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Abstract

Let k be the largest integer such that m ≥ (n−k)(n−k−1)
2 + qk ≥ q(n− 1)

for some positive integers n,m, q. Let S(q, n,m) be a set of all q-connected
chordal graphs on n vertices and m edges for n−k

2 ≥ q ≥ 2. Let t(G) be
the number of spanning trees in graph G. We identify G ∈ S(q, n,m) such
that t(G) < t(H) for any H that satisfies H ∈ S(q, n,m) and H ≇ G. In
addition, we give a sharp lower bound for the number of spanning trees of
graphs in S(q, n,m).
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1. Introduction

When referring to a graph in this paper, we mean a finite, undirected, simple
graph, i.e., a graph without loops or parallel edges. A graph G is chordal if
every cycle in G that is longer than three has a chord. Chordal graphs have been
extensively studied, e.g., [10], and they belong to the family of perfect graphs
introduced by Lovász [6]. We say that vertex v dominates vertex w if every
neighbor of v is also a neighbor of w. Graph G = (V,E) is a threshold graph if
for any pair of vertices v, w ∈ V (G) either v dominates w or w dominates v [8].
A graph G is q-connected if removing any q − 1 vertices results in a connected
graph, while removing some q vertices results in disconnected graph. Let k be the
largest integer such that |E(G)| ≥ (|V (G)|−k)(|V (G)|−k−1)

2 + qk ≥ q(|V (G)| − 1). In
this paper, we focus on the minimum number of spanning trees t(G) in chordal

q-connected graph G for given q such that |V (G)|−k
2 ≥ q ≥ 2.
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Define the threshold q-connected graph Qn,m,q on n vertices and m edges as
follows. Qn,m,q consists of (n−k)-clique, joined to k−1 vertices of degree q, plus

one additional vertex of degree m− (n−k)(n−k−1)
2 −q(k−1) ≥ q, joined to vertices

of the clique for some positive integer k. Let x be the largest positive integer
such that m ≥ (n−x)(n−x−1)

2 + qx ≥ q(n − 1) for some positive integers n,m, q.
Define S(q, n,m) to be a set of all q-connected chordal graphs on n vertices and m
edges for n−x

2 ≥ q ≥ 2. We prove that G ∈ S(q, n,m) for given n,m, q minimizes
the number of spanning trees t(G) if and only if G ≃ Qn,m,q. In Figure 1, we
illustrate Qn,m,q with vertices v2, v3, . . . , vk each of degree q, which is less or equal
to half the size of (n− k)-clique, and with v1 of degree at least q. Note that if a
q-connected simple graph G exists on n vertices and m edges, and x exists that
satisfies above inequalities, then Qn,m,q exists for some positive integer k ≤ x.

 

v1 
v2 

v3 

vk 

(n-k)-clique 

Figure 1. Threshold q-connected graph Qn,m,q.

First, Kelmans and Chelnokov [5] proved that Qn,m,q obtained from the com-
plete graphKn by deleting edges incident to a single vertex minimizes the number
of spanning trees over the subset of connected graphs for given n vertices and m
edges. Later, Boesch at al. [1] conjectured that if Qn,m,q of Kelmans and Chel-
nokov cannot be obtained, then a special case of Qn,m,q, namelyQn,m,1, minimizes
the number of spanning trees over all connected simple graphs on n vertices and
m edges. They pointed out that solving this problem is important in studying
the lower bound of network reliability. About 20 years later we proved that con-
jecture [4]. Even though Qn,m,1 is unique among threshold graphs in respect
to minimizing the number of spanning trees, it is not unique among connected
graphs. Subsequently, we showed in [3] that specific subset of graphs minimizes
the number of spanning trees and represents all such graphs. Finally, in [2] it was
shown that there is a unique threshold G ∈ S(2, n,m) such that t(G) < t(H) for
any H that satisfies H ∈ S(2, n,m) and H ≇ G. In this paper, we extend this
latest result to G ∈ S(q, n,m), where n−k

2 ≥ q ≥ 2.



