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Abstract

The betweenness structure of a finite metric space M = (X, d) is a pair
B(M) = (X,βM ) where βM is the so-called betweenness relation of M that
consists of point triplets (x, y, z) such that d(x, z) = d(x, y) + d(y, z). The
underlying graph of a betweenness structure B = (X,β) is the simple graph
G(B) = (X,E) where the edges are pairs of distinct points with no third
point between them. A connected graph G is uniquely representable if there
exists a unique metric betweenness structure with underlying graph G. It
was implied by previous works that trees are uniquely representable. In
this paper, we give a characterization of uniquely representable graphs by
showing that they are exactly the block graphs. Further, we prove that two
related classes of graphs coincide with the class of block graphs and the class
of distance-hereditary graphs, respectively. We show that our results hold
not only for metric but also for almost-metric betweenness structures.

Keywords: finite metric space, metric betweenness, block graph, distance-
hereditary graph, graph representation.
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1. Introduction

Metric space is a universal concept with various applications in physics, molecular
biology and phylogenetics as well as in different branches of mathematics includ-
ing geometry, topology, graph theory, computer science and algebra. Although
finite metric spaces are trivial objects from a topological point of view, they have
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rich combinatorial properties which were investigated from different angles over
the last century. The concept of metric betweenness appears to play a central
role in the related literature which ranges from combinatorial geometry to metric
graph theory.

An important line of study in metric graph theory was concerned with the ax-
iomatization of different graph classes in terms of geodesic betweenness and more
generally, in terms of different path transit functions. Further, graph classes satis-
fying certain transit axioms were characterized in different ways, for example, by
means of forbidden induced subgraphs. Among the earliest results are Sholan-
der’s axiomatic characterization of trees, lattices and partially ordered sets in
terms of segments, medians and betweenness [45].

The (geodesic) interval function of a connected graph is one of the most
fundamental concepts in metric graph theory. It was first extensively studied
by Mulder [35], who introduced the five classical axioms of the interval function
and used the interval function to study different classes of graphs. In a series
of papers starting from 1994, Nebeský et al. presented a characterization of the
interval function of a connected graph in terms of first order transit axioms, each
time improving the proof [36, 38, 39, 40, 41, 42]. Their approach was to extend
the set of the five classical axioms with additional postulates.

Besides the interval function, two other path transit functions were exten-
sively studied on connected graphs: the induced path function and the all-paths
function. In [37], Mulder introduced the general notion of transit function to
unify the three concepts and presented a list of prototype problems that can be
uniformly applied to different kinds of transit functions.

In [12], Changat et al. characterized the all-paths function of a connected
graph by using only first-order transit axioms. Interestingly, Nebeský established
in [43] that such a characterization of the induced path function J of an arbi-
trary connected graph is impossible. Nevertheless, Changat et al. succeeded in
axiomatizing J for certain classes of graphs [15, 16]. The authors also investi-
gated different axiomatic restrictions on J such as the Peano axiom, the Pasch
axiom and monotonicity [14, 16, 19]. Several well-known graph classes—including
trees, block graphs, bipartite graphs, chordal graphs and Ptolemaic graphs—were
characterized by axiomatizing their interval function or induced path function
[4, 13, 18]. For a thorough survey on geodesic and induced path betweenness,
see [17].

Beside the above mentioned results, there are two other lines of research
that are related to the topic of this paper. Based on the pioneering work of
Isbell [30] and Buneman [10], Dress et al. developed T-theory, a combinatorial
theory of discrete metric spaces, and extensively studied algorithmic and com-
binatorial aspects of phylogenetic trees [5, 26]. These results have a wide range
of applications in evolutionary biology. Another notable problem that is related



to metric betweenness and gained a lot of attention lately is the generalization
of the de Bruijn-Erdős theorem—known from geometry—to finite metric spaces,
originally conjectured by Chen and Chvátal in 2008 [21]. The conjecture is still
open but has already been proved for several important classes of metric spaces
and graph metrics [1, 3, 7, 8, 22, 31, 44], among others, for metric spaces induced
by distance-hereditary graphs [2].

