € {4}. Let (u,v) € Vj, for k € {2,3,5} with N(u) = N(v). There exists a
vertex z € V;, for j # k and j € {2,3,5} such that uz € F and vz € E, otherwise
{u,v} induces a module. We start by calculating the number of vertices having
different neighbors in Cj in each vertex set Vi, then we study the pairs of vertices
belonging to V; x V; for i # j. Finally, we are interested in the vertices having
the same neighbors in Cs which risk inducing module.

1. Let us calculate the size |Vj| of Vj whose vertices have different neighbors in
Cs for k € {1,2,3,5}.

(a) Let us show that |V5| < 1. Suppose the opposite (i.e., |V5| > 2). Let
(u,v) € V5 such that N(u) = N(v) = {1,2,3,4,5} with uv € E, otherwise
{u,2,v,5} induces Cy. But {u,v} induces a module, which is a contradiction
with the hypothesis.

(b) Let us build the set V3 to show that |V3| < 5. First, for each v € V3 the
neighbors of u are consecutive, otherwise let N(u) = {1,2,3,5}, then the vertex
set {u,2,3,4} induces Cj.

Let (u,v) € V3. If (u,v) have one consecutive neighbors in common in Cs,
then uv € E. Otherwise, without loss of generality, let N(u) = {1,2,3} and
N(v) = {3,4,5}, then the vertex set {u,v,5,1} induces Cy. We have 5 vertices
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in V3 adjacent to C5 with two neighbors in common (the maximum possible so
as not to induce a module), so we have at most five vertices in Vj.

Note that for any vertex (u,v) € V3 having two neighbors in common we can
have uv € E or wv € E.

(c) Let us build the set V5 to show that |V3| < 2. First, for each u € V5 the
neighbors of u are consecutive, otherwise without loss of generality let N(u) =
{2,4}, then the vertex set {u,2,3,4} induce Cj.

Let (u,v) € Va, (u,v) have one neighbor (respectively no neighbor) in com-
mon in Cj, then uv € E. Otherwise, without loss of generality, let N(u) =
{1,2} and N(v) = {1,5} (respectively, N(v) = {3,4}), then the vertex set
{u,v,5,4,3,2} (respectively the vertex set {u,2,3,v}) induces Cg (respectively,
Cy).

Suppose now that |Vo| > 3. Let the vertices (u,v,w) € Vs, at least two
vertices among the vertices (u,v,w) have a neighbor in common. If two ver-
tices among the vertices (u,v,w) have a neighbor in common, without loss of
generality let N(u) = {2,4}, N(u) = {1,5} and N(u) = {3,4}, then the ver-
tex set {2,u,v,5, w} induces J (because according to what precedes the vertices
(u,v,w) are not adjacent two by two). If three vertices (u,v,w) have a neigh-
bor in common, without loss of generality let N(u) = {1,2}, N(u) = {1,5} and
N(u) = {2,3}, then the vertex set {v, 5, w, 3, u} induces Jo, which is a contradic-
tion as G is S(Cy, C7, Cg)-free graph.

(d) Let us build the set V; to show that |Vi| < 2. Let (u,v) € Vi. If (u, v) have
consecutive neighbors in Cs, then uv € E. Otherwise, without loss of generality,
let N(u) = {1} and N(v) = {2}, then the vertex set {u,v,2,1} induces Cy. If
there is a vertex w € V; such that (u,w) have non consecutive neighbors in Cs,
let N(w) = {3}, then uw € E, otherwise the vertex set {u,1,w,3,v} induces Js.

Suppose now that |Vi| > 3, let the vertices (u,v,w) € V; such that N(u) #
N(v) # N(w), without loss of generality, let N(u) = {1}, N(v) = {2} and
N(w) = {3}. Then uv € E, otherwise the vertex set {u,v,1,2} induces C; and
uw € E, otherwise the vertex set {1,u,w,3,4,5} induces Cg, but in this case the
vertex set {u, 1,3, w, v} induces Jo, which is a contradiction as G is S(Cy, C7, Cg)-
free graph.