On q-Connected Chordal Graphs with Minimum Number of ... 1021

2. Our Approach and Preliminary Results

Our approach in determining that Q(n,m, q) minimizes the number of spanning
trees is based on two phases. In phase 1, we will use graph transformations to
identify our threshold graph, which will be done in next Section 3. In phase 2, we
will identify specific threshold graph, our Q(n,m, q), based on direct comparison
of the related functions, which will be done in the last Section 4.

Let N(v) denote the vertices that are neighbors to vertex v. The graph
shift(G,v,w) is obtained from G by, for all x ∈ N(v)\(N(w) ∪ {w}), deleting vx
and adding wx. It is known that if shift(G,v,w) = G for all v, w, then G is a
threshold graph [1, 8]. It was also shown in [4, 8, 9] that every connected graph
G can be transformed into a threshold graph H using a series of shift(G,v,w)
transformations. Consequently we have the following.

Theorem 1 [4]. For any connected graph G, there is a series of shift transforma-
tions that produces a threshold graph H, with the same numbers of vertices and
edges, such that t(H) ≤ t(G).

For 2-connected graphs, such a series of shift transformations that produces
a 2-connected threshold graph does not always exists [2]. For chordal q-connected
graph G, however, we show in the next section that such a series of shift trans-
formations does exist, and it transforms G to q-connected chordal graph H.

Let di be a degree of vertex vi. Let H = H(n; d1, d2, . . . , dk) denote a thresh-
old graph consisting of (n − k)-clique, with vertices vk+1, vk+2,. . . , vn, and an
independent set on the remaining k vertices, the i’th one of which is joined to
vk+1, vk+2, . . . , vk+di .

The following result for H = H(n; d1, d2, . . . , dk) is known.

Theorem 2 [4]. Suppose H = H(n; d1, d2, . . . , dk) is a connected graph, with
d1 ≥ d2 · · · ≥ dk. Set d0 = n− k and dk+1 = 1. Then

(1) t(H) = (n− k)−2
k
∏

i=0

(

di(n− k + i)di−di+1

)

.

Since Karush-Kuhn-Tucker (KKT) conditions [7] cannot be established, in
Section 4 we will do a direct comparison of the functions by evaluating the con-
tinuous functions corresponding to (1) based on the following result.

Lemma 3 [2]. Let b, c, k, q, be given positive integers with b ≥ 3 and kb− k ≥
c > k. Let x0 = b, xk+1 = q, and let f(x1, x2, . . . , xk) =

∏k
i=0

(

xi(b+ i)xi−xi+1
)

.
The minimum of f over the region

P :=

{

x ∈ Rk :
k
∑

i=1

xi = c, b ≥ x1 ≥ x2 · · · ≥ xk ≥ q

}
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occurs at some point (x1, x2, . . . , xk) that satifies at most two of the following
inequalities strictly

b ≥ x1 ≥ x2 · · · ≥ xk ≥ q.

In summary, our approach in identifying chordal graph G ∈ S(q, n,m) that
minimizes t(G) relies on the following refinments.

(1) G → H(n; d1, d2, . . . , dk),

(2) H(n; d1, d2, . . . , dk) → H(n;n− k, n− k, . . . , n− k, dr, dr, . . . , dr, q, q, . . . , q),

(3) H(n;n − k, n − k, . . . , n − k, dr, dr, . . . , dr, q, q, . . . , q) → H(n;n − k, n − k,
. . . , n− k, dr, q, q, . . . , q),

(4) H(n;n− k, n− k, . . . , n− k, dr, q, q, . . . , q) → H(n; d1, q, q, . . . , q),

which will be done in the next two sections.

3. Generic Threshold Graph with Fewest Spanning Trees

In this section, we use notation shift(G, v, w) = shift1(G, v, w) if v, w are ad-
jacent, and shift(G, v, w) = shift2(G, v, w) if v, w are of distance 2 from each
other.

The following three theorems for 2-connected chordal graphs pertaining to
shift1(G, v, w) and shift2(G, v, w) were proved in [2].

Theorem 4 [2]. Let G(V,E) be a chordal 2-connected graph. Let v, w ∈ V (G)
be two adjacent vertices and shift1(G, v, w) = H 6= G. Then H is also chordal
q-connected graph and t(G) > t(H) for q ≥ 2.

