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Abstract

Let G be a simple graph with no isolated vertex and let γtdR(G) be the
total double Roman domination number of G. In this paper, we present
lower and upper bounds on γtdR(G) of a graph G in terms of the order,
open packing number and the numbers of support vertices and leaves, and
we characterize all extremal graphs. We also prove that for any connected
graph G of order n with minimum degree at least two, γtdR(G) ≤

⌊

4n

3

⌋

.
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) and edge set
E(G). The order |V (G)| of G is denoted by n = n(G). The open neighborhood

of a vertex v in G is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)} and its closed

neighborhood is the set NG[v] = NG(v) ∪ {v}. The degree of a vertex v in G is
d(v) = dG(v) = |NG(v)|. The minimum degree and maximum degree among all
vertices of G are denoted by δ(G) and ∆(G), respectively.

For a subset S of vertices of G, we denote by G[S] the subgraph induced by
S. The distance d(u, v) between two vertices u and v of a connected graph G
is the length of a shortest (u, v)-path in G. The eccentricity of a vertex v in a
connected graph G is the maximum of the distances from v to the other vertices
of G and is denoted by eccG(v). The diameter of G is the maximum eccentricity
taken over all vertices of G and is denoted by diam(G). If the length of a path
P of G is equal to diam(G), then we call P a diametral path of G. A subset S of
vertices of G is an independent set if no two vertices of S are adjacent in G.

We write Pn for the path of order n, Cn for the cycle of length n, Kn for the
complete graph of order n and Kp, q for the complete bipartite graph with two
partite sets having p and q vertices. A vertex of degree one is referred as a leaf

and its unique neighbor is called a support vertex. A strong support vertex is a
support vertex adjacent to at least two leaves, while a weak support vertex is a
support vertex adjacent to precisely one leaf. A star Sn of order n ≥ 2 is the
complete bipartite graph K1, n−1. We call the center of a star to be a vertex of
maximum degree. A double star is the tree with exactly two vertices that are not
leaves. The corona graph cor(H) of a graph H is the graph obtained from H by
attaching one pendent edge at each vertex of H.

A subdivision of an edge uv is obtained by removing the edge uv, adding a
new vertex w, and adding edges uw and wv. For a set S of vertices in a graph G,
the subgraph obtained from G by deleting all vertices in S and all edges incident
with vertices in S is denoted by G−S. If S = {x}, then we simply denote G−{x}
by G− x. For two disjoint graphs G and H, the union of G and H, denoted by
G ∪H, is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

A subset S of vertices in a graph G is an open packing if the open neighbor-
hoods of vertices in S are pairwise disjoint. The open packing number ρo(G)
is the maximum cardinality of an open packing. For a real-valued function
f : V (G) → R and S ⊆ V (G), we define f(S) =

∑

x∈S f(x).

A double Roman dominating function (DRDF) on a graph G is a function
f : V (G) → {0, 1, 2, 3} having the property that if f(v) = 0, then the vertex
v must be adjacent to at least two vertices assigned 2 or one vertex assigned 3
under f , whereas if f(v) = 1, then the vertex v must be adjacent to at least one
vertex assigned 2 or 3. The weight of a DRDF f is the value ω(f) = f(V (G)).
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The concept of double Roman domination in graphs is now well studied in [1–3,
5–7,9, 10, 13, 14] and elsewhere.

As a new variant of the double Roman domination, the total double Roman
domination was introduced by Hao et al. [8]. The concept was studied further in,
for example, [4, 11, 12]. The total double Roman dominating function (TDRDF)
on a graph G with no isolated vertex is a DRDF f on G with the additional
property that the subgraph of G induced by the set {v ∈ V (G) : f(v) 6= 0} has
no isolated vertices. The total double Roman domination number γtdR(G) is the
minimum weight of a TDRDF on G. A TDRDF on G with weight γtdR(G) is
called a γtdR(G)-function.

In this paper, we continue the study of the total double Roman domination
number and we establish some new bounds for it. Some of our results improve
the previous bounds.

Now, we are in a position to give the main results of this paper.
Let G be the family of all graphs that can be obtained from a graph G of

order n with ∆(G) = n− 1 by adding a pendent edge to a vertex v of G, where
dG(v) = n− 1.

Theorem 1. For any connected graph G of order at least three,

γtdR(G) ≥ 3ρo(G)/2 + 1

with equality if and only if G ∈ G.

We now give a lower bound for the total double Roman domination number
of a tree in terms of its order and the number of leaves, and characterize all trees
achieving equality for the proposed bound.

Theorem 2. For any tree T of order n(T ) ≥ 2 with l(T ) leaves,

γtdR(T ) ≥
6(n(T )− l(T ) + 2)

5

with equality if and only if T is a path of order n(T ) ≡ 0 (mod 5).

We next turn our attention to investigate an upper bound on the total double
Roman domination number of a tree. Let T = {cor(T ) : T is a tree of order at
least two}.

Theorem 3. For any tree T of order n(T ) ≥ 3 with s(T ) support vertices,

γtdR(T ) ≤
6n(T ) + 3s(T )

5

with equality if and only if T ∈ T .
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Remark 4. We note that for an arbitrary tree T of order n(T ) ≥ 3, T has at
most n(T )/2 support vertices and hence by Theorem 3,

γtdR(T ) ≤
6n(T ) + 3s(T )

5
≤

3n(T )

2
,

implying that Theorem 3 improves the known result due to Shao et al. [12], that

is, γtdR(T ) ≤
3n(T )

2 .

Remark 5. We remark that if G is a connected graph of order n(G) ≥ 3 with
s(G) support vertices that is not a tree, then it is not necessarily true that

γtdR(G) ≤ 6n(G)+3s(G)
5 . For example, Hao et al. [8] determined the exact value of

γtdR(Cn), that is, γtdR(Cn) =
⌈

6n
5

⌉

for any integer n ≥ 3. Thus if n 6≡ 0 (mod 5),
then

γtdR(Cn) =

⌈

6n

5

⌉

>
6n

5
=

6n+ 3s(Cn)

5
.

Finally, we derive an upper bound on γtdR(G) for connected graphs G with
minimum degree at least two.

Theorem 6. For any connected graph G of order n with δ(G) ≥ 2, γtdR(G) ≤
⌊

4n
3

⌋

and this bound is sharp for Cn (n ∈ {3, 4, 5, 6, 7, 8, 11}).

2. Proof of Theorem 1

In this section, we prove Theorem 1. For this purpose, we shall need the following
result due to Hao et al. [8].

Proposition 7 [8]. For any graph G of order n ≥ 3 with no isolated vertex,

γtdR(G) = 4 if and only if ∆(G) = n− 1.

We are now in a position to present a proof of Theorem 1.

Proof. Let f be a γtdR(G)-function and let X be an open packing of cardinality
ρo(G) in G. Since NG(u) ∩NG(v) = ∅ for any two distinct vertices u, v ∈ X, we
have G[X] = mK2 ∪ (ρo(G)− 2m)K1, where 0 ≤ m ≤ ρo(G)/2. It can be easily
verified that the following two facts are true.

Fact 1. For any isolated vertex x in G[X], f(NG[x]) ≥ 3 and for any two adja-

cent vertices x and y in G[X], f(NG(x) ∪NG(y)) ≥ 3.

Fact 2. For any vertex x ∈ V (G), |NG(x) ∩X| ≤ 1.

We now have the following claims as follows.

Claim 1. If ρo(G) ≥ 2m+ 1, then γtdR(G) ≥ 3ρo(G)/2 + 3/2.
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Proof. Let X1 = {x : x is an isolated vertex in G[X]}. In this case, we have
|X1| = ρo(G)− 2m ≥ 1. Thus by Facts 1 and 2, we have

γtdR(G) = f(V (G)) ≥
∑

xy∈E(G[X])

f(NG(x) ∪NG(y)) +
∑

x∈X1

f(NG[x])

≥ 3m+ 3|X1| = 3m+ 3(ρo(G)− 2m) ≥ 3ρo(G)/2 + 3/2,

and so Claim 1 holds. �

In the following, by Claim 1, we may assume that ρo(G) = 2m. This implies
that G[X] = mK2.

Claim 2. If there exists some edge, say uv, in E(G[X]) such that f(NG(u) ∪
NG(v)) = 3, then γtdR(G) ≥ 3ρo(G)/2 + 2.

Proof. Since f(NG(u) ∪ NG(v)) = 3, it is easy to verify that f(u) + f(v) = 3
and f(x) = 0 for each x ∈ (NG(u) ∪ NG(v))\{u, v}. Without loss of generality,
assume that f(u) = 1 and f(v) = 2. Noticing that G is a connected graph
of order at least three, we may assume that there exists some vertex, say w,
in NG(v)\{u} (the case when there exists some vertex in NG(u)\{v} is similar).
Clearly f(w) = 0. This forces that there exists some vertex, say w1, inNG(w)\{v}
such that f(w1) ≥ 2.

First, suppose that w1 is not adjacent to a vertex of X in G. Then by Facts
1 and 2, we have

γtdR(G) = f(V (G)) ≥ f(w1) +
∑

xy∈E(G[X])

f(NG(x) ∪NG(y))

≥ 3m+ 2 = 3ρo(G)/2 + 2.

Second, suppose that w1 is adjacent to a vertex, say u1, of X in G. It is
easy to verify that u1 6= u (for otherwise, it is a contradiction to the fact that
f(x) = 0 for each x ∈ (NG(u)∪NG(v))\{u, v}). From our earlier assumption, we
note that G[X] = mK2. Thus there exists some vertex, say v1, of X such that
u1v1 ∈ E(G[X]). Moreover, since f(w1) ≥ 2 and w1 ∈ NG(u1), it can be easily
checked that f(NG(u1) ∪NG(v1)) ≥ 5. Consequently, by Facts 1 and 2, we have

γtdR(G) = f(V (G)) ≥ f(NG(u1) ∪NG(v1)) +
∑

xy∈E(G[X])\{u1v1}

f(NG(x) ∪NG(y))

≥ 5 + 3(m− 1) = 3ρo(G)/2 + 2.

Thus Claim 2 holds. �

In the following, by Fact 1 and Claim 2, we may assume that for any edge
xy ∈ E(G[X]), f(NG(x) ∪NG(y)) ≥ 4.
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Claim 3. If m ≥ 2, then γtdR(G) ≥ 3ρo(G)/2 + 2.