2. Let (u,v) € V; x Vj for i # j. We have different scenarios.

(a) For (u,v) € V5 x Vj and j # 5. If j = 3, without loss of generality, let
N(u) =4{1,2,3,4,5} and N(v) = {1,2,3}, then uv € E. If j = 2 (respectively,
j = 1) non-adjacencies or adjacencies are possible between vertices.

(b) For (u,v) € V3 x Vj and j # 3. If j = 2 (respectively, j = 1), then non-
adjacencies or adjacencies are possible between vertices for |N(u) N N(v)| > 1
(respectively, |N(u) N N(v)| = 1). Otherwise |N(u) N N(v)| = 0, without loss
of generality, let N(u) = {1,2,3} and N(v) = {4,5} (respectively, N(v) = {5})
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then uv € E, otherwise the vertex set {u,1,5,v} induces Cy.

(c) For (u,v) € Vo x Vj and j # 3. All non-adjacencies or adjacencies are
possible between vertices whose neighborhoods (N (u), N (v)) are non-consecutive.
Otherwise, either N(u) N N(v) = 1, without loss of generality, let N(u) = {1,2}
and N(v) = {1}, then uv € E (otherwise the vertex set {u,2,4,5,v} induces
Jo), or N(u) N N(v) = 1 where (N(u), N(v)) are consecutive, without loss of
generality, let N(u) = {1,2} and N(v) = {5}, then uv € E (otherwise the vertex
set {1,u,v,5} induces C4 and in this case the vertex set {u, 1, 3,4, v} induces Jp).

3. Let (z1,...,zx) € Vj for j € {1,2,3,4} with N(z1) = --- = N(x}). There
exists (v1,...,vx—1) € V; for i # j such that x; is adjacent to v; and not adjacent
to any other vertices v; for i = {2,...,k—1}, x9 is adjacent to v9 and not adjacent
to any other vertices v; for i = {1,...,k — 1} \ {2} and so on z;_ is adjacent to
vg—1 and not adjacent to any other vertices v; for ¢ = {1,...,k — 2}. We have
different scenarios.

(a) Let (z1,...,2) €Vs. Then x;x; € E, otherwise the vertex set {z;, 1, x5, 3}
induces C4. From the previous point (2.a) we have (v1,...,v5_1) € Vj for i €
{1,2} with N(v;) = N(vj) or N(v;) # N(v;). Moreover, v;v; € E for (i,j) €
{1,2}, otherwise the vertex set {z;,x;,v;,v;} induces Cy. From the previous
points (1.c) and (1.d) we have at most two vertices (that we note) vy,vy with
N(v1) # N(v2) and for any ¢ € {3,...,k — 1} we have N(v;) = N(vj).

For (vi,...,u5k—1) € Vi (respectively, (vi,...,vk_1) € V3), without loss of
generality, let N(vy) = {1}, N(va) = {4} (respectively, N(v1) = {1,2} and
N(v2) = {2,3} or N(v1) = {1,2} and N(v2) = {3,4}) and N(v;) = N(v1) or
N(v;) = N(vg) for i € {3,...,k—1}. Then the graph G is induces by the cliques
Ky ={x1,...,2,,1,2} and K; = {3,4} and the stable set S = {vy,...,v5_1,5}.

(b) Let (x1,...,z;) € V3. Then z;x; € E, otherwise the vertex set {z;, 1, z;,3}
induces Cy. From the previous point (2.b) we have (vy,...,vx_1) € V; for i €
{1,2} with N(v;) = N(vj) or N(v;) # N(v;). Moreover, v;v; € E for (i,5) €
{1,2}, otherwise the vertex set {z;,x;,v;,v;} induces Cy. From the previous
points (1.c) and (1.d) we have at most two vertices (that we note) v1,vy with
N(v1) # N(vz) and for any ¢ € {3,...,k — 1} we have N(v;) = N(v;).