The aim of our research in the most general sense is to better understand
the combinatorial aspects of the metric betweenness relation. We believe that
finite metric spaces are interesting objects on their own right, therefore, there
are some important differences between our approach and that of metric graph
theory. First, instead of studying metric properties of graphs to draw graph-
theoretic conclusions, we focus on the combinatorial aspects of finite metric spaces
with the help of graph-theoretic tools and arguments. Second, we formulate
our results in the language of the metric betweenness relation. It is essentially
equivalent to the language of transit functions but better suited for potentially
non-graphic problems. Third, we do not restrict our attention to betweenness
structures obtained in some way from simple graphs but only require them to be
metric or almost-metric (see Definition 1). Results obtained in this framework
are general enough to allow for a broader range of applications in different areas
of mathematics and natural sciences.

2. Definitions

A finite metric space is a pair M = (X, d) where X is a finite nonempty set and
d is a metric on X, i.e., an X × X → R function which satisfies the following
conditions for all x, y, z ∈ X.

1. d(x, y) = 0⇔ x = y (identity of indiscernibles);

2. d(x, y) = d(y, x) (symmetry);

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle-inequality).

The non-negativity of metric follows from the definition, as for all x, y ∈ X,
0 = d(x, x) ≤ d(x, y) +d(y, x) = 2d(x, y). We will refer to the ground set and the
metric of a metric space M by X(M) and dM , respectively. All metric spaces in
this paper will be assumed to be finite (|X(M)| <∞).

In order to capture the relevant combinatorial properties of metric spaces, we
introduce the following abstraction. A betweenness structure is a pair B = (X,β)
where X is a nonempty finite set and β ⊆ X3 is a ternary relation, called the
betweenness relation of B. The statement (x, y, z) ∈ β will be denoted by (x y z)B
or simply by (x y z) if B is clear from the context, and we say that y is between
x and z.



We say that a betweenness structure C = (X, γ) is an extension of B (in
notation, B 4 C) if β ⊆ γ. The substructure of B induced by a nonempty subset
Y ⊆ X is the betweenness structure B|Y = (Y, β ∩ Y 3).

We believe that stating and proving our results on the abstraction level of
betweenness structures makes our arguments clearer and easier to understand,
as they are essentially about the combinatorial properties of the betweenness
relation of metric spaces.

There is a natural way to associate a betweenness structure with a met-
ric space. The betweenness structure induced by a metric space M = (X, d) is
B(M) = (X,βM ) where

βM = {(x, y, z) ∈ X3 : d(x, z) = d(x, y) + d(y, z)}

is the betweenness relation of M . To simplify notations, we will write (x y z)M
for (x y z)B(M).

The betweenness structure B is metric if it is induced by some metric space
M = (X, d). A metric betweenness relation satisfies the following elementary
properties for any three points x, y, z ∈ X.

(P1) (x x z);

(P2) (x y z)⇒ (z y x);

(P3) (x y z) ∧ (y x z)⇒ x = y.

The trichotomy of betweenness follows straight from properties (P1)–(P3): for
any three distinct points x, y, z ∈ X, at most one of the relations (x y z), (y z x),
(z x y) can hold.

Additionally, for any four points x, y, z, w ∈ X, we have

(P4) (x y z) ∧ (x w y)⇒ (x w z) ∧ (w y z).

This property, which we call the four relations property, is the simplest non-
trivial property of metric betweenness. Notice that properties (P1)–(P4) are
not sufficient to guarantee that the betweenness structure is metric (think, for
example, about the Fano plane, which is proved to be non-metric [20, 23]).

Definition 1. A betweenness structure is almost-metric if it satisfies properties
(P1)–(P4).