Proof. By Fact 2, we have

γtdR(G) = f(V (G)) ≥
∑

xy∈E(G[X])

f(NG(x) ∪NG(y)) ≥ 4m ≥ 3ρo(G)/2 + 2

and hence Claim 3 holds. �

Claim 4. If m = 1, then γtdR(G) ≥ 3ρo(G)/2 + 1 with equality if and only if

G ∈ G.

Proof. In this case, we have G[X] = K2. Now let uv be the unique edge in
E(G[X]). As previously mentioned, f(NG(u) ∪NG(v)) ≥ 4. Then by Fact 2, we
have

(1) γtdR(G) = f(V (G)) ≥ f(NG(u) ∪NG(v)) ≥ 4 = 3ρo(G)/2 + 1,

establishing the desired lower bound.

Suppose next that γtdR(G) = 3ρo(G)/2+ 1. Then we have equality through-
out the inequality chain (1). In particular, γtdR(G) = 4 and hence by Proposition
7, we have ∆(G) = n(G) − 1. If d(x) ≥ 2 for each x ∈ V (G), then for any two
distinct vertices u, v ∈ V (G), we have NG(u) ∩ NG(v) 6= ∅, this implies that
ρo(G) = 1, a contradiction to the fact that ρo(G) = 2m = 2. Therefore, there
must be a vertex of degree one. This forces that G ∈ G. Conversely, suppose
that G ∈ G. It is easy to verify that γtdR(G) = 4 and ρo(G) = 2, implying that
γtdR(G) = 3ρo(G)/2 + 1. Thus Claim 4 holds. �

The proof is completed.

3. Proof of Theorem 2

In this section, we prove Theorem 2. Before presenting our proof, we list below
two preliminary observations whose proofs are easy to see and a known result
that will be useful in proving our results later.

Observation 8. Let T be a tree with diameter at least three and let v be a strong

support vertex of T . Then there exists a γtdR(T )-function f such that f(v) = 3
and f(x) = 0 for every leaf adjacent to v.

Observation 9. Let T be a tree and let v be a weak support vertex adjacent to the

unique leaf u. Then there exists a γtdR(T )-function f such that f(u) + f(v) = 3.
In particular, if v has degree 2, then there exists a γtdR(T )-function f such that

f(u) = 1 and f(v) = 2.
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Hao et al. [8] determined the total double Roman domination number of
paths as follows.

Proposition 10 [8]. For n ≥ 2,

γtdR(Pn) =

{

6, if n = 4,
⌈

6n
5

⌉

, otherwise.

We now give a proof of Theorem 2.

Proof. We proceed by induction on the number n(T ). If n(T ) ∈ {2, 3, 4, 5} and

T 6= P5, then it is easy to verify that γtdR(T ) >
6(n(T )−l(T )+2)

5 . If T = P5, then

it follows from Proposition 10 that γtdR(T ) = 6 = 6(n(T )−l(T )+2)
5 . Assume, then,

that n(T ) ≥ 6 and that for any tree T ′ of order n(T ′) with l(T ′) leaves and

2 ≤ n(T ′) < n(T ), γtdR(T
′) ≥ 6(n(T ′)−l(T ′)+2)

5 with equality if and only if T ′ is a
path of order n(T ′) ≡ 0 (mod 5). Let T be a tree of order n(T ) with l(T ) leaves.

If diam(T ) = 2, that is, if T is a star, then γtdR(T ) = 4 > 6(n(T )−l(T )+2)
5 . If

diam(T ) = 3, that is, if T is a double star, then γtdR(T ) = 6 > 6(n(T )−l(T )+2)
5 . So

in the following we may assume that diam(T ) ≥ 4.
Now let P = v1v2 · · · vd+1 be a diametral path of T (d = diam(T )). If

T 6= P , then let vk be the first vertex of P such that dT (vk) ≥ 3. Without
loss of generality, we choose the diametral path P such that k is as small as
possible. By symmetry, we may assume that 2 ≤ k ≤ ⌈(d+ 1)/2⌉. Let f be a
γtdR(T )-function.

Claim 1. If dT (v2) ≥ 3, then γtdR(T ) >
6(n(T )−l(T )+2)

5 .

Proof. By Observation 8, we may assume that f(v2) = 3 and f(x) = 0 for each
leaf adjacent to v2. Clearly, f(v3) ≥ 1.

First, suppose that f(v3) ≥ 2. Let T ′ = T − (NT (v2)\{v3}). Then the
function f ′ defined by f ′(v2) = 1 and f ′(x) = f(x) for each x ∈ V (T ′)\{v2}, is a
TDRDF on T ′. Note that n(T ) = n(T ′)+dT (v2)−1 and l(T ) = l(T ′)+dT (v2)−2.
Then by the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(NT (v2)\{v3}) + f(v2)− f ′(v2)

≥
6(n(T ′)− l(T ′) + 2)

5
+ 2

=
6((n(T )− dT (v2) + 1)− (l(T )− dT (v2) + 2) + 2)

5
+ 2

>
6(n(T )− l(T ) + 2)

5
,

as desired.
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Second, suppose that f(v3) = 1 and dT (v3) ≥ 3. Let T ′ = T − (NT [v2]\{v3}).
Note that f(v3) = 1. One can verify that if v3 is a support vertex of T ′ adjacent
to a leaf, say u, in V (T ′)\V (P ), then f(u) = 2; and if v3 is adjacent to a support
vertex, say w, in V (T ′)\V (P ), then we may assume that f(w) = 3 and f(x) = 0
for every leaf x adjacent to w. In either case, the restriction f ′ of f on V (T ′) is a
TDRDF on T ′. Note that n(T ) = n(T ′) + dT (v2) and l(T ) = l(T ′) + dT (v2)− 1.
Then by the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(NT [v2]\{v3})

≥
6(n(T ′)− l(T ′) + 2)

5
+ 3

=
6((n(T )− dT (v2))− (l(T )− dT (v2) + 1) + 2)

5
+ 3

>
6(n(T )− l(T ) + 2)

5
,

as desired.
Finally, suppose that f(v3) = 1 and dT (v3) = 2. Assume now that f(v4) ≤ 1.

Let T ′ = T − NT [v2]. Then the restriction f ′ of f on V (T ′) is a TDRDF on
T ′. Note that n(T ) = n(T ′) + dT (v2) + 1 and l(T ′) + dT (v2) − 2 ≤ l(T ) ≤
l(T ′) + dT (v2)− 1. Then by the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(NT [v2])

≥
6(n(T ′)− l(T ′) + 2)

5
+ 4

≥
6((n(T )− dT (v2)− 1)− (l(T )− dT (v2) + 2) + 2)

5
+ 4

>
6(n(T )− l(T ) + 2)

5
,

as desired.
Assume next that f(v4) ≥ 2. Let T ′ = T − (NT [v2]\{v3}). Then the restric-

tion f ′ of f on V (T ′) is a TDRDF on T ′. Note that n(T ) = n(T ′) + dT (v2) and
l(T ) = l(T ′) + dT (v2)− 2. Then by the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(NT [v2]\{v3})

≥
6(n(T ′)− l(T ′) + 2)

5
+ 3

=
6((n(T )− dT (v2))− (l(T )− dT (v2) + 2) + 2)

5
+ 3

>
6(n(T )− l(T ) + 2)

5
,

as desired.
By the above discussions, Claim 1 holds. �
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In the following, by Claim 1, we may assume that dT (v2) = 2 and so by
Observation 9, we may assume that f(v1) = 1 and f(v2) = 2.

Claim 2. If dT (v3) ≥ 3, then γtdR(T ) >
6(n(T )−l(T )+2)

5 .

Proof. First, suppose that v3 is a strong support vertex of T . By Observation
8, we may assume that f(v3) = 3 and f(x) = 0 for every leaf x adjacent to v3.
Let T ′ = T − v1. Then the function f ′ defined by f ′(v2) = 1 and f ′(x) = f(x)
for each x ∈ V (T ′)\{v2}, is a TDRDF on T ′. Note that n(T ) = n(T ′) + 1 and
l(T ) = l(T ′). By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(v1) + 1 ≥
6(n(T ′)− l(T ′) + 2)

5
+ 2

=
6((n(T )− 1)− l(T ) + 2)

5
+ 2 >

6(n(T )− l(T ) + 2)

5
,

as desired.
Second, suppose that v3 is a weak support vertex of T . Let u be the unique

leaf adjacent to v3. By Observation 9, we may assume that f(u) + f(v3) = 3.
Let T ′ = T − {v1, v2}. Then the function f ′ defined by f ′(u) = 1, f ′(v3) = 3
and f ′(x) = f(x) for each x ∈ V (T ′)\{u, v3}, is a TDRDF on T ′. Note that
n(T ) = n(T ′) + 2 and l(T ) = l(T ′) + 1. By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(v1) + f(v2)− 1 ≥
6(n(T ′)− l(T ′) + 2)

5
+ 2

=
6((n(T )− 2)− (l(T )− 1) + 2)

5
+ 2 >

6(n(T )− l(T ) + 2)

5
,

as desired.
Finally, suppose that v3 is not a support vertex of T . By the choice of the

diametral path P = v1v2 · · · vd+1, we may assume that ui ∈ NT (v3)\{v2, v4} for
each i ∈ {1, 2, . . . , t}, where t = dT (v3)−2, and that wi is the unique leaf adjacent
to ui. Then by Observation 9, we may assume that f(ui) = 2 and f(wi) = 1 for
each i ∈ {1, 2, . . . , t}.

Assume now that f(v3) ≥ 1 or dT (v3) ≥ 4. Let T ′ = T − {v1, v2}. Then the
restriction f ′ of f on V (T ′) is a TDRDF on T ′. Note that n(T ) = n(T ′) + 2 and
l(T ) = l(T ′) + 1. By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(v1) + f(v2) ≥
6(n(T ′)− l(T ′) + 2)

5
+ 3

=
6((n(T )− 2)− (l(T )− 1) + 2)

5
+ 3 >

6(n(T )− l(T ) + 2)

5
,

as desired.
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Assume next that f(v3) = 0 and dT (v3) = 3. This implies that t = 1. Let
T ′ = T−{v1, v2, w1}. Then the function f ′ defined by f ′(v3) = 1 and f ′(x) = f(x)
for each x ∈ V (T ′)\{v3}, is a TDRDF on T ′. Note that n(T ) = n(T ′) + 3 and
l(T ) = l(T ′) + 1. By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(v1) + f(v2) + f(w1)− 1

≥
6(n(T ′)− l(T ′) + 2)

5
+ 3 =

6((n(T )− 3)− (l(T )− 1) + 2)

5
+ 3

>
6(n(T )− l(T ) + 2)

5
,

as desired.
By the above discussions, Claim 2 holds. �

In the following, by Claim 2, we may assume that dT (v3) = 2.