For (vi,...,vx_1) € Vi (respectively, (v1,...,vk_1) € V2), without loss of
generality, from the previous points (1.c) and (2.b), let N(vy) = {1}, N(v2) = {4}
(respectively, N(vi) = {1,2} and N(v2) = {1,5} or N(v1) = {1,2} and N(vq2) =
{1,5}) and N(v;) = N(v1) or N(v;) = N(vg) for ¢ € {3,...,k —1}. Then the
graph G is induces by the cliques K7 = {x1,...,2k, 1,2} and K; = {3,4} and
the stable set S = {v1,...,v5-1,5}.

(c) Let (z1,...,zx) € Va. From the previous point (2.c) we have (vy, ..., v5_1)
€ V; for i € {1} with N(v;) = N(v;) or N(v;) # N(v;) and vertices (z;, v;) have
non-consecutive neighbors in Cs. So, without loss of generality, let N(z;) = {1, 2}
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and N(v;) = {4} for any i € {1,...,k — 1}, moreover z;z; € E, otherwise the
vertex set {v;,vj,x;, 1,3} induces J. On the other hand, z;z; € E for i # j and
i € {1,...,k—1}, otherwise the vertex set {z;, v;, z;,v;, )} induces Jp. Finally,
the graph G is induces by the cliques K1 = {z1,...,z5_1,1,2} and K; = {3,4}
and the stable set S = {vy,...,vp_1, 2,5}

Now we show that G is Ps-free. Suppose the opposite i.e., that G is (2, 1) split
and contains a Ps. Then we distinguish three types of chains that we will note
Pl = {’UZ', Liy Li+1y 3, 4, 5}, P2 = {’UZ', Ly Li+1, 3, 4, Ui} and PS = {’Uz‘, Ti,y Vg, 3, 4, 5}.
If x; € V5 (respectively, z; € V3), then z; is adjacent to the vertices 3, 4 and 5. If
x; € Vi (respectively, x; € V1), then the only possible chain is of type P? and in
this case we have z; is adjacent to v; and v;, which is the contradiction with the
hypothesis. [

Proof of Theorem 18. Let G be a prime SCy-free graph.

So, based on our lemmas, we have constructed the prime graphs starting
from cycles of lengths k, for £ = {7,6,5} and in each case we obtain either a
graph with a bounded number of vertices or [(2,2) split, (Cy4, Cs5, C7)-free| graph
or [(2,1) split, Ps-free| graph. |

3.3. Prime S chordal graph

Theorem 22. If G is a prime S chordal, then G is a split graph or a chordal
(2,1) split graph.

Proof. A vertex v is simplicial in G if its neighborhood in G is a clique (see [20]
for properties of chordal graphs). If G is chordal, then G contains a simplicial
vertex denoted v. Let N; be the set of connected components of G\ N(v) U {v}.

Case 1. |N;| =1 for all i € {1,...,k}. It is clear that U;C:l N; U{v} is a
stable and as N (v) is a clique, then the graph G is split.

Case 2. There is at least one N; for all i € {1,...,k} such that |N;| # 1.
Let N; and Nj, @ # j,(4,5) € {1,...,k} be such that |N;| # 1 and |N;| # 1.
Then it is clear that if w;v; is an edge in IV; and wjv; is an edge in Nj, then
{u;, vi, uj,v;,v} induces Ji. Thus there is one connected component N; which
contains at least two vertices. Note that Ny is 2Ks-free, otherwise the 2K9 with
the vertex v induces Jj.

So Ny is a (2Ky, Cy)-free graph (i.e., G is a pseudo split graph, such a graph
which can be partitioned into a clique A, a stable B and C' which induce C5 or an
empty set with edges between A and C' and no edges between A and B [22, 30]).
As G is chordal, then C'is an empty set and the set V = {v} UN(v) UAU B is
a partition of the vertex set of the graph G. We set K; = N(v), Ko = A and
BU{v}UN,; =S for i ={2,...,k}, where G is a (2, 1) split chordal graph. =
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Using the previous results, we summarize the structure of prime SPs-free
graph in the following theorem.