Different notions of betweenness were developed by Sholander [45], Morgana
[34] and Burigana [11]. In this context, our concept of almost-metric between-
ness can be best viewed as a stronger version of Morgana’s betweenness. There,
trichotomy and the condition (x y z) ∧ (x w y) ⇒ (x w z) is assumed in place
of properties (P3) and (P4). To see that our version is indeed a strengthen-
ing, consider the set X = {w, x, y, z} of four points with betweenness relation



β = {(w, y, z), (z, y, w), (w, x, y), (y, x, w), (w, x, z), (z, x, w)} ∪ {(u, u, v) : u, v ∈
X} ∪ {(u, v, v) : u, v ∈ X}. The betweenness structure B = (X,β) is not almost-
metric as it violates property (P4), but β is a betweenness in the sense of Morgana.

Quite interestingly, several properties of finite metric spaces can be general-
ized to almost-metric betweenness structures without modification. The reader
will see that our main results fall in this category as well.

The underlying graph (or adjacency graph) of an almost-metric betweenness
structure B = (X,β) is the graph G(B) = (X,E(B)) where the edges are such
pairs of distinct points for which no third point lies between them (see Figure 1).
More formally,

E(B) =

{
xz ∈

(
X

2

)
: ∀ y ∈ X, (x y z)B ⇒ y = x ∨ y = z

}
.

x

y
B G(B)

−→

Figure 1. The underlying graph of a metric betweenness structure induced by five points
in the Euclidean plane.

These edges are also called primitive pairs by some authors. The underlying
graph of a metric space M is G(M) = G(B(M)). The underlying graph is an
important graph-theoretic tool in studying betweenness structures, therefore, it
is highly desirable to gain a better understanding of its properties.

The fact that the underlying graph of a metric betweenness structure is
connected is part of the mathematical folklore. Changat et al. generalized this
observation to the path transit function equivalent of almost-metric betweenness
structures in [16].

Proposition 2 [16]. The underlying graph of an almost-metric betweenness struc-
ture is connected.

Next, we introduce some definitions for simple and weighted graphs. A
weighted graph is a triple W = (V,E, ω) where G = (V,E) is a simple con-
nected graph and ω is a positive real-valued function on the set of edges, also
called the edge-weighting of W . We will also denote V , E, G and ω by V (W ),



E(W ), G(W ) and ωW , respectively. The connectivity of G and the positivity
of ω guarantee that a proper weighted graph metric can be defined on W (see
below). We note that any simple connected graph G = (V,E) can be regarded as
a weighted graph W (G), with edge-weighting ωG : E → {1}, thus, any definitions
for weighted graphs can be naturally applied to simple connected graphs as well.

Let W = (V,E, ω) be a weighted graph and P = v0e1v1e2 · · · e`v` be a path
in W . The length of P is |P | = ` and the weight of P is ω(P ) =

∑`
i=1 ω(ei). We

want to emphasize that the length and the weight of a path are usually different,
even though the two coincide in case of simple graphs. The metric space induced
by the weighted graph W is M(W ) = (V, dW ) where dW (u, v) is the minimum
weight of a u-v path in W for any vertices u, v ∈ V . Such a path is called a u-v
geodesic of W . Note that subpaths of a geodesic are also geodesics. Because of
our definition of weighted graphs, dW is a metric that we call the weighted graph
metric of W . For a simple connected graph G, dG is the usual graph metric
induced by the shortest paths of the graph. We remark that every (finite) metric
space M = (X, d) is induced by some weighted graph W . For example, take d as
the edge-weighting of a complete graph on vertex set X.

The betweenness structure induced by W is the betweenness structure in-
duced by M(W ), denoted by B(W ). For simplicity, we will write (x y z)W for
(x y z)B(W ). Let us remark that the betweenness relation of a weighted graph W
can be described in terms of its geodesics: (x y z)W holds if and only if y is on
an x-z geodesic of W .

The weighted graph Z is a weighted subgraph of W (in notation, Z ≤ W )
if G(Z) ≤ G(W ) and ωZ is the restriction of ωW to E(Z). Let U be a set of
vertices that induces a connected subgraph of G(W ). The weighted subgraph
of W induced by U is the (uniquely determined) weighted subgraph W [U ] ≤ W
which satisfies G(W [U ]) = G(W )[U ]. We say that a weighted subgraph Z ≤ W
is isometric if M(Z) is a metric subspace of M(W ), i.e., for every x, y ∈ V (Z),
dZ(x, y) = dW (x, y). We remark that B(Z) ≤ B(W ) is also true in that case.