Theorem 5 [2]. Let G(V,E) be a chordal 2-connected graph. Let D(G) be the set
of vertices in G of degree |V (G)| − 1 and G−D(G) is a disconnected graph. Let
v, w ∈ V (G) be two vertices, where dG(v, w) = 2 and shift2(G, v, w) = H 6= G.
Then for q ≥ 2 H is also chordal q-connected simple graph and t(G) > t(H).

Theorem 6 [2]. For any chordal 2-connected G that is not a threshold graph,
there is a series of shift transformations, consisting of shift1 and shift2, that
produces 2-connected threshold graph H, with the same numbers of vertices and
edges, such that t(H) < t(G).

We can extend these three theorems from 2-connected to q-connected chordal
graphs as follows.

Lemma 7. Let G(V,E) be a chordal q-connected graph for q ≥ 2. Let v, w ∈
V (G) be two adjacent vertices and shift1(G, v, w) = H 6= G. If shift1(G, v, w) =
H 6= G, then H is also chordal q-connected graph and t(G) > t(H).
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Proof. There must be at least q− 1 paths of length 2 between any two adjacent
vertices v, w in G. Otherwise, there would exist an induced cycle C containing
some edge ei and vertices v, w of length at least 4 — a contradiction. Hence,
shift1(G, v, w) = H 6= G produces q-connected graph H. Furthermore, by The-
orem 4 such H is also chordal and t(G) > t(H) if shift1(G, v, w) = H 6= G is
satisfied.

Lemma 8. Let G(V,E) be a chordal q-connected graph for q ≥ 2. Let D(G) be the
set of vertices in G of degree |V (G)|−1 and G−D(G) is a disconnected graph. Let
v, w ∈ V (G) be two vertices, where dG(v, w) = 2 and shift2(G, v, w) = H 6= G.
Then H is also chordal q-connected simple graph and t(G) > t(H).

Proof. Let dG(v, w) = 2 and shift2(G, v, w) = H 6= G. If removing D(G)
from G results in disconnected graph G′, then vertices v, w must belong to some
connected component W of G′. Then shift2(W, v,w) = W ′ 6= W is satisfied and
W ′ is connected. This implies that H is q-connected. In addition, by Theorem 5
H is chordal and t(G) > t(H).

Based on Lemmas 7–8 we can now state the following.

Theorem 9. For any chordal q-connected G that is not a threshold graph, there
is a series of shift transformations, consisting of shift1 and shift2, that produces
q-connected threshold graph H for q ≥ 2, with the same numbers of vertices and
edges, such that t(H) < t(G).

Proof. Follows directly based on Lemmas 7–8 and Theorem 6.
 

v2 v6 v2 

v3 v4 v5 

v6 

v7 v8 v1 

Figure 2. Example of transforming 2-connected chordal graph into Q8,13,2.

Consequently, Theorem 9 proves that any q-connected chordal graph G with
q ≥ 2 minimizes the number of spanning trees if and only if G is isomorphic
to some q-connected threshold graph. Figure 2 illustrates transformation of 2-
connected chordal graph on n = 8 vertices and m = 13 edges displayed on the
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left-hand side into chordal 2-connected graph Q8,13,2 displayed on the right-hand
side by executing two shift1 transformations from vertices v8, v4 to vertex v6,
followed by two shift1 transformations from vertices v8, v4 to vertex v2.

4. Specific Threshold Graph with Fewest Spanning Trees

Before presenting the main theorem of this section we first prove the following
two lemmas based on a direct comparison of the functions, since KKT conditions
[7] cannot be applied to (1). In the next lemma we will compare two feasible
functions over the feasible region where they are distinct and might be minimum
based on Lemma 3. This means that if c =

∑k
i=1 di and b = n− k in a threshold

graph H(n; d1, d2, . . . , dk), then the relation bk−k ≥ c ≥ qk+k must be satisfied
in order for these functions to be distinct.