Theorem 23 (Structure of prime SPs-free). Every prime Ps-free locally split
graph G satisfies one of the following conditions.

1. G has a bounded number of vertices;

G is a split graph;

G is a chordal (2,1) split graph;

G is a weakly chordal (2,1) split graph;

G is a [(2,2) split, (C4,C5,C7)-free] graph;

G oris a [(2,1) split, (C4,Cs, C7, Ps)-free| graph.

Sl o

4. POLYNOMIALS ALGORITHMS OF SPs;-FREE GRAPHS

Let G = (V, E) be an arbitrary graph. The optimization problems discussed in
this section include the following.

e An independent set S (also called stable set) in a graph G is a set of pairwise
non-adjacent vertices. The maximum independent set (MIS) problem is to find an
independent set in G of maximum cardinality. This number is denoted by a(G).
In the weighted case, each node v € V has an associated non-negative weight w(v)
and the goal is to find a maximum weight independent set ., (G) = >, cqw(v).

e Let ¢ = (5,...,Sk) be a vertex k-coloring of G where S; corresponds to the
stable set of vertices colored 7. The minimum coloring problem (MC) is to find a
vertex coloring minimizing k. This number is denoted by x(G). In the weighted
case, each node v € V' has an associated non-negative weight w(v) and the goal
is to find a weighted minimum coloring i.e., the weight of a color i is defined as
w(S;) = max,eg, w(v) and the minimum weight of a coloring of G is x(G) =
min Y w(S;).

e A clique cover is a collection ¢ = (K7, ..., K) of clique covering all the vertices
of G. A minimum clique cover of G is a clique cover of minimum cardinality.
This number is denoted by 8(G). A weighted clique cover of G is a collection ¢ of
cliques K;, with a positive weight xj, assigned to each clique K; in the collection,
such that, for each vertex v of G, 3 g ey @k = w(v). A minimum weighted
clique cover of G is a weighted clique cover minimizing Ke¢ TK-

Recall a theorem given in [17] on the modular decomposition.

Theorem 24 [17]. Let G = (V, E) be a graph with at least two vertices. Then
exactly one of the following conditions holds.

1. G is not connected, and it can be decomposed into its connected components;
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2. G is not connected, and G can be decomposed into the connected components
of G;

3. G is connected and co-connected. There is some U C V' and a unique parti-
tion P of V such that

(a) [U] >3,
(b) G[U] is a maximal prime induced subgraph of G, and
(¢) For every class S of the partition P, S is a module of G and |SNU| = 1.

The decomposition theorem applied to a graph G gives a unique modular
decomposition tree T. The leaves of the modular decomposition tree are the
vertices of G. The interior nodes of T called the parallel node, series node and
prime node. In other words.

1. If G is disconnected, then decompose it into its connected components G;.
The node of the tree is called parallel node and the characteristic graph G* is a
stable set.

2. If G is disconnected, then decompose G into G;, where G; are the connected
components of G. The node of the tree is called serie node and the characteristic
graph G* is a clique.

3. If G is connected and co-connected, then its maximal homogeneous sets are
pairwise disjoint and they form the partition P of V', the node of the tree is called
prime node. The characteristic graph G* is obtained from G by contracting every
maximal homogeneous set of G to a single vertex.

An important class of graph in modular decomposition is the cograph (also
called Py-free graph)[11]. This class of graphs is completely decomposable by
a modular decomposition (i.e., the only nodes that appear in the modular de-
composition tree is the parallel and series nodes), for more details see [35]. The
problems, namely, the Maximum (Weight) Stable Set, the Maximum (Weight)
Clique, the Minimum Coloring and the Minimum Clique Cover are linear of co-
graph [12].

Let G a SPs-free graph. We start with a linear time algorithm to compute
the modular decomposition tree. If the tree contains no prime node, then the
graph is a cograph, otherwise, we check each connected component of the graph
to see if it is either a cograph or has a modular decomposition tree where only
the root is a prime node. Finally, we check which class is the prime node.