By graph, we will always mean a finite simple connected graph in the rest of
the paper. A betweenness structure/metric space is

• graphic if it is induced by a graph;

• ordered if it is induced by a path.

The ordered betweenness structure induced by the path P = x1x2 · · ·xn will
be denoted by [x1, x2, . . . , xn]. We also say that Y is an ordered subset of B if it
induces an ordered substructure of B. Remark that almost-metric betweenness
structures are typically not graphic. However, there is an important connection
between the underlying graph and the graphicity of an almost-metric betweenness
structure.



Observation 3. For every graph G, G(B(G))) = G. Further, for every almost-
metric betweenness structure B, B(G(B)) = B if and only if B is graphic.

Next, we recall some useful results about block graphs and distance-heredi-
tary graphs. Graph G is a block graph if every block (2-connected component) of
G is a clique, or equivalently, if every cycle of G induces a complete subgraph (see
Figure 2). Block graphs can be seen as natural generalizations of trees. Graph
G is a distance-hereditary graph if all of its connected induced subgraphs are
isometric. It can be easily seen that all block graphs are distance-hereditary.

Figure 2. A block graph.

Both block graphs and distance-hereditary graphs are well-understood graph
classes and have been characterized in many different ways. Block graphs were
first studied by Harary in [27]. They were characterized in terms of various
metric properties (such as the four point condition, the Ptolemaic property and
the weakly geodetic property) [28, 32], forbidden induced subgraphs [6], bulge
[28], k-Steiner intervals [9], vertex induced partitions [25] and betweenness axioms
[4]. Further, Le and Tuy gave a characterization and a linear time recognition
algorithm for squares of block graphs [33].

Distance-hereditary graphs were characterized in terms of conditions on paths
and cycles by Howorka [29], who also showed that distance-hereditary graphs
are perfect. Bandelt and Mulder gave a good summary on the most important
characterizations of distance-hereditary graphs including recursive, metric and
forbidden subgraph characterizations [6], while Morgana and Mulder provided a
characterization in terms of axioms imposed on the induced path function [34].

Below, we list some of the results on which the proof of Theorem 13 and
Theorem 14 will rely on. First, observe the following property of block graphs,
which is a straightforward consequence of the definition.

Observation 4. In a block graph, any two vertices are connected by a unique
induced path.

A chord of a cycle is an edge that connects two non-consecutive vertices
of the cycle. A graph is chordal if it does not contain any induced cycle of



length at least four, or equivalently, if it does not contain a chordless cycle. A
diamond is a 4-cycle with exactly one chord (see Figure 3(b)). Next, we recall a
characterization of block graphs by Bandelt and Mulder, and a characterization
of distance-hereditary graphs by Howorka.

Proposition 5 [6]. Block graphs are exactly the diamond-free chordal graphs.

Proposition 6 [29]. A graph is distance-hereditary if and only if every induced
path in it is a geodesic.

The following statement is an easy consequence of Proposition 6.

Observation 7. A distance-hereditary graph does not have any induced cycle of
length at least 5.

3. Main Results

Below, we introduce and characterize uniquely representable graphs, as well as
two related classes of graphs that bound their representations from below and
from above (Theorem 13 and Theorem 14). These results can be regarded as
a new metric characterization of block graphs and distance-hereditary graphs
and—as we point out later—generalize an interesting observation of Dress about
trees (see Observation 15).

We say that an almost-metric betweenness structure B is a representation of a
graphG ifG is the underlying graph of B. It follows from Observation 3 that B(G)
is always a metric representation of G but there may be other representations.
Below, we investigate the question whether it is possible to infer a betweenness
structure from its underlying graph or at least obtain a subset or superset of its
betweenness relation.