Claim 3. If f(v3) ≥ 1, then γtdR(T ) >
6(n(T )−l(T )+2)

5 .

Proof. We distinguish three cases as follows.

Case 1. f(v3) ≥ 2. Let T ′ = T − v1. Since f(v1) = 1 and f(v2) = 2
by our earlier assumption, we have that the function f ′ defined by f ′(v2) = 1
and f ′(x) = f(x) for each x ∈ V (T ′)\{v2}, is a TDRDF on T ′. Note that
n(T ) = n(T ′) + 1 and l(T ) = l(T ′). By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(v1) + 1 ≥
6(n(T ′)− l(T ′) + 2)

5
+ 2

=
6((n(T )− 1)− l(T ) + 2)

5
+ 2 >

6(n(T )− l(T ) + 2)

5
,

as desired.

Case 2. f(v3) = 1 and f(v4) ≤ 1. Let T ′ = T − {v1, v2, v3}. It is easy
to verify that the restriction f ′ of f on V (T ′) is a TDRDF on T ′. Note that
n(T ) = n(T ′) + 3 and l(T ′) ≤ l(T ). By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(v1) + f(v2) + f(v3)

≥
6(n(T ′)− l(T ′) + 2)

5
+ 4 ≥

6((n(T )− 3)− l(T ) + 2)

5
+ 4

>
6(n(T )− l(T ) + 2)

5
,

as desired.

Case 3. f(v3) = 1 and f(v4) ≥ 2. Let T ′ = T −{v1, v2}. Then the restriction
f ′ of f on V (T ′) is a TDRDF on T ′. Note that n(T ) = n(T ′)+2 and l(T ) = l(T ′).
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By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) + f(v1) + f(v2) ≥
6(n(T ′)− l(T ′) + 2)

5
+ 3

=
6((n(T )− 2)− l(T ) + 2)

5
+ 3 >

6(n(T )− l(T ) + 2)

5
,

as desired.
By the above discussions, Claim 3 holds. �

In the following, by Claim 3, we may assume that f(v3) = 0.

Claim 4. If f(v4) = 3, or dT (v4)≥3 and f(v4) = 2, then γtdR(T ) >
6(n(T )−l(T )+2)

5 .

Proof. If f(v4) = 3, then by the method similar to Case 3 of Claim 3, it is

easy to verify that γtdR(T ) >
6(n(T )−l(T )+2)

5 . Assume next that dT (v4) ≥ 3 and
f(v4) = 2. Let T ′ = T − {v1, v2, v3}. Clearly the restriction f ′ of f on V (T ′)
is a TDRDF on T ′. Note that n(T ) = n(T ′) + 3 and l(T ) = l(T ′) + 1. By the
induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) +
3

∑

i=1

f(vi) ≥
6(n(T ′)− l(T ′) + 2)

5
+ 3

=
6((n(T )− 3)− (l(T )− 1) + 2)

5
+ 3 >

6(n(T )− l(T ) + 2)

5
,

as desired. Thus Claim 4 holds. �

By our earlier assumption, f(v2) = dT (v3) = 2 and f(v3) = 0. This forces
f(v4) ≥ 2. Moreover, by Claim 4, we may assume that dT (v4) = f(v4) = 2 in the
following.

Claim 5. If f(v5) ≥ 2, then γtdR(T ) >
6(n(T )−l(T )+2)

5 .

Proof. Let T ′ = T − {v1, v2, v3}. Then the function f ′ defined by f ′(v4) = 1
and f ′(x) = f(x) for each x ∈ V (T ′)\{v4}, is a TDRDF on T ′. Note that
n(T ) = n(T ′) + 3 and l(T ) = l(T ′). By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) +
3

∑

i=1

f(vi) + 1 ≥
6(n(T ′)− l(T ′) + 2)

5
+ 4

=
6((n(T )− 3)− l(T ) + 2)

5
+ 4 >

6(n(T )− l(T ) + 2)

5
,

as desired. Thus Claim 5 holds. �

By our earlier assumption, f(v3) = 0 and dT (v4) = f(v4) = 2. This forces
f(v5) ≥ 1. Moreover, by Claim 5, we may assume that f(v5) = 1 in the fol-
lowing. Since dT (v1) = 1, dT (v2) = dT (v3) = dT (v4) = 2 and n(T ) ≥ 6 by our
assumptions, we have dT (v5) ≥ 2.
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Claim 6. If dT (v5) = 2, then γtdR(T ) ≥
6(n(T )−l(T )+2)

5 with equality if and only

if T is a path of order n(T ) ≡ 0 (mod 5).

Proof. First, suppose that f(v6) ≥ 2. Let T ′ = T − {v1, v2, v3, v4}. It is easy
to verify that the restriction f ′ of f on V (T ′) is a TDRDF on T ′. Note that
n(T ) = n(T ′) + 4 and l(T ) = l(T ′). By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) +
4

∑

i=1

f(vi) ≥
6(n(T ′)− l(T ′) + 2)

5
+ 5

=
6((n(T )− 4)− l(T ) + 2)

5
+ 5 >

6(n(T )− l(T ) + 2)

5
,

as desired.

Second, suppose that f(v6) ≤ 1. Let T ′ = T − {v1, v2, v3, v4, v5}. It is easy
to verify that the restriction f ′ of f on V (T ′) is a TDRDF on T ′. Note that
n(T ) = n(T ′) + 5. By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) +
5

∑

i=1

f(vi) ≥
6(n(T ′)− l(T ′) + 2)

5
+ 6

≥
6((n(T )− 5)− l(T ) + 2)

5
+ 6 =

6(n(T )− l(T ) + 2)

5
,(2)

establishing the desired lower bound.

Assume next that γtdR(T ) =
6(n(T )−l(T )+2)

5 . Then we have equality through-
out the inequality chain (2). In particular, l(T ′) = l(T ) and f ′(V (T ′)) =
6(n(T ′)−l(T ′)+2)

5 . This implies that γtdR(T
′)≤f ′(V (T ′))= 6(n(T ′)−l(T ′)+2)

5 . More-

over, since γtdR(T
′) ≥ 6(n(T ′)−l(T ′)+2)

5 by the induction hypothesis, this forces

γtdR(T
′) = 6(n(T ′)−l(T ′)+2)

5 . Again by the induction hypothesis, we have T ′ =
Pn(T ′) = Pn(T )−5, where n(T ′) ≡ 0 (mod 5). As shown earlier, l(T ′) = l(T ).
Thus dT (v6) = 2, implying that T = Pn(T ) and n(T ) ≡ 0 (mod 5). On the other
hand, if T = Pn(T ) and n(T ) ≡ 0 (mod 5), then by Proposition 10, we have

γtdR(T ) =
6n(T )

5 = 6(n(T )−l(T )+2)
5 .

By the above discussions, Claim 6 holds. �

Claim 7. If dT (v5) ≥ 3, then γtdR(T ) >
6(n(T )−l(T )+2)

5 .

Proof. Let H be the connected component of T −{v4, v6} containing the vertex
v5. Since P = v1v2 · · · vd+1 is a diametral path of T , we have 1 ≤ eccH(v5) ≤ 4.
Let u1u2 · · ·uk be a path of H such that k = eccH(v5) and uk is adjacent to v5
in H.

Case 1. eccH(v5) = 1. In this case, v5 is adjacent to the leaf u1. Since f(v5) =
1 by our earlier assumption, we have f(u1) = 2. Let T ′ = T−{v1, v2, v3, v4}. Then
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the restriction f ′ of f on V (T ′) is a TDRDF on T ′. Note that n(T ) = n(T ′) + 4
and l(T ) = l(T ′) + 1. By the induction hypothesis, we have

γtdR(T ) = f(V (T )) = f ′(V (T ′)) +
4

∑

i=1

f(vi) ≥
6(n(T ′)− l(T ′) + 2)

5
+ 5

=
6((n(T )− 4)− (l(T )− 1) + 2)

5
+ 5 >

6(n(T )− l(T ) + 2)

5
,

as desired.

Case 2. 2 ≤ eccH(v5) ≤ 4. If dT (u2) ≥ 3, then by the similar method to

Claim 1, we have γtdR(T ) >
6(n(T )−l(T )+2)

5 . So in the following we may assume
that dT (u2) = 2. Then by Observation 9, we may assume that f(u1) = 1 and
f(u2) = 2. If eccH(v5) = 2, then by the similar method to Claim 2, we have

γtdR(T ) >
6(n(T )−l(T )+2)

5 .
Assume now that eccH(v5) = 3. If dT (u3) ≥ 3, then again by the similar

method to Claim 2, we have γtdR(T ) >
6(n(T )−l(T )+2)

5 . Now let dT (u3) = 2. This
implies that u3 has exactly two neighbors u2 and v5. Moreover, since f(u2) = 2
and f(v5) = 1, this forces f(u3) ≥ 1. Thus by the similar method to Claim 3, we

have γtdR(T ) >
6(n(T )−l(T )+2)

5 .
Assume next that eccH(v5) = 4. Note that P ′ = u1u2u3u4v5v6 · · · vd+1 is also

a diametral path of T . By the choice of the diametral path P = v1v2 · · · vd+1, we
have dT (u2) = dT (u3) = dT (u4) = 2. If f(u3) ≥ 1, then by the similar method to

Claim 3, we have γtdR(T ) >
6(n(T )−l(T )+2)

5 . Hence we may assume that f(u3) = 0.
This forces f(u4) ≥ 2. If f(u4) = 3, then by the similar method to Claim 4, we

have γtdR(T ) > 6(n(T )−l(T )+2)
5 . Thus it suffices for us to consider the last case

when f(u4) = 2. In this case, by the similar method to Case 1 of this claim, we

have γtdR(T ) >
6(n(T )−l(T )+2)

5 .
By the above discussions, Claim 7 holds. �

The proof is completed.

4. Proof of Theorem 3

We now give a proof of Theorem 3.