Lemma 10. Let b, c, k, q be given positive integers with k, q ≥ 2, b/2 ≥ q, and
kb− k ≥ c =

∑k
i=1 xi ≥ kq+ k. Let x0 = b, xk+1 = 1, and let f(x1, x2, . . . , xk) =

∏k
i=0(xi(b + i)xi−xi+1). Let f1 = f(x1, x2, . . . , xk) if x1 = x2 = · · · = xk, and let

f2 = f(x1, x2, . . . , xk) if x1 = x2 = · · · = xr−1 = b > xr ≥ q and xr+1 = xr+2 =
· · · = xk = q, for r ≥ 1. Then, f1 > f2.

Proof. Let g1(b, c, k), g2(b, c, k, q) be two functions corresponding to f1, f2, re-
spectively, as follows

(2) g1(b, c, k) = bb−
c
k
+1
( c

k

)k

(b+ k)
c
k
−1

and
g2(b, c, k, q) = br

(

c+ q − (b− q)(r − 1)− qk
)

qk−r×

(3) (b+ r − 1)b−(c+q−(b−q)(r−1)−qk)(b+ r)c−(b−q)(r−1)−qk(b+ k)q−1,

where r =
⌊

c−qk
b−q

⌋

+1. Let us assume b, c, k, q, r ∈ R. The proof follows by direct

comparison of g1(b, c, k) with g2(b, c, k, q). First, we compare them for the largest
allowed c, and then we compare them with the smallest allowed c.

Claim 1. If c = kb− k, then g1(b, c, k) > g2(b, c, k, q).

Proof. This means that we compare the following functions

g1(b, k) = b2(b− 1)k(b+ k)b−2

and

g2(b, k, q) = br((b−q)(k−r)+b−k)qk−r

(

b+ r

b+ r − 1

)(b−q)(k−r)−k

(b+r)b−q(b+k)q−1,
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where r = k(b−q−1)
b−q

+ 1. So, we compare g1(b, k) with the following

g2(b, k, q) = b
k(b−q−1)

b−q
+1

q
k

b−q

(

(b− q)(b+ k)− k

b− q

)b−q

(b+ k)q−1.

Define g3(b, k, q) = ln(g1(b, k, q)/g2(b, k, q)). Then,

g3(b, k, q) = 2 ln b+ k ln(b−1)+(b− q −1) ln(b+ k)− k(b− q −1) + (b−q)

b− q
ln b

− k

b− q
ln(q)− (b− q)(ln((b− q)(b+ k)− k)− ln(b− q)).

We evaluate g3(b, k, q) as follows. First we verify that for b = 2q = 4 and k = 2,
g3(b, k, q) ≈ 0.08 > 0. Then,

∂g3(b, k, q)

∂k

=

[

ln(b− 1)− b− q − 1

b− q
ln(b)− 1

b− q
ln(q)

]

+

[

b− q − 1

b+ k
− (b− q)(b− q − 1)

(b− q)(b+ k)− k

]

≥
[

ln(b−1)− b− b
2 − 1

b− b
2

ln(b)− 1

b− b
2

ln

(

b

2

)

]

+

[

b−2−1

b+ k
− (b− 2)(b− 2−1)

(b− 2)(b+ k)−k

]

= ln(b− 1) +
2

b
ln(2)− ln(b) +

b− 3

b+ k
− (b− 2)(b− 3)

(b− 2)(b+ k)− k
= g4(b, k),

because based on standard evaluation ∂
∂q

(

ln(b−1)− b−q−1
b−q

ln(b)− 1
b−q

ln(q)
)

< 0

and ∂
∂q

(

b−q−1
b+k

− (b−q)(b−q−1)
(b−q)(b+k)−k

)

> 0. Furthermore, after lengthy but straithfor-

ward evaluation, ∂g4(b,k)
∂k

= 0 for k = b
√

b−2
b−3 that results in minimum of g4(b, k).