Definition 8. A graph G is uniquely representable in the metric/almost-metric
sense (ur-m/ur-am) if B(G) is the only metric/almost-metric representation of G.

We will see later that not all graphs are uniquely representable, moreover,
one may have a representation B of a graph G such that neither B 4 B(G) nor
B < B(G) holds (Lemma 20). This motivates the following generalizations of
Definition 8.

Definition 9. A graph G

• bounds its representations from below in the metric/almost-metric sense (brb-
m/brb-am) if B(G) 4 B holds for all metric/almost-metric representations B
of G;



• bounds its representations from above in the metric/almost-metric sense (bra-
m/bra-am) if B(G) < B holds for all metric/almost-metric representations B
of G.

We denote the corresponding classes of graphs by Cmur, Camur , Cmbra, Cambra , Cmbrb and
Cambrb , respectively. It is easy to see that the following relations hold between these
classes.

Observation 10. 1. Cmur = Cmbra ∩ Cmbrb and Camur = Cambra ∩ Cambrb ;

2. Camur ⊆ Cmur, Cambra ⊆ Cmbra and Cambrb ⊆ Cmbrb.

Below, we give an example for a metric representation B of a graph G such
that B(G) � B.

Example 11. Let G be a 4-cycle with consecutive vertices x1, x2, x3, x4, and let
W denote the weighted graph obtained from G by increasing the weight of the
edge e = x4x1 by 1 (so that ω(e) = 2). Then,

• the non-trivial betweennesses of B(G) (up to symmetry) are (x1 x2 x3),
(x2 x3 x4), (x3 x4 x1) and (x4 x1 x2);

• the non-trivial betweennesses of B(W ) (up to symmetry) are (x1 x2 x3) and
(x2 x3 x4).

For example,

dW (x3, x1) = 2 < dW (x3, x4) + dW (x4, x1)

dW (x4, x2) = 2 < dW (x4, x1) + dW (x1, x2).

Now, it is obvious that B = B(W ) is a representation of G and B(G) � B. It can
also be shown that G bounds its representations from above.

Remark 12. Repeating the construction in Example 11 with an odd cycle leads
to a completely different outcome, as one would get a metric representation B of
the graph G ' C2k+1 for which B(G) � B. This shows that the relation between
a graph and its representations is sensitive to the parity of the cycles in the graph.

The next two theorems are the main results of this paper. We characterize
uniquely representable graphs, as well as graphs that bound their representations
from below and from above in both the metric and the almost-metric sense. The
proofs can be found in Section 4.

Theorem 13. The following statements are equivalent.

1. G ∈ Cmbra;

2. G ∈ Cambra ;

3. G is a distance-hereditary graph.



Theorem 14. The following statements are equivalent.

1. G ∈ Cmur;
2. G ∈ Camur ;

3. G ∈ Cmbrb;
4. G ∈ Cambrb ;

5. G is a block graph.

Our motivation for characterizing uniquely representable graphs was two-
folded. First, we wanted to have a better understanding on the relationship of
betweenness structures and their underlying graphs. We have observed that under
certain conditions, a metric betweenness structure can be fully reconstructed from
its underlying graph, which is exactly what unique representability means. For
example, in [24], Remark R3, Dress made an interesting observation which implies
that trees are uniquely representable in the metric sense.

Observation 15 [24]. Let B be a metric betweenness structure such that T =
G(B) is a tree. Then B is induced by T .

Our second motivation is to find useful generalizations of Observation 15 that
can be applied to a larger set of problems. Graphs that bound their represen-
tations from below and from above arise as natural generalizations of uniquely
representable graphs. As Theorems 13 and 14 show, these broader classes of
graphs have nice characterizations, too.

We would like to highlight two interesting aspects the main results. First,
there is no difference between the metric and almost-metric cases: Cmur = Camur ,
Cmbra = Cambra and Cmbrb = Cambrb . Second, the results show a significant asymmetry:
while Cmur is a proper subclass of Cmbra, it coincides with Cmbrb (and the same holds
in the almost-metric case).