Proof. We proceed by induction on the number n(T ). If n(T ) = 3, that is,

if T = P3 /∈ T , then γtdR(T ) = 4 < 6n(T )+3s(T )
5 . If T = P4, then T ∈ T and

γtdR(T ) = 6 = 6n(T )+3s(T )
5 . If T = S4, then T /∈ T and γtdR(T ) = 4 < 6n(T )+3s(T )

5 .
Assume, then, that n(T ) ≥ 5 and that for any tree T ′ of order n(T ′) with s(T ′)

support vertices and 3 ≤ n(T ′) < n(T ), we have γtdR(T
′) ≤ 6n(T ′)+3s(T ′)

5 with
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equality if and only if T ′ ∈ T . Now let T be a tree of order n(T ) ≥ 5 with
s(T ) support vertices. If diam(T ) = 2, that is, if T = Sn, then T /∈ T and

γtdR(T ) = 4 < 6n(T )+3s(T )
5 . If diam(T ) = 3, that is, if T is a double star, then

T /∈ T since n(T ) ≥ 5 and γtdR(T ) = 6 < 6n(T )+3s(T )
5 . So in the following we may

assume that diam(T ) ≥ 4.

Claim 1. If T has a strong support vertex, then γtdR(T ) <
6n(T )+3s(T )

5 .

Proof. Let v be a strong support vertex of T , u be a leaf adjacent to v, T ′ = T−u
and let f ′ be a γtdR(T

′)-function. Note that v is a support vertex of T ′. If v is
a weak support vertex of T ′ adjacent to a unique leaf w, then by Observation
9, we may assume that f ′(v) + f ′(w) = 3 and we may assume, without loss of
generality, that f ′(w) < f ′(v); and if v is a strong support vertex of T ′, then
by Observation 8, we may assume that f ′(v) = 3 and f ′(x) = 0 for each leaf x
adjacent to v in T ′. In either case, it is easy to see that the function f defined
by f(u) = 1 and f(x) = f ′(x) for each x ∈ V (T ′), is a TDRDF on T . Note that
n(T ) = n(T ′) + 1 and s(T ) = s(T ′). By the induction hypothesis, we have

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′)) + f(u) ≤
6n(T ′) + 3s(T ′)

5
+ 1

=
6(n(T )− 1) + 3s(T )

5
+ 1 <

6n(T ) + 3s(T )

5
,

and so Claim 1 holds. �

By Claim 1, we may assume that every support vertex of T is a weak support
vertex. If T is a path, then clearly T /∈ T since n(T ) ≥ 5 and so by Proposition

10, we have γtdR(T ) =
⌈

6n(T )
5

⌉

< 6n(T )+3s(T )
5 , as desired. Hence we may assume

that T is not a path, that is, there exists some vertex of degree at least 3 in T .
Let P = v1v2 · · · vd+1 be a diametral path of T , where d = diam(T ) ≥ 4, such
that vk is the first vertex of P with dT (vk) ≥ 3. By our earlier assumption, we
note that k ≥ 3.

Claim 2. If k = 3, then γtdR(T ) ≤
6n(T )+3s(T )

5 with equality if and only if T ∈ T .

Proof. Let T ′ = T − {v1, v2} and let f ′ be a γtdR(T
′)-function. Then the

function f defined by f(v1) = 1, f(v2) = 2 and f(x) = f ′(x) for each x ∈ V (T ′),
is a TDRDF on T . Note that n(T ) = n(T ′) + 2 and s(T ) = s(T ′) + 1. If T ′ /∈ T ,
then clearly T /∈ T and by the induction hypothesis, we have

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′)) + f(v1) + f(v2) <
6n(T ′) + 3s(T ′)

5
+ 3

=
6(n(T )− 2) + 3(s(T )− 1)

5
+ 3 =

6n(T ) + 3s(T )

5
.
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Suppose now that T ′ ∈ T . Noticing that dT (v3) ≥ 3, we have T ∈ T . Let f be
a γtdR(T )-function. By Observation 9, we may assume that f(u) + f(v) = 3 for
any support vertex v of T and a unique leaf u adjacent to v. Moreover, since
n(T ) = 2s(T ), we have γtdR(T ) = 3s(T ) = 6n(T )+3s(T )

5 . Thus Claim 2 holds. �

Claim 3. If k = 4, then γtdR(T ) <
6n(T )+3s(T )

5 .

Proof. Let T ′ = T − {v1, v2, v3} and let f ′ be a γtdR(T
′)-function. Then the

function f defined by f(v1) = f(v3) = 1, f(v2) = 2 and f(x) = f ′(x) for each
x ∈ V (T ′), is a TDRDF on T . Note that n(T ) = n(T ′)+ 3 and s(T ) = s(T ′)+ 1.
By the induction hypothesis, we have

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′)) +

3
∑

i=1

f(vi) ≤
6n(T ′) + 3s(T ′)

5
+ 4

=
6(n(T )− 3) + 3(s(T )− 1)

5
+ 4 <

6n(T ) + 3s(T )

5

and so Claim 3 holds. �

Claim 4. If k = 5, then γtdR(T ) <
6n(T )+3s(T )

5 .

Proof. First, suppose that v5 is a weak support vertex in T . Let T ′ = T −
{v1, v2, v3, v4} and let f ′ be a γtdR(T

′)-function. Since v5 is a weak support
vertex in T , we have that v5 is also a weak support vertex in T ′. Let u ∈
V (T )\V (P ) be the unique leaf adjacent to v5. By Observation 9, we may assume
that f ′(v5) + f ′(u) = 3. Further, we may assume that f ′(v5) = 2 and f ′(u) = 1,
or f ′(v5) = 3 and f ′(u) = 0. In either case, the function f defined by f(v1) = 1,
f(v2) = f(v3) = 2, f(v4) = 0 and f(x) = f ′(x) for each x ∈ V (T ′), is a TDRDF
on T . Note that n(T ) = n(T ′) + 4 and s(T ) = s(T ′) + 1. By the induction
hypothesis, we have

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′)) +
4

∑

i=1

f(vi) ≤
6n(T ′) + 3s(T ′)

5
+ 5

=
6(n(T )− 4) + 3(s(T )− 1)

5
+ 5 <

6n(T ) + 3s(T )

5
.

Second, suppose that v5 is not a support vertex in T . Let T1 be the connected
component of T − v6 containing the vertex v5. If there exists some vertex in
V (T1)\{v5} of degree at least 3 in T1, then by the similar method to Claim 2 or

3, we have γtdR(T ) < 6n(T )+3s(T )
5 . Hence we may assume that every vertex of

V (T1)\{v5} has degree 1 or 2. If there exists some leaf at distance 2 or 3 from
v5 in T1, then again by the similar method to Claim 2 or 3, we have γtdR(T ) <
6n(T )+3s(T )

5 . So in the following we may assume that T1 is the tree that can be
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obtained from a star st with center v5 of order t ≥ 3 by subdividing every edge
three times.

Now let T2 = T−T1 and let f ′ be a γtdR(T2)-function. Since P = v1v2 · · · vd+1

is a diametral path, this forces that n(T2) ≥ 4. Observe that the function f
defined by f(x) = 2 for every vertex x at distance 1 or 3 from v5 in T1, f(x) = 0 for
every vertex x at distance 2 from v5 in T1, f(x) = 1 for other vertices x of T1 and
f(x) = f ′(x) for x ∈ V (T2), is a TDRDF on T . Note that n(T ) = n(T2) + 4t− 3
and s(T2) + t− 2 ≤ s(T ). By the induction hypothesis, we have

γtdR(T ) ≤ f(V (T )) = f(V (T1)) + f ′(V (T2)) ≤ 5(t− 1) + 1 +
6n(T2) + 3s(T2)

5

≤ 5t− 4 +
6(n(T )− 4t+ 3) + 3(s(T )− t+ 2)

5
<

6n(T ) + 3s(T )

5

and so Claim 4 holds. �

Claim 5. If k = 6, then γtdR(T ) <
6n(T )+3s(T )

5 .

Proof. Let T ′ = T − {v1, v2, v3, v4, v5} and let f ′ be a γtdR(T
′)-function. Then

the function f defined by f(v1) = f(v5) = 1, f(v2) = f(v4) = 2, f(v3) = 0 and
f(x) = f ′(x) for any x ∈ V (T ′), is a TDRDF on T . Note that n(T ) = n(T ′) + 5
and s(T ) = s(T ′) + 1. By the induction hypothesis, we have

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′)) +

5
∑

i=1

f(vi) ≤
6n(T ′) + 3s(T ′)

5
+ 6

=
6(n(T )− 5) + 3(s(T )− 1)

5
+ 6 <

6n(T ) + 3s(T )

5

and so Claim 5 holds. �

Claim 6. If k ∈ {7, 8}, then γtdR(T ) <
6n(T )+3s(T )

5 .

Proof. Let T ′ = T − {v1, v2, v3, v4, v5}. First, suppose that T ′ /∈ T . Let f ′ be a
γtdR(T

′)-function. By the induction hypothesis, we have f ′(V (T ′)) = γtdR(T
′) <

6n(T ′)+3s(T ′)
5 . Then the function f defined by f(v1) = f(v5) = 1, f(v2) = f(v4) =

2, f(v3) = 0 and f(x) = f ′(x) for each x ∈ V (T ′), is a TDRDF on T . Note that
n(T ) = n(T ′) + 5 and s(T ′) ≤ s(T ). Thus we have

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′)) +

5
∑

i=1

f(vi) <
6n(T ′) + 3s(T ′)

5
+ 6

≤
6(n(T )− 5) + 3s(T )

5
+ 6 =

6n(T ) + 3s(T )

5
,

as desired.
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Second, suppose that T ′ ∈ T . By the induction hypothesis, we have γtdR(T
′)

= 6n(T ′)+3s(T ′)
5 . One can verify that the function f ′ defined by f ′(x) = 2 for

every support vertex of T ′ and f ′(x) = 1 for every leaf x of T ′, is a γtdR(T
′)-

function with f ′(V (T ′)) = 6n(T ′)+3s(T ′)
5 . In particular, if k = 7, then f ′(v6) = 1

and f ′(x) = 2 for each x ∈ NT [v7]\{v6} and if k = 8, then f ′(v6) = 1 and
f ′(v7) = f ′(v8) = 2. If k = 7, then define a function f on T by f(v1) = 1,
f(v2) = f(v3) = f(v5) = 2, f(v4) = f(v7) = 0 and f(x) = f ′(x) for each
x ∈ V (T ′)\{v7}. If k = 8, then define a function f on T by f(v1) = f(v5) = 1,
f(v2) = f(v4) = f(v6) = 2, f(v3) = f(v7) = 0 and f(x) = f ′(x) for each
x ∈ V (T ′)\{v6, v7}. In either case, one can check that the resulting function f is
a TDRDF on T . Note that n(T ) = n(T ′) + 5 and s(T ) = s(T ′). Thus we have

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′))− f ′(v6)− f ′(v7) +
7

∑

i=1

f(vi)

=
6n(T ′) + 3s(T ′)

5
+ 5 =

6(n(T )− 5) + 3s(T )

5
+ 5 <

6n(T ) + 3s(T )

5
,

as desired.