Based on standard evaluation,

g4(b) = ln(b−1)+
2

b
ln(2)−ln(b)+

b− 3

b
(

1+
√

b−2
b−3

)− (b− 2)(b− 3)

(b−2)
(

b
(

1+
√

b−2
b−3

))

− b
√

b−2
b−3

is positive for b = 4 (i.e., g4(4) = 0.016), dg4(b)
db

asymptotically converges to 0 as b

approaches infinity, and dg4(b)
db

< 0. This implies that ∂g3(b,k,q)
∂k

≥ 0. Consequently,
we may assume k = 2 in g1(b, k), g2(b, k, q) and focus on comparing the following
two functions

g1(b) = b2(b− 1)2(b+ 2)b−2

and

g2(b, q) = b
2(b−q−1)

b−q
+1

q
2

b−q

(

(b− q)(b+ 2)− 2

b− q

)b−q

(b+ 2)q−1.
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Define g3(b, q) = ln(g1(b)/g2(b, q)). We obtain,

g3(b, q) = (b− q − 1) ln(b+ 2)− b− q − 2

b− q
ln b+ 2 ln(b− 1)

− 2

b− q
ln(q)− (b− q)(ln((b− q)(b+ 2)− 2)− ln(b− q)).

Then,

∂g3(b, q)

∂q
=

[

2

(b− q)2
ln

(

b

q

)]

+

[

ln

(

1− 2

(b− q)(b+ 2)

)]

+
(b− q)(b+ 2)

(b− q)(b+ 2)− 2
− 2

q(b− q)
− 1

<

[

2

(b− q)2
ln

(

b

q

)]

+

[

− 2

b− q

(

1

b+ 2
+

1

(b+ 2)2(b− q)

)]

+
(b− q)(b+ 2)

(b− q)(b+ 2)− 2
− 2

q(b− q)
− 1

=

[

2

(b− q)2
ln

(

b

q

)]

+

[

(2b2q + 8bq + 12q + 8)− (2b3 + 8b2 + 4b)

q(b− q)(b+ 2)((b− q)(b+ 2)− 2)

]

<

[

2

(b− q)2
ln

(

b

q

)]

+

[

(2b2q + 8bq + 12q + 8)− (2b3 + 8b2 + 4b)

q(b− q)2(b+ 2)2

]

=
2

(b− q)2

[

ln

(

b

q

)

− (b3 + 4b2 + 2b)− (b2q + 4bq + 6q + 4)

q(b+ 2)2

]

=
2

(b− q)2

[

ln

(

b

q

)

−
(

b

q
− 1− 2(b+ q + 2)

q(b+ 2)2

)]

=
2

(b− q)2
g4(b, q) < 0,

for q ≤ b/2, since g4(b, q) < 0 for b = 2q = 4 and ∂g4(b, q)/∂b = 1/b− 1/q− 2(b+
2)−2/q − 4(b+ 2)−3 < 0. Hence, we may assume q = b/2 and compare functions
g1(b), g2(b) = g2(b, b/2). Let g3(b) = ln(g1(b)/g2(b)). Then,

g3(b) = 2 ln(b− 1) +
b− 2

2
ln(b+ 2)− b− 4

b
ln b− 4

b
ln

(

b

2

)

− b

2

(

ln

(

b(b+ 2)

2
− 2

)

− ln

(

b

2

))

= 2 ln(b− 1) +

(

b

2
− 1

)

ln(b+ 2)− b

2
ln
(

b2 + 2b− 4
)

+
4

b
ln(2) +

(

b

2
− 1

)

ln(b).
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For b = 4 we verify that g3(b) ≈ 0.077 > 0. We also verify that

dg3(b)
db

=
1

2
ln(b+ 2) +

1

2
ln(b)− 1

2
ln(b2 + 2b− 4)− 4

b2
ln(2)

+
2

b− 1
+

(b− 2)(b+ 1)

b(b+ 2)
− b(b+ 1)

b2 + 2b− 4
,

and for b < 4.1456 we have dg3(b)/db > 0, while for b > 4.1456 we have
dg3(b)/db < 0 (with local maximum for g3(b) at b ≈ 4.1456) and that
limb→∞ dg3(b)/db = limb→∞ g3(b) = 0. Consequently, g1(b, c, k) > g2(b, c, k, q) for
c = bk − k. �

Claim 2. If c = qk + k, then g1(b, c, k) > g2(b, c, k, q).