Finally, we note that in [37], Prototype problem 3, Mulder discussed a ques-
tion involving a kind of unique representability but it is applied to transit func-
tions and convexities instead of betweenness structures and underlying graphs.
Although the concept is quite different from the one discussed here, this exam-
ple shows that unique representability is a general concept, and investigating
related problems for different kinds of combinatorial structures may give rise to
interesting new ideas and results.

4. Proof of the Main Results

We prepare for the proof of Theorems 13 and 14 by introducing tight weighted
graphs and extending the concept of geodesics to almost-metric betweenness
structures.



We say that an edge e = xy of a weighted graph W is tight if e is the unique
x-y geodesic in W , in other words, every x-y geodesic in W is of length 1. A
weighted graph is tight if all of its edges are tight. Note that all simple graphs are
tight. Further, every geodesic in a tight weighted graph W is an induced path in
G(W ).

Proposition 16. If W is a tight weighted graph, then G(W ) = G(B(W )).

Proof. Let W = (V,E, ω) be a tight weighted graph. Observe that G(B(W )) ≤
G(W ) is true for any weighted graph W , since every vertex y on an x-z geodesic
of W satisfies (x y z)W . Thus, it suffices to show that G(W ) ≤ G(B(W )).
Let e = xz be an edge of G(W ). If e /∈ E(B(W )), then there exists a vertex
y ∈ V \{x, z} such that (x y z)W holds, i.e., dW (x, z) = dW (x, y) + dW (y, z). But
then, we would get an x-z geodesic of length at least 2 by concatenating an x-y
and a y-z geodesic, in contradiction with the tightness of e.

Remark 17. Proposition 16 can be reversed: if G(W ) = G(B(W )), then W is a
tight weighted graph.

Next, we generalize the notion of geodesics to almost-metric betweenness
structures and summarize their most important properties. Let B be an almost-
metric betweenness structure on ground set X, and let x, z ∈ X be two points of
B. An x-z geodesic in B is an induced x-z path P in G(B) such that B|V (P ) is
an ordered substructure of B.

Proposition 18. Let B be an almost-metric betweenness structure on ground set
X. Then

1. for every geodesic P in B, B|V (P ) = B(P );

2. for every maximal ordered set Y in B, G(B)[Y ] is a geodesic in B;

3. for every x, y ∈ X, there exists an x-y geodesic in B;

4. if B is induced by a tight weighted graph W , then the geodesics of B coincide
with the geodesics of W ;

5. for every x, y, z ∈ X, (x y z)B holds if and only if there exists an x-z geodesic
in B that contains y;

6. for every almost-metric betweenness structure C for which G(C) = G(B)
holds, B 4 C if and only if all geodesics of B are geodesics of C.

Proof. Part 1 is obvious from the definition of geodesics, while Part 2 follows
from the four relations property: if B|Y = [y1, y2, . . . , yk] and G(B)[Y ] is not
an induced path, then there exists an index 1 ≤ i < k and a point x ∈ X\Y
such that (yi x yi+1)B, which implies that Y + x is ordered by property (P4), in
contradiction with the maximality of Y .



Part 3 is a simple consequence of Part 2: take the geodesic induced by a
maximal ordered set containing x and y and then take its subpath between x
and y.

As for Part 4, let W = (V,E, ω) and G = G(W ). Since W is tight, G(B) =
G by Proposition 16, hence, it is enough to show that an induced path P =
y1y2 · · · y` in G is a geodesic in W if and only if it is a geodesic in B (here, we
used the fact that all geodesics in W and B are induced paths).

Observation 19 (Polygon-equality). Let B be a metric betweenness structure
induced by a metric space M = (X, d) and Y = {y1, y2, . . . , y`} ⊆ X be a
nonempty set of points in B. Then d(y1, y`) =

∑`−1
i=1 d(yi, yi+1) if and only if

B|Y = [y1, y2, . . . , y`].