By the above discussions, Claim 6 holds. �

Claim 7. If k ≥ 9, then γtdR(T ) <
6n(T )+3s(T )

5 .

Proof. Let T ′ = T − {v1, v2, v3, v4, v5} and let f ′ be a γtdR(T
′)-function. Then

the function f defined by f(v1) = f(v5) = 1, f(v2) = f(v4) = 2, f(v3) = 0 and
f(x) = f ′(x) for any x ∈ V (T ′), is a TDRDF on T . Note that n(T ) = n(T ′) + 5
and s(T ) = s(T ′). Noticing that T ′ /∈ T , it follows from the induction hypothesis
that

γtdR(T ) ≤ f(V (T )) = f ′(V (T ′)) +
5

∑

i=1

f(vi) <
6n(T ′) + 3s(T ′)

5
+ 6

=
6(n(T )− 5) + 3s(T )

5
+ 6 =

6n(T ) + 3s(T )

5

and so Claim 7 holds. �

The proof is completed.

5. Proof of Theorem 6

First we recall a result proved in [8].

Proposition 11 [8]. For n ≥ 3, γtdR(Cn) =
⌈

6n
5

⌉

.
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The proof of Theorem 6 is based on the following two lemmas. For positive
integers k ≥ 3 and l ≥ 1, let Ck,l be the graph obtained from a cycle Ck =
x1x2 · · ·xkx1 by adding a pendant path x1y1y2 · · · yl.

Lemma 12. For positive integers k ≥ 3 and l ≥ 1, γtdR(Ck,l) ≤
4(k+l)

3 .

Proof. If k + l = 4, then obviously γtdR(Ck,l) = 4 < 4(k+l)
3 . Let k + l ≥ 5. Since

adding an edge cannot increase the total double Roman domination number of
the path x2 · · ·xkx1y1 · · · yl, Proposition 10 implies that

γtdR(Ck,l) ≤ γtdR(Pk+l) ≤

⌈

6(k + l)

5

⌉

≤
4(k + l)

3
,

as desired.

Now define R1 to be the family of all connected loopless multigraphs with
minimum degree at least three and define R to be the family of all graphs that
can be obtained from a graph in R1 by subdividing every edge t times, where
t ∈ {1, 2, 4}. Observe that any graph in R has order at least five.

We shall adopt the following definitions and notations. Let G be a simple
graph with minimum degree at least two and let M = {x ∈ V (G) : d(x) ≥ 3}.
An M -ear path in G is a path P = v1v2 · · · vk such that {sv1, vkr} ⊆ E(G) and
d(vi) = 2 for 1 ≤ i ≤ k, where s, r ∈ M . And we also say that “s is connected to
the M -ear path P”. Let Pi = {P : P is an M -ear path of order i in G} for each
i ≥ 1 and let P =

⋃

i≥1 Pi. If G ∈ R, then we have P = P1 ∪ P2 ∪ P4.

Lemma 13. Every graph G ∈ R of order n has a TDRDF h that assigns two to

every vertex of degree at least three and ω(h) ≤ 4n
3 .

Proof. We proceed by induction on n. The result is immediate for n = 5.
Assume, then, that n ≥ 6 and that the result holds for all graphs G′ ∈ R of order
less than n. Let G ∈ R be a graph of order n and let M = {x ∈ V (G) : d(x) ≥ 3}.

Assume now that there exists an M -ear path x1x2x3x4 ∈ P4 such that
sx1, x4r ∈ E(G), where s, r ∈ M . Let G′ be the graph obtained from G−{x2, x3,
x4} by adding a new edge x1r. Obviously, G′ ∈ R and by the induction hypoth-
esis, G′ has a TDRDF g that assigns two to every vertex of degree at least three
and ω(g) ≤ 4(n−3)

3 . In particular, g(s) = g(r) = 2. It is easy to check that the
function h defined by h(x3) = h(x4) = 1, h(x2) = 2 and h(x) = g(x) for other

vertices x, is a TDRDF on G and ω(h) = ω(g) + 4 ≤ 4(n−3)
3 +4 = 4n

3 , as desired.

So in the following we may assume that P4 = ∅, implying that P = P1 ∪P2.
Suppose that |M | = 2. It is easy to check that the function h defined by h(x) = 2
for each x ∈ M and h(x) = 1 for each x ∈ V (G)\M , is a TDRDF on G and
ω(h) = n+ 2 ≤ 4n

3 , as desired.
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Henceforth, we may assume that |M | ≥ 3. Suppose next that there exist
two vertices s, r ∈ M with min{d(s), d(r)} ≥ 4 such that P = x1 ∈ P1 (or P =
x1x2 ∈ P2) is an M -ear path in G, where sx1, x1r ∈ E(G) (or sx1, x2r ∈ E(G)).
Let G′ = G − V (P ). Obviously, every connected component of G′ belongs to R
and by the induction hypothesis, G′ has a TDRDF g that assigns two to every

vertex of degree at least three and ω(g) ≤ 4|V (G′)|
3 = 4(n−|V (P )|)

3 . In particular,
g(s) = g(r) = 2. It is easy to check that the function h defined by h(x) = 1 for
each x ∈ V (P ) and h(x) = g(x) for each x ∈ V (G)\V (P ), is a TDRDF on G and

ω(h) = ω(g) + |V (P )| ≤ 4(n−|V (P )|)
3 + |V (P )| < 4n

3 , as desired.
Hence we may assume that for any two vertices s, r ∈ M , if there exists an

M -ear path x ∈ P1 (or xy ∈ P2) such that sx, xr ∈ E(G) (or sx, yr ∈ E(G)),
then one of d(s) and d(r) is equal to 3 and the other is equal to at least 3. We
now have the following claims.

Claim 1. If P2 6= ∅, then G has a TDRD h that assigns two to every vertex of

degree at least three and ω(h) ≤ 4n
3 .

Proof. Let x1x2 be an M -ear path in P2 such that sx1, x2r ∈ E(G), where
s, r ∈ M . From our earlier assumption, we may assume that d(s) = 3 and
d(r) ≥ 3.

Case 1. s is connected to three M -ear paths in P2. Let y1y2 and z1z2 be two
M -ear paths in P2 different from the M -ear path x1x2, such that sy1, sz1, y2t, z2t

′

∈ E(G), where t, t′ ∈ M\{s}.
First, suppose that |{r, t, t′}| ∈ {2, 3}. Without loss of generality, assume

that t′ /∈ {r, t}. This implies that r, t and t′ are distinct or r = t 6= t′. Let G′

be the graph obtained from G − {s, y1, z1} by adding two new edges x1t
′ and

y2z2. Obviously, G′ ∈ R and by the induction hypothesis, G′ has a TDRDF g
that assigns two to every vertex of degree at least three and ω(g) ≤ 4(n−3)

3 . In
particular, g(r) = g(t) = g(t′) = 2. Moreover, since y2 and z2 have degree two in
G′, g(y2) + g(z2) ≥ 2. Then the function h defined by h(y1) = h(y2) = h(z1) =
h(z2) = 1, h(s) = 2 and h(x) = g(x) for other vertices x, is a TDRDF on G and

ω(h) ≤ ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as desired.
Second, suppose that r = t = t′. Since |M | ≥ 3, there exists an M -ear

path w1w2 in P2 such that rw1, w2t
′′ ∈ E(G) or there exists an M -ear path w

in P1 such that rw,wt′′ ∈ E(G), where t′′ ∈ M\{s, r}. Assume now that the
former holds. Let G′ be the graph obtained from G − {s, x1, x2} by adding two
new edges y1t

′′ and z1t
′′. Obviously, G′ ∈ R and by the induction hypothesis,

G′ has a TDRDF g that assigns two to every vertex of degree at least three
and ω(g) ≤ 4(n−3)

3 . In particular, g(r) = g(t′′) = 2. Moreover, since w1 and
w2 have degree two in G′, g(w1) + g(w2) ≥ 2. Then the function h defined by
h(x1) = h(x2) = h(w1) = h(w2) = 1, h(s) = 2 and h(x) = g(x) for other vertices

x, is a TDRDF on G and ω(h) ≤ ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as desired.
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So in the following we may assume that there exists an M -ear path w in P1

such that rw,wt′′ ∈ E(G), where t′′ ∈ M\{s, r}. Suppose now that dG(r) ≥ 5.
Let G′ be the graph obtained from G−{s, x1, x2, y1, y2, z1} by adding a new edge
z2t

′′. Obviously, G′ ∈ R and by the induction hypothesis, G′ has a TDRDF g
that assigns two to every vertex of degree at least three and ω(g) ≤ 4(n−6)

3 . In
particular, g(r) = g(t′′) = 2. Then the function h defined by h(x1) = h(x2) =
h(y1) = h(y2) = h(z1) = h(z2) = 1, h(w) = max{g(z2), g(w)}, h(s) = 2 and
h(x) = g(x) for other vertices x, is a TDRDF on G and ω(h) ≤ ω(g) + 8 ≤
4(n−6)

3 + 8 = 4n
3 , as desired.