4.1. Recognition

First, note that either a graph is disconnected and then it is S Ps-free if and only if
each of its components is S Ps-free, or the complement of a graph is disconnected,
then it is SPs-free if and only if it is a split graph (G is SPs-free graph if and
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only if G is S house-free graph if and only if G is (house, J1, J2, J3)-free graph if
and only if G is (Cy, Cs,2K>)-free graph).

If the input graph is disconnected (respectively, the input graph has a dis-
connected complementary graph), then we run the algorithm on each component
(respectively, we accept if it is a split and otherwise we reject). Now, it is just
enough to check the recognition of prime graphs appearing in the structure of
S Ps-free graphs. The recognition of a graph with a constant number of vertices
is done in O(1). The recognition of split graph and chordal (2,1) split graphs
can be done in linear time. A time bound O(n?) (respectively, O(n?)) is given
for the recognition of (2, 1) split graph (respectively, (2,2) split graph) [4]. So we
can easily deduce the next result.

Theorem 25. The recognition of SPs-free graphs is done in polynomial time.

4.2. Maximum Weight Independent Set

The operations to solve the maximum independent set for each node of the tree
T are given in [10, 33]. This algorithm has been modified in order to solve the
problem of the maximum stable. For details see the following references [34]. So
it is clear that solving the Maximum Weight Independent Set (MWIS) on prime
graphs in polynomial time can solve this problem on the original graph.

We look at the different classes of the prime graph listed in Theorem 23. For
graphs with a bounded number of vertices, the (MWIS) is done in O(1) since
it suffices to check all stable sets of these graphs. The result of Alekseev and
Lozin [3] allows to solve the MWIS of (p, ¢) split graph for ¢ < 2 in polynomial
time. Finally, as split and chordal split (2, 1) graph are chordal, then the problem
becomes linear in this case [15]. So we deduce the following result.

Theorem 26. The maximum weight independent set of SPs-free graphs is done
in polynomial time.

Recall that the MWIS of Ps-free graphs is done in O(n'?m) [28]. Noting
that subcubic Ps-free graphs are a subclass of SPs-free graphs. Then we can
deduce that the maximum independent set of subcubic Ps-free graphs is done in
polynomial time. Recently, in [29] this problem has been solved differently for
the subcubic H-free graphs for the case when every connected component of H
has a certain form. Also, different researches exist on MIS of superclass [5] and
subclass of triangle-free graph [7, 14, 24].

4.3. Weighted minimum coloring

The operations to solve for each node of the tree T" are given in [10, 33]. We look
at the different classes of the prime graph listed in Theorem 23.
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For graphs of constant size the problem can be solved in linear time by
formulating them as an integer linear programming problem which is solved by
the branch and bound method. This improves the work of Mc Diarmid and Reed
[32] who showed that the weighted minimum coloring (WMC) for the graphs of
constant size can be solved in polynomial time.

Let us recall the result of Hodng [26] in the following theorem.

Theorem 27. The weighted minimum coloring of chordal graph is done in O(n?).

As chordal (2,1) split (respectively, split) graphs are subclass of chordal
class, so we deduce that their (WMC) is done in polynomial time. We also have
a weakly chordal (2,1) split graphs are subclass of weakly chordal class so, we
deduce that their (WMC) is done in polynomial time [23].

For a [(2,2) split, (Cy, C5, C7)-free] graphs, it is easy to see that it is a subclass
of (banner, odd hole)-free graphs (a banner is a graph that consists of a hole on
four vertices and a single vertex with precisely one neighbor on the hole) [27], for
which the a minimum coloring is done in polyomial time.

The chromatic number of any (C4, Ps)-free graph can be found in polynomial
time [18], as [(2, 1) split, (C4, Cs, C7, Ps)-free] graphs form a subclass of (Cy, Ps)-
free graphs. Then we have the same result for this subclass. Thus we deduce the
following result.

Theorem 28. The minimum coloring of SPs-free graphs is done in polynomial
time.

The (MC) of triangle-free graph is NP-complete. Many researchers work on
this problem for the subclass of triangle-free graph [9, 13, 31].
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