Now, the above statement follows from Part 1 and Observation 19: P is
a geodesic in W if and only if dW (y1, y`) =

∑`−1
i=1 dW (yi, yi+1) if and only if

B|V (P ) = [y1, y2, . . . , y`] if and only if P is a geodesic in B.
In order to prove Part 5, suppose first that (x y z)B holds, and let Y be a

maximal ordered set in B that contains x, y and z. By Part 2, P = G(B)[Y ] is
a geodesic in B, and Part 1 implies B|Y = B(P ) from which (x y z)P follows.
Second, suppose that P is an x-z geodesic in B and y ∈ V (P ), i.e., (x y z)P
holds. Because of Part 1, B|V (P ) = B(P ), hence, (x y z)B holds as well.

Finally, Part 6 is a straightforward consequence of Part 5.

We conclude preparations with a lemma that plays a key role in the proof of
the main results.

Lemma 20. Let G be a graph that contains an induced path which is not a
geodesic in G. Then G /∈ Cmbra and G /∈ Cmbrb.
Proof. We construct a metric representation B of G such that B 64 B(G) and
B 6< B(G). Let P be an induced x-y path of length ` in G which is not a
geodesic. Further, let us define the weighted graph W for which G(W ) = G
and ωW = 1E(G)\E(P ) + ε1E(P ) where 0 < ε < 1/` and 1A denotes the indicator
function of the set A ⊆ E(G).

First, we show that P is an x-y geodesic in W and it is the only one. Let Q
be an x-y geodesic in W . The weight of Q is ω(Q) ≤ ω(P ) = ε` < 1, hence, Q
cannot have edges from outside of E(P ). Therefore, Q must be a subpath of P
that connects x and y, so, Q = P .

Next, we prove that W is tight. The edges of P are obviously tight because
they are the lightest edges of W . Now, let e = uv ∈ E(G)\E(P ). If e is not tight,
then there exists a u-v geodesic Q′ of length at least 2 such that ω(Q′) ≤ ω(e) = 1.
Again, this can only be true if Q′ is a subpath of P . But then, e would connect
two non-adjacent vertices of P , which contradicts the choice of P as an induced
path.



Now, let B = B(W ) and let Q be an x-y geodesic in G. Note that Q 6= P
because P was not a geodesic in G. On the other hand, we have shown that P is
a unique geodesic in W , thus, Q cannot be a geodesic in W . Finally, we obtain
from Proposition 16 and Observation 3 that G(B) = G(W ) = G = G(B(G)),
so we can conclude by Part 4 and Part 6 of Proposition 18 that B 64 B(G) and
B 6< B(G).

Now, we are ready to prove Theorem 13 and Theorem 14.

Proof of Theorem 13. Let G be a fixed graph. We show the following chain
of implications: G ∈ Cambra ⇒ G ∈ Cmbra ⇒ G is a distance-hereditary graph
⇒ G ∈ Cambra .

Step 1 (G ∈ Cambra ⇒ G ∈ Cmbra). This step follows from Observation 10.

Step 2 (G ∈ Cmbra ⇒ G is a distance-hereditary graph). By Proposition 6, it is
enough to show that all induced paths in G are geodesics, which follows from
Lemma 20.

Step 3 (G is a distance-hereditary graph ⇒ G ∈ Cambra). Let B be an almost-
metric representation of G. In order to prove B 4 B(G), it suffices to show, by
Part 6 of Proposition 18, that every geodesic of B is a geodesic of B(G). If P is
a geodesic of B, then it is an induced path in G(B) = G. Therefore, P must be
a geodesic in G by Proposition 6 and thus P is a geodesic in B(G) by Part 4 of
Proposition 18.

Proof of Theorem 14. Let G = (V,E) be a fixed graph. We show the following
chain of implications: G ∈ Cmur ⇒ G is a block graph ⇒ G ∈ Camur ⇒ G ∈ Cambrb ⇒
G ∈ Cmbrb ⇒ G ∈ Cmur.
Step 1 (G ∈ Cmur ⇒ G is a block graph). Assume to the contrary that G is
not a block graph. It follows from G ∈ Cmur ⊆ Cmbra that G is distance-hereditary
by Theorem 13, and we obtain from Proposition 5 and Observation 7 that G
contains an induced subgraph H that is either a diamond or a cycle of length 4.