Proof. We now compare g1(b, c, k) with g2(b, c, k, q) for least allowed c for given
b, k, q. This means that we compare the following functions

g1(b, k, q) = bb−q(q + 1)k(b+ k)q

and

g2(b, k, q) = br(q+k−(b−q)(r−1))qk−r

(

b+ r

b+r−1

)k−(b−q)(r−1)

(b+r−1)b−q(b+k)q−1,

where r = k
b−q

+ 1. So, we compare g1(b, k, q) with the following

g2(b, k, q) = b
k

b−q
+1

q
k(b−q−1)

b−q

(

b+
k

b− q

)b−q

(b+ k)q−1.

Define g3(b, k, q) = ln(g1(b, k, q)/g2(b, k, q)). Then, after straightforward evalua-
tion we obtain

g3(b, k, q) =

(

b− q − k

b− q
− 1

)

ln b− k(b− q − 1)

b− q
ln(q) + k ln(q + 1)

− (b− q) ln

(

b+
k

b− q

)

+ ln(b+ k).

Then,

∂g3(b, k, q)

∂k
=

[

ln(q + 1)− 1

b− q
ln(b)− b− q − 1

b− q
ln(q)

]

+

[

1

b+ k
− 1

b+ k
b−q

]

.

After further evaluation, we obtain ∂2g3(b, k, q)/∂k
2 = 1/((b − 2)(b + k)/(b −

2))2 − 1/(b + k)2 = 0 for k = b(b − q)(
√
b− q − 1)/(b − q −√

b− q) that results
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in minimum of ∂g3(b, k, 2)/∂k, and ∂2g3(b, k, q)/∂q
2
∣

∣

k=
b(b−q)(

√

b−q−1)

b−q−
√

b−q

< 0. Hence,

after substitutions k = b(b − q)(
√
b− q − 1)/(b − q − √

b− q) and q = b/2 we
obtain

g4(b) = ln(b+ 2)− ln(b)− 2

b
ln(2) +

b− 2
√

b
2

b(b− 2)
√

b
2

−
b− 2

√

b
2

b(b− 2)
,

which satisfies dg4(b)/db < 0, limb→∞ g4(b) = 0, and g4(4) ≈ 0.016. So, we con-
clude that ∂g3(b, k, q)/∂k > 0. Consequently, we may assume k = 2 in g3(b, k, q)
and evaluate the following

g3(b, q) = (b− q − 2

b− q
− 1) ln(b)− 2(b− q − 1)

b− q
ln(q) + 2 ln(q + 1)

− (b− q) ln

(

b+
2

b− q

)

+ ln(b+ 2).

Then, after standard evaluation,

∂g3(b, q)

∂q
= − 2

(b− q)2
(ln(b)− ln(q)) + ln

(

b+
2

b− q

)

− ln(b)− 2

b(b− q) + 2
+

2

q(b− q)
+

2

q + 1
− 2

q

=

[

− 2

(b− q)2
ln

(

b

q

)]

+

[

ln

(

1 +
2

b(b− q)

)]

− 2
(b− 2q − 1)(b(b− q) + 2) + q(q + 1)(b− q)

q(q + 1)(b(b− q) + 2)(b− q)

<

[

− 2

(b− q)2

(

b− q

b

)]

+

[

2

b(b− q)

]

− 2
(b− 2q − 1)(b(b− q) + 2) + q(q + 1)(b− q)

q(q + 1)(b(b− q) + 2)(b− q)

= −2
(b− 2q − 1)(b(b− q) + 2) + q(q + 1)(b− q)

q(q + 1)(b(b− q) + 2)(b− q)
< 0,

for q ≤ b/2. Hence, we may assume q = b/2 in g3(b, q) and evaluate the following

g3(b) =

(

b

2
− 2

b
2

−1

)

ln(b)− b− 2
b
2

ln

(

b

2

)

+ 2 ln

(

b

2
+ 1

)

− b

2
ln

(

b+
2
b
2

)

+ ln(b+ 2)
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=

(

b

2
− 4

b
− 1

)

ln(b)− 2(b− 2)

b
ln

(

b

2

)

+ 2 ln

(

b+ 2

2

)

− b

2
ln

(

b+
4

b

)

+ ln(b+ 2)

=
b− 6

2
ln(b)− 4

b
ln(2) + 3 ln(b+ 2)− b

2
ln

(

b+
4

b

)

.