Suppose next that dG(r) = 4. Since dG(t
′′) ≥ 3, there exists an M -ear path

P = w′
1w

′
2 ∈ P2 such that t′′w′

1, w
′
2t

′′′ ∈ E(G) or there exists an M -ear path
P = w′ ∈ P1 such that t′′w′, w′t′′′ ∈ E(G), where t′′′ ∈ M\{s, r, t′′}. Let G′

be the graph obtained from G − {s, x1, x2, y1, y2, z1, z2} by adding a new edge
rt′′′. Obviously, G′ ∈ R and by the induction hypothesis, G′ has a TDRDF g
that assigns two to every vertex of degree at least three and ω(g) ≤ 4(n−7)

3 . In
particular, g(t′′) = g(t′′′) = 2. Moreover, g(r) + g(w) ≥ 2 since r and w have
degree two in G′ and if P ∈ P2, then g(w′

1) + g(w′
2) ≥ 2 since w′

1 and w′
2 have

degree two in G′. Then the function h defined by h(w) = 0, h(x1) = h(x2) =
h(y1) = h(y2) = h(z1) = h(z2) = h(x) = 1 for each x ∈ V (P ), h(s) = h(r) = 2
and h(x) = g(x) for other vertices x, is a TDRDF on G and ω(h) ≤ ω(g) + 9 ≤
4(n−7)

3 + 9 < 4n
3 , as desired.

Case 2. s is connected to two M -ear paths in P2 and an M -ear path in P1.
Let y1y2 be an M -ear path in P2 different from the M -ear path x1x2 and let z
be an M -ear path in P1 such that sy1, sz, y2t, zt

′ ∈ E(G), where t, t′ ∈ M\{s}.

Subcase 2.1. r, t and t′ are distinct. Let G′ be the graph obtained from
G− {s, x1, x2, } by adding two new edges y1r and zt. Obviously, G′ ∈ R and by
the induction hypothesis, G′ has a TDRDF g that assigns two to every vertex of
degree at least three and ω(g) ≤ 4(n−3)

3 . In particular, g(r) = g(t) = g(t′) = 2.
Moreover, since y1 and y2 have degree two in G′, g(y1) + g(y2) ≥ 2. Then the
function h defined by h(x1) = h(x2) = h(y1) = h(y2) = 1, h(s) = 2 and h(x) =

g(x) for other vertices x, is a TDRDF on G and ω(h) ≤ ω(g)+4 ≤ 4(n−3)
3 +4 = 4n

3 ,
as desired.

Subcase 2.2. r = t 6= t′. Suppose now that dG(r) ≥ 4. Let G′ be the graph
obtained fromG−{s, x1, x2, y1} by adding a new edge y2z. Obviously, G′ ∈ R and
by the induction hypothesis, G′ has a TDRDF g that assigns two to every vertex of
degree at least three and ω(g) ≤ 4(n−4)

3 . In particular, g(r) = g(t′) = 2. Moreover,
since y2 and z have degree two in G′, g(y2)+g(z) ≥ 2. Then the function h defined
by h(x1) = h(x2) = h(y1) = h(y2) = h(z) = 1, h(s) = 2 and h(x) = g(x) for

other vertices x, is a TDRDF on G and ω(h) ≤ ω(g) + 5 ≤ 4(n−4)
3 + 5 < 4n

3 , as
desired.
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Suppose next that dG(r) = 3. Since P = P1∪P2, there exists an M -ear path
w1w2 ∈ P2 such that rw1, w2t

′′ ∈ E(G) or there exists an M -ear path w ∈ P1

such that rw,wt′′ ∈ E(G), where t′′ ∈ M\{s, r}. If the former holds, then by the
method similar to Case 1, the assertion is trivial. Hence we may assume that the
latter holds.

Now assume that t′′ 6= t′. Let G′ be the graph obtained from G−{s, x1, x2, y1,
y2, z} by adding a new edge rt′. Obviously, G′ ∈ R and by the induction hypoth-
esis, G′ has a TDRDF g that assigns two to every vertex of degree at least three
and ω(g) ≤ 4(n−6)

3 . In particular, g(t′) = g(t′′) = 2. Moreover, since r and w
have degree two in G′, g(r) + g(w) ≥ 2. Then the function h defined by h(x1) =
h(x2) = h(y1) = h(y2) = h(z) = h(w) = 1, h(s) = h(r) = 2 and h(x) = g(x) for

other vertices x, is a TDRDF on G and ω(h) ≤ ω(g) + 8 ≤ 4(n−6)
3 + 8 = 4n

3 , as
desired.

So in the following we may assume that t′′ = t′. Since t′ ∈ M , dG(t
′) ≥ 3 and

hence there exists an M -ear path P = w′
1w

′
2 ∈ P2 such that t′w′

1, w
′
2t

′′′ ∈ E(G)
or there exists an M -ear path P = w′ ∈ P1 such that t′w′, w′t′′′ ∈ E(G), where
t′′′ ∈ M\{s, r, t′}. Let G′ be the graph obtained from G − {x1, x2, y1, y2} by
adding two new edges st′′′ and rt′′′. Obviously, G′ ∈ R and by the induction
hypothesis, G′ has a TDRDF g that assigns two to every vertex of degree at least
three and ω(g) ≤ 4(n−4)

3 . In particular, g(t′) = g(t′′′) = 2. Moreover, since s,
z, r, w and every vertex of V (P ) have degree two in G′, we have min{g(s) +
g(z), g(r) + g(w)} ≥ 2 and if P ∈ P2, then g(w′

1) + g(w′
2) ≥ 2. It is easy to

check that the function h defined by h(z) = h(w) = 0, h(x1) = h(x2) = h(y1) =
h(y2) = h(x) = 1 for each x ∈ V (P ), h(s) = h(r) = 2 and h(x) = g(x) for other

vertices x, is a TDRDF on G and ω(h) ≤ ω(g) + 5 ≤ 4(n−4)
3 +5 < 4n

3 , as desired.

Subcase 2.3. r = t′ 6= t (the case t = t′ 6= r is similar). Let G′ be the graph
obtained from G − {s, x1, x2} by adding two new edges zt and y1r. Obviously,
G′ ∈ R and by the induction hypothesis, G′ has a TDRDF g that assigns two
to every vertex of degree at least three and ω(g) ≤ 4(n−3)

3 . In particular, g(r) =
g(t) = 2. Moreover, since y1 and y2 have degree two in G′, g(y1) + g(y2) ≥ 2.
Then the function h defined by h(z) = 0, h(x1) = h(x2) = h(y1) = h(y2) = 1,
h(s) = 2 and h(x) = g(x) for other vertices x, is a TDRDF on G and ω(h) ≤

ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as desired.

Subcase 2.4. r = t = t′. Since |M | ≥ 3, there exists an M -ear path P =
w1w2 ∈ P2 such that rw1, w2t

′′ ∈ E(G) or there exists anM -ear path P = w ∈ P1

such that rw,wt′′ ∈ E(G), where t′′ ∈ M\{s, r}.

Suppose now dG(r) ≥ 5. Let G′ be the graph obtained from G−{s, x1, x2, y1,
y2} by adding a new edge zt′′. Obviously, G′ ∈ R and by the induction hypothesis,
G′ has a TDRDF g that assigns two to every vertex of degree at least three
and ω(g) ≤ 4(n−5)

3 . In particular, g(r) = g(t′′) = 2. Define the function h
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by h(z) = 0, h(x1) = h(x2) = h(y1) = h(y2) = 1, h(w2) = max{g(z), g(w2)},
h(s) = 2 and h(x) = g(x) for other vertices x when P ∈ P2; and by h(z) = 0,
h(x1) = h(x2) = h(y1) = h(y2) = 1, h(w) = max{g(z), g(w)}, h(s) = 2 and
h(x) = g(x) for other vertices x when P ∈ P1. In either case, it is easy to check

that h is a TDRDF on G and ω(h) ≤ ω(g) + 6 ≤ 4(n−5)
3 + 6 < 4n

3 , as desired.

So in the following we may assume that dG(r) = 4. First, assume that
P = w1w2 ∈ P2. Let G′ be the graph obtained from G − {s, x1, x2} by adding
two new edges y1t

′′ and zt′′. Obviously, G′ ∈ R and by the induction hypothesis,
G′ has a TDRDF g that assigns two to every vertex of degree at least three and
ω(g) ≤ 4(n−3)

3 . In particular, g(r) = g(t′′) = 2. Moreover, since w1 and w2 have
degree two in G′, we have g(w1) + g(w2) ≥ 2. Then the function h defined by
h(z) = 0, h(x1) = h(x2) = h(w1) = h(w2) = 1, h(s) = 2 and h(x) = g(x) for

other vertices x, is a TDRDF on G and ω(h) ≤ ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as
desired.

Second, assume that P = w ∈ P1. Since t′′ ∈ M\{s, r}, dG(t
′′) ≥ 3 and

hence there exists an M -ear path P ′ = w′
1w

′
2 ∈ P2 such that t′′w′

1, w
′
2t

′′′ ∈ E(G)
or there exists an M -ear path P ′ = w′ ∈ P1 such that t′′w′, w′t′′′ ∈ E(G), where
t′′′ ∈ M\{s, r, t′′}. Let G′ be the graph obtained from G − {s, x1, x2, y1, y2, z}
by adding a new edge rt′′′. Obviously, G′ ∈ R and by the induction hypothesis,
G′ has a TDRDF g that assigns two to every vertex of degree at least three
and ω(g) ≤ 4(n−6)

3 . In particular, g(t′′) = g(t′′′) = 2. Moreover, since r, w
and every vertex of V (P ′) have degree two in G′, we have g(r) + g(w) ≥ 2 and
g(w′

1) + g(w′
2) ≥ 2 when P ′ ∈ P2. Then the function h defined by h(z) =

h(w) = 0, h(x1) = h(x2) = h(y1) = h(y2) = 1, h(x) = 1 for each x ∈ V (P ′),
h(s) = h(r) = 2 and h(x) = g(x) for other vertices x, is a TDRDF on G and

ω(h) ≤ ω(g) + 7 ≤ 4(n−6)
3 + 7 < 4n

3 , as desired.

Case 3. s is connected to an M -ear path in P2 and two M -ear paths in P1.
Let y and z be two M -ear paths in P1 such that sy, sz, yt, zt′ ∈ E(G), where
t, t′ ∈ M\{s}. First, suppose that r, t and t′ are distinct. Let G′ be the graph
obtained from G − {s, x1, x2} by adding two new edges yr and zr. Obviously,
G′ ∈ R and by the induction hypothesis, G′ has a TDRDF g that assigns two
to every vertex of degree at least three and ω(g) ≤ 4(n−3)

3 . In particular, g(r) =
g(t) = g(t′) = 2. Observe that the function h defined by h(x1) = h(x2) = 1,
h(s) = 2 and h(x) = g(x) for other vertices x, is an TDRDF on G and ω(h) =

ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as desired.