Let x, y, u and v denote the vertices of H such that xy /∈ E, and let e = xu,
which is an edge of H irrespective of whether H is a diamond or a 4-cycle (see
Figure 3). Further, let us define a weighted graph W = (V,E, ω) where ω =
1E + 1

21{e}, and let B = B(W ) and Z = W [{x, y, u, v}] be an induced subgraph
of W .

We show that B is a representation of G but B 6= B(G), in contradiction with
G ∈ Cmur. Observe that W is tight because every path of length at least 2 in W is
of weight at least 2, which is greater than any of the edge weights (32 is an upper
bound for ω). Thus, G(B) = G(W ) = G by Proposition 16. Also notice that
(x u y)H is true but (x u y)Z is false, moreover, H is an isometric subgraph of G
and Z is an isometric weighted subgraph of W because all distances in H and Z



are less than 3. This implies that (x u y)G holds but (x u y)W does not, hence,
B 6= B(G).

x
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e

(a) H ' C4
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y

v

e

(b) H ' D

Figure 3. Graph H in Step 1 of the proof of Theorem 14.

Step 2 (G is a block graph ⇒ G ∈ Camur ). Let G be a block graph and B be an
almost-metric representation of G. By Part 4 and Part 6 of Proposition 18, it
suffices to show that G and B have the same geodesics.

Let x and y be any two vertices of G, and let P and P ′ be x-y geodesics in
G and B, respectively. Note that such a P ′ exists by Part 3 of Proposition 18.
Since both P and P ′ are induced x-y paths in G, Observation 4 yields P = P ′,
which completes the proof of Step 2.

Step 3 (G ∈ Camur ⇒ G ∈ Cambrb ). This step follows from Observation 10.

Step 4 (G ∈ Cambrb ⇒ G ∈ Cmbrb). Again, this step follows from Observation 10.

Step 5 (G ∈ Cmbrb ⇒ G ∈ Cmur). If G ∈ Cmbrb, then because of Lemma 20, every
induced path in G must be a geodesic, hence, G is distance-hereditary by Propo-
sition 6. Finally, we obtain from Theorem 13 that G ∈ Cmbra, therefore, G ∈ Cmur
by Observation 10.

5. Conclusion

Motivated by our observations on finite metric spaces, we have defined the class of
uniquely representable graphs and the class of graphs that bound their represen-
tations from below and from above. These graph-classes have been characterized
in Theorem 13 and Theorem 14 in both the metric and the almost-metric sense.
In particular, we have shown that the uniquely representable graphs are exactly



the block graphs and pointed out that this result generalizes an interesting ob-
servation of Dress about trees.

Lastly, we would like to mention two open problems on graph representations
that can be potential subjects of future research. By definition, uniquely repre-
sentable graphs have the minimum number of representations. One may also be
interested in the other extreme.

Problem 21. What is the maximum number of metric/almost-metric represen-
tations of a graph on n vertices and which graphs realize that maximum?

We conjecture the following.

Conjecture 22. The number of metric representations of a graph of order n is
maximized by the balanced complete bipartite graph of order n.

Note that the balanced complete bipartite graph Kbn2 c,dn2 e on n vertices have

at least 2bn2 cdn2 e−n+1 metric representations. Namely, pick one vertex from both
classes of Kbn2 c,dn2 e, and set the weight of the edges adjacent to these vertices to

1. For all other edges, choose a weight arbitrarily from the set {1, 2}. It can be
easily seen that different weighted graphs obtained in this way induce different
metric representations of Kbn2 c,dn2 e.

We have weakened the property of unique representability by only requiring
B(G) to be the smallest/largest element in the poset of representations of G,
where elements are ordered according to the relation 4. We can further weaken
this condition by saying that B(G) is a minimal/maximal element in the poset of
representations.

Problem 23. Characterize graphs G for which B(G) is a minimal/maximal ele-
ment in the poset of its metric/almost-metric representations.
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