Then,
dg3(b)

db
=

4

b2 + 4
+

4 ln(2)

b2
+

3

b+ 2
− 1

2
ln

(

1 +
4

b2

)

− 3

b
.

Based on straithforward evaluation, dg3(b)/db > 0 for b < 5.763, dg3(b)/db < 0
for b > 5.763, and maximum for g3(b) is obtained at b = 5.763. Furthermore,
limb→∞ g3(b) = 0, and g3(4) ≈ 0.077. Hence, we conclude that g1(b, c, k) >
g2(b, c, k, q) for c = qk + k. �

Based on (2) and (3), define g3(b, c, k, q) = ln(g1(b, c, k)/g2(b, c, k, q)). From
Claims 1–2, g3(b, c, k, q) > 0 for c = bk − k and for c = qk + k. By examining
∂g3(b, c, k, q)/∂c = 0 over extended region for c, bk ≥ c ≥ qk, we conclude
that there must be at most two extreme points between c = qk and c = bk.
For given b, k, q we have g1(b, qk, k) = g2(b, qk, k, q) = bb−q+1qk(b + k)q−1 and
g1(b, bk, k) = g2(b, bk, k, q) = bk+1(b+k)b−1. This means that g3(b, c, k, q) = 0 for
c = qk and for c = bk. So, there must be exactly one extreme point and it must
be maximum for kb − k ≥ c ≥ kq + k. This proves that g1(b, c, k) > g2(b, c, k, q)
for kb− k ≥ c ≥ kq + k.

We note here that if q > c/2 = (n− k)/2, then f1 < f2 is possible for f1, f2
from Lemma 10. The smallest such example is for |V (G)| = 13 by comparing
G′ = H(13; 5, 5, 5, 5, 5, 5, 5) corresponding to f1 with G′′ = H(13; 6, 6, 6, 5, 4, 4, 4)
corresponding to f2. In this case, k = 7, n− k = 6, q = 4, and the corresponding
number of spanning trees are t(G′) = 2231328125 < 2277849600 = t(G′′). In
spite of this, we conjecture that t(Qn,m,q) < t(G) for every G such that G ∈
S(q, n,m), G ≇ Qn,m,q, and n−k > q ≥ 1. In the rest of this paper we prove this
conjecture for (n− k)/2 ≥ q ≥ 2.

Based on Lemmas 3 and 10 we obtain the following result.

Lemma 11. Let b, c, k, be given positive integers with b ≥ 2q ≥ 4, kb− k ≥ c ≥
qk+k. Let x0 = b, xk+1 = q, and g(x1, x2, . . . , xk) =

∏k
i=0(xi(b+ i)xi−xi+1). The

minimum of g over the region

P :=

{

x ∈ Nk :
k
∑

i=1

xi = c, b ≥ x1 ≥ x2 · · · ≥ xk ≥ q

}
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occurs at some point (x1, x2, . . . , xk) if and only if x1 = x2 = · · · = xr−1 = b,
xr > q and xr+1 = xr+2 = · · · = xk = q, for some r ≥ 1.

Proof. Suppose a minimum of g occurs at some point (x1, x2, . . . , xk) where
b > xi ≥ xi+1 > q is satisfied. Let t be the least index for which xt < b, and let r
be the largest index for which xr > q. Then we have the following two cases to
consider.

Case 1. xt = xr is satisfied. In this case b > xt = xt+1 = · · · = xr >
q. Consider corresponding function f1(xt, xt+1, . . . , xr) from Lemma 10, where
b = xt−1, q = xr+1, x ∈ Rr−t+1. Since b/2 ≥ q, by Lemma 10, f1 > f2 — a
contradiction.

Case 2. xt > xr is satisfied. Consider corresponding function f(xt, xr) from
Lemma 3, where b = xt−1, q = xr+1, x ∈ Rr−t+1. Clearly, there must be index i,
t ≥ i > r, such that xi > xi+1. Consequently, b > xt, xi > xi+1, and xr > q are
satisfied. So, by Lemma 3 f is not minimum — a contradiction.