Second, suppose that r = t 6= t′ (the case r = t′ 6= t is similar). Let G′ be
the graph obtained from G− s by adding two new edges x1t

′ and yz. Obviously,
G′ ∈ R and by the induction hypothesis, G′ has a TDRDF g that assigns two
to every vertex of degree at least three and ω(g) ≤ 4(n−1)

3 . In particular, g(r) =
g(t′) = 2. Moreover, since x1, x2, y and z have degree two in G′, g(x1)+g(x2) ≥ 2
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and g(y) + g(z) ≥ 2. Observe that the function h defined by h(y) = 0, h(x1) =
h(x2) = h(z) = 1, h(s) = 2 and h(x) = g(x) for other vertices x, is an TDRDF

on G and ω(h) ≤ ω(g) + 1 ≤ 4(n−1)
3 + 1 < 4n

3 , as desired.

Third, suppose that t = t′ 6= r. Let G′ be the graph obtained from G −
{s, x1, x2} by adding two new edges yr and zr. Obviously, G′ ∈ R and by the
induction hypothesis, G′ has a TDRDF g that assigns two to every vertex of
degree at least three and ω(g) ≤ 4(n−3)

3 . In particular, g(r) = g(t) = 2. Observe
that the function h defined by h(x1) = h(x2) = 1, h(s) = 2 and h(x) = g(x) for

other vertices x, is an TDRDF on G and ω(h) = ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as
desired.

Finally, assume that r = t = t′. Since |M | ≥ 3, there exists an M -ear
path P = w1w2 ∈ P2 such that rw1, w2t

′′ ∈ E(G) or there exists an M -ear
path P = w ∈ P1 such that rw,wt′′ ∈ E(G), where t′′ ∈ M\{s, r}. Let G′

be the graph obtained from G − {s, x1, x2} by adding two new edges yt′′ and
zt′′. Obviously, G′ ∈ R and by the induction hypothesis, G′ has a TDRDF
g that assigns two to every vertex of degree at least three and ω(g) ≤ 4(n−3)

3 .
In particular, g(r) = g(t′′) = 2. Define the function h by h(y) = h(z) = 0,
h(x1) = h(x2) = 1, h(w2) = max{g(y), g(z), g(w2)}, h(s) = 2 and h(x) = g(x)
for other vertices x when P ∈ P2; and by h(y) = h(z) = 0, h(x1) = h(x2) = 1,
h(w) = max{g(y), g(z), g(w)}, h(s) = 2 and h(x) = g(x) for other vertices x
when P ∈ P1. In either case, it is easy to check that h is a TDRDF on G and
ω(h) ≤ ω(g) + 4 ≤ 4(n−3)

3 + 4 = 4n
3 , as desired.

By the above arguments, Claim 1 is true. �

Claim 2. If P = P1, then G has a TDRDF h that assigns two to every vertex

of degree at least three and ω(h) ≤ 4n
3 .

Proof. Let x1, y1 and z1 be three M -ear paths in P1 such that sx1, sy1, sz1, x1r,
y1t and z1t

′ ∈ E(G), where s, r, t, t′ ∈ M . From our earlier assumption, we may
assume, without loss of generality, that d(s) = 3.

Case 1. |{r, t, t′}| = 2. Without loss of generality, assume that r = t 6= t′.
First, suppose that dG(r) = 3 and there exists some vertex, say w1, in G that is
adjacent to r and t′. Since t′ ∈ M , we have dG(t

′) ≥ 3 and hence there exists
some vertex, say w2, in G that is adjacent to t′ and t′′, where t′′ ∈ M\{s, r, t′}.
Let G′ be the graph obtained from G − {s, x1, y1} by adding two new edges rt′′

and z1t
′′. Obviously, G′ ∈ R and by the induction hypothesis, G′ has a TDRDF

g that assigns two to every vertex of degree at least three and ω(g) ≤ 4(n−3)
3 . In

particular, g(t′) = g(t′′) = 2. Moreover, since r and w1 have degree two in G′,
g(r) + g(w1) ≥ 2. Then the function h defined by h(y1) = h(z1) = h(w1) = 0,
h(x1) = h(w2) = 1, h(s) = h(r) = 2 and h(x) = g(x) for other vertices x, is a

TDRDF on G and ω(h) ≤ ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as desired.



1056 G. Hao, Z. Xie, S.M. Sheikholeslami and M. Hajjari

Second, suppose that dG(r) = 3 and there exists some vertex, say w, in G
that is adjacent to r and t′′, where t′′ ∈ M\{s, r, t′}. Let G′ be the graph obtained
from G− {s, x1, y1, r} by adding a new edge wz1. Obviously, G′ ∈ R and by the
induction hypothesis, G′ has a TDRDF g that assigns two to every vertex of
degree at least three and ω(g) ≤ 4(n−4)

3 . In particular, g(t′) = g(t′′) = 2. Then
the function h defined by h(x1) = 0, h(y1) = 1, h(s) = h(r) = 2 and h(x) = g(x)

for other vertices x, is a TDRDF on G and ω(h) = ω(g) + 5 ≤ 4(n−4)
3 + 5 < 4n

3 ,
as desired.

Finally, suppose that dG(r) ≥ 4. Let G′ be the graph obtained from G −
{s, x1, y1} by adding a new edge rz1. Obviously, G′ ∈ R and by the induction
hypothesis, G′ has a TDRDF g that assigns two to every vertex of degree at least
three and ω(g) ≤ 4(n−3)

3 . In particular, g(r) = g(t′) = 2. Then the function h
defined by h(x1) = 0, h(y1) = 1, h(s) = 2 and h(x) = g(x) for other vertices x, is

a TDRDF on G and ω(h) = ω(g) + 3 ≤ 4(n−3)
3 + 3 < 4n

3 , as desired.

Case 2. r, t and t′ are distinct. Assume now that dG(r) ≥ 4. Let G′ be the
graph obtained from G− {s, x1, y1} by adding a new edge z1t. Obviously, every
connected component of G′ belongs to R and by the induction hypothesis, G′

has a TDRDF g that assigns two to every vertex of degree at least three and
ω(g) ≤ 4(n−3)

3 . In particular, g(r) = g(t) = g(t′) = 2. Then the function h
defined by h(x1) = 0, h(y1) = 1, h(s) = 2 and h(x) = g(x) for other vertices x, is

a TDRDF on G and ω(h) = ω(g) + 3 ≤ 4(n−3)
3 + 3 < 4n

3 , as desired.

So in the following we may assume that dG(r) = 3. Let w1 and w2 be two
M -ear paths in P1 such that rw1, rw2, w1t

′′ and w2t
′′′ ∈ E(G), where t′′, t′′′ ∈

M\{s, r}. If t′′ = t′′′, then by the method similar to Case 1 of Claim 2, the
assertion is trivial. Hence we may assume that t′′ 6= t′′′.

First, suppose that {t′′, t′′′} ⊆ M\{s, r, t, t′}. Let G′ be the graph obtained
from G − {s, x1, r} by adding two new edges y1z1 and w1w2. Obviously, every
connected component of G′ belongs to R and by the induction hypothesis, G′

has a TDRDF g that assigns two to every vertex of degree at least three and
ω(g) ≤ 4(n−3)

3 . In particular, g(t) = g(t′) = g(t′′) = g(t′′′) = 2. Moreover, since
y1, z1, w1 and w2 have degree two in G′, g(y1)+g(z1) ≥ 2 and g(w1)+g(w2) ≥ 2.
Then the function h defined by h(x1) = 0, h(y1) = h(z1) = h(w1) = h(w2) = 1,
h(s) = h(r) = 2 and h(x) = g(x) for other vertices x, is a TDRDF on G and

ω(h) ≤ ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as desired.

Second, suppose that t′′ ∈ {t, t′} and t′′′ ∈ M\{s, r, t, t′} (the case t′′′ ∈ {t, t′}
and t′′ ∈ M\{s, r, t, t′} is similar). Without loss of generality, assume that t′′ = t
and t′′′ ∈ M\{s, r, t, t′}. Let G′ be the graph obtained from G − {s, x1, r} by
adding two new edges y1z1 and w1w2. Obviously, G′ ∈ R and by the induction
hypothesis, G′ has a TDRDF g that assigns two to every vertex of degree at least
three and ω(g) ≤ 4(n−3)

3 . In particular, g(t) = g(t′) = g(t′′′) = 2. Moreover, since
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y1, z1, w1 and w2 have degree two in G′, g(y1)+g(z1) ≥ 2 and g(w1)+g(w2) ≥ 2.
Then the function h defined by h(x1) = 0, h(y1) = h(z1) = h(w1) = h(w2) = 1,
h(s) = h(r) = 2 and h(x) = g(x) for other vertices x, is a TDRDF on G and

ω(h) ≤ ω(g) + 4 ≤ 4(n−3)
3 + 4 = 4n

3 , as desired.

Finally, assume that t′′ = t and t′′′ = t′ (the case t′′ = t′ and t′′′ = t is
similar). Let G′ be the graph obtained from G− s by adding two new edges x1t
and y1z1. Obviously, G′ ∈ R and by the induction hypothesis, G′ has a TDRDF
g that assigns two to every vertex of degree at least three and ω(g) ≤ 4(n−1)

3 . In
particular, g(r) = g(t) = g(t′) = 2. Moreover, g(y1) + g(z1) ≥ 2 since y1 and z1
have degree two in G′ and g(x1)+g(w1)+g(w2) ≥ 1 since NG′(r) = {x1, w1, w2}.
Then the function h defined by h(x1) = h(y1) = h(w2) = 0, h(z1) = h(w1) = 1,
h(s) = 2 and h(x) = g(x) for other vertices x, is a TDRDF on G and ω(h) ≤

ω(g) + 1 ≤ 4(n−1)
3 + 1 < 4n

3 , as desired.

Case 3. r = t = t′. From our earlier assumptions, we note that P = P1,
|M | ≥ 3 and for any two vertices s, r ∈ M , if there exists anM -ear path x ∈ P1 (or
xy ∈ P2) such that sx, xr ∈ E(G) (or sx, yr ∈ E(G)), then one of d(s) and d(r) is
equal to 3 and the other is equal to at least 3. Noticing Cases 1 and 2, it suffices
to consider the graph G, where V (G) = {u} ∪ {vi : 1 ≤ i ≤ k} ∪ {wj

i : 1 ≤ i ≤ k

and 1 ≤ j ≤ 3} and E(G) = {uwj
i , viw

j
i : 1 ≤ i ≤ k and 1 ≤ j ≤ 3}. Observe that

n = 4k + 1. It is easy to check that the function h defined by h(u) = h(vi) = 2
for 1 ≤ i ≤ k, h(w1

i ) = 1 for 1 ≤ i ≤ k and h(x) = 0 for other vertices x, is a
TDRDF on G and ω(h) = 3k + 2 < 4n

3 , as desired.