Since both cases are not feasible, then by Lemma 3 the minimum of g must
occur at some point (x1, x2, . . . , xk), where x1 = x2 = · · · = xr−1 = b, xr > q and
xr+1 = xr+2 = · · · = xk = q, for some r ≥ 1.

According to the introduced notations for our specific threshold graph, Qn,m,q

= H(n; d1, d2, . . . , dk) = H(n; d1, q, . . . , q), we can now present the main result of
this paper.

Theorem 12. Let G ∈ S(q, n,m). If G ≇ Qn,m,q, then t(G) > t(Qn,m,q).

Proof. Suppose G ≇ Qn,m,q, G ∈ S(q, n,m), and t(G) ≤ t(Qn,m,q). By Theorem
9 G must be a q-connected threshold graph. Furthermore, by Lemma 11, G must
be of form H

(

n; d1, d2, . . . , di, . . . , dk
)

= H
(

n;n − k, . . . , n − k, di, q, . . . , q
)

for
some i, k ≥ 2 and n − k ≥ di > q. If i = 2, then G = H

(

n;n − k, d2, q, . . . , q
)

≃
H
(

n; d′1, q, . . . , q
)

= H
(

n; d′1, d
′
2, . . . , d

′
k−1

)

≃ Qn,m,q, where d
′
j = dj+1 for j ≤ k−

1 — a contradiction. So, i > 2 must be satisfied. In this case G = H(n;n−k, . . . ,
n−k, di, q, . . . , q) ≃ H

(

n;n−k, . . . , n−k, d′i−1, q, . . . , q
)

= H
(

n; d′1, d
′
2, . . . , d

′
k−1

)

,
where d′j = dj+1 for j ≤ k− 1. Furthermore, H(n;n− k, . . . , n− k, d′i−1, q, . . . , q)

can be transformed to H ′
(

n;n − k + 1, . . . , n − k + 1, d′′j , q, . . . , q
)

for some j ≤
i, which is not isomorphic to H

(

n;n − k, . . . , n − k, d′i−1, q, . . . , q
)

. Then by
Lemma 11

t
(

H ′
(

n;n−k+1, . . . , n−k+1, d′′j , q, . . . , q
))

< t
(

H
(

n;n−k, . . . , n−k, d′i−1, q, . . . , q
))

— a contradiction. This contradiction proves Theorem 12.

If m ≥ (n−1)(n−2)
2 +q, then Qn,m,q represents a threshold graph obtained from

Kn by removing k edges adjacent to a single vertex, where n − q − 1 ≥ k ≥ 1.
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In this case S(q − 1, n,m) = ∅, which implies that Qn,m,q−1 does not exist.

Conversely, if m < (n−1)(n−2)
2 + q, then Qn,m,q−1 does exist. So, we can state the

following corollary to Theorem 12.

Corollary 13. Let p be the largest integer such that m ≥ (n−p)(n−p−1)
2 + qp,

n−p
2 ≥ q ≥ 2, and let m < (n−1)(n−2)

2 + q for given positive integers n,m, q. If
G ∈ S(q, n,m), then t(G) > t(Qn,m,q−1).

Proof. If G ∈ S(q, n,m) then by Theorem 12 t(G) ≥ t(Qn,m,q). Furthermore,
by Lemma 11 t(Qn,m,q) > t(Qn,m,q−1).

In closing we note that by setting r = 1 and dividing formula (3) by b2 we
obtain,

(c+ q − qp)qp−1bb−c−q+qp−1(b+ 1)c−qp(b+ p)q−1,

which represents a sharp lower bound for the number of spanning trees of q-
connected graphs H ∈ S(q, n,m) from Theorem 12, where c = m − (n − p)(n −
p− 1)/2, b = n− p, and p = k represents the number of vertices not included in
clique of Qn,m,q (i.e., vertices v1, v2, . . . , vk in Figure 1 illustrating Qn,m,q). Note
also that this sharp lower bound on the number of spanning trees pertains to
(n− p)/2 ≥ q ≥ 1 since for q = 1 it is implied from the result in [4].
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