By the above arguments, Claim 2 is true. �

The proof is completed.

We are now in a position to present a proof of Theorem 6.

Proof. Since γtdR(G) is integer, it suffices to show that γtdR(G) ≤ 4n
3 . We

proceed by induction on n + |E(G)|. If n + |E(G)| = 6, then G = C3 and
the result is trivial. Assume, then, that n + |E(G)| ≥ 7 and that the result
holds for all connected graphs G′ with |V (G′)| + |E(G′)| < n + |E(G)| and
δ(G′) ≥ 2. Let G be a connected graph of order n with δ(G) ≥ 2 and let
M = {x ∈ V (G) : d(x) ≥ 3}. If M = ∅, then G is a cycle and hence by
Proposition 11, we have γtdR(G) =

⌈

6n
5

⌉

≤ 4n
3 . Suppose next that M 6= ∅.

If there exists an edge e ∈ E(G) joining two vertices in M such that G − e
is connected, then by the induction hypothesis, γtdR(G) ≤ γtdR(G− e) ≤ 4n

3 .
If there exists an edge e ∈ E(G) joining two vertices in M such that G − e
is disconnected with connected components G1 and G2, then by the induction
hypothesis, γtdR(G) ≤ γtdR(G1)+γtdR(G2) ≤

4|V (G1)|
3 + 4|V (G2)|

3 = 4n
3 . Henceforth,

we may assume that M is an independent set. We now have the following claims.
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Claim 1. If there exists an M -ear path P in P whose leaves are adjacent to the

same vertex, say s, in M such that dG(s) = 3, then γtdR(G) ≤ 4n
3 .

Proof. Since G is simple, P has order at least two. Let NG(s)\V (P ) = {t}.
Then there exists a unique M -ear path P ′ such that t is a leaf of P ′. Let
G′ = G− (V (P ) ∪ V (P ′)∪ {s}). Then δ(G′) ≥ 2 and hence by the induction hy-

pothesis, γtdR(G
′) ≤ 4|V (G′)|

3 . On the other hand, since G[V (P )∪ V (P ′)∪ {s}] ∼=

C|V (P )|+1,|V (P ′)|, we have γtdR(G[V (P ) ∪ V (P ′) ∪ {s}]) ≤ 4|V (P )∪V (P ′)∪{s}|
3 by

Lemma 12. As a result, we have

γtdR(G) ≤ γtdR(G
′) + γtdR(G[V (P ) ∪ V (P ′) ∪ {s}])

≤
4|V (G′)|

3
+

4|V (P ) ∪ V (P ′) ∪ {s}|

3
=

4n

3

and hence Claim 1 is true. �

Therefore for any M -ear path P ∈ P, if two leaves of P are adjacent to the
same vertex, say s, in M , then we may assume that dG(s) ≥ 4.

Claim 2. If there exists an M -ear path P in Pk (k = 3 or k ≥ 5), then γtdR(G)
≤ 4n

3 .

Proof. Let G′ = G−V (P ). Then every connected component of G′ has minimum
degree at least two and hence by Proposition 10 and the induction hypothesis,
we have

γtdR(G) ≤ γtdR(P ) + γtdR(G
′) ≤

⌈

6|V (P )|

5

⌉

+
4|V (G′)|

3
≤

4n

3

and hence Claim 2 holds. �

By Claim 2, we may assume that P = P1 ∪ P2 ∪ P4 in the following.

Claim 3. If two leaves of any M -ear path are adjacent to distinct vertices in M ,

then γtdR(G) ≤ 4n
3 .

Proof. Observe that G ∈ R and hence by Lemma 13, we have γtdR(G) ≤ 4n
3 and

so Claim 3 holds. �

For k ∈ {2, 4}, let P ′
k = {P ∈ Pk : two leaves of P are adjacent to the

same vertex in M}. Note that G is simple. By Claim 3, we may assume that
P ′
2 ∪ P ′

4 6= ∅.

Claim 4. If there are two M -ear paths P and P ′ in P ′
2 ∪P ′

4 such that every leaf

of P and P ′ is adjacent to the same vertex, say s, in M , then γtdR(G) ≤ 4n
3 .

Proof. Let G′ = G− V (P ′). Note that δ(G′) ≥ 2. By the induction hypothesis,

we have γtdR(G
′) ≤ 4(n−|V (P ′)|)

3 . Let g be a γtdR(G
′)-function. First, suppose
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that P = u1u2 ∈ P ′
2. Observe that g(u1) + g(u2) + g(s) ≥ 3. Define the function

h by h(u1) = h(u2) = 0, h(x) = 1 for each x ∈ V (P ′), h(s) = 3 and h(x) =
g(x) for other vertices x when P ′ ∈ P ′

2; and by h(u1) = h(u2) = h(v1) = 0,
h(v2) = h(v4) = 1, h(v3) = 2, h(s) = 3 and h(x) = g(x) for other vertices x when
P ′ = v1v2v3v4 ∈ P ′

4. In either case, it is easy to check that h is a TDRDF on

G and hence γtdR(G) ≤ ω(h) ≤ ω(g) + |V (P ′)| ≤ 4(n−|V (P ′)|)
3 + |V (P ′)| < 4n

3 , as
desired.

Second, suppose that P = u1u2u3u4 ∈ P ′
4. If g(s) ≥ 1 and P ′ ∈ P ′

2, then the
function h defined by h(x) = 0 for each x ∈ V (P ′), h(s) = 3 and h(x) = g(x)
for other vertices x, is a TDRDF on G and so γtdR(G) ≤ ω(h) ≤ ω(g) + 2 ≤
4(n−2)

3 +2 < 4n
3 , as desired. If g(s) ≥ 1 and P ′ = v1v2v3v4 ∈ P ′

4, then the function
h defined by h(v1) = h(v4) = 0, h(v2) = 1, h(v3) = 2, h(s) = 3 and h(x) = g(x)
for other vertices x, is a TDRDF on G and so γtdR(G) ≤ ω(h) ≤ ω(g) + 5 ≤
4(n−4)

3 +5 < 4n
3 , as desired. Hence we may assume that g(s) = 0. One can verify

that g(u1)+g(u2)+g(u3)+g(u4) ≥ 6. Define the function h by h(u1) = h(u4) = 0,
h(u2) = 1, h(u3) = 2, h(x) = 1 for each x ∈ V (P ′), h(s) = 3 and h(x) = g(x)
for other vertices x when P ′ ∈ P ′

2; and by h(u1) = h(u4) = h(v1) = 0, h(u2) =
h(v2) = h(v4) = 1, h(u3) = h(v3) = 2, h(s) = 3 and h(x) = g(x) for other vertices
x when P ′ = v1v2v3v4 ∈ P ′

4. In either case, it is easy to check that h is a TDRDF

on G and hence γtdR(G) ≤ ω(h) ≤ ω(g) + |V (P ′)| ≤ 4(n−|V (P ′)|)
3 + |V (P ′)| < 4n

3 ,
as desired.

Thus Claim 4 is true. �

Claim 5. If there are no two M -ear paths P and P ′ in P ′
2 ∪ P ′

4 such that every

leaf of P and P ′ is adjacent to the same vertex in M , then γtdR(G) ≤ 4n
3 .

Proof. First, suppose that there exists an M -ear path P ∈ P ′
2 ∪ P ′

4 whose
leaves are adjacent to the same vertex, say s, in M such that dG(s) = 4. Let
NG(s)\V (P ) = {w1, w2} and let G′ be the graph obtained from G − (V (P ) ∪
{s}) by adding a new edge w1w2. Obviously, G′ has minimum degree at least

two and hence by the induction hypothesis, γtdR(G
′) ≤ 4|V (G′)|

3 . Let g be a
γtdR(G

′)-function. If P = u1u2 ∈ P ′
2, then the function h defined by h(u1) = 0,

h(u2) = 1, h(s) = 3 and h(x) = g(x) for other vertices x, is a TDRDF on

G and hence γtdR(G) ≤ ω(h) = ω(g) + 4 = γtdR(G
′) + 4 ≤ 4(n−3)

3 + 4 = 4n
3 . If

P = u1u2u3u4 ∈ P ′
4, then the function h defined by h(u1) = 0, h(u3) = h(u4) = 1,

h(u2) = h(s) = 2 and h(x) = g(x) for other vertices x when g(w1) + g(w2) = 0,
and by h(u1) = h(u4) = 0, h(u2) = 1, h(u3) = 2, h(s) = 3 and h(x) = g(x)
for other vertices x when g(w1) + g(w2) ≥ 1, is a TDRDF on G and hence

γtdR(G) ≤ ω(h) = ω(g) + 6 = γtdR(G
′) + 6 ≤ 4(n−5)

3 + 6 < 4n
3 , as desired.

Second, suppose that for any M -ear path P ∈ P ′
2 ∪ P ′

4, two leaves of P
are adjacent to the same vertex in M of degree at least 5. For k ∈ {2, 4}, let
mk = |P ′

k| and let P ′
4 =

{

vi1v
i
2v

i
3v

i
4 : 1 ≤ i ≤ m4

}

. From our earlier assumption,
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we note that P ′
2 ∪ P ′

4 6= ∅. Let X =
⋃

P∈P ′

2
∪P ′

4

V (P ) and let G′ = G−X. Since

P = P1 ∪P2 ∪P4, we have G′ ∈ R and hence by Lemma 13, G′ has a TDRDF g
that assigns two to every vertex of degree at least three and ω(g) ≤ 4(n−|X|)

3 . It is
easy to check that the function h defined by h(x) = 1 for each x ∈

⋃

P∈P ′

2

V (P ),

h(vi1) = h(vi4) = 0 for 1 ≤ i ≤ m4, h(vi2) = h(vi3) = 2 for 1 ≤ i ≤ m4 and
h(x) = g(x) for each x ∈ V (G′), is a TDRDF on G and hence γtdR(G) ≤ ω(h) =

ω(g) + |X| ≤ 4(n−|X|)
3 + |X| < 4n

3 , implying that Claim 5 is true. �

The proof is completed.
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